CN1592939A - 用于变阻器的陶瓷组合物和变阻器 - Google Patents

用于变阻器的陶瓷组合物和变阻器 Download PDF

Info

Publication number
CN1592939A
CN1592939A CNA038015951A CN03801595A CN1592939A CN 1592939 A CN1592939 A CN 1592939A CN A038015951 A CNA038015951 A CN A038015951A CN 03801595 A CN03801595 A CN 03801595A CN 1592939 A CN1592939 A CN 1592939A
Authority
CN
China
Prior art keywords
atom
content
resistance
total amount
varistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA038015951A
Other languages
English (en)
Inventor
广濑左京
中山晃庆
白露幸祐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Publication of CN1592939A publication Critical patent/CN1592939A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/6262Milling of calcined, sintered clinker or ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/065Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
    • H01C17/06506Precursor compositions therefor, e.g. pastes, inks, glass frits
    • H01C17/06513Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component
    • H01C17/06533Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component composed of oxides
    • H01C17/06546Oxides of zinc or cadmium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/04Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient
    • H01C7/042Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient mainly consisting of inorganic non-metallic substances
    • H01C7/043Oxides or oxidic compounds
    • H01C7/044Zinc or cadmium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • H01C7/105Varistor cores
    • H01C7/108Metal oxide
    • H01C7/112ZnO type
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Thermistors And Varistors (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

一种能在低电压下运行,具有小的泄漏电流并能达到高ESD电阻和浪涌电阻的变阻器。由用于变阻器的陶瓷组合物形成所述变阻器,所述陶瓷组合物包含:作为主组分的ZnO;和次组分,包括总量为0.05-3.0原子%镨、0.5-10原子%钴、总含量为0.005-0.5原子%的钾、钠和锂中至少一种、总含量为2×10-5-0.5原子%的铝、镓和铟中至少一种和0.005-5.0原子%的锆。

Description

用于变阻器的陶瓷组合物和变阻器
技术领域
本发明涉及用于静电保护元件、噪声滤波器等的变阻器的陶瓷组合物,还涉及变阻器。更具体而言,本发明涉及主要由ZnO组成的用于变阻器的陶瓷组合物以及变阻器。
背景技术
迄今,为防止过电压,广泛使用主要由ZnO组成的单层烧结体的变阻器。近年来,除了防止过电压外,由设置在烧结体内的内电极组成的多层变阻器在作为静电放电(ESD)的保护元件和噪声过滤器的应用日益增加。
此外,随着电子设备如移动通讯设备和笔记本电脑的高集成化和低驱动电压的发展趋势,迫切需要能在低额定电压稳定运行并具有较高可靠性的变阻器。
电子设备中,经常在与外部的界面上发生ESD,并且作为保护内部器件的元件,广泛使用大量的齐纳二极管和芯片型变阻器。芯片型变阻器没有电流-电压的极性特征(I-V特性),但具有双向特性。因此,与加入了两种元素的SMD型齐纳二极管相比,使用芯片型变阻器时,可降低成本并减小安装面积。
顺便述及,使用主要由ZnO组成的烧结体的变阻器的阈值(下面称作“变阻器电压”)与电极间存在的晶粒晶界量成比例。一直认为每一晶粒晶界的变阻器电压为2-3V。因此,为了制作在30V或更低电压下运行的变阻器,电极间存在的晶粒晶界量必须小于10,甚至于几。
减少电极间晶粒晶界数量的方法有,降低特性层(即变阻器层)厚度以减少晶粒晶界数量的方法,和增大粒径,以减少晶粒晶界数量的方法。降低特性层厚度方法中,由于坯料片中存在针孔或厚度变化,坯料片是烧结步骤前预成形的片,以形成特性层,某些情况下,性能会明显不同,此外,在某些情况,晶粒强度会下降。另一方面,增大粒径的方法中,必须使晶粒生长,于是会发生晶粒异常生长的倾向,从而加大晶粒直径变化。结果,某些情况会加大性能变化。
因此,当制备低电压驱动的多层变阻器时,为保持元件强度和减少性能变化,内电极间的烧结体层即特性层必须有一定的厚度,此外,必须减少晶粒直径的变化。
主要由ZnO组成的变阻器材料一般分类为含Bi基次组分的材料,所述次组分选自Bi2O3、Sb2O3、CoO、MnO等,例如,日本审查专利申请公报53-11076,和含Pr基次组分的材料,由Pr6O11、CoO等形成,例如日本审查专利申请公报56-11076所述。
通过使用含Bi基次组分的阻挡材料(barriest),能以相对低成本制造适用于大电流应用的过电压保护的变阻器。然而,在焙烧中,低熔点的Bi2O3或Sb2O3会形成液相,也会蒸发。结果,难以减少粒径变化。因此,当减少以晶粒晶界数量来实现较低驱动电压时,由于粒径的变化势必加大性能变化。结果,很难稳定制造和应用低电压驱动并具有较高可靠性的多层变阻器。此外,由于粒径变化有的趋势,浪涌电流或ESD集中在有大粒径晶粒的位置,因而对浪涌电流和ESD的电阻也下降的趋势。
另一方面,含Pr基次组分的变阻器材料中,不含有在低温形成液相并易于蒸发的Bi2O3和Sb2O3。因此,能大量制造和供应具有稳定优良性能的变阻器。然而,与含Bi基次组分的变阻器材料相比,含Pr基次组分的变阻器材料存在的大问题是泄漏电流大。为达到较低驱动电压,在降低特性层厚度时,泄漏电流进一步加大,同时绝缘电阻和电压的非线性坏。因此,一直存在功耗增加和发生信号电路故障的问题。为了降低泄漏电流,有效方法是降低ZnO晶粒中杂质浓度,或加入较大量绝缘材料。然而,采用上述方法时,浪涌电阻明显下降。
当使用含Pr次组分的常用变阻器材料时,可在30V或更低电压下运行的多层芯片型变阻器中,难以抑制泄漏电流和达到高浪涌电阻。
日本未审查专利申请公报7-29709中,公开一种非线性电压的电阻器,能在低电压下运行,它具有高的浪涌电阻和对静电放电的高电阻。这一方法中,公开的非线性电压电阻器具有含ZnO为主组分、Pr6O11、Bi2O3、Mn3O4和CoO为次组分的组成。然而,由于Bi2O3易在低温形成液相,或易于蒸发,很难获得均匀的粒径。此外,也很难稳定供应较高可靠性并能在低电压下运行的非线性电压电阻器。
鉴于目前上述常规方法的状况,本发明的一个目的是通过一种用于变阻器的陶瓷组合物以及变阻器,上述陶瓷组合物能形成在低电压下稳定运行并具有低的泄漏电流、高浪涌电阻和高ESD电阻的高可靠性变阻器。
发明内容
本发明用于变阻器的陶瓷组合物包含:氧化锌作为主要组分;次组分包括占总量的0.05-3.0原子%的镨、0.5-10原子%钴、含量为0.005-0.5原子%的钾、钠和锂中至少一种、总含量为2×10-5-0.5原子%的铝、镓和铟中至少一种以及0.005-5.0原子%的锆。
本发明变阻器包括一烧结体和许多在烧结体外表面上形成的端电极,该烧结体具有形成变阻器的陶瓷组合物,它具有上述特定组成。对其结构没有具体限制。即,可提供有上述烧结体的单层变阻器基材和在基材两面上的外电极构成的单层变阻器。然而,根据本发明一个特殊情况,上述烧结体内,形成许多内电极,所述内电极与烧结体层相互层叠,且内电极与各外电极进行电连接,从而形成多层变阻器。因此,提供的多层变阻器,能在低电压如30V或更低电压下运行,具有低的泄漏电流、高浪涌电阻、足够大的ESD电阻以及较高的可靠性。
附图简述
图1所示为显示本发明一个实施例的多层变阻器结构的剖面图。
图2所示为用于图1所示多层变阻器的层叠物的示意图。
图3所示为用于浪涌试验的浪涌波形图。
图4所示为用于ESD电阻试验的ESD波形图。
图5所示为显示Zr含量与ESD电阻间以及9V变阻器电压下初始绝缘电阻关系图。
图6所示为显示Zr含量与ESD电阻间以及12V变阻器电压下初始绝缘电阻关系图。
图7所示为显示Zr含量与ESD电阻间以及27V变阻器电压下初始绝缘电阻关系图。
实施本发明的最佳方式
本发明用于变阻器的陶瓷组合物中,以钙、锶和钡中至少一种作为次组分,其总含量较好为总量的1.0原子%或更小。这种情况下,绝缘电阻IR可进一步提高。
本发明中,以镧、钕、钐、铕、钆、铽、镝、钬、铒、铥、镱和钇中至少一种作为次组分,其总含量宜为总量的1.0原子%或更小。这种情况下,浪涌电阻可进一步提高。
本发明中,锆含量宜为总量的0.01-0.5原子%,这种情况下,即使变阻器电压较低,也能获得较大的ESD电阻。
更好的,锆含量为总量的0.05-0.5原子%,且即使在低的工作电压下,也能获得足够的ESD电阻。
本发明用于变阻器的陶瓷组合物中,镨(Pr)含量设定在0.05-3.0原子%范围的原因是当该含量低于0.05原子%时,由Pr6O11提供的氧量下降,并初始绝缘电阻和ESD电阻下降。另一方面,该含量大于3.0原子%时,Pr6O11主要在晶粒晶界离析,并且粒径变化增加。结果,电流或电场局部集中,因此浪涌电阻和ESD电阻下降。
Co含量设定在0.5-10原子%范围的原因是当该含量小于0.5原子%时,晶界上的密度下降,初始绝缘电阻和ESD电阻下降。另一方面,该含量大于10原子%时,由于Co不能全部溶解于ZnO并在晶粒晶界离析,于是导电性下降,浪涌电阻和ESD电阻下降。
钾(K)、钠(Na)和锂(Li)中至少一种的总含量设定在0.005-0.5原子%的原因如下:当该含量小于0.005原子%时,K、Na和/或Li不能隔离所有晶粒晶界,结果,初始绝缘电阻下降。该含量大于0.5原子%时,由于K、Na和/或Li过度溶解于ZnO,晶粒电阻提高,浪涌电阻和ESD电阻下降。
铝(Al)、镓(Ga)和铟(In)中至少一种的总含量设定在2×10-5至0.5原子%的原因如下:当该含量小于2×10-5原子%时,晶粒电阻过度增加,浪涌电阻和ESD电阻下降。当该含量大于0.5%时,晶粒电阻过度下降,初始绝缘电阻下降。
锆(Zr)含量设定在0.005-5.0原子%的原因如下:当该含量小于0.005原子%时,不能抑制异常的晶粒生长,从而不能控制粒径变化,且不能减少有缺陷的晶粒晶界。结果,浪涌电阻和ESD电阻下降。当该含量大于5.0原子%时,由于ZrO2主要在晶粒晶界上离析,尽管绝缘电阻提高,但烧结性能下降,浪涌电阻和ESD电阻下降。
钙(Ca)、锶(Sr)和钡(Ba)中至少一种的总含量较好的设定在1.0原子%或更低的原因如下。该含量大于1.0原子%时,由于其在晶粒晶界发生过度离析,导电性下降,绝缘电阻在某些情况会增加,同时浪涌电阻和ESD电阻在某些情况下会下降。
此外,本发明中,镧(La)、钕(Nd)、钐(Sm)、铕(Eu)、钆(Gd)、terbium(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)和钇(Y)中至少一种的总含量设定在1.0原子%或更小范围,较佳在0.01-0.5原子%范围。当含有镧时,能有效提高浪涌电阻。
实施例
下面,参照具体实施例描述本发明。
(实施例1)
实施例1中,使用Pr、Co、K、Al或Zr作为次组分,主要改变Pr含量制备样品进而评价其性能。
首先,以ZnO、Pr6O11、CoO、K2CO3、Al2O3和ZrO2粉为原料,称取这些原料粉,使焙烧后的烧结体具有预定组成,用球磨湿混合原料粉24小时,形成混合浆料。脱水和干燥后,该混合浆料于700-1100℃在空气中煅烧2小时,形成煅烧的原料。用球磨将获得的煅烧原料充分粉碎,随后脱水和干燥。在该干燥的原料中加入有机粘合剂、有机增塑剂和分散剂,该混合物用球磨混合12小时,从而形成浆料。
采用刮刀法,在PET膜上处理形成的浆料,形成25微米厚的坯料片。将坯料片切出长方形。
接下来,将Pt膏丝网印刷在长方形陶瓷坯料片上,形成内电极图案。将多个其上印刷了内电极图案的陶瓷坯料片层叠,在该层叠物的顶部和底部放置平的陶瓷素坯片,形成层叠母体。
以1.96×108Pa压力压制形成的层叠母体,然后切割为形成变阻器的尺寸。按照上面所述,制得图2所述的层叠物。层叠物1中,陶瓷坯料片4和5分别与内电极2和3按照层叠方向相互交替层叠。即,陶瓷坯料片4和5相互层叠,使内电极2和3的端面以层叠方向放置在彼此相背的面上。这种层叠物,参考数字6指平的陶瓷坯料片。
按上所述获得的层叠物1中,层叠的内电极的数字设为10,内电极间的相叠加的面积设为2.3mm2,层叠物长度设为1.6mm,宽度为0.8mm,厚度为0.8mm。
获得的层叠物1于500℃在空气中加热12小时除去有机粘接剂。随后,在空气中,于1150-1250℃焙烧2小时,形成陶瓷烧结体。
如图1所示,在烧结体7的两个端面7a和7b上施用Ag膏,随后于800℃在空气中焙烧,形成外电极8和9,由此制得多层变阻器10。
接下来,对制得的多层变阻器进行如下测定。即,测定(1)变阻器电压(V1mA),(2)施加0.1秒的60%变阻器电压时达到的初始绝缘电阻(IR),(3)浪涌电阻和(4)ESD电阻。为评价浪涌电阻,施加两次图3所示的8×20μs的三角形电波且两次施加的间隔为5分钟后,获得变阻器电压,和当变阻器电压的变化率ΔV1mA与初始变阻器电压V1mA之比,即ΔV1mA/V1mA在10%内时,和IR变化即Δlog IR在1/2内时,测定最大电流波高度。为评价ESD电阻,从各多层变阻器的一对外电极施加10次图4所示IEC801-2的ESD脉冲后,当变阻器电压变化率ΔV1mA/V1mA在10%内时,和IR变化Δlog IR在1/2内时,测定最大施加电压。
结果列于下表1。此外,在表1中,还列出了实施例1制得的各变阻器烧结体的组成。
下面的表中,带星号的样品是含有氧化锌为主要组分且次组分包含总量的0.05-3.0原子%的镨,0.5-10原子%钴,总含量为0.005-0.5原子%的选自钾、钠和锂的至少一种,总含量为2×10-5-0.5原子%的选自铝、镓和铟的至少一种和0.005-5.0原子%锆的样品。
                                             表1
  样品NO.                          加入的元素(原子%) 初始IR 变阻器电压 浪涌电阻 ESD电阻
  Pr   Co   K   Al     Zr
  1   0   2.0   0.05   1×10-4     0.1   0.05MΩ     8.8V   15A   2kV
  2   0.01   2.0   0.05   1×10-4     0.1   0.15MΩ     9.1V   17A   2kV
  3   0.03   2.0   0.05   1×10-4     0.1   0.5MΩ     9.0V   17A   5kV
  4   0.05   2.0   0.05   1×10-4     0.1   1.0MΩ     8.7V   20A   30kV
  5   0.1   2.0   0.05   1×10-4     0.1   1.6MΩ     9.1V   20A   30kV
  6   0.3   2.0   0.05   1×10-4     0.1   1.8MΩ     9.4V   25A   30kV
  7   0.5   2.0   0.05   1×10-4     0.1   3.2MΩ     9.2V   21A   30kV
  8   1   2.0   0.05   1×10-4     0.1   3.5MΩ     8.8V   20A   30kV
  9   3   2.0   0.05   1×10-4     0.1   4.1MΩ     9.4V   20A   30kV
  10   5   2.0   0.05   1×10-4     0.1   7.5MΩ     9.4V   17A   15kV
  11   6   2.0   0.05   1×10-4     0.1   8.2MΩ     9.0V   14A   5kV
  12   3   0.5   0.05   1×10-4     0.1   2.1MΩ     8.8V   20A   30kV
  13   0.05   10.0   0.05   1×10-4     0.1   2.3MΩ     9.0V   22A   30kV
  14   3   10.0   0.05   1×10-4     0.1   5.8MΩ     8.9V   20A   30kV
  15   0.05   2.0   0.5   1×10-4     0.1   3.9MΩ     9.1V   21A   30kV
  16   3   2.0   0.005   1×10-4     0.1   2.0MΩ     9.0V   25A   30kV
  17   3   2.0   0.5   1×10-4     0.1   4.2MΩ     9.2V   21A   30kV
  18   0.05   2.0   0.05   2×10-5     0.1   3.1MΩ     9.0V   22A   30kV
  19   3   2.0   0.05   2×10-5     0.1   5.3MΩ     8.7V   20A   30kV
  20   3   2.0   0.05   0.5     0.1   1.3MΩ     9.1V   27A   30kV
  21   0.05   2.0   0.05   1×10-4     0.05   1.1MΩ     9.0V   24A   30kV
  22   0.05   2.0   0.05   1×10-4     5   1.9MΩ     9.1V   21A   30kV
  23   3   2.0   0.05   1×10-4     0.05   2.8MΩ     9.0V   22A   30kV
  24   3   2.0   0.05   1×10-4     5   4.1MΩ     9.1V   20A   30kV
*****
如表1所示,样品1至3,由于其Pr含量小于0.05原子%,其初始IR、浪涌电阻和ESD电阻都较低。样品10和11,由于其Pr含量大于3.0原子%,尽管初始IR较高,其浪涌电阻和ESD电阻均较低。
另一方面,对样品4至9和12至24,由于其Pr含量在0.05-3.0原子%范围,能获得优良的性能,即,变阻器电压低如约为9V,初始绝缘电阻IR为1.0MΩ或更高,浪涌电阻大于或等于20A,此外,ESD电阻为30kV。因此,由于使用Pr含量在0.05-3.0原子%范围的样品,在设计为低电压如额定电压小于或等于30V下运行的线路的芯片型变阻器中,可降低泄漏电流,可达到高浪涌电阻和高ESD电阻。
(实施例2)
实施例2中,对用作次组分的Pr、Co、K、Al和Zr,主要改变Co含量,制得样品,评价其性能。
按照实施例1方式制得多层变阻器,不同之处是,按照下面表2改变次组分,并进行评价。结果列于下表2。
                                                  表2
    样品NO.                       加入的元素(原子%)  初始IR     变阻器电压   浪涌电阻     ESD电阻
    Pr     Co   K   Al     Zr
    25     0.3     0.1   0.05   1×10-4     0.1  0.04MΩ     9.1V   15A     2kV
    26     0.3     0.3   0.05   1×10-4     0.1  0.5MΩ     9.0V   18A     5kV
    27     0.3     0.5   0.05   1×10-4     0.1  1.0MΩ     8.8V   20A     30kV
    28     0.3     1   0.05   1×10-4     0.1  1.6MΩ     8.9V   20A     30kV
    29     0.3     2   0.05   1×10-4     0.1  1.8MΩ     9.4V   25A     30kV
    30     0.3     4   0.05   1×10-4     0.1  2.5MΩ     9.1V   21A     30kV
    31     0.3     5   0.05   1×10-4     0.1  2.7MΩ     9.2V   21A     30kV
    32     0.3     8   0.05   1×10-4     0.1  3.2MΩ     9.0V   20A     30kV
    33     0.3     10   0.05   1×10-4     0.1  4.1MΩ     8.9V   20A     30kV
    34     0.3     12   0.05   1×10-4     0.1  6.0MΩ     8.8V   18A     15kV
    35     0.3     0.5   0.5   1×10-4     0.1  2.3MΩ     8.8V   21A     30kV
    36     0.3     10   0.005   1×10-4     0.1  3.9MΩ     8.9V   23A     30kV
    37     0.3     10   0.5   1×10-4     0.1  5.3MΩ     9.1V   20A     30kV
    38     0.3     0.5   0.05   2×10-5     0.1  1.0MΩ     9.5V   21A     30kV
    39     0.3     10   0.05   2×10-5     0.1  4.5MΩ     8.7V   20A     30kV
    40     0.3     10   0.05   0.5     0.1  2.3MΩ     9.0V   29A     30kV
    41     0.3     0.5   0.05   1×10-4     5  2.1MΩ     8.7V   20A     30kV
    42     0.3     10   0.05   1×10-4     0.05   5.6MΩ     8.8V   23A     30kV
    43     0.3     10   0.05   1×10-4     5  6.2MΩ     9.3V   20A     30kV
***
如表2所示,样品25和26,由于其Co含量小于0.5原子%,其初始IR和ESD电阻均较低。样品34,由于其Co含量大于10原子%,尽管初始IR较高,其浪涌电阻和ESD电阻均较低。
另一方面,对样品27至33和35至43,由于其Co含量在0.5-10原子%范围,尽管变阻器电压较低,如约为9V,初始绝缘电阻IR为1.0MΩ或更高,浪涌电阻大于或等于20A,此外,ESD电阻为30kV。
因此,由于Co含量在0.5-10原子%范围,在设计为低电压如额定电压小于或等于30V下运行的线路的多层变阻器中,理解为可降低泄漏电流,并可达到高浪涌电阻和高ESD电阻。
(实施例3)
实施例3中,对用作次组分的Pr、Co、K、Al和Zr中,主要改变Co含量,制得样品,评价其性能。
按照实施例1方式制得多层变阻器,不同之处是,按照下表2改变次组分含量,并进行评价。结果列于下表3。
                                                        表3
    样品NO.                      加入的元素(原子%)     初始IR   变阻器电压   浪涌电阻   ESD电阻
    Pr     Co   K   Al     Zr
    44     0.3     2.0   0   1×10-4     0.1     0.001MΩ   8.7V   30A   30kV
    45     0.3     2.0   0.001   1×10-4     0.1     0.02MΩ   8.9V   29A   30kV
    46     0.3     2.0   0.003   1×10-4     0.1     0.4MΩ   9.2V   29A   30kV
    47     0.3     2.0   0.005   1×10-4     0.1     1.0MΩ   9.0V   27A   30kV
    48     0.3     2.0   0.01   1×10-4     0.1     1.4MΩ   9.2V   26A   30kV
    49     0.3     2.0   0.05   1×10-4     0.1     1.8MΩ   9.4V   25A   30kV
    50     0.3     2.0   0.08   1×10-4     0.1     2.2MΩ   8.9V   25A   30kV
    51     0.3     2.0   0.1   1×10-4     0.1     2.9MΩ   9.0V   24A   30kV
    52     0.3     2.0   0.3   1×10-4     0.1     3.2MΩ   9.1V   20A   30kV
    53     0.3     2.0   0.5   1×10-4     0.1     3.4MΩ   9.0V   20A   30kV
    54     0.3     2.0   0.8   1×10-4     0.1     4.2MΩ   8.8V   15A   15kV
    55     0.3     2.0   1   1×10-4     0.1     6.0MΩ   8.9V   11A   5kV
    56     0.3     2.0   0.005   2×10-5     0.1     1.5MΩ   9.1V   25A   30kV
    57     0.3     2.0   0.005   0.5     0.1     1.1MΩ   9.3V   33A   30kV
    58     0.3     2.0   0.5   2×10-5     0.1     3.7MΩ   8.7V   20A   30kV
    59     0.3     2.0   0.5   0.5     0.1     2.0MΩ   9.0V   29A   30kV
    60     0.3     2.0   0.005   1×10-4     0.05     1.2MΩ   9.1V   26A   30kV
    61     0.3     2.0   0.005   1×10-4     5     3.3MΩ   9.2V   21A   30kV
    62     0.3     2.0   0.5   1×10-4     0.05     3.2MΩ   9.1V   24A   30kV
    63     0.3     2.0   0.5   1×10-4     5     4.9MΩ   9.3V   20A   30kV
*****
如表3所示,样品44至46,由于其K含量小于0.005原子%,其初始IR较低。样品54和55,由于其K含量大于0.5原子%,尽管初始IR较高,其浪涌电阻和ESD电阻均较低。
另一方面,对样品47至53和56至63,由于其K含量在0.005-0.5原子%范围,尽管变阻器电压较低,如约为9V,初始绝缘电阻IR为1.0MΩ或更高,浪涌电阻大于或等于20A,ESD电阻为30kV。
因此,由于K含量在0.005-0.5原子%范围,在设计为低电压如额定电压小于或等于30V下运行的线路的多层变阻器中,理解为可降低泄漏电流,并可达到高浪涌电阻和高ESD电阻。
随后,如下表4-6中所示,按照实施例3的方式,评价代替K,含有Na或Li的样品,以及含K、Na和/或Li任选组合的样品。
                                                        表4
    样品NO.                       加入的元素(原子%) 初始IR 变阻器电压 浪涌电阻-ANCE ESD电阻-ANCE
    Pr     Co   Na   Al     Zr
    64     0.3     2.0   0.001   1×10-4     0.1  0.1MΩ     9.1V   29A     30kV
    65     0.3     2.0   0.005   1×10-4     0.1  1.1MΩ     9.3V   29A     30kV
    66     0.3     2.0   0.01   1×10-4     0.1  1.8MΩ     9.0V   27A     30kV
    67     0.3     2.0   0.05   1×10-4     0.1  2.9MΩ     8.8V   27A     30kV
    68     0.3     2.0   0.08   1×10-4     0.1  3.3MΩ     9.4V   24A     30kV
    69     0.3     2.0   0.1   1×10-4     0.1  4.1MΩ     9.0V   23A     30kV
    70     0.3     2.0   0.3   1×10-4     0.1  4.5MΩ     9.0V   22A     30kV
    71     0.3     2.0   0.5   1×10-4     0.1  4.9MΩ     9.1V   20A     30kV
    72     0.3     2.0   0.8   1×10-4     0.1  6.3MΩ     8.8V   10A     30kV
    73     0.05     2.0   0.005   1×10-4     0.1  1.3MΩ     9.3V   21A     30kV
    74     0.05     2.0   0.5   1×10-4     0.1  3.1MΩ     9.0V   20A     30kV
    75     3     2.0   0.005   1×10-4     0.1  3.8MΩ     9.1V   22A     30kV
    76     3     2.0   0.5   1×10-4     0.1  5.6MΩ     8.8V   20A     30kV
    77     0.3     0.5   0.5   1×10-4     0.1  2.0MΩ     9.0V   21A     30kV
    78     0.3     10.0   0.005   1×10-4     0.1  3.8MΩ     9.1V   21A     30kV
    79     0.3     10.0   0.5   1×10-4     0.1  5.1MΩ     9.3V   20A     30kV
    80     0.3     2.0   0.005   2×10-5     0.1  1.7MΩ     9.0V   24A     30kV
    81     0.3     2.0   0.005   0.5     0.1  1.3MΩ     9.0V   30A     30kV
    82     0.3     2.0   0.5   2×10-5     0.1  4.0MΩ     8.9V   20A     30kV
    83     0.3     2.0   0.5   0.5     0.1  2.5MΩ     9.1V   28A     30kV
    84     0.3     2.0   0.005   1×10-4     0.05  1.4MΩ     9.0V   27A     30kV
    85     0.3     2.0   0.005   1×10-4     5  3.5MΩ     8.8V   22A     30kV
    86     0.3     2.0   0.5   1×10-4     0.05  3.1MΩ     9.0V   25A     30kV
    87     0.3     2.0   0.5   1×10-4     5  4.8MΩ     9.1V   21A     30kV
**
                                                        表5
    样品NO. 加入的元素(原子%) 初始IR 变阻器电压 浪涌电阻 ESD电阻
    Co     Li     Al   Zr
    88     0.3     2.0     0.001   1×10-4     0.1  0.5MΩ   9.0V   27A   30kV
    89     0.3     2.0     0.005   1×10-4     0.1  2.0MΩ   8.9V   25A   30kV
    90     0.3     2.0     0.01   1×10-4     0.1  2.3MΩ   9.1V   24A   30kV
    91     0.3     2.0     0.05   1×10-4     0.1  3.4MΩ   8.8V   23A   30kV
    92     0.3     2.0     0.08   1×10-4     0.1  4.2MΩ   8.9V   23A   30kV
    93     0.3     2.0     0.1   1×10-4     0.1  5.0MΩ   9.1V   22A   30kV
    94     0.3     2.0     0.3   1×10-4     0.1  5.5MΩ   9.3V   21A   30kV
    95     0.3     2.0     0.5   1×10-4     0.1  6.0MΩ   8.8V   20A   30kV
    96     0.3     2.0     0.8   1×10-4     0.1  6.4MΩ   9.0V   8A   20kV
    97     0.05     2.0     0.005   1×10-4     0.1  1.8MΩ   9.0V   20A   30kV
    98     0.05     2.0     0.5   1×10-4     0.1  3.5MΩ   8.8V   21A   30kV
    99     3     2.0     0.005   1×10-4     0.1  4.3MΩ   8.8V   20A   30kV
    100     3     2.0     0.5   1×10-4     0.1  5.9MΩ   8.7V   20A   30kV
    101     0.3     0.5     0.5   1×10-4     0.1  3.2MΩ   8.8V   20A   30kV
    102     0.3     10.0     0.005   1×10-4     0.1  4.1MΩ   8.9V   20A   30kV
    103     0.3     10.0     0.5   1×10-4     0.1  5.9MΩ   8.8V   20A   30kV
    104     0.3     2.0     0.005   2×10-5     0.1  2.0MΩ   8.8V   22A   30kV
    105     0.3     2.0     0.005   0.5     0.1  1.6MΩ   9.1V   29A   30kV
    106     0.3     2.0     0.5   2×10-5     0.1  4.1MΩ   9.0V   21A   30kV
    107     0.3     2.0     0.5   0.5     0.1  3.3MΩ   9.0V   27A   30kV
    108     0.3     2.0     0.005   1×10-4     0.05   2.5MΩ   8.9V   26A   30kV
    109     0.3     2.0     0.005   1×10-4     5  3.7MΩ   9.3V   23A   30kV
    110     0.3     2.0     0.5   1×10-4     0.05  3.9MΩ   8.7V   26A   30kV
    111     0.3     2.0     0.5   1×10-4     5  5.0MΩ   9.0V   20A   30kV
**
                                                        表6
    样品NO.                                   加入的元素(原子%)   初始IR(MΩ)     变阻器电压(V)   浪涌电阻(A) ESD电阻(kV)
Pr Co Al Zr   K,Na,Li总含量 K Na Li
    112   0.3   2.0 1×10-4   0.1   0   0   0   0   0.001     8.7   30 30
    113   0.3   2.0 1×10-4   0.1   0.001   0.0005   0.0005   0   0.05     9.1   28 30
    114   0.3   2.0 1×10-4   0.1   0.005   0.003   0.001   0.001   1.2     9.0   28 30
    115   0.3   2.0 1×10-4   0.1   0.01   0.005   0.002   0.003   2.5     9.1   27 30
    116   0.3   2.0 1×10-4   0.1   0.05   0.01   0.03   0.01   4.1     8.8   25 30
    117   0.3   2.0 1×10-4   0.1   0.08   0.05   0.02   0.01   5.2     8.7   24 30
    118   0.3   2.0 1×10-4   0.1   0.1   0.05   0.03   0.02   5.5     9.3   21 30
    119   0.3   2.0 1×10-4   0.1   0.3   0.1   0.1   0.1   5.4     9.1   20 30
    120   0.3   2.0 1×10-4   0.1   0.5   0.2   0.2   0.1   7.4     9.0   20 30
    121   0.3   2.0 1×10-4   0.1   0.8   0.4   0.2   0.2   8.8     8.8   11 10
***
由表4可知,当Na含量在0.005-0.5原子%范围时,由样品65至71和73至87所获得的结果可知,如K的情况,尽管变阻器电压较低如约为9V,初始绝缘电阻IR为1.0MΩ或更高,浪涌电阻大于或等于20A,ESD电阻为30kV。
此外,由表5可知,样品89至95和97至111中,Li含量在0.005-0.5原子%范围,如上述情况,尽管变阻器电压较低如约为9V,初始绝缘电阻IR为1.0MΩ或更高,浪涌电阻大于或等于20A,ESD电阻为30kV。
再由表6可知,对样品114至120,当K、Na和Li任选组合时,其总含量在0.005-0.5原子%范围,如上述情况,尽管变阻器电压较低如约为9V,初始绝缘电阻IR为1.0MΩ或更高,浪涌电阻大于或等于20A,ESD电阻为30kV。
因此,由表3-6列出的结果,当K、Na和Li中至少一种的总含量在0.005-0.5原子%范围时,在设计为低电压如额定电压小于或等于30V下运行的线路的多层变阻器中,理解为可降低泄漏电流,并可达到高浪涌电阻和高ESD电阻。此外,即使变阻器电压较低如约为9V,理解为可达到极优良性能,即,可达到1.0MΩ或更高的初始IR,大于或等于20A的浪涌电阻,和30kV的ESD电阻。
(实施例4)
实施例4中,对用作次组分的Pr、Co、K、Al和Zr中,主要改变Al含量,制得样品,评价其性能。
按照实施例1方式制得多层变阻器,不同之处是,按照下表7改变次组分含量,并进行评价。结果列于下表7。
                                                        表7
  样品NO.                  加入的元素(原子%) 初始IR 变阻器电压 浪涌电阻 ESD电阻
  Pr     Co   K   Al     Zr
  122   0.3     2   0.05   0     0.1   12MΩ   9.0V   8A   5kV
  123   0.3     2   0.05   1×10-5     0.1   8MΩ   9.1V   15A   15kV
  124   0.3     2   0.05   2×10-5     0.1   4.2MΩ   8.8V   20A   30kV
  125   0.3     2   0.05   1×10-4     0.1   1.8MΩ   8.7V   25A   30kV
  126   0.3     2   0.05   5×10-4     0.1   1.7MΩ   9.3V   27A   30kV
  127   0.3     2   0.05   1×10-3     0.1   1.3MΩ   9.0V   28A   30kV
  128   0.3     2   0.05   5×10-3     0.1   1.2MΩ   9.1V   30A   30kV
  129   0.3     2   0.05   1×10-2     0.1   1.0MΩ   9.1V   31A   30kV
  130   0.3     2   0.05   5×10-2     0.1   1.0MΩ   9.3V   33A   30kV
  131   0.3     2   0.05   0.5     0.1   1.0MΩ   9.6V   34A   30kV
  132   0.3     2   0.05   1     0.1   0.05MΩ   8.8V   34A   30kV
  133   0.3     2   0.05   5×10-5     0.05   4.1MΩ   8.7V   20A   30kV
  134   0.3     2   0.05   5×10-5     5   5.5MΩ   9.0V   26A   30kV
  135   0.3     2   0.05   0.5     0.05   1.0MΩ   9.5V   31A   30kV
  136   0.3     2   0.05   0.5     5   5.4MΩ   9.0V   26A   30kV
***
如表7所示,样品122和123,由于其Al含量小于2×10-5原子%,尽管其初始IR较高,其浪涌电阻和ESD电阻均较低。对样品132,由于Al含量大于0.5原子%,尽管浪涌电阻和ESD电阻较高,其初始IR极低。
另一方面,对样品124至131和133至136,由于其Al含量在根据本发明设定的2×10-5-0.5原子%范围,尽管变阻器电压较低,如约为9V,初始绝缘电阻IR为1.0MΩ或更高,浪涌电阻大于或等于20A,ESD电阻为30kV。
因此,由于Al含量设定在2×10-5-0.5原子%范围,在设计为低电压如额定电压小于或等于30V下运行的线路的多层变阻器中,理解为可降低泄漏电流,并可达到高浪涌电阻和高ESD电阻。
随后,按照和实施例1的方式,使用含Ga或In代替Al的样品以及任选组合Al、Ga和Li的样品制备多层变阻器,并进行评价。此组分组成和评价结果列于表8-10。
                                                        表8
  样品NO.                    加入的元素(原子%) 初始IR 变阻器电压 浪涌电阻 ESD电阻
    Pr     Co   K   Ga     Zr
  137     0.3     2   0.05   1×10-6     0.1  9.2MΩ     8.8V   12A   20kV
  138     0.3     2   0.05   2×10-5     0.1  5.3MΩ     9.0V   20A   30kV
  139     0.3     2   0.05   1×10-4     0.1  2.5MΩ     9.1V   21A   30kV
  140     0.3     2   0.05   1×10-3     0.1  2.1MΩ     9.1V   25A   30kV
  141     0.3     2   0.05   1×10-2     0.1  1.5MΩ     8.9V   27A   30kV
  142     0.3     2   0.05   5×10-2     0.1  1.1MΩ     9.3V   27A   30kV
  143     0.3     2   0.05   0.5     0.1  1.1MΩ     9.2V   28A   30kV
  144     0.3     2   0.05   1     0.1  0.5MΩ     8.9V   28A   30kV
  145     0.05     2   0.05   2×10-5     0.1  3.5MΩ     9.1V   22A   30kV
  146     3     2   0.05   2×10-5     0.1  5.4MΩ     8.9V   21A   30kV
  147     3     2   0.05   0.5     0.1  1.6MΩ     9.0V   25A   30kV
  148     0.3     0.5   0.05   2×10-5     0.1  1.5MΩ     9.3V   20A   30kV
  149     0.3     10   0.05   2×10-5     0.1  4.9MΩ     9.0V   21A   30kV
  150     0.3     10   0.05   0.5     0.1  2.5MΩ     9.1V   28A   30kV
  151     0.3     2   0.005   2×10-5     0.1  1.9MΩ     9.0V   24A   30kV
  152     0.3     2   0.5   2×10-5     0.1  1.3MΩ     9.2V   30A   30kV
  153     0.3     2   0.005   0.5     0.1  3.5MΩ     9.0V   20A   30kV
  154     0.3     2   0.5   0.5     0.1  2.9MΩ     8.9V   27A   30kV
  155     0.3     2   0.05   2×10-5     0.05  4.6MΩ     8.8V   21A   30kV
  156     0.3     2   0.05   2×10-5     5  5.5MΩ     8.9V   25A   30kV
  157     0.3     2   0.05   0.5     0.05  1.2MΩ     9.3V   28A   30kV
  158     0.3     2   0.05   0.5     5  5.5MΩ     9.1V   24A   30kV
**
                                                    表9
    样品NO.                       加入的元素(原子%) 初始IR 变阻器电压 浪涌电阻 ESD电阻
    Pr     Co   K   In     Zr
    159     0.3     2   0.05   1×10-8     0.1  9.2MΩ     9.1V     11A     15kV
    160     0.3     2   0.05   2×10-5     0.1  5.3MΩ     9.0V     20A     30kV
    161     0.3     2   0.05   1×10-4     0.1  2.5MΩ     8.8V     20A     30kV
    162     0.3     2   0.05   1×10-3     0.1  2.1MΩ     8.9V     24A     30kV
    163     0.3     2   0.05   1 ×10-2     0.1  1.5MΩ     8.7V     26A     30kV
    164     0.3     2   0.05   5×10-2     0.1  1.1MΩ     9.2V     28A     30kV
    165     0.3     2   0.05   0.5     0.1  1.0MΩ     9.0V     28A     30kV
    166     0.3     2   0.05   1     0.1  0.3MΩ     9.0V     27A     30kV
    167     0.05     2   0.05   2×10-5     0.1  4.0MΩ     9.1V     21A     30kV
    168     3     2   0.05   2×10-5     0.1  5.5MΩ     9.1V     22A     30kV
    169     3     2   0.05   0.5     0.1  1.9MΩ     9.0V     26A     30kV
    170     0.3     0.5   0.05   2×10-5     0.1  2.0MΩ     9.2V     20A     30kV
    171     0.3     10   0.05   2×10-5     0.1  4.8MΩ     8.9V     22A     30kV
    172     0.3     10   0.05   0.5     0.1  2.6MΩ     9.0V     29A     30kV
    173     0.3     2   0.005   2×10-5     0.1  2.1MΩ     8.8V     23A     30kV
    174     0.3     2   0.5   2×10-5     0.1  1.2MΩ     9.0V     27A     30kV
    175     0.3     2   0.005   0.5     0.1  3.5MΩ     9.1V     21A     30kV
    176     0.3     2   0.5   0.5     0.1  2.7MΩ     8.8V     26A     30kV
    177     0.3     2   0.05   2×10-5     0.05  4.5MΩ     8.8V     22A     30kV
    178     0.3     2   0.05   2×10-5     5  5.4MΩ     8.9V     25A     30kV
    179     0.3     2   0.05   0.5     0.05  1.1MΩ     9.3V     26A     30kV
    180     0.3     2   0.05   0.5     5  5.9MΩ     9.1V     23A     30kV
**
                                                        表10
    样品NO.                                加入的元素(原子%)   初始IR(MΩ)     变阻器电压(V)   浪涌电阻(A) ESD电阻(kV)
Pr Co K Zr   Al,Ga,In总量 Al Ga In
    181  0.3  2.0  0.05  0.1   0  0   0   0   12     9.0   8 5
    182  0.3  2.0  0.05  0.1   1×10-5  5×10-5   2.5×10-6   2.5×10-6   5.2     9.1   12 15
    183  0.3  2.0  0.05  0.1   5×10-5  3×10-5   1×10-5   1×10-5   4.3     9.0   20 30
    184  0.3  2.0  0.05  0.1   1×10-4  2×10-5   4×10-5   4×10-4   4.1     9.1   22 30
    185  0.3  2.0  0.05  0.1   1×10-3  5×10-4   3×10-4   2×10-4   3.0     8.7   23 30
    186  0.3  2.0  0.05  0.1   1×10-2  5×10-3   1×10-3   4×10-3   2.1     9.1   25 30
    187  0.3  2.0  0.05  0.1   5×10-2  0   3×10-2   2×10-2   1.2     9.0   28 30
    188  0.3  2.0  0.05  0.1   0.5  0.3   0.1   0.1   1.1     9.3   29 30
    189  0.3  2.0  0.05  0.1   1  0.5   0.3   0.2   0.4     9.2   29 30
***
由表8可知,在含Ga代替Al的样品中,当Ga含量在2×10-5-0.5原子%范围时(样品138至143和145至158),尽管变阻器电压较低如约为9V,仍能获得优良的性能,即初始绝缘电阻IR为1.0MΩ或更高,浪涌电阻大于或等于20A,ESD电阻为30kV。
由表9可知,以In代替Al和Ga,且当其含量设定2×10-5-0.5原子%范围时(样品160至165和167至180),如上述情况,尽管变阻器电压较低如约为9V,初始绝缘电阻IR为1.0MΩ或更高,浪涌电阻大于或等于20A,ESD电阻为30kV。
再由表10可知,Al、Ga和In任选组合情况,当其总含量在2×10-5-0.5原子%范围时(样品183至188),如上述情况,尽管变阻器电压较低如约为9V,初始绝缘电阻IR为1.0MΩ或更高,浪涌电阻大于或等于20A,ESD电阻为30kV。
因此,由表7-10列出的结果,当Al、Ga和In中至少一种的总含量在2×10-5-0.5原子%范围时,在设计为低电压如额定电压小于或等于30V下运行的线路的多层变阻器中,可降低泄漏电流,并可达到高浪涌电阻和高ESD电阻。此外,当变阻器电压较低如约为9V,可达到1.0MΩ或更高的初始IR,大于或等于20A的浪涌电阻,和30kV的ESD电阻。
(实施例5)
用作次组分的Pr、Co、K和Al的含量固定不变,但改变Zr含量。使用具有表11列出的组合物1-13组成的坯料片。按照实施例1的相同方式形成多层变阻器,不同之处是,焙烧之前将坯料片厚度调整为25、35和42μm,变阻器电压设定为约9、12和27V,随后,进行评价。结果列于表12。
                            表11
    组合物                      加入的元素(原子%)
  Pr     Co   K   Al   Zr
    1   0.3     2   0.05   1×10-4   0.000001
    2   0.3     2   0.05   1×10-4   0.0001
    3   0.3     2   0.05   1×10-4   0.001
    4   0.3     2   0.05   1×10-4   0.005
    5   0.3     2   0.05   1×10-4   0.01
    6   0.3     2   0.05   1×10-4   0.05
    7   0.3     2   0.05   1×10-4   0.1
    8   0.3     2   0.05   1×10-4   1
    9   0.3     2   0.05   1×10-4   3
    10   0.3     2   0.05   1×10-4   5
    11   0.3     2   0.05   1×10-4   6
    12   0.3     2   0.05   1×10-4   8
    13   0.3     2   0.05   1×10-4   10
******
                                    表12
  样品NO.     组合物NO.     特性层厚度   初始IR   变阻器电压   浪涌电阻   ESD电阻
  190     1     25μm   0.8MΩ   8.8A   18A   2kV
  191     2     25μm   1.2MΩ   8.9V   19A   2kV
  192     3     25μm   1.3MΩ   9.1V   20A   5kV
  193     4     25μm   1.5MΩ   9.4V   21A   15kV
  194     5     25μm   1.8MΩ   9.4V   25A   15kV
  195     6     25μm   1.7MΩ   9.1V   24A   30kV
  196     7     25μm   1.8MΩ   9.4V   25A   30kV
  197     8     25μm   1.6MΩ   8.7V   22A   30kV
  198     9     25μm   2.0MΩ   8.8V   22A   30kV
  199     10     25μm   3.0MΩ   9.1V   20A   30kV
  200     11     25μm   3.2MΩ   8.8V   16A   20kV
  201     12     25μm   3.3MΩ   9.1V   15A   10kV
  202     13     25μm   4.2MΩ   9.4V   12A   2kV
  203     1     35μm   10MΩ   11.7V   25A   5kV
  204     2     35μm   20MΩ   12.2V   25A   8kV
  205     3     35μm   22MΩ   12.0V   30A   15kV
  206     4     35μm   30MΩ   12.2V   31A   20kV
  207     5     35μm   32MΩ   12.2V   33A   30kV
  208     6     35μm   30MΩ   12.0V   35A   30kV
  209     7     35μm   30MΩ   12.5V   35A   30kV
  210     8     35μm   31MΩ   11.5V   33A   30kV
  211     9     35μm   38MΩ   12.1V   33A   30kV
  212     10     35μm   41MΩ   12.1V   30A   30kV
  213     11     35μm   44MΩ   12.1V   27A   20kV
  214     12     35μm   45MΩ   11.9V   22A   15kV
  215     13     35μm   54MΩ   12.5V   21A   5kV
  216     1     42μm   33MΩ   26V   46A   5kV
  217     2     42μm   41MΩ   27.8V   46A   15kV
  218     3     42μm   50MΩ   26.4V   50A   20kV
  219     4     42μm   58MΩ   27.9V   53A   30kV
  220     5     42μm   59MΩ   27.1V   53A   30kV
  221     6     42μm   58MΩ   27.1V   54A   30kV
  222     7     42μm   61MΩ   27.4V   62A   30kV
  223     8     42μm   64MΩ   27.1V   59A   30kV
  224     9     42μm   70MΩ   27.3V   55A   30kV
  225     10     42μm   88MΩ   26.7V   51A   30kV
  226     11     42μm   85MΩ   27.1V   47A   20kV
  227     12     42μm   82MΩ   27.5V   41A   20kV
  228     13     42μm   100MΩ   27.9V   28A   5kV
******************
由表12可知,对本发明样品219至225,在使用厚42μm的陶瓷坯料片的样品中,变阻器电压V1mA在26-28V范围,可以使用在低电压如额定电压小于或等于30V下运行的线路;然而,初始IR较高,如50MΩ或更高。此外浪涌电阻大于或等于50A,ESD电阻为30kV。因此,可理解为获得了非常优良的性能。
另一方面,对Zr含量超出0.005-5.0原子%范围的样品216、217、218和226至228,ESD电阻小于或等于20kV。因此,当Zr含量设定在0.005-5.0原子%范围时,在设计为低电压如额定电压小于或等于30V下运行的线路的多层变阻器中,理解为能降低泄漏电流,并可达到高浪涌电阻和高ESD电阻。
此外,由样品193至199和206至212的结果可知,为了配合能在低电压下运行的线路,即使使用厚度为35和25μm的坯料片以获得12V或9V的变阻器电压,可理解为通过加入Zr而能获得具有高初始IR和高ESD电阻的多层变阻器。然而,当在12V变阻器电压Zr含量小于或等于0.01原子%时,以及在9V变阻器电压Zr含量小于或等于0.05原子%时,浪涌电阻和ESD电阻会下降。
图5至7是初始IR和ESD电阻在9、12和27V变阻器电压与各样品的Zr含量的关系曲线。由表12以及图5至7可知,在含ZnO为主组分,并Pr、Co、Al和K的组合物中加入适当量的Zr时,可理解为设计为与低电压运行线路配合的多层变阻器的初始IR和ESD电阻同时会得到提高。
(实施例6)
实施例6中,对用作次组分的Pr、Co、K、Al和Zr中,主要改变Co和Al含量,制得样品,评价其性能。
按照实施例1方式制得多层变阻器,不同之处是,按照表13所示改变次组分含量,并进行评价。结果列于下表13。
                                                             表13
  样品NO.                           加入的元素(原子%) 初始IR 变阻器电压 浪涌电阻 ESD电阻
  Pr     Co   K   Al   Zr   Co/Al
  229   0.3     2   0.05   2×10-5   0.1   100000  4.2MΩ     8.8V   20A   30kV
  230   0.3     2   0.05   1×10-4   0.1   20000  1.8MΩ     8.7V   25A   30kV
  231   0.3     2   0.05   5×10-4   0.1   4000  1.7MΩ     9.3V   27A   30kV
  232   0.3     2   0.05   1×10-3   0.1   2000  1.3MΩ     9.0V   28A   30kV
  233   0.3     2   0.05   5×10-3   0.1   400  1.2MΩ     9.1V   30A   30kV
  234   0.3     2   0.05   1×10-2   0.1   200  1.0MΩ     9.1V   31A   30kV
  235   0.3     2   0.05   5×10-2   0.1   40  1.0MΩ     9.3V   33A   30kV
  236   0.3     2   0.05   0.5   0.1   4  1.0MΩ     9.6V   34A   30kV
  237   0.3     2.5   0.05   2×10-5   0.1   125000  4.3MΩ     9.3V   20A   30kV
  238   0.3     2.5   0.05   1×10-3   0.1   2500  2.9MΩ     9.1V   26A   30kV
  239   0.3     2.5   0.05   1×10-2   0.1   250  2.6MΩ     8.8V   28A   30kV
  240   0.3     2.5   0.05   0.05   0.1   50  2.6MΩ     9.0V   30A   30kV
  241   0.3     2.5   0.05   0.1   0.1   25  2.3MΩ     9.2V   30A   30kV
  242   0.3     2.5   0.05   0.5   0.1   5  1.9MΩ     8.8V   31A   30kV
  243   0.3     3   0.05   2×10-5   0.1   150000  4.5MΩ     8.9V   23A   30kV
  244   0.3     3   0.05   1×10-3   0.1   3000  3.0MΩ     8.9V   25A   30kV
  245   0.3     3   0.05   1×10-2   0.1   300  2.8MΩ     9.0V   28A   30kV
  246   0.3     3   0.05   0.05   0.1   60  2.3MΩ     9.0V   27A   30kV
  247   0.3     3   0.05   0.1   0.1   30  2.4MΩ     9.1V   30A   30kV
  248   0.3     3   0.05   0.5   0.1   6  1.7MΩ     9.0V   31A   30kV
  249   0.3     5   0.05   1×10-4   0.1   50000  2.7MΩ     9.2V   21A   30kV
  250   0.3     5   0.05   1×10-3   0.1   5000  2.6MΩ     8.9V   24A   30kV
  251   0.3     5   0.05   1×10-2   0.1   500  2.6MΩ     8.7V   26A   30kV
  252   0.3     5   0.05   0.05   0.1   100  2.5MΩ     8.8V   29A   30kV
  253   0.3     5   0.05   0.1   0.1   50  2.2MΩ     8.8V   31A   30kV
  254   0.3     5   0.05   0.5   0.1   10  1.9MΩ     8.9V   32A   30kV
  255   0.3     10   0.05   1×10-4   0.1   100000  4.1MΩ     8.9V   20A   30kV
  256   0.3     10   0.05   1×10-3   0.1   10000  4.0MΩ     8.8V   24A   30kV
  257   0.3     10   0.05   1×10-2   0.1   1000  3.8MΩ     9.1V   26A   30kV
  258   0.3     10   0.05   0.05   0.1   200  3.7MΩ     9.2V   29A   30kV
  259   0.3     10   0.05   0.1   0.1   100  3.6MΩ     8.7V   30A   30kV
  260   0.3     10   0.05   0.5   0.1   20  3.0MΩ     8.9V   29A   30kV
由表13可知,尽管同时改变Co和Al含量,当该变化在本发明范围之内时,初始IR为1.0MΩ或更高,浪涌电阻大于或等于20A,ESD电阻为30kV。
特别,当Co含量在2.5-10原子%范围,Co与Al比能满足Co/Al=20-3000时,可理解为能获得优良性能,即,获得2.0MΩ或更高的初始IR,大于或等于25A的浪涌电阻,和30kV的ESD电阻。
此实施例中,同时改变Co和Al含量;然而,当代替Al加入Ga、In或Al、Ga和In的混合物时,可获得如上所述的同样效果。
如上所述,当使用ZnO为主组分,Pr、Co、K、Al和Zr为次组分时,可制得能降低泄漏电流,得到高ESD电阻并能在低电压下运行的变阻器。还可理解,当不使用Pr、Co、K、Al和Zr中任一次组分时,不能制得能降低泄漏电流,得到高ESD电阻并能在低电压下运行的变阻器。此外,由表1至10,12和13所示结果可知,当使用含ZnO为主组分,包含总量为0.05-3.0原子%的Pr、0.5-5.0原子%的Co、总含量为0.005-0.5原子%的K、Na和Li中至少一种、总含量为2×10-5至0.5原子%的Al、Ga和In中至少一种以及0.005-5.0原子%的Zr的次组分的陶瓷组合物时,可制得能降低泄漏电流,得到高ESD电阻并能在低电压下运行的变阻器。
除了用作主组分的ZnO和作为次组分的各种元素外,还使用至少一种类型的元素。这种情况将在下面的实施例7中讨论。
(实施例7)
按照实施例1方式制得多层变阻器,不同之处是,Pr、Co、K、Al和Zr含量固定不变,包含表14所示的至少Ca、Sr和Ba中的一种,并进行评价。结果列于下表14。
                                                             表14
  样品NO.                                  加入的元素(原子%)   初始IR(MΩ)     变阻器电压(V)   浪涌电阻(A)  ESD电阻(kV)
Pr Co K Al Zr Ca Sr Ba
  261   0.3   2.0   0.05   1×10-4   0.1   -   -   -   1.8     9.4     25   30
  262   0.3   2.0   0.05   1×10-4   -   -   -   -   0.8     8.8     18   2
  263   0.3   2.0   0.05   1×10-4   0.1   0.001   -   -   2.2     8.8     25   30
  264   0.3   2.0   0.05   1×10-4   0.1   0.01   -   -   2.5     8.7     25   30
  265   0.3   2.0   0.05   1×10-4   0.1   0.05   -   -   2.9     9.3     24   30
  266   0.3   2.0   0.05   1×10-4   0.1   0.1   -   -   3.1     9.0     25   30
  267   0.3   2.0   0.05   1×10-4   0.1   0.3   -   -   3.2     9.1     26   30
  268   0.3   2.0   0.05   1×10-4   0.1   0.5   -   -   3.7     9.1     24   30
  269   0.3   2.0   0.05   1×10-4   0.1   0.8   -   -   4.3     9.3     25   30
  270   0.3   2.0   0.05   1×10-4   0.1   1   -   -   5.6     9.2     24   30
  271   0.3   2.0   0.05   1×10-4   0.1   2   -   -   7.4     8.9     21   20
  272   0.3   2.0   0.05   1×10-4   0.1   5   -   -   9.2     8.9     18   10
  273   0.3   2.0   0.05   1×10-4   0.1   -   0.001   -   2.1     9.0     25   30
  274   0.3   2.0   0.05   1×10-4   0.1   -   0.01   -   2.6     9.0     24   30
  275   0.3   2.0   0.05   1×10-4   0.1   -   0.05   -   2.9     8.8     25   30
  276   0.3   2.0   0.05   1×10-4   0.1   -   0.1   -   3.0     9.4     26   30
  277   0.3   2.0   0.05   1×10-4   0.1   -   0.3   -   3.3     9.2     26   30
  278   0.3   2.0   0.05   1×10-4   0.1   -   0.5   -   3.6     8.9     25   30
  279   0.3   2.0   0.05   1×10-4   0.1   -   0.8   -   4.6     9.0     24   30
  280   0.3   2.0   0.05   1×10-4   0.1   -   1   -   5.1     9.1     23   30
  281   0.3   2.0   0.05   1×10-4   0.1   -   2   -   7.9     8.8     21   15
  282   0.3   2.0   0.05   1×10-4   0.1   -   -   0.001   2.0     8.9     25   30
  283   0.3   2.0   0.05   1×10-4   0.1   -   -   0.01   2.5     9.1     24   30
  284   0.3   2.0   0.05   1×10-4   0.1   -   -   0.05   3.3     9.1     24   30
  285   0.3   2.0   0.05   1×10-4   0.1   -   -   0.1   3.4     9.0     23   30
  286   0.3   2.0   0.05   1×10-4   0.1   -   -   0.3   3.5     9.3     25   30
  287   0.3   2.0   0.05   1×10-4   0.1   -   -   0.5   3.5     8.8     24   30
  288   0.3   2.0   0.05   1×10-4   0.1   -   -   0.8   4.6     8.9     23   30
  289   0.3   2.0   0.05   1×10-4   0.1   -   -   1   5.2     8.8     25   30
  290   0.3   2.0   0.05   1×10-4   0.1   -   -   2   7.8     9.0     20   15
  291   0.3   2.0   0.05   0.1   0.005   -   -   -   2.3     9.1     25   30
  292   0.3   2.0   0.05   0.1   0.01   -   -   -   2.4     8.8     25   30
  293   0.3   2.0   0.05   0.1   0.1   -   -   -   2.9     9.0     24   30
  294   0.3   2.0   0.05   0.1   0.5   -   -   -   4.1     9.2     25   30
  295   0.3   2.0   0.05   0.1   1   -   -   -   5.4     9.0     23   30
  296   0.3   2.0   0.05   0.1   2   -   -   -   7.9     9.1     20   30
样品261对应于表1所列的样品6。样品262对应于常规的多层变阻器。
由表14可知,当还包含Ca、Sr和Ba中至少一种时,能改善IR。这种情况下,如由样品263至270,273至280,282至289和291至295可知,当其总含量小于或等于1.0原子%时,能有效提高初始IR。当Ca、Sr和Ba的总含量大于1.0原子%时(样品271、272、281、290和296),尽管提高了IR,但ESD电阻下降。
(实施例8)
按照实施例1方式,由表15所列的样品297至360的次组分组成的烧结体制得多层变阻器,不同之处是,Pr、Co、K、Al和Zr含量固定不变,包含La、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb和Y中的至少一种,并进行评价。此实施例中,样品297对应于表1所列的样品6。
此外,按照实施例1方式,制得样品361至384的多层变阻器,不同之处是,Pr、Co、K、Al和Zr含量固定不变,包含如表16所示Ca和La、Sr和La、Ba和La,或Ca、Sr、Ba和La成分,并进行评价。结果列于表15-1和15-2。
                                                             表15-1
    样品NO.                                 加入的元素(原子%)   初始IR   变阻器电压   浪涌电阻   ESD电阻
  Pr   Co   K   Al   Zr   TYPE   CONTENT
    297   0.3   2.0   0.05   1×10-4   0.1   -   -   1.8MΩ   8.8V   25A   30kV
    298   0.3   2.0   0.05   1×10-4   0.1   La   0.005   2MΩ   8.9V   27A   30kV
    299   0.3   2.0   0.05   1×10-4   0.1   La   0.01   2.2MΩ   9.0V   31A   30kV
    300   0.3   2.0   0.05   1×10-4   0.1   La   0.05   2.2MΩ   9.1V   35A   30kV
    301   0.3   2.0   0.05   1×10-4   0.1   La   0.1   2.3MΩ   9.2V   32A   30kV
    302   0.3   2.0   0.05   1×10-4   0.1   La   0.5   2.1MΩ   8.8V   31A   30kV
    303   0.3   2.0   0.05   1×10-4   0.1   La   1   2.3MΩ   8.9V   27A   30kV
    304   0.3   2.0   0.05   1×10-4   0.1   La   2   3.0MΩ   9.1V   21A   20kV
    305   0.3   2.0   0.05   1×10-4   0.1   La   5   3.2MΩ   9.0V   19A   10kV
    306   0.3   2.0   0.05   1×10-4   0.1   Nd   0.005   2.2MΩ   9.0V   27A   30kV
    307   0.3   2.0   0.05   1×10-4   0.1   Nd   0.01   2.5MΩ   8.9V   32A   30kV
    308   0.3   2.0   0.05   1×10-4   0.1   Nd   0.5   2.6MΩ   8.8V   33A   30kV
    309   0.3   2.0   0.05   1×10-4   0.1   Nd   1   2.6MΩ   9.3V   27A   30kV
    310   0.3   2.0   0.05   1×10-4   0.1  Nd   5   3.1MΩ   9.2V   21A   20kV
    311   0.3   2.0   0.05   1×10-4   0.1   Sm   0.005   1.9MΩ   9.2V   25A   30kV
    312   0.3   2.0   0.05   1×10-4   0.1   Sm   0.01   2.1MΩ   8.9V   33A   30kV
    313   0.3   2.0   0.05   1×10-4   0.1  Sm   0.5   3.0MΩ   9.1V   34A   30kV
    314   0.3   2.0   0.05   1×10-4   0.1   Sm   1   3.1MΩ   9.1V   27A   30kV
    315   0.3   2.0   0.05   1×10-4   0.1   Sm   5   3.4MΩ   9.1V   22A   15kV
    316   0.3   2.0   0.05   1×10-4   0.1   Eu   0.005   2.3MΩ   9.1V   26A   30kV
    317   0.3   2.0   0.05   1×10-4   0.1   Eu   0.01   2.9MΩ   9.0V   33A   30kV
    318   0.3   2.0   0.05   1×10-4   0.1   Eu   0.5   3.0MΩ   8.9V   31A   30kV
    319   0.3   2.0   0.05   1×10-4   0.1   Eu   1   3.5MΩ   9.2V   29A   30kV
    320   0.3   2.0   0.05   1×10-4   0.1   Eu   5   3.9MΩ   9.3V   23A   20kV
    321   0.3   2.0   0.05   1×10-4   0.1   Gd   0.005   2.0MΩ   9.0V   28A   30kV
    322   0.3   2.0   0.05   1×10-4   0.1   Gd   0.01   2.2MΩ   9.1V   31A   30kV
    323   0.3   2.0   0.05   1×10-4   0.1   Gd   0.5   2.3MΩ   9.0V   33A   30kV
    324   0.3   2.0   0.05   1×10-4   0.1   Gd   1   2.6MΩ   9.3V   28A   30kV
    325   0.3   2.0   0.05   1×10-4   0.1   Gd   5   2.9MΩ   9.1V   23A   15kV
    326   0.3   2.0   0.05   1×10-4   0.1   Tb   0.005   2.5MΩ   8.8V   27A   30kV
    327   0.3   2.0   0.05   1×10-4   0.1  Tb   0.01   2.9MΩ   8.7V   33A   30kV
    328   0.3   2.0   0.05   1×10-4   0.1   Tb   0.5   3.3MΩ   8.8V   35A   30kV
    329   0.3   2.0   0.05   1×10-4   0.1   Tb   1   3.5MΩ   9.3V   28A   30kV
    330   0.3   2.0   0.05   1×10-4   0.1   Tb   5   3.9MΩ   9.0V   21A   15kV
                                                             表15-2
  样品NO.                               加入的元素(原子%)   初始IR      变阻器电压   浪涌电阻   ESD电阻
Pr Co K Al Zr TYPE CONTENT
  331   0.3   2.0   0.05   1×10-4   0.1  Dy     0.005   2.5MΩ     9.2V   27A   30kV
  332   0.3   2.0   0.05   1×10-4   0.1  Dy     0.01   2.3MΩ     9.1V   33A   30kV
  333   0.3   2.0   0.05   1×10-4   0.1  Dy     0.5   2.9MΩ     9.0V   34A   30kV
  334   0.3   2.0   0.05   1×10-4   0.1  Dy     1   3.2MΩ     8.8V   29A   30kV
  335   0.3   2.0   0.05   1×10-4   0.1  Dy     5   3.2MΩ     8.8V   24A   20kV
  336   0.3   2.0   0.05   1×10-4   0.1  Ho     0.005   2.3MΩ     8.9V   26A   30kV
  337   0.3   2.0   0.05   1×10-4   0.1  Ho     0.01   2.4MΩ     9.0V   30A   30kV
  338   0.3   2.0   0.05   1×10-4   0.1  Ho     0.5   2.9MΩ     8.8V   31A   30kV
  339   0.3   2.0   0.05   1×10-4   0.1  Ho     1   3.0MΩ     8.9V   28A   30kV
  340   0.3   2.0   0.05   1×10-4   0.1  Ho     5   3.3MΩ     9.0V   23A   20kV
  341   0.3   2.0   0.05   1×10-4   0.1  Er     0.005   2.1MΩ     9.1V   27A   30kV
  342   0.3   2.0   0.05   1×10-4   0.1  Er     0.01   2.8MΩ     8.8V   33A   30kV
  343   0.3   2.0   0.05   1×10-4   0.1  Er     0.5   2.7MΩ     9.1V   35A   30kV
  344   0.3   2.0   0.05   1×10-4   0.1  Er     1   3.1MΩ     9.2V   28A   30kV
  345   0.3   2.0   0.05   1×10-4   0.1  Er     5   3.0MΩ     9.0V   21A   20kV
  346   0.3   2.0   0.05   1×10-4   0.1  Tm     0.005   2.1MΩ     8.8V   27A   30kV
  347   0.3   2.0   0.05   1×10-4   0.1  Tm     0.01   2.4MΩ     8.9V   33A   30kV
  348   0.3   2.0   0.05   1×10-4   0.1  Tm     0.5   2.9MΩ     9.1V   34A   30kV
  349   0.3   2.0   0.05   1×10-4   0.1  Tm     1   3.0MΩ     9.0V   29A   30kV
  350   0.3   2.0   0.05   1×10-4   0.1  Tm     5   3.3MΩ     9.1V   23A   20kV
  351   0.3   2.0   0.05   1×10-4   0.1  Yb     0.005   1.9MΩ     9.0V   28A   30kV
  352   0.3   2.0   0.05   1×10-4   0.1  Yb     0.01   2.2MΩ     8.8V   33A   30kV
  353   0.3   2.0   0.05   1×10-4   0.1  Yb     0.5   2.5MΩ     8.9V   35A   30kV
  354   0.3   2.0   0.05   1×10-4   0.1  Yb     1   2.6MΩ     9.2V   29A   30kV
  355   0.3   2.0   0.05   1×10-4   0.1  Y     5   2.8MΩ     9.1V   23A   20kV
  356   0.3   2.0   0.05   1×10-4   0.1  Y     0.005   1.9MΩ     9.0V   29A   30kV
  357   0.3   2.0   0.05   1×10-4   0.1  Y     0.01   2.1MΩ     8.9V   35A   30kV
  358   0.3   2.0   0.05   1×10-4   0.1  Y     0.5   2.3MΩ     8.8V   36A   30kV
  359   0.3   2.0   0.05   1×10-4   0.1  Y     1   2.4MΩ     8.7V   29A   30kV
  360   0.3   2.0   0.05   1×10-4   0.1  Y     5   2.8MΩ     8.9V   24A   20kV
                                                         表16
    样品NO.                                     加入的元素(原子%)   初始IR(MΩ)    变阻器电压(V)   浪涌电阻(A)  ESD电阻(kV)
Pr Co K Al Zr Ca Sr Ba La
    361 0.3 2.0   0.05   1×10-4 0.1 0.001 -   -   0.005   2.4     8.8     27    30
    362 0.3 2.0   0.05   1×10-4 0.1 0.01 -   -   0.01   2.7     8.9     31    30
    363 0.3 2.0   0.05   1×10-4 0.1 0.1 -   -   0.05   3.2     9.0     35    30
    364 0.3 2.0   0.05   1×10-4 0.1 0.5 -   -   0.1   3.9     9.1     32    30
    365 0.3 2.0   0.05   1×10-4 0.1 0.8 -   -   0.5   4.4     9.2     31    30
    366 0.3 2.0   0.05   1×10-4 0.1 1 -   -   1   5.6     8.8     27    30
    367 0.3 2.0   0.05   1×10-4 0.1 - 0.001   -   0.005   2.3     9.2     26    30
    368 0.3 2.0   0.05   1×10-4 0.1 - 0.01   0.01   2.7     8.9     32    30
    369 0.3 2.0   0.05   1×10-6 0.1 - 0.1   -   0.05   3.4     8.9     34    30
    370 0.3 2.0   0.05   1×10-4 0.1 - 0.5   -   0.1   3.8     8.9     35    30
    371 0.3 2.0   0.05   1×10-4 0.1 - 0.8   -   0.5   4.5     9.1     35    30
    372 0.3 2.0   0.05   1×10-4 0.1 - 1   -   1   5.4     8.9     29    30
    373 0.3 2.0   0.05   1×10-4 0.1 - -   0.001   0.005   2.1     9.0     28    30
    374 0.3 2.0   0.05   1×10-4 0.1 - -   0.01   0.01   2.5     9.0     32    30
    375 0.3 2.0   0.05   1×10-4 0.1 - -   0.1   0.05   3.2     9.1     36    30
    376 0.3 2.0   0.05   1×10-4 0.1 - -   0.5   0.1   4.2     9.2     35    30
    377 0.3 2.0   0.05   1×10-4 0.1 - -   0.8   0.5   5.0     8.9     34    30
    378 0.3 2.0   0.05   1×10-4 0.1 - -   1   1   5.4     9.0     26    30
    379 0.3 2.0   0.05   1×10-4 0.1 0.0005 0.0003   0.002   0.005   2.5     9.1     27    30
    380 0.3 2.0   0.05   1×10-4 0.1 0.005 0.002   0.003   0.01   2.8     8.8     30    30
    381 0.3 2.0   0.05   1×10-4 0.1 0.01 0.05   0.04   0.05   3.1     8.9     36    30
    382 0.3 2.0   0.05   1×10-4 0.1 0.2 0.2   0.1   0.1   4.4     8.9     35    30
    383 0.3 2.0   0.05   1×10-4 0.1 0.4 0.4   0.2   0.5   4.5     9.2     33    30
    384 0.3 2.0   0.05   1×10-4 0.1 0.4 0.4   0.2   1   4.8     9.0     29    30
由表15可知,对样品298至303,306至309,311至314,316至319,321至324,326至329,331至334,336至339,341至344,346至349,351至354,356至359,包含La、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb和Y中至少一种,进一步提高了浪涌电阻,样品299至302,307,308,312,313,317,318,322,323,327,328,332,333,337,338,342,343,347,348,352,353,357和358,包含La、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb和Y中中至少一种,含量在0.01-0.5原子%范围,甚至会进一步提高浪涌电阻。然而,样品304,305,310,315,320,325,330,335,340,345,350,355和360,包含La、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb和Y中至少一种,但含量大于1.0原子%,浪涌电阻和ESD电阻反而下降。
由表16可知,用作烧结体的样品361至366还包含Ca和La,进一步提高了IR和浪涌电阻。此外,由表16还可知,钙含量较佳设定为小于或等于1.0原子%,La含量较佳设定为小于或等于1.0原子%。
由表16可知,样品367至372还包含Sr和La,进一步提高了IR和浪涌电阻。此外,尤其是包含0.01-0.5原子%La的样品368至370,更进一步提高了浪涌电阻。
由样品373至378的结果可知,当使用还包含Ba和La非烧结体时,更进一步提高了IR和浪涌电阻。尤其是La含量在0.01-0.5原子%的样品374至376,更进一步提高了浪涌电阻。
对样品379至384,由于包含如表16所示的Ca、Sr、Ba和La,更进一步提高了IR和浪涌电阻。此外,尤其是La含量在0.01-0.5原子%的样品381至383,更进一步提高了浪涌电阻。
如上所述,由于这些实施例中用于变阻器的陶瓷组合物包含氧化锌作为主组分,且次组分包含上述特定范围的Pr、Co、K、Na和Li中至少一种,Al、Ga和In中至少一种和Zr,制得的变阻器具有低泄漏电流和高ESD电阻,并且能在低电压下运行。
工业应用
如上所述,本发明用于变阻器的陶瓷组合物宜用于制造在静电保护元件或噪声过滤器中使用的变阻器,尤其宜用于制造由相互叠加的多个变阻器层组成的多层变阻器。

Claims (7)

1.一种用于变阻器的陶瓷组合物,包含:作为主组分的ZnO;和次组分,包括总量为0.05-3.0原子%镨、0.5-10原子%钴、总含量为0.005-0.5原子%的钾、钠和锂中至少一种、总含量为2×10-5-0.5原子%的铝、镓和铟中至少一种和0.005-5.0原子%的锆。
2.如权利要求1所述的用于变阻器的陶瓷组合物,其特征在于,所述组合物还包含钙、锶和钡中至少一种作为次组分,其总含量为小于或等于总量的1.0原子%。
3.如权利要求1或2所述的用于变阻器的陶瓷组合物,其特征在于,所述组合物还包含镧、钕、钐、铕、钆、铽、镝、钬、铒、铥、镱和钇中至少一种作为次组分,其总含量为小于或等于总量的1.0原子%。
4.如权利要求1所述的用于变阻器的陶瓷组合物,其特征在于,锆含量为总量的0.01-5.0原子%。
5.如权利要求4所述的用于变阻器的陶瓷组合物,其特征在于,锆含量为总量的0.05-5.0原子%。
6.一种变阻器,包括:烧结用于变阻器的陶瓷组合物而形成的烧结体以及在烧结体外表面上形成的许多端电极,所述陶瓷组合物包含作为主组分的氧化锌以及次组分,次组分包括含量为总量的0.05-3.0原子%的镨、含量为总量的0.5-10原子%的钴、总含量为总量的0.005-0.5原子%的钾、钠和锂中至少一种、总含量为总量的2×10-5-0.5原子%的铝、镓和铟中至少一种以及含量为总量的0.005-5.0原子%的锆。
7.如权利要求6所述的变阻器,其特征在于,所述变阻器还包括许多在烧结体内的内电极,所述许多内电极与烧结体层相互叠加并电连接到外电极,从而形成多层变阻器。
CNA038015951A 2002-08-20 2003-08-13 用于变阻器的陶瓷组合物和变阻器 Pending CN1592939A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP239663/2002 2002-08-20
JP2002239663 2002-08-20
JP2003199401A JP4292901B2 (ja) 2002-08-20 2003-07-18 バリスタ
JP199401/2003 2003-07-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN200910211561.5A Division CN101694794B (zh) 2002-08-20 2003-08-13 用于变阻器的陶瓷组合物和变阻器

Publications (1)

Publication Number Publication Date
CN1592939A true CN1592939A (zh) 2005-03-09

Family

ID=31949546

Family Applications (2)

Application Number Title Priority Date Filing Date
CNA038015951A Pending CN1592939A (zh) 2002-08-20 2003-08-13 用于变阻器的陶瓷组合物和变阻器
CN200910211561.5A Expired - Fee Related CN101694794B (zh) 2002-08-20 2003-08-13 用于变阻器的陶瓷组合物和变阻器

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN200910211561.5A Expired - Fee Related CN101694794B (zh) 2002-08-20 2003-08-13 用于变阻器的陶瓷组合物和变阻器

Country Status (6)

Country Link
US (1) US7075404B2 (zh)
JP (1) JP4292901B2 (zh)
KR (1) KR100627961B1 (zh)
CN (2) CN1592939A (zh)
AU (1) AU2003255016A1 (zh)
WO (1) WO2004019350A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7649436B2 (en) 2006-03-31 2010-01-19 Tdk Corporation Varistor body and varistor
CN102426890A (zh) * 2011-08-04 2012-04-25 吴浩 一种静电抑制器及该静电抑制器的制备方法
CN104557018A (zh) * 2014-12-25 2015-04-29 湖北大学 氧化锌压敏陶瓷及其制备方法和氧化锌压敏电阻及其制备方法
CN107360706A (zh) * 2014-11-20 2017-11-17 阿莫泰克有限公司 触电保护器件及具有其的便携式电子装置

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI236683B (en) * 2002-07-25 2005-07-21 Murata Manufacturing Co Varistor and manufacturing method thereof
JP4458226B2 (ja) * 2002-07-25 2010-04-28 株式会社村田製作所 バリスタの製造方法、及びバリスタ
JP2005203479A (ja) * 2004-01-14 2005-07-28 Matsushita Electric Ind Co Ltd 静電気対策部品
US20060067021A1 (en) * 2004-09-27 2006-03-30 Xiang-Ming Li Over-voltage and over-current protection device
JP4915153B2 (ja) * 2005-07-07 2012-04-11 株式会社村田製作所 積層バリスタ
JP4792900B2 (ja) * 2005-09-30 2011-10-12 株式会社村田製作所 バリスタ用磁器組成物、及び積層バリスタ
JP2007165639A (ja) * 2005-12-14 2007-06-28 Tdk Corp バリスタ及びバリスタの製造方法
ATE528769T1 (de) * 2006-03-10 2011-10-15 Joinset Co Ltd Keramisches komponentenelement und herstellungsverfahren dafür
JP4492579B2 (ja) * 2006-03-31 2010-06-30 Tdk株式会社 バリスタ素体及びバリスタ
KR100676725B1 (ko) * 2006-06-09 2007-02-01 주식회사 한국전설기술단 송변전급 피뢰기용 산화아연 조성물의 제조방법
KR100676724B1 (ko) * 2006-06-09 2007-02-01 주식회사 한국코아엔지니어링 송변전급 피뢰기용 산화아연 조성물
KR100821274B1 (ko) * 2006-07-19 2008-04-10 조인셋 주식회사 칩 세라믹 전자부품
JP4893371B2 (ja) * 2007-03-02 2012-03-07 Tdk株式会社 バリスタ素子
KR100782396B1 (ko) 2007-04-02 2007-12-07 주식회사 한국전설기술단 뇌써지 보호 송·변·배전 피뢰기 소자
JP5088029B2 (ja) 2007-07-19 2012-12-05 Tdk株式会社 バリスタ
KR100948603B1 (ko) * 2007-10-31 2010-03-24 한국전자통신연구원 박막형 바리스터 소자 및 그의 제조 방법
WO2009057885A1 (en) * 2007-10-31 2009-05-07 Electronics And Telecommunications Research Institute A thin film type varistor and a method of manufacturing the same
US20090143216A1 (en) * 2007-12-03 2009-06-04 General Electric Company Composition and method
TWI421996B (zh) 2008-01-10 2014-01-01 Ind Tech Res Inst 靜電放電防護架構
EP2280458A4 (en) * 2008-05-08 2013-03-06 Murata Manufacturing Co SUBSTRATE WITH INTEGRATED PROTECTION AGAINST ELECTROSTATIC DISCHARGE
DE102008024479A1 (de) * 2008-05-21 2009-12-03 Epcos Ag Elektrische Bauelementanordnung
US8562859B2 (en) * 2008-11-17 2013-10-22 Mitsubishi Electric Corporation Voltage nonlinear resistor, lightning arrester equipped with voltage nonlinear resistor, and process for producing voltage nonlinear resistor
JP5334636B2 (ja) * 2009-03-13 2013-11-06 三菱電機株式会社 電圧非直線抵抗体、電圧非直線抵抗体を搭載した避雷器及び電圧非直線抵抗体の製造方法
JP5665870B2 (ja) * 2009-08-27 2015-02-04 アモテック・カンパニー・リミテッド ZnO系バリスタ組成物
JP5637017B2 (ja) * 2010-04-05 2014-12-10 Tdk株式会社 電圧非直線性抵抗体磁器組成物および電子部品
JP5088396B2 (ja) * 2010-05-20 2012-12-05 株式会社村田製作所 Esd保護デバイス及びその製造方法
TWI523050B (zh) * 2011-11-18 2016-02-21 Prosperity Dielectrics Co Ltd Multi - layer co - fired laminated stacked chip resistors and manufacturing method thereof
KR101479425B1 (ko) * 2013-11-01 2015-01-05 동의대학교 산학협력단 가돌리니아가 첨가된 바나디움계 산화아연 바리스터 및 그 제조방법
KR101948164B1 (ko) * 2015-05-04 2019-04-22 주식회사 아모텍 바리스터 세라믹 및 이의 제조방법
DE102016104990A1 (de) 2016-03-17 2017-09-21 Epcos Ag Keramikmaterial, Varistor und Verfahren zum Herstellen des Keramikmaterials und des Varistors
TWI605029B (zh) 2016-10-12 2017-11-11 不含銻的壓敏電阻組成物及積層式壓敏電阻器
CN111386582A (zh) * 2018-10-12 2020-07-07 东莞令特电子有限公司 聚合物压敏电阻器
KR102137485B1 (ko) * 2019-02-21 2020-07-27 동의대학교 산학협력단 이트리아가 첨가된 산화아연-바나디아계 바리스터 및 그 제조방법

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5311076A (en) 1976-07-19 1978-02-01 Omron Tateisi Electronics Co Vibration sensor
JPS6316601A (ja) * 1986-07-08 1988-01-23 富士電機株式会社 電圧非直線抵抗体
JPS6425205A (en) 1987-07-21 1989-01-27 Nippon Kokan Kk Programmable controller
JPH0249524A (ja) 1988-08-09 1990-02-19 Nippon Suisan Kaisha Ltd 活魚類収容槽
US5369390A (en) * 1993-03-23 1994-11-29 Industrial Technology Research Institute Multilayer ZnO varistor
JPH0729709A (ja) 1993-07-14 1995-01-31 Murata Mfg Co Ltd 電圧非直線抵抗体
JPH07201531A (ja) 1993-12-27 1995-08-04 Tdk Corp 電圧非直線性抵抗体磁器組成物および電圧非直線性抵抗体磁器
JPH1070012A (ja) * 1996-06-03 1998-03-10 Matsushita Electric Ind Co Ltd バリスタの製造方法
JP2904178B2 (ja) * 1997-03-21 1999-06-14 三菱電機株式会社 電圧非直線抵抗体及び避雷器
US5854586A (en) * 1997-09-17 1998-12-29 Lockheed Martin Energy Research Corporation Rare earth doped zinc oxide varistors
JPH11297510A (ja) * 1998-04-07 1999-10-29 Murata Mfg Co Ltd 積層型バリスタ
JP3449599B2 (ja) * 1999-03-26 2003-09-22 Tdk株式会社 積層チップ型バリスタ
JP3908611B2 (ja) * 2002-06-25 2007-04-25 Tdk株式会社 電圧非直線性抵抗体磁器組成物および電子部品

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7649436B2 (en) 2006-03-31 2010-01-19 Tdk Corporation Varistor body and varistor
CN102426890A (zh) * 2011-08-04 2012-04-25 吴浩 一种静电抑制器及该静电抑制器的制备方法
CN107360706A (zh) * 2014-11-20 2017-11-17 阿莫泰克有限公司 触电保护器件及具有其的便携式电子装置
CN107360706B (zh) * 2014-11-20 2019-11-05 阿莫泰克有限公司 触电保护器件及具有其的便携式电子装置
CN104557018A (zh) * 2014-12-25 2015-04-29 湖北大学 氧化锌压敏陶瓷及其制备方法和氧化锌压敏电阻及其制备方法

Also Published As

Publication number Publication date
JP4292901B2 (ja) 2009-07-08
US7075404B2 (en) 2006-07-11
KR20040083516A (ko) 2004-10-02
KR100627961B1 (ko) 2006-09-25
US20050143262A1 (en) 2005-06-30
AU2003255016A1 (en) 2004-03-11
JP2004140334A (ja) 2004-05-13
CN101694794A (zh) 2010-04-14
CN101694794B (zh) 2014-12-10
WO2004019350A1 (ja) 2004-03-04

Similar Documents

Publication Publication Date Title
CN1592939A (zh) 用于变阻器的陶瓷组合物和变阻器
CN1145596C (zh) 非还原性介电陶瓷和使用该陶瓷的单块陶瓷电容器
CN1198775C (zh) 介电陶瓷组合物、利用该组合物的陶瓷电容器及其制造方法
CN1097271C (zh) 多功能的多层器件和制造方法
US7583493B2 (en) Monolithic semiconductor ceramic capacitor having varistor function and method for manufacturing monolithic semiconductor ceramic capacitor
CN1280234C (zh) 介电陶瓷、其生产方法和多层陶瓷电容器
CN1320933A (zh) 电流-电压非线性电阻体
CN106409505A (zh) 叠层陶瓷电容器
CN105719834B (zh) 多层陶瓷电子组件及其制造方法
CN101076503A (zh) 电介质陶瓷及叠层陶瓷电容器
CN1832905A (zh) 介电陶瓷组合物和叠层陶瓷电容器
CN1707703A (zh) 积层型片状变阻器
CN1604247A (zh) 电介质陶瓷组合物以及电子部件
JP4792900B2 (ja) バリスタ用磁器組成物、及び積層バリスタ
JP2004022976A (ja) 積層型電圧非直線抵抗体、及びその製造方法
CN1898812A (zh) 层压压电器件
US20020043698A1 (en) Integrated passive device and method for producing such a device
JPH10229003A (ja) バリスタ、チップ型バリスタ及びバリスタの製造方法
CN1258783C (zh) 用于贱金属电极的高介电、抗还原电容介质材料
KR100973058B1 (ko) 써미스터-바리스터 복합칩 소자 및 그 제조방법
CN109155172A (zh) 陶瓷材料和电阻元件
KR101161924B1 (ko) ZnO계 바리스터 조성물
TWI461384B (zh) Barium titanate - based semiconductor ceramics and PTC thermistors using them
JP4292801B2 (ja) 積層バリスタの製造方法
CN1841577A (zh) 可变电阻及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication