CN1401143A - 新型燃料 - Google Patents

新型燃料 Download PDF

Info

Publication number
CN1401143A
CN1401143A CN01804609A CN01804609A CN1401143A CN 1401143 A CN1401143 A CN 1401143A CN 01804609 A CN01804609 A CN 01804609A CN 01804609 A CN01804609 A CN 01804609A CN 1401143 A CN1401143 A CN 1401143A
Authority
CN
China
Prior art keywords
fuel
fuel cell
direct oxidation
oxalic acid
dimethyl oxalate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN01804609A
Other languages
English (en)
Other versions
CN1255894C (zh
Inventor
E·匹莱德
T·杜德瓦尼
A·枚尔曼
A·阿哈隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tel Aviv University Future Technology Development LP
Original Assignee
RAMOT UNIV AUTHORITY FOR APPLIED RESEARCH AND INDUSTRIAL DEVELOPMENT Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/484,267 external-priority patent/US6447943B1/en
Application filed by RAMOT UNIV AUTHORITY FOR APPLIED RESEARCH AND INDUSTRIAL DEVELOPMENT Ltd filed Critical RAMOT UNIV AUTHORITY FOR APPLIED RESEARCH AND INDUSTRIAL DEVELOPMENT Ltd
Publication of CN1401143A publication Critical patent/CN1401143A/zh
Application granted granted Critical
Publication of CN1255894C publication Critical patent/CN1255894C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • H01M16/003Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
    • H01M16/006Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers of fuel cells with rechargeable batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • H01M8/04194Concentration measuring cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04291Arrangements for managing water in solid electrolyte fuel cell systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0444Concentration; Density
    • H01M8/04447Concentration; Density of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04731Temperature of other components of a fuel cell or fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04783Pressure differences, e.g. between anode and cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04828Humidity; Water content
    • H01M8/04843Humidity; Water content of fuel cell exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04104Regulation of differential pressures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

本发明公开了草酸二甲酯、乙二醇、其草酸、乙醛酸和甲酸酯、二羟乙酸及其甲酯、乙二醛和聚草酸乙二醇酯在供给燃料电池燃料中的应用,通过这些化合物供给燃料的燃料电池,含有这些燃料电池的混合能源,以及评估其在溶液中的浓度的方法。

Description

新型燃料
技术领域
本发明涉及燃料电池和在燃料电池中应用的有机燃料。
发明背景
烃类和脂肪醇非常难于完全电氧化(J.WANG,S.Wasmus和R.F.Savinell,J.Electrochem.Soc.142,4218(1995)),其中脂肪醇氧化的主要产品是醛或酮、CO2和酸或酯。甚至在190℃下,在聚合物-电解质膜(PEM)燃料电池中,乙醇的氧化是不完全的,其主要氧化产品(超过60%)是乙醛,而CO2小于氧化产品的40%。不能以80%或更高比例电氧化的化合物被认为不是有效的燃料。就发明者所知,从来没有过关于具有C-C键的化合物完全电氧化的报道,其中草酸例外(V.S.Bagotzky和Y.B.Vasilyev,Electrochemica Acta 9,869(1964))。存在数种公开出版物,其中教导了在燃料电池中应用的燃料。在它们当中,US5599638提及应用甲醇、甲醛、甲酸、二甲氧基甲烷、三甲氧基甲烷和三噁烷。NASA进行了对约150种作为潜在燃料的用于燃料电池的有机化合物的筛选(NASA报告No.SP-120(1967),第15章,225页),其中检验到仅甲醇是有效的燃料。测试其它有机分子在酸性、中性或碱性溶液中的半电池电势,和在不同电流和温度下测量电极电压,并在假设一种理论的氧电极下,计算每平方厘米的最大功率,所筛选的所有分子显示出介于1-250mW/cm2的某一最大功率。然而,这一参数并没有教导化合物是否是作为燃料的良好候选者。例如,被认为是良好有机燃料的甲醇和几乎不可能被认为是燃料的乙醇在酸性介质中显示出相似的最大功率值(分别为13和15mW/cm2)。在SP-120(第6章,第262页)中报道了乙二醇和尿素在30%KOH燃料电池中表现不好。在此NASA报道中提及的其它一些分子是甘油、乙二醛和二羟乙酸。
发明概述
本发明提供了燃料电池用的有机燃料。本发明的有机燃料选自草酸二甲酯(DMO)、乙二醇(EG)、其草酸酯、乙醛酸酯和甲酸酯、二羟乙酸及其甲酯、乙二醛(glyoxylic aldehyde)和聚草酸乙二醇酯,后者是草酸与乙二醇的聚酯。本发明的有机燃料在非碱性燃料电池中,特别在酸性燃料电池中进行清洁和有效的氧化。本发明优选的燃料是草酸二甲酯、乙二醇、其甲酸酯、草酸乙二醇酯和聚草酸乙二醇酯。本发明最优选的燃料是乙二醇和草酸二甲酯。本发明优选的燃料是当在燃料电池中用作燃料时,转化成CO2的转化率超过80%,且仅留下可忽略量的非挥发副产物的那些。
在使用本发明燃料的情况下,可满意地工作的燃料电池的非限制性实施例是液体原料燃料电池、气体原料燃料电池、高温燃料电池、固体氧化物燃料电池、熔融碳酸盐燃料电池和使用质子交换或质子传导膜的燃料电池。优选使用质子交换或质子传导膜的燃料电池或者固体氧化物燃料电池。
本发明还提供本发明燃料的混合物,以及本发明燃料与在燃料电池中作为燃料应用的已知有机燃料(如甲醇)的混合物。
特别地在高温下,本发明的一些燃料在碱性燃料电池情况下也可以是有用的。然而,当使用碱性电解质时,由于在碱性环境下燃料的不完全电氧化,以及这种不完全电氧化导致的碳酸盐或其它有机盐的累积,从而需要不时地更换燃料。
当燃料电池借助本发明的燃料工作时,它们显示的交叉(crossover)电流密度低于借助甲醇(它是目前在这种电池中最常用的燃料)工作的相同燃料电池所显示的交叉电流密度。低的交叉电流导致高的效率。在未受理论束缚的情况下,可认为低的交叉电流归功于与甲醇相比,本发明燃料的分子尺寸大。大的分子尺寸与小的扩散系数有关,而小的扩散系数导致小的交叉电流密度。
此外,本发明的燃料具有比甲醇高的沸点,从而主要在其液相中通过质子传导膜进行运输。自然地,液相中的扩散系数低于气相。
本发明的固体燃料(如DMO和聚草酸乙二醇酯)比起象甲醇类的液体燃料来,由于数种原因(如它们较容易操作和它们在水中的溶解度低)可以是有利的。因此,它们维持低浓度,而低浓度辅助保持低交叉电流。此外,例如在燃料电池的阳极室中,可将其饱和溶液与大量固体燃料一起储藏,其中当电池在使用中以及燃料被消耗时,所述固体燃料会溶解,而未溶解的固体燃料充当燃料储存器。
根据本发明的另一方面,本发明提供了一种直接氧化燃料电池,它具有阳极、阴极、排列在所述阳极和所述阴极之间的质子传导膜;向阳极供应有机燃料的装置以及向阴极供应氧气的装置,其中所述有机燃料选自草酸二甲酯(DMO)、乙二醇(EG)、其草酸酯、乙醛酸酯和甲酸酯、二羟乙酸及其甲酯、乙二醛和聚草酸乙二醇酯。根据本发明的这一方面,优选的电池是其中燃料选自草酸二甲酯、乙二醇、其草酸酯和甲酸酯以及聚草酸乙二醇酯的那些。根据本发明的这一方面,最优选的电池是其中燃料选自乙二醇和草酸二甲酯的那些。
根据一个实施方案,本发明这一方面的燃料电池的特征进一步在于在其使用过程中,通过位于阳极室或燃料罐中的薄的疏水多孔基质释放所产生的CO2,从而使得在没有损失溶液的情况下放出气体。
根据本发明另一实施方案,本发明提供了一种燃料电池,它特别适用于与本发明的燃料一起工作。这种燃料电池的特征在于阴极除了含氧气还原催化剂之外,还含有燃料氧化催化剂,其非限制性实例是Pt-Ru、Pt-Sn、Pt-Ru-Sn、Pt-Ag-Ru、Pt-Os催化剂或这些催化剂的结合。在阴极处的燃料氧化催化剂改进穿越过膜的燃料的氧化性并防止阴极的氧气还原催化剂(典型地为Pt或Pt合金催化剂)失活。还原催化剂与氧化催化剂的实际比介于1%-50%,优选5%-20%(w/w)或介于0.01-5mg,优选介于0.05-0.2mg氧化催化剂/cm2氧气电极。
根据本发明的另一实施方案,本发明提供一种在预先设定温度下,评估新型燃料浓度的方法,该方法包括下述步骤:
(a)在燃料电池中,在所述预先设定温度下,制作交叉电流对燃料浓度的校正曲线;
(b)在所述燃料电池中,在所述预先设定温度下,测量交叉电流;和
(c)由步骤(b)中测量的电流和步骤(a)中制作的校正曲线来评估燃料浓度。
这一方法是基于本发明者发现的本发明燃料电池中的交叉电流与燃料浓度直接成正比。例如,发现在80℃下,1M EG的交叉电流密度是在相同温度下,0.5M EG的约2倍(分别是41和19mA/cm2),以及发现在60℃下0.25M DMO的交叉电流密度是在相同温度下,0.1M DMO的约2.5倍(分别是2.5和0.9mA/cm2)。在确保在其测量中,所测量的电流与电压无关的条件下,这一发现是正确的。
本发明的方法可用于测量在工作的燃料电池中燃料溶液的燃料浓度。这可通过测量在工作的燃料电池中的交叉电流得以进行。或者可提供进行测量用的小的辅助燃料电池。这一可供选择的方案使得可根据本发明进行测量,而没有必须在测量所要求的电压下操作整个燃料电池。辅助燃料电池可与燃料电池物理地分离,或安装在其中,或与其相连接或与燃料罐相连接。
本发明还提供一种混合能源,它包括至少一种本发明的燃料电池、一种DC到DC的变换器和一种可再充电的电池。
直接的甲醇燃料电池(DMFC)和液体原料燃料电池(LFFC)的能量低。然而,象蜂窝电话、计算机和小型电子设备之类的仪器在短时间内需要高的能量。对于这些和类似的应用来说,可将本发明的燃料电池与小型高功率可再充电电池结合,所述小型高功率可再充电电池在所需时可供应高能量。这一结合比起现有技术的混合能源来是有利的,这种有利特别归功于小的交叉电流。目前,DC到DC的变换器可从0.7V起开始工作。正因为如此,可通过DC到DC的变换器尽可能使电池组结合少至两种或三种燃料电池(串联结合)。若交叉电流密度足够小,如15mA/cm2或更低,则不必经常地供给这一混合能源燃料。因此,这种混合能源优选使用低交叉电流密度的燃料电池如本发明的燃料电池。燃料电池使电池组充电并供应低的能量要求,而高能电池组则供应大的负荷。这种所要求的燃料电池的数量少,使得能使用平而薄的燃料电池体系。
本发明提供一种用本发明燃料供给燃料的这种混合能源。用本发明的固体燃料供应这种混合能源燃料将是最有利的。
例如,可使用由2节薄的燃料电池、DC到DC的变换器以及小的高能锂离子电池组成的混合能源向蜂窝电话供应能量,其中这2节燃料电池以串联结合的方式连接,并通过本发明的液体燃料(如EG)或通过本发明的固体燃料(如DMO)来供应燃料。
附图的简要说明
为了更好地理解本发明和为了明白它实际上如何工作,在参考下述附图的情况下,将更详细地描述本发明的数个实施方案,其中:
图1是显示本发明的一些燃料以及一些现有技术的燃料的极化曲线图;和
图2是本发明的固体原料有机燃料电池的示意图。
一些实施方案的详细描述
实施例1:获得一些燃料的极化曲线
在使用纯的金属催化剂替代碳上承载的催化剂的情况下,制造燃料电池。通过下述工艺制备阴极催化剂墨水(ink):
按照下述重量比混合Pt纳米粉末(Pt黑,购于“Johnson Matthey”)、TeflonTM乳液和5%NafionTM溶液:60%Pt、25%Teflon乳液和15%Nafion。首先通过声波处理混合Pt粉末和Teflon乳液15分钟。在两次声波处理周期后,将所得墨水放置在磁搅拌器上至少一个晚上。
通过下述工艺制备阳极催化剂墨水:按照下述重量比混合Pt∶Ru纳米粉末(Pt∶Ru黑,50%,购于“Johnson Matthey”)和PVDF:91%催化剂粉末和9% PVDF。以等于催化剂体积30-70%的量加入碳酸异丙烯酯,然后加入环戊酮,和搅拌所得墨水至少一个晚上。
制备电极:将阴极催化剂墨水涂敷到特氟隆化的TorayTM碳纤维纸上,形成4mg Pt/cm2。分层铺展墨水(呈糊状形式),使得在涂敷下一层之前,各层干燥约1小时。重复这种操作,直到获得所需量的催化剂。以相同的方式,将阳极催化剂墨水涂敷到没有特氟隆化的TorayTM碳纤维纸上,直到获得5-10mg催化剂/cm2。用3M硫酸,然后用水洗涤两种电极。
将阴极和阳极放置在厚度为100-300μm的PCM两侧,彼此互相平行,且在10-70Kg/cm2的压力和85-130℃的温度下热压。图1示出了在下述条件下这种类型燃料电池的极化曲线:将燃料溶液和3M硫酸以9ml/min的速度循环通过阳极。氧气以比大气压高0.25atm.的压力下循环流过阴极。电池温度为65℃。PCM为300微米厚,它由(V/V)16%SiO2的纳米尺寸粉末、24%PVDF和60%的1.5nm典型直径的孔隙体积组成。在0.4V下电池证明了超过100小时的稳定操作。所测试的燃料是:甲醇(1M)、草酸(0.1M与1M甲醇、0.1M草酸、0.1M草酸二甲酯、0.5M乙二醇和0.5M甘油,(根据本发明,在这些当中,甘油草酸和甲醇不是n)。如图中所示,在这些条件下,DMO和EG具有最佳的性能。然而,人们应当记住在此实验中的任何条件都不是最优化的,因此其它浓度和/或其它催化剂可定性地导致不同的观察结果。
通过在恒定电压下进行50ml燃料溶液的电化学滴定,直到电流降到3mA来测试燃料利用率。估计在此电流下仅残留有百分之几的燃料未被氧化。通过实验的容量与理论值的比较,计算利用率。通过将滴定曲线外推到电流为0,得出进一步的校正。这种校正使利用率值增加3-6%(表1)。
发现在0.2V下,DMO的燃料利用率为95%,EG的燃料利用率为94%和甲醇的燃料利用率仅为85%(参见表1)。在更实际的0.4V电压下,发现EG的燃料利用率为89%,DMO的燃料利用率为67%,和甲醇的燃料利用率为81%。
由于燃料不会跨越到阴极一侧,这些高的燃料利用率值表明燃料的电氧化接近100%。
通过向阴极室内供入氮气替代氧气(在环境温度下)和向阳极室内供入有机燃料-酸溶液,在不同温度下进行燃料跨越的测量。使电池电压反向;在燃料电极处产生氢气,同时跨越到阴极一侧的燃料被氧化。发现在1V下流动的电流是所有燃料氧化的极限电流。
表2总结了燃料跨越试验结果。交叉电流密度取决于燃料的渗透性、温度、浓度,同时取决于氧化中所包含的电子总数。1M甲醇的交叉电流密度(在80℃下)是1M EG和0.25M DMO的2倍。然而,当考虑电子数和用单位mol·s-1·cm-2表示的燃料通量(flux)(在80℃和控制扩散的条件下)归一化为1M燃料时,可看出EG的渗透性(通量)是甲醇的1/3,而DMO的渗透性几乎与甲醇一样大。
                            表1:不同燃料利用率的比较
    电子数   理论容量[Ah/g]    在0.4V下的利用率*[%]    在0.2V下的利用率*[%]
    Exp.    Corr.    Exp.     Corr.
    草酸     2     0.43     91
    甲醇     6     5.03     79     81     82     85
    乙二醇     10     4.32     83     89     89     94
  草酸二甲酯     14     3.18     64     67     93     95
*至少两次试验的平均;Exp.-实验值;Corr.-校正值,参见正文。
                           表2:不同燃料的跨越
    1.燃料                   跨越试验
    温度[℃]   浓度[M] 交叉电流密度[A/cm2]     燃料通量*[mol·s-1·cm-2]1×10-8
  草酸二甲酯     60     0.10      0.009           6.7
    60     0.25      0.025           7.4
    80     0.25      0.038           11
    乙二醇     80     0.5      0.019           3.9
    80     1.0      0.041           4.2
    甲醇     80     1.0      0.076           13
*归一化到1M
实施例2:本发明燃料在NafionTM基燃料电池中的应用
由购于Globetech Inc.的合成石墨层制造燃料电池壳,其中在所述石墨层中可刻录流场。
使用Pt-Ru墨水形成阳极,其中所述Pt-Ru墨水铺展在可商购的TorayTM纸张的碳纤维片材上。催化剂层由15%Teflon(DuPont)、15%NafionTM和70%Pt-Ru纳米粉末(Pt∶Ru黑,50%,购于“JohnsonMatthey”)组成。阳极的负荷是5mg/cm2。所使用的阴极是可商购的ELAT E-TEKTM,它由4mg Pt/cm2和0.6mg nafion/cm2组成。阳极和阴极被热压到117 Nafion膜(获自DuPont)上,形成膜电极组件(MEA),正如实施例1所述。
在冷却后,将MEA放置在石墨流场片之间,插入聚丙烯密封并组装电池。
在操作过程中,选自草酸、草酸二甲酯、乙二醇、甘油的浓度介于0.1-0.5M的燃料含水溶液在4-15ml/min的流速下循环流过阳极(在使用蠕动的Masterflex L/S Cole-Parmer Instrument Co.泵的情况下)。
在环境压力和7-40ml/min的流速下,氧气直接地或通过水起泡器供入阴极室。在60℃下对电池进行实验。发现极化曲线类似于图1的那些。
实施例3:固体原料的有机燃料电池
图2说明了一种固体原料的有机燃料电池,它具有一个塑料容器501、一个阳极509、一个阴极511和一种固体聚合物电解质膜510。膜510是WO99/44245中公开的PCM类型,它由12%SiO2、28%PVDF和60%孔隙(将酸性溶液引入到所述孔隙中)组成。如实施例1制备阳极、阴极和MEA。通过燃料孔502填充固体有机燃料并用软木塞503密封。燃料溶解在罐中,且通过哈斯特洛伊耐蚀镍基合金(hastaHoy)C-276(Cabot)网507在多孔碳布508处吸收燃料。通过排气嘴504排出在阳极室中形成的二氧化碳。由于液体燃料可通过排气嘴渗漏,用薄的疏水多孔层506覆盖排气嘴。疏水层仅可使气体渗透,而燃料溶液仍保留在罐中。阴极通过第二块哈斯特洛伊耐蚀镍基合金网513敞开于空气中。为了防止燃料从阴极一侧漏出,用衬垫512密封MEA。第二块哈斯特洛伊耐蚀镍基合金网513还用于覆盖整个组件。200mg DMO溶解在含1M硫酸溶液的燃料罐中。燃料电池在0.35V下传递30mA的电流。交叉电流密度在室温下为2mA/cm2

Claims (24)

1.在非碱性燃料电池中用作燃料的有机化合物,它们选自草酸二甲酯、乙二醇、其草酸酯、乙醛酸酯和甲酸酯、二羟乙酸及其甲酯、乙二醛和聚草酸乙二醇酯。
2.用于在权利要求1所定义的应用中使用的权利要求1的有机化合物,它们选自草酸二甲酯、乙二醇、其甲酸酯、二羟乙酸、草酸乙二醇酯和聚草酸乙二醇酯及其混合物。
3.用于在权利要求1所定义的应用中使用的权利要求1的有机化合物,它们选自乙二醇、草酸二甲酯及其混合物。
4.用于在权利要求1所定义的应用中使用的权利要求1的有机化合物,它们选自草酸二甲酯、聚草酸乙二醇酯及其混合物。
5.用于在权利要求1所定义的应用中使用的权利要求1-4任一项的有机化合物与已知燃料的混合物。
6.用于在权利要求1所定义的应用中使用的权利要求5的混合物,其中所述已知的燃料是甲醇。
7.用于在权利要求1所定义的应用中使用的权利要求1-6任一项的化合物,其中所述燃料电池是酸性电解质燃料电池。
8.用于在权利要求1所定义的应用中使用的权利要求1-6任一项的化合物,其中所述燃料电池具有质子传导膜。
9.用于在权利要求7或8所定义的应用中使用的权利要求5的混合物。
10.一种直接氧化燃料电池,它具有阳极、阴极、排列在所述阳极和所述阴极之间的质子传导膜;向阳极储存或供应有机燃料的装置以及向阴极供应氧气的装置,其中所述有机燃料选自草酸二甲酯、乙二醇、其草酸酯、乙醛酸酯和甲酸酯、二羟乙酸及其甲酯、乙二醛和聚草酸乙二醇酯。
11.权利要求10的直接氧化燃料电池,其中所述燃料选自草酸二甲酯、乙二醇、其草酸酯和甲酸酯、聚草酸乙二醇酯及其混合物。
12.权利要求11的直接氧化燃料电池,其中所述燃料选自草酸二甲酯、乙二醇、其甲酸酯、草酸乙二醇酯、聚草酸乙二醇酯及其混合物。
13.权利要求12的直接氧化燃料电池,其中燃料选自草酸二甲酯、乙二醇及其混合物。
14.权利要求10-13任一项的液体原料的直接氧化燃料电池,其中所述燃料电池是液体原料。
15.权利要求13的液体原料的直接氧化燃料电池,其中燃料选自聚草酸乙二醇酯、草酸二甲酯及其混合物。
16.权利要求14或15任一项的液体原料的直接氧化燃料电池,其进一步的特征在于在其使用过程中,通过位于阳极室或燃料罐中的薄的疏水多孔基质释放所产生的CO2
17.一种直接氧化燃料电池,它具有含氧气还原催化剂和燃料氧化催化剂的阴极。
18.权利要求17的直接氧化燃料电池,其中所述燃料氧化催化剂选自Pt-Ru、Pt-Sn、Pt-Ru-Sn、Pt-Ag-Ru、Pt-Os催化剂或这些催化剂的任意结合。
19.权利要求18的直接氧化燃料电池,其中燃料氧化催化剂与氧气还原催化剂之比介于1%-50%(w/w)。
20.权利要求19的直接氧化燃料电池,其中所述比例介于5%-20%(w/w)。
21.权利要求14-17任一项的直接氧化燃料电池,其中所述燃料是权利要求5或6所定义的混合物。
22.在预先设定温度下评估溶液中燃料浓度的方法,其中燃料是权利要求1-6任何一项的化合物,它包括下述步骤:
(a)在给定的燃料电池中,在所述预先设定的温度下,制作交叉电流对燃料浓度的校正曲线;
(b)在所述给定的燃料电池中,在所述预先设定的温度下,测量交叉电流;和
由步骤(b)中测量的交叉电流和步骤(a)中制作的校正曲线来评估燃料浓度。
23.一种混合能源,它包括至少一种权利要求10-21任一项的燃料电池、一种DC到DC的变换器和一种可再充电的电池。
24.一种混合能源,它包括至少一种权利要求15的燃料电池、一种DC到DC的变换器和一种可再充电的电池。
CNB018046096A 2000-01-18 2001-01-18 燃料 Expired - Fee Related CN1255894C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US09/484,267 US6447943B1 (en) 2000-01-18 2000-01-18 Fuel cell with proton conducting membrane with a pore size less than 30 nm
US09/484,267 2000-01-18
US09/604,297 2000-06-26
US09/604,297 US6492047B1 (en) 2000-01-18 2000-06-26 Fuel cell with proton conducting membrane

Publications (2)

Publication Number Publication Date
CN1401143A true CN1401143A (zh) 2003-03-05
CN1255894C CN1255894C (zh) 2006-05-10

Family

ID=27047934

Family Applications (2)

Application Number Title Priority Date Filing Date
CNB018053408A Expired - Fee Related CN100487963C (zh) 2000-01-18 2001-01-18 具有质子传导膜的燃料电池
CNB018046096A Expired - Fee Related CN1255894C (zh) 2000-01-18 2001-01-18 燃料

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CNB018053408A Expired - Fee Related CN100487963C (zh) 2000-01-18 2001-01-18 具有质子传导膜的燃料电池

Country Status (9)

Country Link
US (2) US7413824B2 (zh)
EP (2) EP1249052B1 (zh)
JP (2) JP2003520413A (zh)
CN (2) CN100487963C (zh)
AU (2) AU2001227022A1 (zh)
CA (2) CA2397536C (zh)
IL (2) IL150648A0 (zh)
RU (1) RU2262161C2 (zh)
WO (2) WO2001054216A2 (zh)

Families Citing this family (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5017743B2 (ja) * 2000-11-07 2012-09-05 株式会社Gsユアサ グリコールを燃料にした燃料電池
US6645655B1 (en) * 2000-11-21 2003-11-11 Mti Microfuel Cells Inc. Passively pumped liquid feed fuel cell system
AU2002319890A1 (en) 2001-07-18 2003-03-03 Tel-Aviv University Future Technology Development L.P. Fuel cell with proton conducting membrane and with improved water and fuel management
KR100407793B1 (ko) * 2001-09-04 2003-12-01 한국과학기술연구원 분리능이 있는 수소 이온 교환 복합막, 복합 용액, 그제조방법 및 이를 포함하는 연료전지
JP4094265B2 (ja) 2001-09-25 2008-06-04 株式会社日立製作所 燃料電池発電装置とそれを用いた装置
KR100413801B1 (ko) * 2001-10-30 2004-01-03 삼성전자주식회사 전도성 무기 나노 입자 함유 고분자 전해질 및 이를채용한 연료전지
ITPG20020013A1 (it) * 2002-03-13 2003-09-15 Fuma Tech Membrane a conduzione protonica contenenti fosfato di zirconio o fosfati solfoarilenfosfonati di zirconio dispersi in una matrice polimerica
KR100446662B1 (ko) * 2002-03-22 2004-09-04 주식회사 엘지화학 연료 전지용 복합 폴리머 전해질 막 및 그의 제조방법
EP1369949B1 (en) * 2002-06-06 2013-01-30 Panasonic Corporation Solid electrolyte fuel cell and manufacturing method thereof
KR100486728B1 (ko) 2002-12-12 2005-05-03 삼성에스디아이 주식회사 나노복합전해질막 및 이를 채용한 연료전지
FR2850301B1 (fr) 2003-01-23 2007-10-19 Commissariat Energie Atomique Materiau hybride organique-inorganique comprenant une phase minerale mesoporeuse et une phase organique, membrane et pile a combustible
JPWO2004084332A1 (ja) * 2003-03-17 2006-06-29 松下電器産業株式会社 燃料電池
JP4349826B2 (ja) * 2003-03-27 2009-10-21 京セラ株式会社 燃料電池セル及び燃料電池
US6936368B2 (en) * 2003-04-16 2005-08-30 The Gillette Company System and method for safe removal/oxidative decomposition of fuel from a fuel container
US7642742B2 (en) * 2003-12-01 2010-01-05 Societe Bic Fuel cell system with fuel supply monitoring system and method of use
US7117732B2 (en) 2003-12-01 2006-10-10 Societe Bic Fuel gauge for fuel cartridges
US20050202305A1 (en) * 2004-02-24 2005-09-15 Markoski Larry J. Fuel cell apparatus and method of fabrication
JP3867232B2 (ja) * 2004-03-25 2007-01-10 株式会社 東北テクノアーチ 触媒ナノ粒子
JP2006019145A (ja) * 2004-07-01 2006-01-19 Hitachi Ltd 燃料電池及びこれを搭載した電子機器
JP4585804B2 (ja) * 2004-07-21 2010-11-24 シャープ株式会社 液体燃料電池
US7205060B2 (en) * 2004-08-06 2007-04-17 Ultracell Corporation Method and system for controlling fluid delivery in a fuel cell
KR20070064610A (ko) 2004-09-15 2007-06-21 아이엔아이 파워 시스템즈, 인크 전기화학 전지
US8101317B2 (en) 2004-09-20 2012-01-24 3M Innovative Properties Company Durable fuel cell having polymer electrolyte membrane comprising manganese oxide
US7572534B2 (en) 2004-09-20 2009-08-11 3M Innovative Properties Company Fuel cell membrane electrode assembly
KR100647296B1 (ko) * 2004-11-16 2006-11-23 삼성에스디아이 주식회사 금속 촉매 및 이를 포함한 전극을 채용한 연료전지
US7517604B2 (en) 2005-09-19 2009-04-14 3M Innovative Properties Company Fuel cell electrolyte membrane with acidic polymer
US7838138B2 (en) 2005-09-19 2010-11-23 3M Innovative Properties Company Fuel cell electrolyte membrane with basic polymer
JP4593420B2 (ja) 2005-09-27 2010-12-08 三星エスディアイ株式会社 燃料電池用のプロトン伝導性電解質及び燃料電池用プロトン伝導性電解質の製造方法並びに燃料電池
US7622217B2 (en) 2005-10-12 2009-11-24 3M Innovative Properties Company Fuel cell nanocatalyst
US8367267B2 (en) 2005-10-28 2013-02-05 3M Innovative Properties Company High durability fuel cell components with cerium oxide additives
US8628871B2 (en) 2005-10-28 2014-01-14 3M Innovative Properties Company High durability fuel cell components with cerium salt additives
WO2007063943A1 (ja) * 2005-11-30 2007-06-07 Nippon Sheet Glass Company, Limited 電解質膜とこれを用いた燃料電池
US7892596B2 (en) * 2005-12-19 2011-02-22 GM Global Technology Operations LLC Nanoparticle coating process for fuel cell components
US7368200B2 (en) 2005-12-30 2008-05-06 Tekion, Inc. Composite polymer electrolyte membranes and electrode assemblies for reducing fuel crossover in direct liquid feed fuel cells
KR100668353B1 (ko) 2006-02-07 2007-01-12 삼성에스디아이 주식회사 금속 촉매 및 이를 포함한 전극을 채용한 연료전지
US7901817B2 (en) 2006-02-14 2011-03-08 Ini Power Systems, Inc. System for flexible in situ control of water in fuel cells
US8158300B2 (en) * 2006-09-19 2012-04-17 Ini Power Systems, Inc. Permselective composite membrane for electrochemical cells
KR100858078B1 (ko) * 2006-10-04 2008-09-10 삼성에스디아이 주식회사 프로톤 전도성기가 결합된 무기 나노입자 및 고체산을포함하는 고분자 전해질막 및 그 제조방법
US8286464B2 (en) * 2006-12-22 2012-10-16 Societe Bic Sensing device and methods related thereto
US20080160354A1 (en) * 2006-12-27 2008-07-03 Weilong Zhang Metal alloy bipolar plates for fuel cell
US8551667B2 (en) * 2007-04-17 2013-10-08 Ini Power Systems, Inc. Hydrogel barrier for fuel cells
US20090035644A1 (en) * 2007-07-31 2009-02-05 Markoski Larry J Microfluidic Fuel Cell Electrode System
US8906580B2 (en) * 2007-10-12 2014-12-09 University Of Houston System De-alloyed membrane electrode assemblies in fuel cells
WO2009085327A2 (en) * 2008-01-03 2009-07-09 Utc Power Corporation Protective and precipitation layers for pem fuel cell
US8722226B2 (en) 2008-06-12 2014-05-13 24M Technologies, Inc. High energy density redox flow device
US9786944B2 (en) 2008-06-12 2017-10-10 Massachusetts Institute Of Technology High energy density redox flow device
US11909077B2 (en) 2008-06-12 2024-02-20 Massachusetts Institute Of Technology High energy density redox flow device
KR101271871B1 (ko) * 2008-10-10 2013-06-07 도요타지도샤가부시키가이샤 연료 전지
JP2010113841A (ja) * 2008-11-04 2010-05-20 Japan Gore Tex Inc 燃料電池
US8163429B2 (en) * 2009-02-05 2012-04-24 Ini Power Systems, Inc. High efficiency fuel cell system
US9067186B2 (en) 2009-02-20 2015-06-30 Marine Power Products Incorporated Stability control of a hydrogen generating system and method
US9206043B2 (en) 2009-02-20 2015-12-08 Marine Power Products Incorporated Method of and device for optimizing a hydrogen generating system
US11214486B2 (en) 2009-02-20 2022-01-04 Marine Power Products Incorporated Desalination methods and devices using geothermal energy
US10145015B2 (en) 2012-12-05 2018-12-04 Marine Power Products Incorporated Hydrogen generating system and method using geothermal energy
US9415363B2 (en) 2009-02-20 2016-08-16 Marine Power Products Corporation Method and apparatus for efficient on-demand production of H2 and O2 from water using waste heat and environmentally safe metals
EP3240078A1 (en) 2009-04-06 2017-11-01 24M Technologies, Inc. Fuel system
KR101064986B1 (ko) * 2009-06-04 2011-09-15 강원대학교산학협력단 세라믹 다공성 지지체, 그를 이용한 강화 복합 전해질 막 및 그를 구비한 막-전극 어셈블리
EP2529437A2 (en) * 2010-01-25 2012-12-05 Ramot at Tel Aviv University, Ltd. Energy storage and generation systems
US7931985B1 (en) * 2010-11-08 2011-04-26 International Battery, Inc. Water soluble polymer binder for lithium ion battery
US8076026B2 (en) * 2010-02-05 2011-12-13 International Battery, Inc. Rechargeable battery using an aqueous binder
JP5666839B2 (ja) 2010-06-30 2015-02-12 古河電気工業株式会社 2次電池用負極、負極集電体、2次電池及びこれらの製造方法
US20110143206A1 (en) * 2010-07-14 2011-06-16 International Battery, Inc. Electrode for rechargeable batteries using aqueous binder solution for li-ion batteries
US8102642B2 (en) * 2010-08-06 2012-01-24 International Battery, Inc. Large format ultracapacitors and method of assembly
US8783304B2 (en) 2010-12-03 2014-07-22 Ini Power Systems, Inc. Liquid containers and apparatus for use with power producing devices
US9065095B2 (en) 2011-01-05 2015-06-23 Ini Power Systems, Inc. Method and apparatus for enhancing power density of direct liquid fuel cells
US20120208693A1 (en) * 2011-02-15 2012-08-16 GM Global Technology Operations LLC Graphite Particle-Supported Pt and Pt Alloy Electrocatalyst with Controlled Exposure of Defined Crystal Faces for Oxygen Reduction Reaction (ORR)
CN102777285B (zh) * 2011-05-12 2015-02-11 陈温乐 燃料供应系统
CN102429312B (zh) * 2011-10-31 2013-10-30 华南理工大学 原位生成原电池的快速脱氧剂及其制备方法
WO2013090267A1 (en) * 2011-12-13 2013-06-20 Sun Catalytix Corporation Methods and techniques for enhanced current efficiencies in reversible hydrogen bromide fuel cells
US10370595B2 (en) 2012-03-13 2019-08-06 Marine Power Products Incorporated System for and method of using on-site excess heat to convert CO2 emissions into hydrocarbons income at coal-fired power plants
WO2013181261A2 (en) * 2012-05-31 2013-12-05 Marine Power Products Incorporated Method of and device for optimizing a hydrogen generating system
US9484569B2 (en) 2012-06-13 2016-11-01 24M Technologies, Inc. Electrochemical slurry compositions and methods for preparing the same
US8951690B2 (en) * 2012-10-29 2015-02-10 Nissan North America, Inc. Apparatus and method of in-situ measurement of membrane fluid crossover
US9362583B2 (en) 2012-12-13 2016-06-07 24M Technologies, Inc. Semi-solid electrodes having high rate capability
US8993159B2 (en) 2012-12-13 2015-03-31 24M Technologies, Inc. Semi-solid electrodes having high rate capability
US20150372357A1 (en) * 2014-06-23 2015-12-24 Ivan Theodore Kruglak Integrated magnesium air cell and cathodes
WO2017119419A1 (ja) * 2016-01-06 2017-07-13 パナソニック株式会社 微生物燃料電池用ガス拡散電極、及びそれを用いた微生物燃料電池
US11005087B2 (en) 2016-01-15 2021-05-11 24M Technologies, Inc. Systems and methods for infusion mixing a slurry based electrode
CN108602037A (zh) * 2016-02-02 2018-09-28 华盛顿大学 陶瓷选择性膜
CN110945161A (zh) * 2017-07-26 2020-03-31 株式会社日本触媒 碱水电解用隔膜、其制造方法以及无机有机复合膜的制造方法
US20210032116A1 (en) * 2018-04-02 2021-02-04 Ariel Scientific Innovations Ltd. Electrocatalysts, the preparation thereof, and using the same for ammonia synthesis
US11272829B2 (en) 2019-04-02 2022-03-15 Dorai Home, Inc. Drying appliance
CN114614058B (zh) * 2020-12-04 2024-05-07 中国石油化工股份有限公司 一种薄层复合质子交换膜及其制备方法和应用

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3143440A (en) * 1960-08-04 1964-08-04 Hunger Herbert Fuel cell
US3357861A (en) * 1963-05-06 1967-12-12 Herbert F Hunger Barriers for fuel cells
US3935028A (en) * 1971-06-11 1976-01-27 Siemens Aktiengesellschaft Fuel cell set and method
US3765946A (en) * 1971-08-18 1973-10-16 United Aircraft Corp Fuel cell system
DE2809815C3 (de) * 1978-03-07 1981-05-21 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Brennstoffzelle mit einer den Elektrolyten chemisch und physikalisch adsorbierenden Matrixschicht
US4276353A (en) * 1978-08-23 1981-06-30 Metco, Inc. Self-bonding flame spray wire for producing a readily grindable coating
JPS5818880A (ja) * 1981-07-24 1983-02-03 Asahi Chem Ind Co Ltd 燃料電池用隔膜
US4529671A (en) * 1981-09-07 1985-07-16 Hitachi, Ltd. Fuel cell
JPS58165266A (ja) * 1982-03-26 1983-09-30 Hitachi Ltd 燃料電池
JPS59173549A (ja) 1983-03-24 1984-10-01 Toyota Motor Corp 燃料蒸気発散防止装置
JPS6062064A (ja) * 1983-09-14 1985-04-10 Hitachi Ltd 液体燃料電池
US4650729A (en) * 1984-08-10 1987-03-17 Nissan Motor Co., Ltd. Electric power source device
JPS61269865A (ja) * 1985-05-24 1986-11-29 Hitachi Ltd 燃料電池の運転方法
US4687715A (en) * 1985-07-26 1987-08-18 Westinghouse Electric Corp. Zirconium pyrophosphate matrix layer for electrolyte in a fuel cell
JPS6348765A (ja) * 1986-08-19 1988-03-01 Japan Gore Tex Inc 燃料電池用電解質マトリクスおよびその製造法
JPH01192742A (ja) * 1988-01-29 1989-08-02 Nippon Shokubai Kagaku Kogyo Co Ltd プロトン伝導性非晶質材料及びその製造方法
JPH01266848A (ja) * 1988-04-19 1989-10-24 Matsushita Electric Ind Co Ltd 貴金属担持触媒の製造方法
JP2909166B2 (ja) * 1990-07-31 1999-06-23 エヌ・イーケムキヤツト株式会社 担持白金四元系合金電極触媒
US5364711A (en) * 1992-04-01 1994-11-15 Kabushiki Kaisha Toshiba Fuel cell
DE4238688A1 (de) * 1992-11-17 1994-05-19 Bosch Gmbh Robert Gesinterter Festelektrolyt mit hoher Sauerstoffionenleitfähigkeit
US5766787A (en) * 1993-06-18 1998-06-16 Tanaka Kikinzoku Kogyo K.K. Solid polymer electrolyte composition
FR2709873B1 (fr) * 1993-09-06 1995-10-20 Imra Europe Sa Générateur de tension à pile à combustible.
US5599638A (en) * 1993-10-12 1997-02-04 California Institute Of Technology Aqueous liquid feed organic fuel cell using solid polymer electrolyte membrane
US5773162A (en) * 1993-10-12 1998-06-30 California Institute Of Technology Direct methanol feed fuel cell and system
JPH08185879A (ja) 1994-12-27 1996-07-16 Fuji Electric Co Ltd 燃料電池単セルの極間ガス漏洩透過の検出方法
US5919583A (en) * 1995-03-20 1999-07-06 E. I. Du Pont De Nemours And Company Membranes containing inorganic fillers and membrane and electrode assemblies and electrochemical cells employing same
US5700595A (en) * 1995-06-23 1997-12-23 International Fuel Cells Corp. Ion exchange membrane fuel cell power plant with water management pressure differentials
US5503944A (en) * 1995-06-30 1996-04-02 International Fuel Cells Corp. Water management system for solid polymer electrolyte fuel cell power plants
US5926361A (en) * 1995-09-28 1999-07-20 Westvaco Corporation High power density double layer energy storage devices
US5672439A (en) * 1995-12-18 1997-09-30 Ballard Power Systems, Inc. Method and apparatus for reducing reactant crossover in an electrochemical fuel cell
DE19611510A1 (de) * 1996-03-23 1997-09-25 Degussa Gasdiffusionselektrode für Membranbrennstoffzellen und Verfahren zu ihrer Herstellung
US5945231A (en) * 1996-03-26 1999-08-31 California Institute Of Technology Direct liquid-feed fuel cell with membrane electrolyte and manufacturing thereof
US5834136A (en) * 1996-06-17 1998-11-10 Valence Technology, Inc. Method of preparing polymeric electrolytes
JP3502508B2 (ja) * 1996-07-26 2004-03-02 本田技研工業株式会社 直接メタノール型燃料電池
JP4000607B2 (ja) 1996-09-06 2007-10-31 トヨタ自動車株式会社 燃料電池の発電装置およびその方法
AU719341B2 (en) * 1997-01-22 2000-05-04 De Nora Elettrodi S.P.A. Method of forming robust metal, metal oxide, and metal alloy layers on ion-conductive polymer membranes
US5952119A (en) * 1997-02-24 1999-09-14 Regents Of The University Of California Fuel cell membrane humidification
DE19721437A1 (de) * 1997-05-21 1998-11-26 Degussa CO-toleranter Anodenkatalysator für PEM-Brennstoffzellen und Verfahren zu seiner Herstellung
US6059943A (en) * 1997-07-30 2000-05-09 Lynntech, Inc. Composite membrane suitable for use in electrochemical devices
DE19734973A1 (de) * 1997-08-13 1999-02-25 Hoechst Ag Edelmetallcluster enthaltende nano-poröse Aluminium-oxid-Membranen
JPH11167925A (ja) * 1997-10-01 1999-06-22 Tokyo Gas Co Ltd 燃料電池用電極及びその製造方法
AU2636999A (en) * 1998-02-24 1999-09-15 Ramot University Authority For Applied Research And Industrial Development Ltd. Ion conductive matrixes and their use
CA2315325A1 (en) * 1998-02-25 1999-09-02 Ballard Power Systems Inc. Direct dimethyl ether fuel cells
JPH11250921A (ja) * 1998-02-27 1999-09-17 Aisin Seiki Co Ltd 固体高分子電解質型燃料電池
JPH11255512A (ja) * 1998-03-09 1999-09-21 Toyota Motor Corp 一酸化炭素低減装置及びその駆動方法
DE19837669A1 (de) * 1998-08-20 2000-03-09 Degussa Katalysatorschicht für Polymer-Elektrolyt-Brennstoffzellen
GB9822571D0 (en) * 1998-10-16 1998-12-09 Johnson Matthey Plc Substrate binder
EP1166379A1 (en) 1999-01-12 2002-01-02 Energy Partners, L.C. Method and apparatus for maintaining neutral water balance in a fuel cell system
US6447909B1 (en) * 1999-01-14 2002-09-10 Sumitomo Metal Mining Co., Ltd. Transparent conductive layered structure and method of producing the same, and coating liquid for forming transparent conductive layer used in production of transparent conductive layered structure and method of producing the same
US6117581A (en) * 1999-03-15 2000-09-12 Ford Global Technologies, Inc. Fuel cell electrode comprising conductive zeolite support material
DE19913977C2 (de) 1999-03-18 2001-11-22 Mannesmann Ag Kraftstoffbehälter
US6238534B1 (en) * 1999-05-14 2001-05-29 3M Innovative Properties Company Hybrid membrane electrode assembly
JP3668069B2 (ja) 1999-09-21 2005-07-06 株式会社東芝 燃料電池用液体燃料収容容器および燃料電池
AU2907801A (en) * 1999-12-16 2001-06-25 Proton Energy Systems, Inc. Low gravity electrochemical cell
US6660423B2 (en) * 2000-12-15 2003-12-09 Motorola, Inc. Direct methanol fuel cell including a water management system and method of fabrication

Also Published As

Publication number Publication date
WO2001054216A3 (en) 2002-02-21
WO2001054220A8 (en) 2003-02-13
CN100487963C (zh) 2009-05-13
JP5173099B2 (ja) 2013-03-27
EP1249053A2 (en) 2002-10-16
EP1249052A2 (en) 2002-10-16
AU2001227022A1 (en) 2001-07-31
WO2001054220A3 (en) 2002-08-08
US20080241629A1 (en) 2008-10-02
CN1411618A (zh) 2003-04-16
CA2397536C (en) 2010-04-06
RU2262161C2 (ru) 2005-10-10
CA2397536A1 (en) 2001-07-26
EP1249053B1 (en) 2010-06-16
CN1255894C (zh) 2006-05-10
US7413824B2 (en) 2008-08-19
AU2001227021A1 (en) 2001-07-31
RU2002122086A (ru) 2004-02-20
EP1249052B1 (en) 2009-04-22
WO2001054216A2 (en) 2001-07-26
US8092955B2 (en) 2012-01-10
JP2003520412A (ja) 2003-07-02
US20030091883A1 (en) 2003-05-15
JP2003520413A (ja) 2003-07-02
IL150645A0 (en) 2003-02-12
CA2397568A1 (en) 2001-07-26
WO2001054220A2 (en) 2001-07-26
IL150648A0 (en) 2003-02-12

Similar Documents

Publication Publication Date Title
CN1255894C (zh) 燃料
KR20020092359A (ko) 비알칼리성 연료 전지용 연료
Peled et al. High-power direct ethylene glycol fuel cell (DEGFC) based on nanoporous proton-conducting membrane (NP-PCM)
Yang Synthesis and characterization of the cross-linked PVA/TiO2 composite polymer membrane for alkaline DMFC
Taniguchi et al. Analysis of degradation in PEMFC caused by cell reversal during air starvation
US6416898B1 (en) Fuel cell comprising an inorganic glass layer
JP2002505511A (ja) 直接ジメチルエーテル燃料電池
US20070003822A1 (en) Voltage cycling durable catalysts
US20100092826A1 (en) Fuel cell and fuel cell system
US7960073B2 (en) Membrane electrode assembly for fuel cell and fuel cell system including the same
US20040224218A1 (en) Direct methanol fuel cell electrode catalyst
Uchida et al. Suppression of methanol crossover in Pt-dispersed polymer electrolyte membrane for direct methanol fuel cells
CN101151754A (zh) 燃料电池
KR101334088B1 (ko) 고온형 고분자 전해질 연료전지의 전극 도포용 조성물 및 고온형 고분자 전해질 연료전지용 전극의 제조방법
US20100203427A1 (en) Fuel cell
WO2008127045A1 (en) Anode catalyst layer and membrane-electrode assembly of direct liquid feed fuel cell and direct liquid feed fuel cell
US7014931B1 (en) Methanol-tolerant cathode catalyst composite for direct methanol fuel cells
IL150648A (en) Fuels for non-alkaline fuel cells
US20030044666A1 (en) Chemical barriers in electrochemical devices
JP4631309B2 (ja) 固体電解質型燃料電池用燃料、固体電解質型燃料電池及びその使用方法
US7244280B2 (en) Method for producing electrochemical device
JP2006114349A (ja) 固体高分子型燃料電池用カートリッジおよび固体高分子型燃料電池
WO2008096244A1 (en) Fuel cell and fuel cell system
Ball et al. PtMo Catalysts for Ultra High CO PEMFC Applications
US20060016122A1 (en) Performance additive for fuel cells

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: TELAVIV UNIVERSITY WEILAI TECHNOLOGY DEVELOPMENT

Free format text: FORMER OWNER: UNIV RAMOT

Effective date: 20040309

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20040309

Address after: Israel Tel Aviv

Applicant after: Tel Aviv University Future Tec

Address before: Israel Tel Aviv

Applicant before: Ramot at Tel Aviv University Ltd.

C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20060510

Termination date: 20120118