CN1505114A - 半导体器件的制造方法 - Google Patents

半导体器件的制造方法 Download PDF

Info

Publication number
CN1505114A
CN1505114A CNA200310113827A CN200310113827A CN1505114A CN 1505114 A CN1505114 A CN 1505114A CN A200310113827 A CNA200310113827 A CN A200310113827A CN 200310113827 A CN200310113827 A CN 200310113827A CN 1505114 A CN1505114 A CN 1505114A
Authority
CN
China
Prior art keywords
film
semiconductor substrate
semiconductor device
insulating film
dielectric film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA200310113827A
Other languages
English (en)
Inventor
�Ͼñ���
久保田正文
林重德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of CN1505114A publication Critical patent/CN1505114A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28194Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation by deposition, e.g. evaporation, ALD, CVD, sputtering, laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28176Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation with a treatment, e.g. annealing, after the formation of the definitive gate conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28202Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation in a nitrogen-containing ambient, e.g. nitride deposition, growth, oxynitridation, NH3 nitridation, N2O oxidation, thermal nitridation, RTN, plasma nitridation, RPN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31604Deposition from a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/513Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/0214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being a silicon oxynitride, e.g. SiON or SiON:H
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02181Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing hafnium, e.g. HfO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02236Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
    • H01L21/02238Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor silicon in uncombined form, i.e. pure silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02266Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by physical ablation of a target, e.g. sputtering, reactive sputtering, physical vapour deposition or pulsed laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • H01L21/02329Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of nitrogen
    • H01L21/02332Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of nitrogen into an oxide layer, e.g. changing SiO to SiON
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • H01L21/0234Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31604Deposition from a gas or vapour
    • H01L21/31608Deposition of SiO2
    • H01L21/31612Deposition of SiO2 on a silicon body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material

Abstract

本发明提供一种半导体器件的制造方法。其目的是将由金属氧化物构成的高电介质膜应用于栅绝缘膜或者电容绝缘膜中。在半导体衬底(11)的元件形成区域上,形成由氧化硅构成的底层绝缘膜(13)、由氧化铪构成的栅绝缘膜(14)、由多晶硅构成的栅电极(15)及由氧化硅构成的侧壁(18),在半导体衬底(11)中的元件形成区域的上部上分别由注入形成源-漏区(17)及扩展区(16)。然后,调整半导体衬底(11)的扫描速度、激光的脉冲间隔及峰值功率,进行0.1秒钟的激光照射,使得仅在半导体衬底(11)的表面附近的温度为1150℃~1250℃那样,进行对栅绝缘膜(14)的热处理及对源-漏区(17)的热处理。

Description

半导体器件的制造方法
技术领域
本发明涉及具有绝缘膜的半导体器件制造方法,该绝缘膜由氧化铪(HfO2)或者氧化锆(ZrO2)等高电介质构成。
背景技术
近年来,由于MIS型晶体管进一步微细化,使设置在该晶体管上的栅绝缘膜被薄膜化,其结果是能够实现晶体管的高驱动力。但是,该栅绝缘膜的薄膜化在栅沟道间带来直接隧道电流,存在因该直接隧道电流的增大,使晶体管的功率消耗增大这样的问题。
一般,在栅长为0.1μm以下的微细MOS集成电路中,栅绝缘膜必须成为将氧化硅膜换算膜厚值Eot在2nm以下的极薄栅绝缘膜。这里的氧化硅膜换算厚度是指某种绝缘膜为了得到与氧化硅膜同等的电容所需要的膜厚。在氧化硅(SiO2)中,当它的膜厚在2nm以下时,隧道电流就成为支配性因素,特别是在1.2nm以下时,该晶体管就不能作为实用元件使用。
因此,为了同时实现高驱动能力和低功率消耗,使用介电常数比氧化硅膜高的高介电常数绝缘膜作为栅绝缘膜。
另外,还有将DRAM部和逻辑部混载在一个芯片上的混载型LSI,包含在混载型LSI等中的电容器,过去一直使用氧化硅膜作为电容绝缘膜,仍然是随着薄膜化的进展隧道电流增大,存在电容器的电荷保持时间变短的危险。因此,也在进行将高介电常数材料用于电容绝缘膜的探讨。
例如,由铪(Hf)或者锆(Zr)等的金属氧化物构成的高电介质薄膜,一般用溅射法、有机金属气相淀积(MOCVD)法、原子层CVD(ALCVD)法、或者分子束外延(MBE)法等成膜方法形成。
但是,在淀积高电介质构成的栅绝缘膜,进而形成栅电极之后,形成源-漏杂质结,这种方法就是所谓的自对准工艺。在用自对准工艺形成晶体管的情况下,为了得到漏电流小的杂质结,在向源-漏导入杂质后,必须加热到900℃左右,进行热处理。
代替自对准工艺,还可以在形成栅绝缘膜之前先形成源-漏区,这种工艺即所谓的调换工艺。即使在采用调换工艺的情况下,当除去在超高真空中外延生长高电介质薄膜的MBE法时,为了使栅绝缘膜获得良好的绝缘特性,必须进行700℃以上的热处理(例如,参照非专利文献1)。
另一方面,在进行高温热处理的情况下,由金属与硅反应而产生硅化物化反应,由氧化物产生结晶化,因此形成组成发生变化的区域与没有发生变化区域的边界,使绝缘性降低(例如,参照非专利文献2)。
[非专利文献1]
林重德等“用反应性溅射法制作高介电常数栅绝缘膜及其评价”,第60次半导体集成电路技术研讨会讲演论文集,电化学会电子材料委员会,2001年6月,P.12~16
[非专利文献2]
宫田乘行等“HfO2/超薄-SiO2/Si结构的热稳定性”(Thermal Stability ofHfO2/Ultrathin-SiO2/Si structures)、
(Extended Abstracts of the 2002 International Conference on Solid StateDevices and Materials)、名古屋、2002年、P.478~479
发明内容
(发明要解决的课题)
但是,一般情况下,当这些高电介质材料接受600℃程度以上的热处理时,例如,在与构成衬底的硅之间产生反应,因高电介质膜自身的结晶化产生晶粒间界,因相变化产生膜厚度不均匀,因而产生漏电流增加和耐压降低的问题。
另外,因在热处理气氛中所包含的微量氧和硅衬底及绝缘膜中的氧,在高电介质膜与硅衬底的界面上,形成氧化硅膜和高电介质与硅的化合物膜(所谓的硅酸盐薄膜)。由于该氧化硅膜及硅酸盐薄膜的介电常数是高电介质材料的二分之一到几分之一,当形成这些薄膜时,相当于在高电介质膜上插入串联的电容器,使有效的介电常数降低。
这样,当由高电介质材料构成的栅绝缘膜进入实用化阶段时,热处理方法的改进是不可缺少的。
另外,将高电介质材料作为电容器的电容绝缘膜使用的情况下,也产生同样的问题。即,在将硅衬底作为电容器一方的电极使用的时,与栅绝缘膜的情况同样,在与硅衬底的界面上容易生成介电常数低的氧化膜。
另外,在具有用金属电极从上下方向夹持由高电介质材料构成的绝缘膜的层状结构中,即在具有所谓的MIM结构的电容器的情况下,如何抑制高电介质膜与位于其上下的金属电极的反应是一个重大课题。
鉴于上述问题,本发明的目的在于能够将由金属氧化物构成的高电介质薄膜应用于栅绝缘膜或者电容绝缘膜中。
(解决课题的手段)
本申请的发明人,为了将由金属氧化物构成的高电介质膜应用于MIS型晶体管的栅绝缘膜和电容器的电容绝缘膜中,进行了种种探讨,得到以下的见解。
在半导体集成电路器件的制造工艺中,600℃~1000℃左右温度下的热处理是不可缺少的。例如,在用离子注入法对硅构成的衬底导入杂质的工序中,注入了的杂质离子打乱硅晶体的排列,产生间隙硅和点阵空穴等缺陷。为了使这些晶体缺陷恢复,通常,必须进行600℃~1000℃左右温度下的热处理。
另外,在用低温形成由高电介质材料构成的栅绝缘膜的情况下,由于在膜中残留许多缺陷,必须用热处理使这些缺陷恢复。例如,在将氧化铪(HfO2)和氧化锆(ZrO2)等高电介质材料用于栅绝缘膜的情况下,由于在刚刚淀积后(as-depo)存在许多氧亏损,在淀积后必须在氧气氛中用600℃~1000℃左右的温度进行热处理。
但是,如前所述,当由这些金属氧化物构成的高电介质膜在600℃左右的温度下被加热时,一方面,由于膜中的晶体缺陷被消除使绝缘特性得到改善,另一方面,因结晶化产生晶粒间界和因相变化产生膜厚的不均匀,因此,在通过高电介质膜的漏电流增加的同时,其耐压恶化。
然而,高电介质膜中的结晶化及相变化,膜中原子的随机而且大规模运动的结果,是能够实现自由能最小的稳定状态。这样的随机原子运动可以用与扩散同样的机构进行模拟。即,设扩散长度为L,原子的扩散距离能够用式(1)估算。
L=(D·t)         …(1)
其中,D是扩散系数,t是扩散时间。
举一个例子,在温度1000℃的情况下,硅(Si)中硼(B)的扩散系数D为10-14m2/s左右。
虽然还不明了在高电介质膜中其构成原子的扩散系数值,但若假定以与硅中的杂质同等的扩散速度随机运动时,设扩散时间为10分钟,则扩散长度L约为25nm。因此,由于在膜厚5nm的栅绝缘膜中产生原子的再排列,漏电流的增加成为悬念。
可是,当设热处理时间为0.1秒时,扩散长度L就成为0.3nm。由于硅晶体中的最接近原子间距离是0.24nm,原子移动后的位置就停留在出发位置的极近处,不至于产生相变化和结晶化。
进而,过去的热处理方法,当在氧化性气氛中进行热处理时,存在在硅衬底与高电介质膜的界面上生长氧化硅膜的问题,由于这样的热处理时间极短,因而该氧化硅膜的生长也被抑制。因此,如果使高电介质膜的淀积方法最佳化,即使在1000℃的温度下进行0.1秒的热处理,也能够将氧化硅膜的生长抑制在0.1nm~0.2nm左右。
根据这些见解,为达成上述目的,本发明的半导体器件制造方法具备下述两工序:在衬底上形成由高电介质材料构成的绝缘膜的第1工序;和用光照射形成了绝缘膜的衬底的第2工序。
根据本发明的半导体器件制造方法,由于光照射到形成了由高电介质材料构成的绝缘膜的衬底上,使该光的波长成为能够被衬底吸收程度的波长,能够仅仅在衬底的表面附近进行0.1秒以下的极短时间的热处理。其结果是,在将由高电介质材料构成的绝缘膜用于栅绝缘膜和电容绝缘膜的情况下,能够防止因结晶化或者相变化在该绝缘膜上产生漏电流,同时,能够一边抑制生长在衬底与该绝缘膜的界面上的氧化膜的生长,一边能够谋求衬底中的晶体缺陷的恢复。
并且,由于是在衬底的表面附近进行局部的热处理,使0.1秒以下短时间的热处理成为可能。其原因是,为了使晶片整体或者支撑晶片的支座本身也达到高温,需要极大的热源,另外,一旦晶片和支座达到高温,由于它们的热容量大,不能急速降温,难以进行短时间的热处理。另外,由于仅仅加热衬底表面附近局部的区域,能量利用率高,能够减小给予环境的负荷。
在本发明的半导体器件制造方法中,绝缘膜最好是晶体管中的栅绝缘膜。
在这种情况下,本发明的半导体器件制造方法,最好在第1工序和第2工序之间进一步具备在衬底上选择性的导入杂质的工序。这样做时,能够形成极浅的结而且电阻小的杂质扩散层。
另外,在这种情况下,本发明的半导体器件制造方法,最好在第1工序和第2工序之间进一步具备在绝缘膜上形成导体膜的工序。这样做时,能够提高由高电介质材料构成的绝缘膜所受热处理的均匀性。
在本发明的半导体器件制造方法中,绝缘膜最好是电容器中的电容绝缘膜。
这种情况下,本发明的半导体器件制造方法,最好在第1工序之前,进一步具备在衬底上选择性的导入杂质的工序。
在本发明的半导体器件制造方法中,衬底最好由硅构成。
在本发明的半导体器件制造方法中,绝缘膜最好包含金属元素。
在这种情况下,绝缘膜最好包含铪(Hf)、锆(Zr)、镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钇(Y)及铝(Al)中的至少一种。
在本发明的半导体器件制造方法中,最好调节氧气或者氧化合物气体的分压,进行第2工序。
另外,在本发明的半导体器件制造方法中,第2工序最好在氮气或者惰性气体气氛下进行。
一般,由高电介质材料构成的绝缘膜,按照其成膜方法,当成膜时的氧分压过高时,透过绝缘膜的氧容易与衬底反应,在与衬底的绝缘膜的界面上容易生成氧化膜。然而,由于调节氧气或者氧化合物气体的分压,在氮气或者惰性气体气氛下进行对由高电介质材料构成的绝缘膜的热处理,就能够抑制在与衬底的绝缘膜的界面上形成的氧化膜等。
在本发明的半导体器件制造方法中,在第2工序中,衬底最好加热到100℃~500℃的温度。
附图说明
图1是示出本发明的实施方式1的半导体器件模式的结构剖面图。
图2(a)~(d)是示出本发明的实施方式1的半导体器件制造方法的工序顺序的模式的结构剖面图。
图3是示出本发明的实施方式1的半导体器件制造方法的工序顺序的模式的结构剖面图。
图4(a)~(d)是示出本发明的实施方式2的半导体器件制造方法的工序顺序的模式的结构剖面图。
图5(a)~(c)是示出本发明的实施方式3的半导体器件制造方法的工序顺序的模式的结构剖面图。
符号说明:
11-半导体衬底;12-沟槽隔离区;13-底层绝缘膜;14-栅绝缘膜;14A-高电介质绝缘膜;15-栅电极;15A-栅电极形成膜(导体膜);16-扩展区;17-源-漏区;18-侧壁膜;25-栅电极;25A-栅电极形成膜(导体膜);31-n型扩散区;32-电容绝缘膜;32A-高电介质绝缘膜;33-上部电极。
具体实施方式
(实施方式1)
参照附图说明本发明的实施方式1。
图1是本发明的实施方式1的半导体器件,模式地示出了MIS型晶体管的剖面结构。
如图1所示,例如,在由p型硅(Si)构成的半导体衬底11的上部上形成由氧化硅(SiO2)构成的沟槽隔离区12,它的主面由沟槽隔离区12区划为元件形成区域。
在元件形成区域的上面上,从下面起顺序形成由膜厚0.5nm的氧化硅构成的底层绝缘膜13,膜厚4nm的高电介质材料构成的栅绝缘膜14,该栅绝缘膜14例如由氧化铪(HfO2)构成,由n型多晶硅构成的栅电极15。
在元件形成区域的上部、底层绝缘膜13的栅长方向侧的两端部的下侧的区域上,相互间隔地形成n型杂质浅离子注入构成的n型扩展区域16。扩展区域16是为了抑制在晶体管上产生的短沟道效应,提高驱动力而设置的。进而,在元件形成区域的上部中的扩展区域16的外侧区域上,由注入形成n型源-漏区17,源-漏区17各自内侧的端部与扩展区域16连接,并且比该扩展区域16结面更深。
在包含底层绝缘膜13及栅绝缘膜14的各侧面的栅电极15的栅长方向侧的两侧面上,形成由氧化硅或氮化硅等绝缘膜构成的侧壁膜18。
以下,参照附图说明上述结构的MIS型晶体管的制造方法。
图2(a)~图2(d)及图3示出本发明的实施方式1的半导体器件的制造方法工序的剖面结构。这里,半导体衬底11仅示出形成由包含MIS型晶体管的多个功能元件构成的集成电路的晶片的一部分。
首先,如图2(a)所示,用公知的方法,在由p型硅构成的半导体衬底11的上部上选择性地形成沟槽,将氧化硅埋入形成的沟槽中,形成沟槽隔离区12。
其次,如图2(b)所示,用热氧化法,在半导体衬底11的表面上形成由膜厚约0.5nm~1.0nm的氧化硅构成的底层绝缘膜13。该底层绝缘膜13范围涉及包含沟槽隔离区12的半导体衬底11的整个表面。接着,用氧气氛下的反应性溅射法,在底层绝缘膜13的上面上淀积由膜厚约5nm的氧化铪(HfO2)构成的栅绝缘膜形成用的高电介质绝缘膜14A。然后。用减压CVD法,在高电介质绝缘膜14A的上面上淀积由膜厚约250nm的多晶硅构成的栅电极形成膜15A。这里,栅电极形成膜15A不限于多晶硅,当使用锗硅(SiGe)时,能够谋求低电阻化。另外,用等离子体氮化法等,导入氮气,将底层绝缘膜13作成氮氧化硅时,在高电介质绝缘膜14A成膜时能够抑制半导体衬底11的表面氧化,同时,当在栅电极形成膜15A中导入杂质时,能够防止向半导体衬底11的杂质扩散。
接着,用光刻法,在栅电极形成膜15A的上面上,形成具有栅电极图形的抗蚀剂图形(未图示),用形成的抗蚀剂图形作为掩模,用卤素气体等离子体对栅电极形成膜15A进行干法刻蚀,从栅电极形成膜15A形成栅电极15。这时,高电介质绝缘膜14A的上部或者高电介质绝缘膜14A及底层绝缘膜13的上部也同时被刻蚀。接着,将被刻蚀了的栅电极15作为掩模,在半导体衬底11上进行杂质离子的注入。由此,在将杂质离子导入半导体衬底11的上部上的同时,杂质离子也被导入栅电极15上。然后,用使注入的杂质离子激活的热处理,在半导体衬底11的上部上形成扩展区域16。这里,在n沟道晶体管的情况下,注入的杂质使用砷(As)等n型杂质,在p沟道晶体管的情况下,注入的杂质使用硼(B)等p型杂质。但是,在p沟道晶体管的情况下,必须在半导体衬底11中的元件形成区域上预先形成比源-漏区17更深的n型阱。然后,使用包含氢氟酸(HF)的水溶液,进行1分钟左右的湿法腐蚀,除去除高电介质绝缘膜14A及底层绝缘膜13中的栅电极15的下侧部分之外的区域。由此,从高电介质绝缘膜14A形成栅绝缘膜14,得到图2(c)所示状态。
接着,用CVD法,在包含栅电极15的半导体衬底11的上面上的整个面上,淀积膜厚约100nm~200nm的氮化硅(Si3N4)或者氧化硅(SiO2)构成的绝缘膜。接着,使用包含四氟化碳(CF4)和三氟代烃(CHF3)刻蚀气体的气体等离子体,对淀积了的绝缘膜进行反应离子刻蚀(Reactive IonEtching)的各向异性刻蚀,在栅电极15的两侧面上从绝缘膜形成侧壁膜18,侧壁膜18由绝缘膜的淀积膜厚决定。接着,将栅电极15及侧壁膜18作为掩模,对半导体衬底11的上部上进行杂质离子注入,以形成源-漏区17。这里,被注入的杂质离子,在n沟道晶体管的情况下例如使用砷,在p沟道晶体管的情况下,例如使用硼。此外,在p沟道晶体管的情况下,在进行用于形成源-漏区的离子注入之前,最好用加速能量30KeV~100KeV左右,注入剂量约1×1015/cm2~5×1015/cm2的锗(Ge)离子进行离子注入,使半导体衬底11的上部非晶化,即所谓的予非晶化离子注入(PAI)。该PAI是为了谋求源-漏区17的浅结化,在使用于p沟道晶体管的情况的硼注入中,由于它的质量小,源-漏区17非晶化困难,为了补偿它才进行PAI注入。此外,在使用于n沟道晶体管的砷离子的情况下,为了半导体衬底11的上部非晶化,也可以不进行PAI。由于对该源-漏区17进行杂质注入,得到图2(d)所示状态。
接着,如图3所示,使用激光,对栅绝缘膜14进行热处理,同时对离子注入了的源-漏区17进行热处理。这里,热处理气氛是压力约250Pa的氮气(N2)气氛,其中包含分压9Pa~11Pa左右的氧(O2)。此外,因背景气体的压力等最佳条件不同,氧的分压最好是1Pa~100Pa。这是由于,当氧分压过高时,透过栅绝缘膜14及底层绝缘膜13的氧原子与构成半导体衬底11的硅原子反应,在与半导体衬底11的底层绝缘膜13的界面上形成氧化硅层,因而降低有效的介电常数的缘故。相反,当氧分压过低时,由于从热处理用腔室的壁面等渗出的脱出气体和该腔室产生的漏气的影响,不能得到有实用性的工艺重复性。
用于热处理的激光光子的能量大于硅的禁带宽度,以便仅仅对半导体衬底11的表面附近加热,即使用具有硅可能吸收的0.4μm以下波长的光源,例如使用波长308nm的、光输出15W的XeCl2准分子激光。这里,用束扩展器将激光扩大,通过画角可变的狭缝将激光整形成一边30mm方形的激光束,照射到半导体衬底(晶片)11上。具体地说,用与分布重复曝光装置同样的方法,对半导体衬底11的主面侧扫描曝光。这里,调整半导体衬底11的扫描速度、激光的脉冲间隔及峰值功率,用0.4J/cm2~0.6J/cm2的照射能量,对每个照射区域进行0.1秒的热处理,使得仅仅在半导体衬底11的表面附近的温度升高到1150℃~1250℃。在这种情况下,由于半导体衬底11的吸收系数大,从衬底表面深度达数十纳米左右的区域上温度成为1100℃以上的高温。这样,由于对半导体衬底11的表面进行局部的加热,能够同时进行对栅绝缘膜14的氧缺损补偿的热处理和对源-漏区17的结晶性恢复及杂质激活化的热处理。另外,由于能够仅仅对衬底表面的附近进行极短时间而且高温的处理,能量的利用效率高。而且,调节晶片支座的温度,能够缓和当进行短时间热处理时在晶片上产生的畸变,因而,能够防止晶片的缺陷和表面薄膜的松弛及断线等。
进而,在实施方式1中,将半导体衬底11加热到100℃~500℃左右的温度。由此,能够减小衬底表面与衬底内部的温度差,能够减轻施加在半导体衬底11上的应力,能够提高激光光强度和衬底表面温度的可控性及重复性。
这样得到的源-漏区17,在热处理前,n沟道晶体管的情况下注入砷离子,或者p沟道晶体管的情况下注入硼离子和锗离子,使其非晶化,其结果是,尽管它的扩散区域的结深度浅到0.2μm以下,也能够得到薄层电阻80Ω~300Ω的极低电阻值。这是由于非晶化的区域在比单晶硅的熔点低200度~300度左右的低温度下熔融,以准稳定状态使杂质进入源-漏区17中的硅晶体中,就得到这样的低电阻状态。
另外,由于用激光的照射进行0.1秒的极短时间的热处理,设置在栅绝缘膜14的下侧上的底层绝缘膜13的膜厚增加极小,它的增加量在0.2nm左右。根据实验,可以推算出在超过1100℃的温度中,氧化铪(HfO2)中的氧的扩散系数远远超过10-14cm2/s,虽然氧容易到达半导体衬底11的表面,但是,在实施方式1中,由于氧分压低,而且是0.1秒的极短时间的热处理,半导体衬底11几乎不进行氧化。
然后,在半导体衬底11的上面上形成层间绝缘膜和电极布线,完成MIS型晶体管。
这样得到的MIS型晶体管,栅电极15与半导体衬底11之间的漏电流和源-漏区17彼此之间的漏电流极小。另外,在栅绝缘膜14中,得到氧化硅膜换算厚度值Eot最小为1.1nm,与和它等价的由氧化硅构成的栅绝缘膜的情况相比,栅漏电流降低3~4个数量级。
此外,在实施方式1中,高电介质绝缘膜14A使用了氧化铪,但不是仅限于铪。即,代替铪(Hf),也可以使用包含锆(Zr)、镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钇(Y)、及铝(Al)中的至少一种的氧化物或者硅酸盐,只要是称为所谓的高介电常数绝缘材料的绝缘材料,都能够得到同样的效果。包含这些元素的氧化物或者硅酸盐具有比较大的介电常数,同时具有与氧的强耦合,形成稳定的膜是令人满意的。
另外,高电介质绝缘膜14A也可以是多层的绝缘膜叠层而成的所谓的迭式结构,和极薄膜多层叠层了的层压结构。在实施方式1的制造方法中,由于进行极短时间的热处理,对叠层了的任何一个绝缘膜都能够维持良好的绝缘特性。
另外,虽然在半导体衬底11和栅绝缘膜15之间,并不一定必须设置底层绝缘膜13,但与在半导体衬底11的上面上直接淀积高电介质绝缘膜14A情况相比,当预先在半导体衬底11的上面上形成热氧化膜的氧化硅作为底层膜时,由于硅与热氧化膜的结面(界面)的特性极好,这是最理想的。
另外,半导体衬底11不仅限于体材料的硅衬底,也可以使用SOI(绝缘体上硅:silicon on insulator)衬底。
(实施方式2)
以下,参照附图说明本发明的实施方式2。
图4(a)~图4(d)示出了本发明的实施方式2的半导体器件的制造方法的工序顺序的剖面结构。这里半导体衬底11也是仅示出晶片的一部分。
首先,如图4(a)所示,用公知的方法,在由p型硅构成的半导体衬底11的上部上选择性地形成沟槽,将氧化硅埋入形成的沟槽中,形成沟槽隔离区12。
其次,如图4(b)所示,用热氧化法,在半导体衬底11的表面上形成由膜厚约0.4nm的氧化硅构成的底层绝缘膜13,该底层绝缘膜13范围涉及包含沟槽隔离区12的半导体衬底11的整个表面。接着,用四氯化铪(HfCl4)和水蒸气(H2O)交互供给的原子层CVD法,在底层绝缘膜13的上面上淀积由膜厚约5nm的氧化铪(HfO2)构成的栅绝缘膜形成用的高电介质绝缘膜14A。然后,用溅射法或者CVD法,在高电介质绝缘膜14A的上面上淀积由膜厚约150nm的氮化钛(TiN)构成的栅电极形成膜25A。接着,在氧分压约0.9Pa~1.1Pa的氩(Ar)气氛下用激光进行热处理,以对高电介质膜14A进行氧缺损的补足。具体地说,将半导体衬底11加热并保持在300℃,用脉冲宽度约10nsec、光输出约70W的XeCl2准分子激光进行照射,选择性地形成栅电极形成膜25A。由氮化钛构成的栅电极形成膜25A,由于对该准分子激光的吸收系数大、而且热传导性良好,热处理的图形依存性极小。选择性地加热该栅电极形成膜25A,能够对栅绝缘膜14进行热处理。
使用束扩展器将激光扩大,通过可变狭缝将画角整形成一边30mm见方的激光束,照射到栅电极形成膜25A上。调整半导体衬底11的扫描速度、激光的脉冲间隔及峰值功率,用0.1J/cm2~0.4J/cm2的照射能量,对各个照射区域进行0.05秒的热处理。这样,由于是加热时间极短的热处理,设置在高电介质膜14A的下侧上的底层绝缘膜13的厚度增加很小,它的增加量在0.1nm以下。
接着,用光刻法,在栅电极形成膜25A的上面上,形成具有栅电极图形的抗蚀剂图形(未图示),用形成的抗蚀剂图形作为掩模,对栅电极形成膜25A进行用氯气(Cl2)气体作为主成分的等离子体刻蚀,从栅电极形成膜25A形成栅电极25。接着,以被刻蚀的栅电极25作为掩模,对半导体衬底11进行杂质离子注入,例如,在n沟道晶体管的情况下注入砷离子。然后,进行使注入的砷离子激活的热处理,在半导体衬底11中的元件形成区域上形成结比较浅的扩展扩散区域16,得到图4(c)所示的状态。
接着,用CVD法,在包含栅电极25的半导体衬底11的上面的整个面上,淀积膜厚约100nm~200nm的氮化硅或者氧化硅构成的绝缘膜。接着,由使用氟代烃系刻蚀气体的反应性等离子体刻蚀,对淀积了的绝缘膜进行各向异性刻蚀,在栅电极25的两侧面上形成由绝缘膜构成的侧壁膜18。接着,将栅电极25及侧壁膜18作为掩模,对半导体衬底11的上部上进行杂质离子注入,以形成源-漏区17。这里,被注入的杂质离子,在n沟道晶体管的情况下例如使用砷,在p沟道晶体管的情况下,例如使用硼。此外,在p沟道晶体管的情况下,在进行用于形成源-漏区17的离子注入前,最好用加速能量30KeV~100KeV左右,注入剂量约1×1015/cm2~5×1015/cm2的锗(Ge)离子进行离子注入的方法,在半导体衬底11的上部进行非晶化,即进行所谓的予非晶化离子注入(PAI)。接着,在氮气气氛中,约950℃的温度下,进行约1分钟的RTA(快速热退火),使注入了的杂质离子激活,形成源-漏区17,得到图4(d)所示状态。
然后,在半导体衬底11的上面上形成层间绝缘膜和电极布线,完成MIS型晶体管。
这样得到的MIS型晶体管,由于栅电极25由金属氮化物构成,在该电极上不产生耗尽层。另外,得到对栅绝缘膜14的电的氧化硅膜换算膜厚度值Eot最小值是0.9nm,在栅电极25与半导体衬底11之间施加1V电压情况下的漏电流,比膜厚约0.9nm的氧化硅膜的漏电流小2个数量级以上。
(实施方式3)
以下,参照附图说明本发明的实施方式3。
图5(a)~图5(c)模式地示出了本发明的实施方式3的半导体器件、DRAM电容器的制造方法工序顺序的剖面结构。这里也是仅示出半导体衬底11晶片的一部分。
首先,如图5(a)所示,用公知的方法,在由p型硅构成的半导体衬底11的上部上选择性地形成沟槽,将氧化硅埋入形成的沟槽中,形成沟槽隔离区12。然后,在半导体衬底11中的电容的下部电极形成区域上,用加速电压约30KeV,注入剂量约3×1015/cm2,进行砷离子注入,接着,在氮(N2)气氛下,使用RTA装置,在约950℃温度下进行约5分钟的热处理,在半导体衬底的上部上形成n型扩散区31。
其次,如图5(b)所示,对形成了n型扩散区31的半导体衬底11进行RCA洗净后,在加热到约350℃的半导体衬底11的上面上,用交互供给四氯化铪气体和水蒸汽的ALCVD方法,淀积由膜厚约2nm~5nm的氧化铪构成的电容绝缘膜形成用的高电介质绝缘膜32A。接着,在氧分压约0.9Pa~1.1Pa的氮气气氛下用激光进行热处理,以对高电介质膜32A进行氧缺损的补足。具体地说,将半导体衬底11加热并保持在300℃,用脉冲宽度约10nsec、光输出约80W的XeCl2准分子激光进行照射,选择性地加热半导体衬底11的表面附近。这时,调整半导体衬底11的扫描速度、激光的脉冲间隔及峰值功率,用0.4J/cm2~0.6j/cm2的照射能量,对各个照射区域进行0.1秒钟的热处理。这样,由于对高电介质绝缘膜32A进行极短时间的热处理,由氧化铪构成的高电介质绝缘膜32A的结晶性几乎没有因该热处理而发生变化。
接着,如图5(c)所示,用减压CVD法,在高电介质绝缘膜32A的上面上,形成由磷掺杂多晶硅构成的上部电极33。接着,用光刻法及氯(Cl2)、溴化氢(HBr)及氧(O2)的等离子体的反应离子刻蚀(RIE)法,将上部电极33图形化,同时从高电介质绝缘膜32A形成电容绝缘膜32,形成由上部电极33、电容绝缘膜32及n型扩散区31构成的电容器。
这样,实施方式3的电容器,与以往的氧化硅构成的电容绝缘膜相比,漏电流小2个数量级以上,另外,由于相对介电常数大数倍左右,在用于DRAM单元的情况下,因为能够减小单元面积,对DRAM更合适。
(发明的效果)
采用本发明的半导体器件的制造方法,采用光照,由于能够仅仅在衬底的表面附近、用极短时间进行热处理,在将由高电介质材料构成的绝缘膜用于栅绝缘膜和电容绝缘膜的情况下,能够防止在该绝缘膜上因结晶化或者相变化引起的漏电流的产生。而且,能够一边抑制在与衬底的该绝缘膜的界面上生长的氧化膜的生长,一边谋求衬底中的晶体缺陷的恢复。其结果是,能够以小的电气的氧化硅膜换算膜厚值,实现漏电流小的半导体器件。

Claims (12)

1.一种半导体器件的制造方法,其特征在于:
具备:
在衬底上形成由高电介质构成的绝缘膜的第1工序;以及
在形成了所述绝缘膜的衬底上,照射光的第2工序。
2.根据权利要求1所述的半导体器件的制造方法,其特征在于:
所述绝缘膜是晶体管中的栅绝缘膜。
3.根据权利要求2所述的半导体器件的制造方法,其特征在于:
在所述第1工序与所述第2工序之间,进一步具备在所述衬底上选择性地导入杂质的工序。
4.根据权利要求2所述的半导体器件的制造方法,其特征在于:
在所述第1工序与第2工序之间,进一步具备在所述绝缘膜的上面上形成导体膜的工序。
5.根据权利要求1所述的半导体器件的制造方法,其特征在于:
所述绝缘膜是电容器中的电容绝缘膜。
6.根据权利要求5所述的半导体器件的制造方法,其特征在于:
在所述第1工序之前,进一步具备在所述衬底上选择性地导入杂质的工序。
7.根据权利要求1~6中任一权利要求所述的半导体器件的制造方法,其特征在于:
所述衬底由硅构成。
8.根据权利要求1所述的半导体器件的制造方法,其特征在于:
所述绝缘膜包含金属元素。
9.根据权利要求8所述的半导体器件的制造方法,其特征在于:
所述绝缘膜包含铪、锆、镧、铈、镨、钕、钇及铝中的至少一种。
10.根据权利要求1所述的半导体器件的制造方法,其特征在于:
所述第2工序,是在调节氧气或者氧化物气体的分压下进行的。
11.根据权利要求1所述的半导体器件的制造方法,其特征在于:
所述第2工序,是在氮气或者惰性气体气氛中进行的。
12.根据权利要求1所述的半导体器件的制造方法,其特征在于:
在所述第2工序中,所述衬底被加热到100℃~500℃的温度。
CNA200310113827A 2002-11-01 2003-10-31 半导体器件的制造方法 Pending CN1505114A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002319909 2002-11-01
JP2002319909A JP2004158487A (ja) 2002-11-01 2002-11-01 半導体装置の製造方法

Publications (1)

Publication Number Publication Date
CN1505114A true CN1505114A (zh) 2004-06-16

Family

ID=32089614

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA200310113827A Pending CN1505114A (zh) 2002-11-01 2003-10-31 半导体器件的制造方法

Country Status (4)

Country Link
US (2) US7094639B2 (zh)
EP (1) EP1416525A2 (zh)
JP (1) JP2004158487A (zh)
CN (1) CN1505114A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100481335C (zh) * 2005-05-31 2009-04-22 台湾积体电路制造股份有限公司 半导体元件的制造方法
US7723205B2 (en) 2005-09-27 2010-05-25 Semiconductor Energy Laboratory Co., Ltd Semiconductor device, manufacturing method thereof, liquid crystal display device, RFID tag, light emitting device, and electronic device
CN101471248B (zh) * 2007-12-27 2012-09-26 株式会社半导体能源研究所 半导体衬底的制造方法及半导体器件的制造方法
CN105280487A (zh) * 2015-09-24 2016-01-27 武汉新芯集成电路制造有限公司 制备栅介质层的方法及半导体器件结构

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8026161B2 (en) 2001-08-30 2011-09-27 Micron Technology, Inc. Highly reliable amorphous high-K gate oxide ZrO2
US6767795B2 (en) * 2002-01-17 2004-07-27 Micron Technology, Inc. Highly reliable amorphous high-k gate dielectric ZrOXNY
US7160577B2 (en) 2002-05-02 2007-01-09 Micron Technology, Inc. Methods for atomic-layer deposition of aluminum oxides in integrated circuits
US7221586B2 (en) 2002-07-08 2007-05-22 Micron Technology, Inc. Memory utilizing oxide nanolaminates
US7192892B2 (en) * 2003-03-04 2007-03-20 Micron Technology, Inc. Atomic layer deposited dielectric layers
US20060131670A1 (en) * 2003-06-20 2006-06-22 Takashi Ogura Semiconductor device and production method therefor
US7049192B2 (en) * 2003-06-24 2006-05-23 Micron Technology, Inc. Lanthanide oxide / hafnium oxide dielectrics
KR100558284B1 (ko) * 2003-12-24 2006-03-10 한국전자통신연구원 폴리실리콘층의 결정화/활성화 방법 및 이를 이용한폴리실리콘 박막트랜지스터 제조방법
US7514360B2 (en) * 2004-03-17 2009-04-07 Hong Yu Yu Thermal robust semiconductor device using HfN as metal gate electrode and the manufacturing process thereof
US7081421B2 (en) * 2004-08-26 2006-07-25 Micron Technology, Inc. Lanthanide oxide dielectric layer
US7588988B2 (en) 2004-08-31 2009-09-15 Micron Technology, Inc. Method of forming apparatus having oxide films formed using atomic layer deposition
US7074680B2 (en) * 2004-09-07 2006-07-11 Intel Corporation Method for making a semiconductor device having a high-k gate dielectric
TWI237867B (en) * 2004-10-29 2005-08-11 Taiwan Semiconductor Mfg Method of improving to deposit dielectric
JP4671729B2 (ja) * 2005-03-28 2011-04-20 富士通セミコンダクター株式会社 半導体装置及びその製造方法
US7662729B2 (en) 2005-04-28 2010-02-16 Micron Technology, Inc. Atomic layer deposition of a ruthenium layer to a lanthanide oxide dielectric layer
DE102005051573B4 (de) * 2005-06-17 2007-10-18 IHP GmbH - Innovations for High Performance Microelectronics/Institut für innovative Mikroelektronik MIM/MIS-Struktur mit Praseodymtitanat als Isolatormaterial
US7927948B2 (en) 2005-07-20 2011-04-19 Micron Technology, Inc. Devices with nanocrystals and methods of formation
US8110469B2 (en) 2005-08-30 2012-02-07 Micron Technology, Inc. Graded dielectric layers
US7678710B2 (en) * 2006-03-09 2010-03-16 Applied Materials, Inc. Method and apparatus for fabricating a high dielectric constant transistor gate using a low energy plasma system
KR100769833B1 (ko) * 2006-08-14 2007-10-23 동부일렉트로닉스 주식회사 반도체 소자 제조 방법
JP2010192520A (ja) 2009-02-16 2010-09-02 Elpida Memory Inc 半導体装置の製造方法
JP2010118677A (ja) * 2010-01-15 2010-05-27 Renesas Technology Corp 半導体装置
JP6026090B2 (ja) * 2011-09-26 2016-11-16 株式会社Screenホールディングス 熱処理方法
US9859121B2 (en) * 2015-06-29 2018-01-02 International Business Machines Corporation Multiple nanosecond laser pulse anneal processes and resultant semiconductor structure

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02312269A (ja) * 1989-05-26 1990-12-27 Toshiba Corp 半導体記憶装置およびその製造方法
JP2559492B2 (ja) * 1989-07-05 1996-12-04 シャープ株式会社 化合物半導体発光素子の製造方法
JP3408242B2 (ja) 1993-07-27 2003-05-19 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP3450463B2 (ja) 1994-10-24 2003-09-22 株式会社日立製作所 半導体装置の製造方法
US6146938A (en) * 1998-06-29 2000-11-14 Kabushiki Kaisha Toshiba Method of fabricating semiconductor device
JP3425579B2 (ja) * 1999-12-08 2003-07-14 Necエレクトロニクス株式会社 半導体装置の製造方法
JP4299959B2 (ja) * 2000-08-14 2009-07-22 株式会社東芝 半導体装置の製造方法
US6465334B1 (en) * 2000-10-05 2002-10-15 Advanced Micro Devices, Inc. Enhanced electroless deposition of dielectric precursor materials for use in in-laid gate MOS transistors
JP3893868B2 (ja) * 2000-10-11 2007-03-14 東京エレクトロン株式会社 電界効果トランジスタの製造方法、並びに、半導体デバイスの製造方法及びその装置
JP2002164514A (ja) * 2000-11-24 2002-06-07 Nec Corp 半導体装置の製造方法
JP2002252181A (ja) * 2001-02-22 2002-09-06 Sanyo Electric Co Ltd 多結晶半導体層の製造方法及びレーザアニール装置
JP2003152102A (ja) * 2001-11-15 2003-05-23 Hitachi Ltd 半導体集積回路装置の製造方法
JP2003273330A (ja) * 2002-03-15 2003-09-26 Matsushita Electric Ind Co Ltd 容量素子の製造方法
JP2003298020A (ja) 2002-03-29 2003-10-17 Seiko Epson Corp 強誘電体薄膜の形成方法、強誘電体メモリならびに強誘電体メモリの製造方法、および半導体装置ならびに半導体装置の製造方法
JP2003298021A (ja) 2002-03-29 2003-10-17 Seiko Epson Corp 強誘電体薄膜の形成方法、強誘電体メモリならびに強誘電体メモリの製造方法、および半導体装置ならびに半導体装置の製造方法
US6682973B1 (en) * 2002-05-16 2004-01-27 Advanced Micro Devices, Inc. Formation of well-controlled thin SiO, SiN, SiON layer for multilayer high-K dielectric applications
US6632729B1 (en) * 2002-06-07 2003-10-14 Advanced Micro Devices, Inc. Laser thermal annealing of high-k gate oxide layers

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100481335C (zh) * 2005-05-31 2009-04-22 台湾积体电路制造股份有限公司 半导体元件的制造方法
US7723205B2 (en) 2005-09-27 2010-05-25 Semiconductor Energy Laboratory Co., Ltd Semiconductor device, manufacturing method thereof, liquid crystal display device, RFID tag, light emitting device, and electronic device
CN1941288B (zh) * 2005-09-27 2010-09-08 株式会社半导体能源研究所 半导体器件及其制造方法与含有此类半导体器件的装置
CN101471248B (zh) * 2007-12-27 2012-09-26 株式会社半导体能源研究所 半导体衬底的制造方法及半导体器件的制造方法
CN105280487A (zh) * 2015-09-24 2016-01-27 武汉新芯集成电路制造有限公司 制备栅介质层的方法及半导体器件结构

Also Published As

Publication number Publication date
JP2004158487A (ja) 2004-06-03
US7094639B2 (en) 2006-08-22
US20060205131A1 (en) 2006-09-14
US20040087124A1 (en) 2004-05-06
EP1416525A2 (en) 2004-05-06

Similar Documents

Publication Publication Date Title
CN1505114A (zh) 半导体器件的制造方法
US9252229B2 (en) Inversion thickness reduction in high-k gate stacks formed by replacement gate processes
CN1271682C (zh) 具有不同厚度栅极绝缘膜的半导体器件的制造方法
CN1293637C (zh) 具有应变沟道的互补式金属氧化物半导体及其制作方法
CN1734721A (zh) 用晶片接合的方法来制造半导体-电介质-半导体器件结构
CN1147003C (zh) “绝缘体上的硅”半导体装置及其制造方法
JP2003179049A (ja) 絶縁膜形成方法、半導体装置及びその製造方法
JP2008283182A (ja) Pmosトランジスタ製造方法及びcmosトランジスタ製造方法
KR100687153B1 (ko) 반도체 장치 및 그 제조 방법
CN103477419A (zh) 用于通过固相扩散形成超浅掺杂区域的方法
CN1873921A (zh) 半导体元件制造方法及电容器的制造方法
CN1264225C (zh) 具有含氮栅绝缘膜的半导体器件及其制造方法
JP4590556B2 (ja) 半導体装置の製造方法
CN1301556C (zh) Cmos组件及其制造方法
US6777296B2 (en) Semiconductor device and manufacturing method thereof
CN1404113A (zh) 一种氮化氧化膜的制备方法
CN1701426A (zh) 半导体器件的制造方法
CN103943492A (zh) 一种半导体器件及其制备方法
CN104465389B (zh) FinFet器件源漏区的形成方法
US7939353B1 (en) Methods of forming integrated circuits
CN1469441A (zh) 半导体装置的制造方法
JP3925085B2 (ja) 半導体装置の製造方法、光変調素子の製造方法、および表示装置の製造方法
CN1820372A (zh) 半导体装置及其制造方法
CN1612308A (zh) 半导体装置的制造方法
CN101577229A (zh) 半导体元件及其制作方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication