KR101121203B1 - 고농도 탄소나노튜브 용액용 분산제 및 이를 포함한 조성물 - Google Patents

고농도 탄소나노튜브 용액용 분산제 및 이를 포함한 조성물 Download PDF

Info

Publication number
KR101121203B1
KR101121203B1 KR1020050068346A KR20050068346A KR101121203B1 KR 101121203 B1 KR101121203 B1 KR 101121203B1 KR 1020050068346 A KR1020050068346 A KR 1020050068346A KR 20050068346 A KR20050068346 A KR 20050068346A KR 101121203 B1 KR101121203 B1 KR 101121203B1
Authority
KR
South Korea
Prior art keywords
composition
salt
carbon nanotubes
group
formula
Prior art date
Application number
KR1020050068346A
Other languages
English (en)
Other versions
KR20070013755A (ko
Inventor
윤선미
이정희
이은성
최재영
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020050068346A priority Critical patent/KR101121203B1/ko
Priority to US11/446,972 priority patent/US7935733B2/en
Publication of KR20070013755A publication Critical patent/KR20070013755A/ko
Application granted granted Critical
Publication of KR101121203B1 publication Critical patent/KR101121203B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/09Esters of phosphoric acids
    • C07F9/091Esters of phosphoric acids with hydroxyalkyl compounds with further substituents on alkyl
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/07Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media from polymer solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/04Nanotubes with a specific amount of walls
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/06Multi-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/28Solid content in solvents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)

Abstract

본 발명은 고농도 탄소나노튜브 용액용 분산제 및 이를 포함한 조성물에 관한 것으로, 상기 분산제는 머리(head)가 탄소나노튜브 입자에 래핑(wrapping)형태로 흡착가능한 소수성 사슬(hydrophobic chain)구조로 이루어져 있으며, 상기 조성물은 상기 분산제 및 극성 용매를 포함하고, 이밖에 수산화나트륨과 같은 첨가제를 더 포함하여 탄소나노튜브의 분산성을 매우 향상시키고 안정화 효과가 뛰어나 고농도의 탄소나노튜브 용액을 제조할 수 있는 이점이 있다.
탄소나노튜브, 분산제, 극성 용매, 첨가제

Description

고농도 탄소나노튜브 용액용 분산제 및 이를 포함한 조성물{Dispersant for high-concentrated carbon nanotube solution and composition comprising the same}
도 1은 본 발명의 분산제가 용매 속에서 탄소나노튜브의 표면에 흡착되어 분산되는 상태를 도시한 모식도이고,
도 2은 본 발명의 분산제와 도데실벤젠설폰산나트륨(NaDDBS)을 사용한 탄소나노튜브 분산용액의 흡광도 측정결과를 나타낸 그래프이고,
도 3은 본 발명에 있어서, 이소프로필알콜의 함량에 따른 분산용액의 흡광도 측정결과를 나타낸 그래프이고,
도 4는 본 발명에 있어서, 첨가제에 의한 용매의 pH 농도 변화에 따른 분산용액의 흡광도 측정결과를 나타낸 그래프이고,
도 5는 본 발명의 분산제 및 NaDDBS에 의한 고농도 탄소나노튜브 분산용액을 희석했을 때의 사진이고,
도 6은 상기한 분산제 및 NaDDBS을 사용한 고농도 탄소나노튜브 분산용액을 희석하여 1시간 15분 혼합(mixing)한 후 다시 관찰한 결과를 나타낸 사진이다.
본 발명은 고농도 탄소나노튜브 용액용 분산제 및 이를 포함한 조성물에 관한 것으로서, 보다 상세하게는 머리(head)가 탄소나노튜브 입자에 래핑(wrapping)형태로 흡착가능한 소수성 사슬(hydrophobic chain)구조로 이루어져 있어 탄소나노튜브의 분산성을 향상시켜 고농도의 탄소나노튜브 용액을 만들 수 있는 분산제 및 이를 함유한 조성물에 관한 것이다.
탄소나노튜브는 2차원의 흑연면이 나노크기의 실린더 구조로 둥글게 말린 형태이며, 튜브의 표면은 π전자에 의해 형성된 전자구름이 덮여있는 형상을 갖는다. 탄소나노튜브는 직경, 길이, 말린 방향(chirality)에 따라 다양한 물리적 성질을 보이는 거대분자로서, 기계적 강도 및 탄성, 화학적 안정성이 뛰어나고, 전기적으로 우수한 물성을 나타내어 최근 전자방출원(emitter) 및 디스플레이, 2차 전지 및 연료전지, 나노부품 및 시스템, 고기능 복합체 등에 응용되고 있다.
그러나, 이러한 다양한 응용성에도 불구하고 탄소나노튜브는 그 제조과정에서 전기 방전 등의 방법으로 제조되는 경우에 수 나노미터의 직경과 종횡비가 1000에 이르는 길이를 가지는 튜브상의 탄소나노튜브가 무질서하게 엉켜있는 상태로 제조되어 용액 속에 분산시키는데 장애요소가 되고 있다.
상술한 문제점을 해결하기 위하여 탄소나노튜브를 용액 내에 고르게 분산시킬 수 있는 방법의 하나로서 분산제를 첨가하는 방법이 사용되고 있다. 종래 수 계 분산제로는, 도데실벤젠설폰산나트륨(sodium dodecyl benzen sulfonate, NaDDBS), 도데실설폰산나트륨(sodium dodecyl sulfonate), TX-100 등이 사용되고 있으며, 이중에서 도데실벤젠설폰산나트륨(NaDDBS)이 가장 뛰어난 분산제로 알려져 있다.
그러나, 이러한 기존 수계 분산제는 고농도 탄소나노튜브 분산용액에 대한 분산력이 낮아 탄소나노튜브를 고농도로 고르게 분산시키지 못하고 응집에 의한 침강 현상이 일어나는 문제점이 있다.
본 발명은 상술한 종래기술의 문제점을 극복하기 위한 것으로, 본 발명의 목적은 머리(head)가 탄소나노튜브 입자에 래핑(wrapping)형태로 흡착가능한 소수성 사슬(hydrophobic chain)구조로 이루어져 물 속에서 탄소나노튜브의 분산성을 향상시켜 고농도의 탄소나노튜브 용액을 만들 수 있는 분산제를 제공하는 것이다.
본 발명의 다른 목적은 상기 분산제를 포함하여 탄소나노튜브의 분산을 향상시킬 수 있는 조성물을 제공하는 것이다.
상술한 목적을 달성하기 위한 본 발명의 하나의 양상은,
하기 화학식 1 내지 화학식 6 중 어느 하나로 표시되는 고농도 탄소나노튜브 용액용 분산제를 특징으로 한다.
(CF3(CF2)aCH2CH2O)xPO(OR´)y(OCH2CH2OH)z
상기 식중, a는 1 내지 30의 정수이고, R´는 H, NH4, Li, Na 및 K로 이루어진 군으로부터 선택되고, x+y+z=3 , x≠0 및 y≠0이다.
CF3(CF2)aCH2CH2SCH2CH2R
상기 식중, a는 1 내지 30의 정수이고, R은 카르복실산이나 그의 염, 인산이나 그의 염, 술폰산이나 그의 염으로 이루어진 군으로부터 선택된다.
(CF3(CF2)aCH2CH2O)PO(OR´)(OCH2CH2(CF2)bCF3)
상기 식중, a 및 b는 서로 독립적으로 1 내지 30의 정수이고, R´는 H, NH4, Li, Na 및 K로 이루어진 군으로부터 선택된다.
CF3(CF2)aCH2CH2R
상기 식중, a는 1 내지 30의 정수이며, R은 카르복실산이나 그의 염, 인산이나 그의 염, 술폰산이나 그의 염으로 이루어진 군으로부터 선택된다.
CF3(CF2CFR)aCF3
상기 식중, a는 50 내지 160의 정수이며, R은 카르복실산이나 그의 염, 인산이나 그의 염, 술폰산이나 그의 염으로 이루어진 군으로부터 선택된다.
CF3[(CF2CF2)a(CF2CF(OCF2CF(CF3)OCF2CF2R)]x CF3
상기 식중, a는 0 내지 4의 정수이고, x는 45 내지 160의 정수이며, R은 카르복실산이나 그의 염, 인산이나 그의 염, 술폰산이나 그의 염으로 이루어진 군으로부터 선택된다.
본 발명의 다른 양상은 상술한 분산제 및 수성 액체 매질과 탄소나노튜브를 포함하는 조성물을 특징으로 한다.
상기 수성 액체 매질은 물을 단독으로 사용하거나, 1종 이상의 극성 용매를 혼합하여 사용할 수 있으며, 이때 상기 수성 액체 매질 내에서 물과 극성 용매의 혼합부피비는 12:8 내지 2:18인 것이 바람직하고, 가장 바람직하게는 8:12이다. 상기 극성 용매는 메틸알콜, 에틸알콜, n-프로필알콜, 이소프로필알콜, n-부틸알콜, sec-부틸알콜, t-부틸알콜, 이소부틸알콜, 에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 프로필렌글리콜, 부틸렌글리콜, 1,3-프로판디올, 1,4-부탄디올, 1,5-펜탄디올, 1,2-헥산디올, 및 1,6-헥산디올로 이루어진 군으로부터 선택할 수 있으나, 반드시 이들로 제한되는 것은 아니다.
한편, 상기 탄소나노튜브는 단일벽 탄소나노튜브, 이중벽 탄소나노튜브, 다중벽 탄소나노튜브 및 다발형 탄소나노튜브로 이루어진 군으로부터 1종 이상 선택 될 수 있다.
상기 조성물에서, 상기 탄소나노튜브와 분산제의 혼합중량비는 1:0.1 내지 1:100인 것이 적당하다.
여기에서, 상기 조성물은 탄소나노튜브 0.01 내지 10 중량%, 분산제 0.001 내지 50 중량% 및 수성액체매질 40 내지 99.989 중량%를 포함하는 것이 바람직하다.
또한, 상기 조성물은 첨가제를 더 포함할 수 있으며, 상기 첨가제에 의하여 분산액의 pH농도는 2 내지 12의 범위로 조정하는 것이 바람직하며, 더욱 바람직하게는 pH농도 4 내지 10 이다. 상기 첨가제는 수산화나트륨, 수산화칼륨, 수산화칼슘, 수산화암모늄 등으로 이루어진 군으로부터 선택하거나, 염산, 황산, 질산, 아세트산, 탄산 등으로 이루어진 군으로부터 선택할 수 있다.
이하, 본 발명에 따른 고농도 탄소나노튜브 용액용 분산제 및 이를 포함한 조성물에 대하여 보다 상세하게 설명하기로 한다.
본 발명의 고농도 탄소나노튜브 용액을 위한 분산제는 하기 식에서 보는 바와 같이 머리(head)부분이 소수성 사슬(hydrophobic chain)로 구성되어 있으며, 머리를 이루는 사슬부분의 탄소가 모두 불소(F)로 치환되어 있는 단분자 내지 고분자이다. 또한 분자내 친수성 부분은 카르복실산이나 그의 염, 인산이나 그의 염, 술폰산이나 그의 염 등으로 이루어져 있어, 분산제는 소수성의 탄소타노튜브와 흡착 가능할 뿐만 아니라 물과의 수화력도 아주 높다.
[화학식 1]
(CF3(CF2)aCH2CH2O)xPO(OR´)y(OCH2CH2OH)z
상기 식중, a는 1 내지 30의 정수이고, R´는 H, NH4, Li, Na 및 K로 이루어진 군으로부터 선택되고, x+y+z=3 , x≠0 및 y≠0이다.
[화학식 2]
CF3(CF2)aCH2CH2SCH2CH2R
상기 식중, a는 1 내지 30의 정수이고, R은 카르복실산이나 그의 염, 인산이나 그의 염, 술폰산이나 그의 염으로 이루어진 군으로부터 선택된다.
[화학식 3]
(CF3(CF2)aCH2CH2O)PO(OR´)(OCH2CH2(CF2)bCF3)
상기 식중, a 및 b는 서로 독립적으로 1 내지 30의 정수이고, R´는 H, NH4, Li, Na 및 K로 이루어진 군으로부터 선택된다.
[화학식 4]
CF3(CF2)aCH2CH2R
상기 식중, a는 1 내지 30의 정수이며, R은 카르복실산이나 그의 염, 인산이나 그의 염, 술폰산이나 그의 염으로 이루어진 군으로부터 선택된다.
[화학식 5]
CF3(CF2CFR)aCF3
상기 식중, a는 50 내지 160의 정수이며, R은 카르복실산이나 그의 염, 인산이나 그의 염, 술폰산이나 그의 염으로 이루어진 군으로부터 선택된다.
[화학식 6]
CF3[(CF2CF2)a(CF2CF(OCF2CF(CF3)OCF2CF2R)]x CF3
상기 식중, a는 0 내지 4의 정수이고, x는 45 내지 160의 정수이며, R은 카르복실산이나 그의 염, 인산이나 그의 염, 술폰산이나 그의 염으로 이루어진 군으로부터 선택된다.
도 1은 본 발명의 분산제가 용매 속에서 탄소나노튜브의 표면에 흡착되어 분산시키는 예를 도시한 것이다. 분산제의 소수성 사슬이 소수성의 탄소나노튜브의 표면에 흡착한 후 탄소나노튜브 주위의 용매에 꼬리를 늘어뜨려 입체장애 효과로 탄소나노튜브 사이의 간격을 일정하게 유지시켜 탄소나노튜브들이 재응집되는 것을 막아준다. 또한 친수성의 꼬리는 전하를 띄고 있기 때문에 탄소나노튜브간에 반발력이 생겨서 입자들간의 재응집되는 것을 막아준다.
이하, 상기 화학식 1 내지 6의 분산제를 포함하고 있는 조성물에 대하여 살펴보면 다음과 같다.
본 발명의 조성물은 상기 분산제 및 수성 액체 매질과 탄소나노튜브를 포함하며, 상기 수성 액체 매질로는 물을 단독으로 사용하거나, 1종 이상의 극성 용매를 혼합하여 사용할 수 있다. 이 때 상기 수성 액체 매질 내에서 물과 극성 용매의 혼합부피비는 12:8 내지 2:18인 것이 바람직하고, 가장 바람직하게는 8:12이다.
이와 같이 수성 액체 매질로 극성 용매를 함께 사용하면 탄소나노튜브 입자와 매질 사이의 계면 장력을 감소시켜 탄소나노튜브의 습윤(wetting)을 확산시키므로 단일용매를 사용할 때보다 탄소나노튜브의 분산을 향상시킬 수 있다.
본 발명에서 사용가능한 극성 용매는 메틸알콜, 에틸알콜, n-프로필알콜, 이소프로필알콜, n-부틸알콜, sec-부틸알콜, t-부틸알콜, 이소부틸알콜, 에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 프로필렌글리콜, 부틸렌글리콜, 1,3-프로판디올, 1,4-부탄디올, 1,5-펜탄디올, 1,2-헥산디올, 및 1,6-헥산디올로 이루어진 군으로부터 선택할 수 있으나, 반드시 이들로 제한되는 것은 아니다.
한편, 상기 탄소나노튜브는 단일벽 탄소나노튜브, 이중벽 탄소나노튜브, 다중벽 탄소나노튜브 및 다발형 탄소나노튜브로 이루어진 군으로부터 1종 이상 선택될 수 있다.
상기 조성물에서, 상기 탄소나노튜브와 분산제의 혼합중량비는 1:0.1 내지 1:100인 것이 적당하다.
여기에서, 상기 조성물은 탄소나노튜브 0.01 내지 10 중량%, 분산제 0.001 내지 50 중량% 및 수성액체매질 40 내지 99.989 중량%를 포함하는 것이 바람직하다.
또한, 상기 분산액은 필요에 따라 첨가제를 더 포함할 수 있는데, 상기 첨가제에 의하여 분산액의 pH 농도는 2 내지 12의 범위로 조정하는 것이 바람직하며, 더욱 바람직하게는 pH농도 4 내지 10 이다. 상기 첨가제는 수산화나트륨, 수산화칼륨, 수산화칼슘, 수산화암모늄 등으로 이루어진 군으로부터 선택하거나, 염산, 황산, 질산, 아세트산, 탄산 등으로 이루어진 군으로부터 선택할 수 있다. 여기에서 산 또는 염기의 첨가제는 수성액체매질에 대한 분산제의 용해도를 증가시키고, 탄소나노튜브 입자에 정전기적 반발력(electrostatic repulsion)을 부여하여 입자간 응집하려는 경향을 감소시키는 역할을 한다. 따라서 탄소나노튜브의 분산 상태는 안정화되므로 분산성을 더욱 향상시킬 수 있다. 그러나 상기 pH 농도가 12를 초과하거나 2 미만인 경우에는 이온의 농도가 높아져서 이중층의 두께가 감소하여 반발력이 줄어들므로 분산성은 다시 떨어지게 된다.
이하, 본 발명은 하기 실시예에 의하여 보다 구체화될 것이며, 하기 실시예는 본 발명의 구체적인 예시에 불과하고 본 발명의 보호범위를 한정하거나 제한하고자 하는 것은 아니다.
<실시예 1>
화학식 1로 표시되는 분산제로서 (CF3(CF2)15CH2CH2O)PO(ONH4)2 을 20mg(투입할 탄소나노튜브의 10배에 해당하는 양)을 물 20ml에 넣고 용해한 후, 이 용액에 다중벽 탄소나노튜브 (Multi-wall carbon nanotubes) 2mg을 첨가하여 초음파분산기(sonicbath)에서 10시간 분산시켰다. 다음에 5600rpm에서 원심분리를 5분간 해주어 탄소나노튜브 용액을 얻었다.
분산 후 원심분리로 분산이 잘된 부분만 채취하여 UV-Vis-spectroscopy(JASCO(V-560), Absorbance mode, Scanning speed: 400nm/min)로 700nm에서 흡광도를 측정하였으며, 이 값은 분산이 잘되어 있는 탄소나노튜브의 농도와 비례한다. 측정시 표준용액은 탄소나노튜브가 없는 분산제 용액을 사용하였다.
<실시예 2>
탄소나노튜브 용액 제조시 분산제로서 화학식 2로 표시되는 분산제인 CF3(CF2)15CH2CH2SCH2CH2COOLi 을 사용한 것을 제외하고는, 실시예 1과 동일한 방법에 따라 실시하여 탄소나노튜브 용액을 얻었다.
<실시예 3>
탄소나노튜브 용액 제조시 분산제로서 화학식 3으로 표시되는 분산제인 (CF3(CF2)14CH2CH2O)PO(OH)2 를 사용한 것을 제외하고는, 실시예 1과 동일한 방법에 따라 실시하여 탄소나노튜브 용액을 얻었다.
<실시예 4>
탄소나노튜브 용액 제조시 분산제로서 화학식 4로 표시되는 분산제인 CF3(CF2)15CH2CH2SO3H 를 사용한 것을 제외하고는, 실시예 1과 동일한 방법에 따라 실시하여 탄소나노튜브 용액을 얻었다.
<실시예 5>
탄소나노튜브 용액 제조시 분산제로서 화학식 1로 표시되는 분산제인 (CF3(CF2)15CH2CH2O)PO(ONH4)(OCH2CH2OH) 를 사용한 것을 제외하고는, 실시예 1과 동일한 방법에 따라 실시하여 탄소나노튜브 용액을 얻었다.
<실시예 6>
탄소나노튜브 용액 제조시 분산제로서 화학식 6으로 표시되는 분산제인 CF3[(CF2CF)3(CF2CF(OCF2CF(CF3)OCF2CF2SO3H)]105CF3 를 사용한 것을 제외하고는, 실시예 1과 동일한 방법에 따라 실시하여 탄소나노튜브 용액을 얻었다.
<실시예 7>
화학식 6으로 표시되는 분산제인 CF3[(CF2CF)3(CF2CF(OCF2CF(CF3)OCF2CF2-SO3H)]105CF3 20mg(투입할 탄소나노튜브의 10배에 해당하는 양)을 물 20ml에 넣고 용해한 후, 이 용액에 이중벽 탄소나노튜브(Double wall carbon nanotube)를 2mg을 첨가하여 초음파분산기(sonicbath)에서 10시간 분산시켰다. 5600rpm에서 원심분리를 5분간 해주어 탄소나노튜브 용액을 얻었다.
이 탄소나노튜브 용액을 UV-Vis-spectroscopy(JASCO(V-560), Absorbance mode, Scanning speed: 400nm/min)로 700nm에서 흡광도를 측정하였으며, 측정시 표준용액은 탄소나노튜브가 없는 분산제 용액을 사용하였다.
<실시예 8-11>
탄소나노튜브 용액 제조시 용매로서 물 16ml과 이소프로필알콜 4ml, 물 8ml과 이소프로필알콜 12ml, 물 4ml과 이소프로필알콜 16ml, 물 2ml과 이소프로필알콜 18ml를 각각 혼합하여 사용한 것을 제외하고는, 실시예 7과 동일한 방법에 따라 실시하여 탄소나노튜브 용액을 얻었다.
<실시예 12>
탄소나노튜브 용액 제조시 용매로서 이소프로필알콜 20ml를 사용한 것을 제외하고는, 실시예 7과 동일한 방법에 따라 실시하여 탄소나노튜브 용액을 얻었다.
<실시예 13>
화학식 3으로 표시되는 분산제인 (CF3(CF2)15CH2CH2O)PO(OH)2 20mg(투입할 탄소나노튜브의 10배에 해당하는 양)을 물 20ml에 넣고 용해한 후, 이 용액에 단일벽 탄소나노튜브(Single wall carbon nanotube)를 2mg을 첨가하여 초음파분산기(sonicbath)에서 10시간 분산을 한다. 분산후 5600rpm에서 원심분리를 5분간 해주어 탄소나노튜브 용액을 얻었다.
이 탄소나노튜브 용액을 UV-Vis-spectroscopy(JASCO(V-560), Absorbance mode, Scanning speed: 400nm/min)로 700nm에서 흡광도를 측정하였으며, 측정시 표준용액은 탄소나노튜브가 없는 분산제 용액을 사용하였다.
<실시예 14-22>
탄소나노튜브 용액 제조시 용매로서 NaOH 수용액을 첨가하여 pH 3.3, 3.9, 6.4, 7.4, 8.6, 9.6, 11.0, 12.8, 13.1로 조절한 것을 제외하고는, 실시예 13과 동일한 방법에 따라 실시하여 탄소나노튜브 용액을 얻었다.
<비교예 1>
탄소나노튜브 용액 제조시 분산제로서 도데실벤젠설폰산나트륨(NaDDBS)을 사용한 것을 제외하고는, 실시예 1과 동일한 방법에 따라 실시하여 탄소나노튜브 용액을 얻었다.
상기 실시예 1-6 및 비교예 1에 따라 제조된 탄소나노튜브 용액에 있어서, 분산제 종류에 따른 흡광도를 측정하였고, 그 결과는 도 2에 나타내었다.
도 2를 참조하면, 화학식 1~6으로 표시되는 본 발명의 분산제가 종래의 수계 분산제인 도데실벤젠설폰산나트륨(NaDDBS)의 경우와 비교하여 흡광도가 높게 나타났고, 따라서 본 발명의 분산제가 탄소나노튜브를 더 잘 분산시킨다는 것을 알 수 있다
상기 실시예 7-12에 따라 제조된 탄소나노튜브 용액에 있어서, 이소프로필알콜의 함량에 따른 흡광도를 측정하였고, 그 결과는 도 3에 나타내었다.
도 3을 참고하면, 이소프로필알콜의 함량이 약 60 부피%일 때 탄소나노튜브용액의 흡광도가 가장 우수하다는 것을 알 수 있었다.
상기 실시예 13-22에 따라 제조된 탄소나노튜브 용액에 있어서, NaOH 첨가에 의한 용매의 pH 농도 변화에 따른 흡광도를 측정하였고, 그 결과는 도 4에 나타내었다.
도 4를 참고하면, NaOH 첨가에 의하여 용매의 pH 농도가 약 6 내지 8인 경우, 흡광도가 가장 우수한 결과를 나타내었다.
본 발명의 의하면, 분산제를 탄소나노튜브에 대하여 10배의 비율로 용매 20ml에 첨가할 때, 탄소나노튜브가 600mg/20ml에서도 분산이 가능한 것을 확인할 수 있었다.
한편, 고농도 탄소나노튜브 용액의 분산정도를 확인하기 위하여 용매 20ml, 탄소나노튜브 600mg 및 탄소나노튜브의 무게대비 1.5가 되도록 화학식 6의 분산제인 CF3[(CF2CF)3(CF2CF(OCF2CF(CF3)OCF2CF2SO3H)]105CF3 와 NaDDBS를 각각 혼합하여 고농도 탄소나노튜브 용액을 준비하였다. 각각의 고농도 탄소나노튜브 용액의 분산정도를 관찰한 결과는 도 5 및 6에 나타내었다.
도 5를 참고하면, 각각의 고농도 분산용액 0.1g을 물 19.9g에 떨어뜨렸을 때, NaDDBS로 분산한 용액은 덩어리째 가라앉고, 화학식 6의 분산제의 경우는 물에 골고루 퍼지는 양상을 확인할 수 있다. 이는 NaDDBS의 경우 탄소나노튜브를 고농도로 분산시키지 못하고 응집에 의하여 침강시키는 것을 말해준다.
도 6을 참고하면, 상기 희석한 고농도 분산용액을 1시간 15분 혼합(mixing)한 후 다시 관찰한 결과를 나타내고 있는데 NaDDBS로 분산한 용액은 분산이 안된 것처럼 덩어리째 존재하며 15분이 지난 후 모두 가라앉은 반면, 화학식 6의 분산제의 경우 이러한 침강현상을 확인할 수 없었다.
본 발명의 화학식 1 내지 6으로 표시되는 고농도 탄소나노튜브 용액용 분산제는 탄소나노튜브 입자에 래핑(wrapping)형태로 흡착가능한 소수성 사슬(hydrophobic chain)구조를 가지고 있으며, 본 발명의 분산액은 상기 분산제 및 유기용매를 포함하고, 이밖에 NaOH와 같은 첨가제를 더 포함하여 탄소나노튜브의 분산을 매우 향상시키고 안정화 효과가 뛰어난 고농도의 탄소나노튜브 용액을 제조할 수 있다.

Claims (13)

  1. 하기 화학식 1 내지 화학식 6 중 어느 하나로 표시되는 고농도 탄소나노튜브 용액용 분산제, 수성 액체 매질 및 탄소나노튜브를 포함하는 조성물에 있어서, 상기 탄소나노튜브와 분산제의 혼합중량비는 1:0.1 내지 1:100인 것을 특징으로 하는 조성물;
    [화학식 1]
    (CF3(CF2)aCH2CH2O)xPO(OR´)y(OCH2CH2OH)z
    상기 식중, a는 1 내지 30의 정수이고, R´는 H, NH4, Li, Na 및 K로 이루어진 군으로부터 선택되고, x+y+z=3 , x≠0 및 y≠0이다.
    [화학식 2]
    CF3(CF2)aCH2CH2SCH2CH2R
    상기 식중, a는 1 내지 30의 정수이고, R은 카르복실산이나 그의 염, 인산이나 그의 염, 술폰산이나 그의 염으로 이루어진 군으로부터 선택된다.
    [화학식 3]
    (CF3(CF2)aCH2CH2O)PO(OR´)(OCH2CH2(CF2)bCF3)
    상기 식중, a 및 b는 서로 독립적으로 1 내지 30의 정수이고, R´는 H, NH4, Li, Na 및 K로 이루어진 군으로부터 선택된다.
    [화학식 4]
    CF3(CF2)aCH2CH2R
    상기 식중, a는 1 내지 30의 정수이며, R은 카르복실산이나 그의 염, 인산이나 그의 염, 술폰산이나 그의 염으로 이루어진 군으로부터 선택된다.
    [화학식 5]
    CF3(CF2CFR)aCF3
    상기 식중, a는 50 내지 160의 정수이며, R은 카르복실산이나 그의 염, 인산이나 그의 염, 술폰산이나 그의 염으로 이루어진 군으로부터 선택된다.
    [화학식 6]
    CF3[(CF2CF2)a(CF2CF(OCF2CF(CF3)OCF2CF2R)]x CF3
    상기 식중, a는 0 내지 4의 정수이고, x는 45 내지 160의 정수이며, R은 카르복실산이나 그의 염, 인산이나 그의 염, 술폰산이나 그의 염으로 이루어진 군으로부터 선택된다.
  2. 삭제
  3. 제 1항에 있어서, 상기 수성 액체 매질이 물 또는 물과 1종 이상의 극성 용매의 혼합물인 것을 특징으로 하는 조성물.
  4. 제 3항에 있어서, 상기 극성 용매는 메틸알콜, 에틸알콜, n-프로필알콜, 이소프로필알콜, n-부틸알콜, sec-부틸알콜, t-부틸알콜, 이소부틸알콜, 에틸렌글리 콜, 디에틸렌글리콜, 트리에틸렌글리콜, 프로필렌글리콜, 부틸렌글리콜, 1,3-프로판디올, 1,4-부탄디올, 1,5-펜탄디올, 1,2-헥산디올, 및 1,6-헥산디올로 이루어진 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 조성물.
  5. 제 3항에 있어서, 상기 수성 액체 매질 내에서 물과 극성 용매의 혼합부피비가 12:8 내지 2:18인 것을 특징으로 하는 조성물.
  6. 제 5항에 있어서, 상기 혼합부피비가 8:12인 것을 특징으로 하는 조성물.
  7. 제 1항에 있어서, 상기 조성물이 첨가제를 더 포함하는 것을 특징으로 하는 조성물.
  8. 제 7항에 있어서, 상기 조성물의 pH 농도가 2 내지 12인 것을 특징으로 하는 조성물.
  9. 제 7항에 있어서, 상기 첨가제는 수산화나트륨, 수산화칼륨, 수산화칼슘 및 수산화암모늄으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 조성물.
  10. 제 7항에 있어서, 상기 첨가제는 염산, 황산, 질산, 아세트산 및 탄산으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 조성물.
  11. 제 1항에 있어서, 상기 탄소 나노튜브는 단일벽 탄소나노튜브, 이중벽 탄소나노튜브, 다중벽 탄소나노튜브 및 다발형 탄소나노튜브로 이루어진 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 조성물.
  12. 삭제
  13. 제 1항에 있어서, 상기 조성물은 탄소나노튜브 0.01 내지 10 중량%, 분산제 0.001 내지 50 중량% 및 수성액체매질 40 내지 99.989 중량%를 포함하는 것을 특징으로 하는 조성물.
KR1020050068346A 2005-07-27 2005-07-27 고농도 탄소나노튜브 용액용 분산제 및 이를 포함한 조성물 KR101121203B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020050068346A KR101121203B1 (ko) 2005-07-27 2005-07-27 고농도 탄소나노튜브 용액용 분산제 및 이를 포함한 조성물
US11/446,972 US7935733B2 (en) 2005-07-27 2006-06-06 Carbon nanotube solution dispersant and composition including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050068346A KR101121203B1 (ko) 2005-07-27 2005-07-27 고농도 탄소나노튜브 용액용 분산제 및 이를 포함한 조성물

Publications (2)

Publication Number Publication Date
KR20070013755A KR20070013755A (ko) 2007-01-31
KR101121203B1 true KR101121203B1 (ko) 2012-03-23

Family

ID=37854170

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050068346A KR101121203B1 (ko) 2005-07-27 2005-07-27 고농도 탄소나노튜브 용액용 분산제 및 이를 포함한 조성물

Country Status (2)

Country Link
US (1) US7935733B2 (ko)
KR (1) KR101121203B1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2117012B1 (en) * 2007-02-20 2015-04-22 Toray Industries, Inc. Carbon nanotube assembly and electrically conductive film
KR101458133B1 (ko) * 2012-02-13 2014-11-05 주식회사 에스지테크 전자파 차단필름 및 그 제조방법
KR102115814B1 (ko) * 2013-07-09 2020-05-27 전주대학교산학협력단 탄소나노튜브를 이용한 용접용 접착제 조성물
CN108584918B (zh) * 2018-04-12 2020-05-22 华南理工大学 一种高效分散碳纳米管的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5683977A (en) * 1995-03-06 1997-11-04 Lever Brothers Company, Division Of Conopco, Inc. Dry cleaning system using densified carbon dioxide and a surfactant adjunct
JP2003238126A (ja) * 2002-02-14 2003-08-27 Toray Ind Inc カーボンナノチューブの親水性分散液およびその製造方法
JP2004261713A (ja) * 2003-02-28 2004-09-24 Asahi Glass Co Ltd カーボンナノチューブの液状化剤、カーボンナノチューブ組成物、カーボンナノチューブ含有液状組成物およびカーボンナノチューブ含有フィルム
KR20050057680A (ko) * 2002-11-01 2005-06-16 미츠비시 레이온 가부시키가이샤 탄소 나노튜브 함유 조성물, 이를 포함하는 도막을 갖는복합체, 및 이들의 제조 방법

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4097297A (en) * 1975-08-07 1978-06-27 E. I. Du Pont De Nemours And Company Barrier coatings
JPS5377015A (en) * 1976-12-16 1978-07-08 Asahi Glass Co Ltd Preparation of fluorine-containing phosphoric acid ester
US4627999A (en) * 1985-03-20 1986-12-09 Scm Corporation Process for prefinished exterior hardboard
US5688884A (en) * 1995-08-31 1997-11-18 E. I. Du Pont De Nemours And Company Polymerization process
US6090800A (en) * 1997-05-06 2000-07-18 Imarx Pharmaceutical Corp. Lipid soluble steroid prodrugs
US6258772B1 (en) * 1999-10-12 2001-07-10 Bay Technologies, Inc. Cleaning compositions comprising perfluorinated alkylphosphates
US6783746B1 (en) * 2000-12-12 2004-08-31 Ashland, Inc. Preparation of stable nanotube dispersions in liquids
US7160374B2 (en) * 2001-02-15 2007-01-09 Merck Patent Gmbh Flaky pigments coated with a coupling agent and a perfluoroalkyl phosphate
JP2003221406A (ja) * 2002-01-31 2003-08-05 Asahi Glass Co Ltd 水性分散液
WO2003074601A2 (en) * 2002-03-01 2003-09-12 E.I. Du Pont De Nemours And Company Printing of organic conductive polymers containing additives
US7074310B2 (en) * 2002-03-04 2006-07-11 William Marsh Rice University Method for separating single-wall carbon nanotubes and compositions thereof
US7265080B2 (en) * 2002-06-12 2007-09-04 Nsk Ltd. Rolling bearing, rolling bearing for fuel cell, compressor for fuel cell system and fuel cell system
JP2004130306A (ja) * 2002-09-19 2004-04-30 Dainippon Ink & Chem Inc フッ素系界面活性剤
JP4509787B2 (ja) * 2002-09-24 2010-07-21 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ポリマー酸コロイドを伴って製造される水分散性ポリチオフェン
US20040197638A1 (en) * 2002-10-31 2004-10-07 Mcelrath Kenneth O Fuel cell electrode comprising carbon nanotubes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5683977A (en) * 1995-03-06 1997-11-04 Lever Brothers Company, Division Of Conopco, Inc. Dry cleaning system using densified carbon dioxide and a surfactant adjunct
JP2003238126A (ja) * 2002-02-14 2003-08-27 Toray Ind Inc カーボンナノチューブの親水性分散液およびその製造方法
KR20050057680A (ko) * 2002-11-01 2005-06-16 미츠비시 레이온 가부시키가이샤 탄소 나노튜브 함유 조성물, 이를 포함하는 도막을 갖는복합체, 및 이들의 제조 방법
JP2004261713A (ja) * 2003-02-28 2004-09-24 Asahi Glass Co Ltd カーボンナノチューブの液状化剤、カーボンナノチューブ組成物、カーボンナノチューブ含有液状組成物およびカーボンナノチューブ含有フィルム

Also Published As

Publication number Publication date
US7935733B2 (en) 2011-05-03
KR20070013755A (ko) 2007-01-31
US20070057233A1 (en) 2007-03-15

Similar Documents

Publication Publication Date Title
KR100815028B1 (ko) 탄소나노튜브용 분산제 및 이를 포함하는 조성물
AU2002249533B2 (en) Method for the preparation of stable suspensions and powders of single carbon nanotubes
CN108584918B (zh) 一种高效分散碳纳米管的方法
Al-Hamadani et al. Stabilization and dispersion of carbon nanomaterials in aqueous solutions: A review
Hu et al. Non‐covalent functionalization of carbon nanotubes with surfactants and polymers
JP6162693B2 (ja) 導電性を改善した溶解性の高いカーボンナノチューブ
CN108609611B (zh) 高稳定性的环保型碳纳米管的水分散液及其制备方法
CN100357340C (zh) 增强聚合物
US10144638B2 (en) Methods of dispersing carbon nanotubes
AU2002249533A1 (en) Method for the preparation of stable suspensions and powders of single carbon nanotubes
KR101121203B1 (ko) 고농도 탄소나노튜브 용액용 분산제 및 이를 포함한 조성물
Bricha et al. Effect of surfactants on the degree of dispersion of MWNTs in ethanol solvent
KR101471044B1 (ko) 탄소나노튜브 분산체를 이용한 탄소나노튜브의 분산방법
EP2417192A1 (de) Polymerfunktionalisierte kohlenstoffnanoröhre, verfahren zu deren herstellung und verwendung
JP2003238126A (ja) カーボンナノチューブの親水性分散液およびその製造方法
JP5800678B2 (ja) ナノカーボン水分散体及びその製造方法並びにナノカーボン含有構造体
US20090041652A1 (en) Method for separating carbon nanotubes, method for dispersing carbon nanotubes and compositions used for the methods
CN101314479B (zh) 准一维纳米碳酸锶的制备方法
KR100893528B1 (ko) 라디칼 개시제를 이용한 탄소나노튜브의 개질 방법, 및상기 방법으로 개질된 탄소나노튜브를 포함하는 분산액 및전극
JP5629960B2 (ja) 複合粘着剤の製造方法、複合粘着剤及び粘着シート
KR101079918B1 (ko) 다중벽 카본나노튜브/셀룰로오스의 복합체 및 그 제조방법
CN107814376A (zh) 一种硒掺杂二氧化钛包覆碳纳米管复合材料
Ma et al. Automatic dispersion, long-term stability of multi-walled carbon nanotubes in high concentration electrolytes
RU2494961C2 (ru) Дисперсия углеродных нанотрубок
JP4326382B2 (ja) Pvp・フラーレン複合体とその水溶液の製造方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150116

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160119

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170119

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180119

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190116

Year of fee payment: 8