CN1345694A - 合成碳纳米管的方法及其所用的设备 - Google Patents
合成碳纳米管的方法及其所用的设备 Download PDFInfo
- Publication number
- CN1345694A CN1345694A CN01115547A CN01115547A CN1345694A CN 1345694 A CN1345694 A CN 1345694A CN 01115547 A CN01115547 A CN 01115547A CN 01115547 A CN01115547 A CN 01115547A CN 1345694 A CN1345694 A CN 1345694A
- Authority
- CN
- China
- Prior art keywords
- catalyst
- reactor
- heating
- metal
- carbon nanotubes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 76
- 239000002041 carbon nanotube Substances 0.000 title claims abstract description 63
- 229910021393 carbon nanotube Inorganic materials 0.000 title claims abstract description 63
- 238000000034 method Methods 0.000 title claims abstract description 41
- 230000002194 synthesizing effect Effects 0.000 title claims abstract description 32
- 239000003054 catalyst Substances 0.000 claims abstract description 107
- 239000000758 substrate Substances 0.000 claims abstract description 35
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 14
- 239000007789 gas Substances 0.000 claims description 44
- 238000010438 heat treatment Methods 0.000 claims description 38
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 20
- 239000000843 powder Substances 0.000 claims description 19
- 229910052723 transition metal Inorganic materials 0.000 claims description 16
- 150000003624 transition metals Chemical class 0.000 claims description 16
- 239000012495 reaction gas Substances 0.000 claims description 12
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 10
- 229910052751 metal Inorganic materials 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 10
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 claims description 9
- 229910000037 hydrogen sulfide Inorganic materials 0.000 claims description 9
- 239000002243 precursor Substances 0.000 claims description 9
- 229910017052 cobalt Inorganic materials 0.000 claims description 7
- 239000010941 cobalt Substances 0.000 claims description 7
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 7
- 229910052742 iron Inorganic materials 0.000 claims description 7
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 6
- 239000000376 reactant Substances 0.000 claims description 6
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 claims description 5
- 239000012018 catalyst precursor Substances 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 5
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 claims description 4
- 230000005674 electromagnetic induction Effects 0.000 claims description 4
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 claims description 4
- KTWOOEGAPBSYNW-UHFFFAOYSA-N ferrocene Chemical group [Fe+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 KTWOOEGAPBSYNW-UHFFFAOYSA-N 0.000 claims description 4
- 239000001257 hydrogen Substances 0.000 claims description 4
- 229910052739 hydrogen Inorganic materials 0.000 claims description 4
- 238000004093 laser heating Methods 0.000 claims description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 4
- 238000000151 deposition Methods 0.000 claims description 3
- 230000008021 deposition Effects 0.000 claims description 3
- 239000011261 inert gas Substances 0.000 claims description 3
- 229910052976 metal sulfide Inorganic materials 0.000 claims description 3
- 238000010422 painting Methods 0.000 claims description 3
- 238000005507 spraying Methods 0.000 claims description 3
- 238000001354 calcination Methods 0.000 claims description 2
- 238000003763 carbonization Methods 0.000 claims description 2
- 238000005470 impregnation Methods 0.000 claims description 2
- 238000005342 ion exchange Methods 0.000 claims description 2
- 229910044991 metal oxide Inorganic materials 0.000 claims description 2
- 150000004706 metal oxides Chemical class 0.000 claims description 2
- 150000002894 organic compounds Chemical class 0.000 claims description 2
- 239000001294 propane Substances 0.000 claims description 2
- 230000009467 reduction Effects 0.000 claims description 2
- 238000005486 sulfidation Methods 0.000 claims description 2
- 239000011159 matrix material Substances 0.000 claims 1
- 238000006722 reduction reaction Methods 0.000 claims 1
- 150000003839 salts Chemical class 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 9
- 239000003779 heat-resistant material Substances 0.000 abstract description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 16
- 239000011521 glass Substances 0.000 description 10
- 239000000377 silicon dioxide Substances 0.000 description 8
- 229910052681 coesite Inorganic materials 0.000 description 7
- 229910052906 cristobalite Inorganic materials 0.000 description 7
- 229910052682 stishovite Inorganic materials 0.000 description 7
- 229910052905 tridymite Inorganic materials 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 6
- GEMHFKXPOCTAIP-UHFFFAOYSA-N n,n-dimethyl-n'-phenylcarbamimidoyl chloride Chemical compound CN(C)C(Cl)=NC1=CC=CC=C1 GEMHFKXPOCTAIP-UHFFFAOYSA-N 0.000 description 6
- 229930195733 hydrocarbon Natural products 0.000 description 5
- 150000002430 hydrocarbons Chemical class 0.000 description 5
- 239000004033 plastic Substances 0.000 description 5
- 229920003023 plastic Polymers 0.000 description 5
- 239000004215 Carbon black (E152) Substances 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 238000010926 purge Methods 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- 239000004809 Teflon Substances 0.000 description 2
- 229920006362 Teflon® Polymers 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- INPLXZPZQSLHBR-UHFFFAOYSA-N cobalt(2+);sulfide Chemical compound [S-2].[Co+2] INPLXZPZQSLHBR-UHFFFAOYSA-N 0.000 description 2
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000005672 electromagnetic field Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical class C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- 239000012692 Fe precursor Substances 0.000 description 1
- MBMLMWLHJBBADN-UHFFFAOYSA-N Ferrous sulfide Chemical compound [Fe]=S MBMLMWLHJBBADN-UHFFFAOYSA-N 0.000 description 1
- 229920000557 Nafion® Polymers 0.000 description 1
- 239000012494 Quartz wool Substances 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 238000007036 catalytic synthesis reaction Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 125000001967 indiganyl group Chemical group [H][In]([H])[*] 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910001960 metal nitrate Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000011949 solid catalyst Substances 0.000 description 1
- WWNBZGLDODTKEM-UHFFFAOYSA-N sulfanylidenenickel Chemical compound [Ni]=S WWNBZGLDODTKEM-UHFFFAOYSA-N 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/05—Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/16—Preparation
- C01B32/162—Preparation characterised by catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B3/00—Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
- B01J23/745—Iron
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
- B01J23/75—Cobalt
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/84—Manufacture, treatment, or detection of nanostructure
- Y10S977/842—Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
- Y10S977/843—Gas phase catalytic growth, i.e. chemical vapor deposition
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/84—Manufacture, treatment, or detection of nanostructure
- Y10S977/842—Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
- Y10S977/844—Growth by vaporization or dissociation of carbon source using a high-energy heat source, e.g. electric arc, laser, plasma, e-beam
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/902—Specified use of nanostructure
- Y10S977/932—Specified use of nanostructure for electronic or optoelectronic application
- Y10S977/949—Radiation emitter using nanostructure
- Y10S977/95—Electromagnetic energy
- Y10S977/951—Laser
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Composite Materials (AREA)
- Carbon And Carbon Compounds (AREA)
- Catalysts (AREA)
- Inorganic Fibers (AREA)
Abstract
本发明涉及一种合成碳纳米管的方法及其所使用的设备。本发明的方法包括如下步骤:将催化剂引入到反应器中,在催化剂上通入含有碳源气体的反应气体,选择性地局部加热反应器中的催化剂以及从加热的催化剂上生长碳纳米管。本发明方法的优点之一是负载催化剂的基体或基板的材料不受耐热材料的限制。
Description
本发明涉及合成碳纳米管,具体地讲,本发明涉及通过局部加热合成碳纳米管的方法,以及合成该碳纳米管所用的设备。
已经知道,从微观上看,碳纳米管是这样构成的:一个单个的碳原子与三个相邻的碳原子结合,这种结合使碳原子之间形成六方形环;由蜂窝状的、重复的六方形环构成的平面展开,则形成圆柱体形状。碳纳米管的特点是其直径通常为几个埃到几十个纳米,其长度通常是其直径的几十到几千倍。已知这样的碳纳米管既有金属性质,也有半导体性质,因而具有优良的物理性质和电学性质。所以,碳纳米管因其导电性和/或半导电性而被广泛用于各种领域。
通常,碳纳米管是由这样一类方法合成的,如电弧放电法、激光蒸发法、热化学气相淀积法(CVD)、催化合成法或等离子体合成法。这些方法在摄氏几百到几千度的高温下进行,或者在真空下释放高温条件。
而且,在这些常规方法中,要将整个反应器加热,以满足合成碳纳米管的反应温度。此处,供入反应器的所有的物质如反应气体和催化剂均被加热。因而,当催化剂负载于载体或基板(substrate)上时,其载体或基板应当由能够耐受前述高温的耐热材料形成。换言之,选择负载催化剂的载体或基板是相当严格的。
为了解决上述问题,本发明的首要任务是提供一种合成碳纳米管的方法,该方法通过局部加热催化剂,可以使负载催化剂的载体或基板不加热到高温。
本发明的另一任务是提供一种用于进行上述方法的、合成碳纳米管用的设备。
因而,为了实现本发明的第一任务,就要提供一种合成碳纳米管的方法。在该方法中,将催化剂引入反应器中;在催化剂上供给含有碳源气体的反应气体;将反应器中的催化剂进行局部地选择性加热;碳纳米管从加热的催化剂上开始成长。
催化剂的局部加热可以通过以下方式实现:微波照射、电磁感应加热、激光加热或者射频加热。
要实现本发明的第二任务,就要提供一种合成碳纳米管的设备。该设备包括一个接受催化剂的反应器、为反应器提供含碳源气体的反应气体供应源以及对反应器内催化剂进行选择加热的局部加热器。
上述设备还可包括将催化剂以气相形式供入反应器的催化剂气体供应源。
局部加热器可以包括产生微波的微波发生器和连接到反应器上的微波波导管,该微波波导管将微波导向反应器;局部加热器可以包括安装在反应器周围的高频线圈和为此高频线圈供应高频电流的电源;局部加热器可以包括接近反应器安装的射频发生器;局部加热器可以包括接近反应器安装的激光束发生器和将激光束发生器产生的激光束进行聚焦的透镜。
根据本发明,碳纳米管可以在低温条件下合成,也即,在整个反应器保持低温而对局部进行加热的条件下合成。因而,在其上面负载催化剂的载体或基板可以由聚合材料或玻璃制成。
下面,结合附图,用优选的实施方案进行详细地描述,从而使本发明的上述特点和优点更加清楚。其中,
图1是按本发明一实施方案合成碳纳米管方法的流程图;
图2和图3是按本发明实施方案对催化剂进行局部加热的截面示意图;
图4和图5是按本发明实施方案碳纳米管成长的截面示意图;
图6是在本发明实施方案中所采用的、配有微波发生器的合成碳纳米管的设备示意图;
图7—图12是按本发明实施方案所合成的碳纳米管的扫描电镜(SEM)图片;
图13是在本发明实施方案中所采用的、进行感应加热的、合成碳纳米管的设备示意图;
图14是在本发明实施方案中所采用的、进行激光加热的、合成碳纳米管的设备示意图;
图15是在本发明实施方案中所采用的、进行射频加热的、合成碳纳米管的设备示意图。
下面,结合附图对本发明的实施方案进行详细地描述。但本发明不局限于下面的实施方案,在本发明的精神和范围内可以有多种变换方案。此处提供的本发明的实施方案,只是针对本领域的技术人员对本发明进行更完整地解释。在附图中,为清楚起见,将各部件(或部分)的形状进行了夸张描述;相同的附图标记代表相同的部件。
参阅图1,可以按本发明的实施方案合成碳纳米管,所采用的碳纳米管合成设备如图6所示。建议使用图6的碳纳米管合成设备,作为实现本发明实施方案所提出的局部加热这一概念的手段。
参阅图2、3和6,图6的碳纳米管合成设备包括反应器100,反应器100中可以放置舟形皿150或负载催化剂135的基板131,而舟形皿150中则载有催化剂粉末135′。例如,催化剂粉末135′可以通过将图2所示的、由过渡金属构成的催化剂135负载于载体130上而制得。反应器100可以是一石英管。
反应器100配有局部加热器200,该局部加热器200提供微波以局部加热催化剂粉末135′、实质上是催化剂135。局部加热器200包括产生微波的微波发生器250以及将微波导向反应器100的微波波导管210。
另外,将反应气体供应源300和放空器(discharger)600安装到反应器100,反应气体供应源300为合成碳纳米管提供反应气体,放空器600则在反应后使气体放空。反应气体供应源300包括高压气体储罐、质量流动控制器(MFCs)和开关350,其中高压气体储罐可以提供碳源气体如烃或硫化氢(H2S),或者提供可以与碳源气体一起提供的氢气或惰性气体,开关350安装在高压气体储罐和反应器100之间的管路上,以控制气体流率。可以装配多套的高压气体储罐、MFC310和开关350。
催化剂可以以这样的形式提供,即把过渡金属或过渡金属的母体负载于载体130或基板131上,如图2和图3所示,但如果需要也可以以气态的形式提供。当使用金属如铁、镍或钴的母体作为气态催化剂时,例如二茂铁(FeC10H10)或五羰铁(Fe(CO)5),这样的母体大多以液态或固态形式存在,为供入反应器100中,需要将之气化。
为了满足这一需求,可在反应器100上另外安装催化气体供应源400。催化气体供应源400包括气化液态或固态催化剂或催化剂母体的饱和器410、调节饱和器410的水浴430和控制水浴430中水的温度并循环水的循环器450。饱和器410所产生的气态催化剂经导管送入反应器100中,在反应器100中起催化剂的作用。
此处,在连接反应气体供应源300的导管和连接催化气体供应源400的导管的交叉处装有一个四通370,以分别导入气体。当提供气态催化剂时,可以安装温度控制器500,以使催化剂处于气态。温度控制器500包括滑线电阻调压器(slidax)和温度读数装置。温度控制器500用热电偶等测量反应器100的内部温度,读出测量的结果,并保持内部温度,使得催化剂以气态形式注入反应器100中。
参照附图1的流程,来说明采用上述碳纳米管合成设备合成碳纳米管的方法。在步骤1100中,将图2或图3的催化剂135引入到反应器100中,如图6所示。此处,催化剂的制备方法为:将过渡金属或过渡金属的母体负载到图2所示的粉末型载体130上,或图3所示的基板131上。催化剂135负载到粉末型载体130上所制得的催化剂粉末135′可以放到舟形皿150等上面,引入到反应器100中。或者,当催化剂135负载到基板131上时,可以将基板131引入到反应器100中。
对于催化剂135而言,可以使用过渡金属如铁、镍或钴,或者使用含过渡金属的化合物,例如,金属硫化物如硫化钴、硫化铁或硫化镍;含过渡金属的金属碳化物;金属氧化物;金属硝酸盐或金属硫酸盐。另外,前述的含过渡金属的有机化合物如环烷酸钴(cobalt naphtenate)也可用作催化剂135。
采用浸渍法、早期润湿法或离子交换法,将含铁、镍或钴的过渡金属母体负载到图2的载体130上,可以制得催化剂135。这样制得的催化剂干燥后,可以以催化剂粉末135′的形式使用;或者进行还原和煅烧,或者进行硫化和碳化,使催化剂135具有其它许多特性而加以利用。
载体130或基板131可以由不被微波加热的二氧化硅(SiO2)或氧化铝(Al2O3)等材料制成;或者,可以使用能被微波加热的碳等制成的粉末型载体130。负载于载体130上的催化剂135可以放到图6所示的舟形皿150上,以粉末态引入到反应器100中;或者,采用沉积(deposition)、喷涂(spraying)或涂抹(painting),将催化剂135负载于基板131上。负载之后,催化剂135可以在只经过干燥后就加以使用,或者在经过还原和煅烧或经过硫化和碳化后,再加以使用。
在下面的实施例中,将描述把催化剂135负载于载体130上的方法。
实施例1
将铁的母体如Fe(NO3)39H2O溶于蒸馏水中,使碳载体130中浸渍上5wt%的Fe。所得物质在约110℃下干燥约24小时,然后在氢气氛中、约500℃下还原3小时,得到催化剂粉末135′Fe(5wt%)/C,如图2所示。很明显,可以采用许多其它的方法将催化剂135负载于载体130上或基板131上。
负载于载体130上或基板131上的催化剂135被放置到舟形皿150上,引入到反应器100中;然后反应器中充满耐热材料如石英棉190,以阻止热量从内部向外部传递。之后,在图1中的步骤1200中,将反应气体供入反应器100中。反应气体优选含有碳源气体。
在步骤1300中,用微波照射装有催化剂135或催化剂粉末135′的反应器100,使催化剂135局部加热。由于催化剂135是由可被微波介电加热(dielectrically heated)的材料制成,因而催化剂135被所施加的微波加热,如图2或图3所示。微波可以用2.45GHz和800W的功率产生。
这样的加热可以选择性地局限在催化剂135上,使得反应器100内的反应气体、载体130、基板131或舟形皿150不被加热。因而,载体130、舟形皿150或基板131可以由玻璃或聚合物材料如塑料制成。
如图3和图4所示,通过将含有碳源气体的反应气体输送到局部加热的催化剂135上,使之发生反应,如图1中的步骤1300,可以在催化剂135上形成碳纳米管170。此处,烃类气体如甲烷气、乙炔气、丙烷气或苯可以作为碳源气体。或者,可以使用烃类气体与氢气混合的反应气体。另外,可以使用惰性气体作为载气。
利用上述的催化剂粉末135′Fe(5wt%)/C,合成碳纳米管,其结果清楚地显示在图7的扫描电镜(SEM)图片中。
如上所述,使用催化剂粉末135′Fe(5wt%)/C时,催化剂135和载体130均可被加热。然而,当催化剂135负载于由不被微波所加热的材料如氧化硅(SiO2)或玻璃所制成的载体130上或基板131上时,只有催化剂135被加热,而载体130或基板131不被加热。在这种情况下,可以注入硫化氢(H2S)气,与烃类气体一起作为反应气体,以培养碳纳米管。
实施例2
将钴的母体如Co(NO3)36H2O溶于蒸馏水中,使SiO2载体130中浸渍上10wt%的Co。所得物质在约110℃下干燥约24小时,然后在氢气流中以5℃/分钟的速率升温至约500℃,并还原3小时,得到催化剂粉末135′Co(10wt%)/SiO2。这样制得的催化剂粉末135′被放置到舟形皿150上,引入到反应器100中。然后,乙炔(C2H2)气和硫化氢(H2S)气分别以10毫升/分钟和3毫升/分钟的流率流入反应器100中,以吹扫反应器100。然后,用微波照射30分钟。SiO2载体130不被微波所加热,但Co被微波所加热,从而生成碳纳米管。图8显示的是所生成的碳纳米管的SEM图片。
可以不使用过渡金属如铁、钴或镍作催化剂,而采用含有过渡金属的化合物作催化剂,并用微波进行局部加热,合成碳纳米管。载体130可以由不被微波所加热的SiO2制成,并用过渡金属的硫化物生成碳纳米管。
实施例3
如上所述,将钴的母体如Co(NO3)36H2O溶于蒸馏水中,使SiO2载体130中浸渍上10wt%的Co。所得物质在约110℃下干燥约24小时。在氢气流中使干燥的催化剂以5℃/分钟的速率升温,然后在约500℃下还原3小时,得到催化剂Co(10wt%)/SiO2。然后,在H2S(10%)/H2的气流中,使催化剂Co(10wt%)/SiO2以10℃/分钟的速率升温,Co(10wt%)/SiO2在400℃下硫化2小时,得到催化剂Co(10wt%)Sx/SiO2。这样制得的催化剂被放置到舟形皿150上,引入到反应器100中。然后,只让乙炔(C2H2)气以10毫升/分钟的流率流入反应器100中5分钟,以进行反应。图9显示的是反应所生成的碳纳米管的SEM图片。
同时,在使用塑料制备载体130时,可以采用微波加热的方式来合成碳纳米管。
实施例4
将钴黑(基本上为氧化钴)与高氟化离子交换树脂(Nafion)溶液混合。在特氟隆(teflon)制成的基板的表面上涂以上述的混合物,在110℃下干燥一天。在基板表面上以30毫升/分钟的流率流过10体积%的H2S和H2混合气,在300℃下硫化干燥的基板表面10小时,得到硫化钴催化剂。将这样制得的在塑料基板上的催化剂插入反应器中。反应器中通入C2H2和H2,其流率为10毫升/分钟:40毫升/分钟,以吹扫反应器。用微波照射基板30秒钟,以便催化剂催化反应。图10显示的是反应所生成的碳纳米管的SEM图片。
而且,当采用玻璃基板而不是塑料基板作载体时,也可以合成碳纳米管。
实施例5
在玻璃基板上涂以环烷酸钴(cobalt naphtenate),干燥,使环烷酸钴负载于玻璃基板上,以作为催化剂。将负载了环烷酸钴的玻璃基板即催化剂插入到反应器中。反应器中通入C2H2和H2S,其流率为10毫升/分钟:3毫升/分钟,以吹扫反应器。然后用微波照射玻璃基板9分钟。此时,玻璃基板基本上不被加热,只有催化剂被选择性地局部加热。图11显示的是合成的碳纳米管的SEM图片。或者,C2H2和H2S被H2稀释,并通入反应器中,其流率为10毫升/分钟:3毫升/分钟:117毫升/分钟,而微波照射玻璃基板的时间为5分钟,以激发催化剂催化C2H2、H2S和H2气体的反应,合成碳纳米管。图12显示的是这样合成的碳纳米管的SEM图片。
同时,在按照本发明的实施方案合成碳纳米管的方法中,供入反应器100的催化剂可以是气态,而不是粉末状态。例如,当催化剂母体为含金属原子的化合物时,如二茂铁或五羰铁时,可以采用如图6中的饱和器410之类的设备使之气化,然后通入反应器100中。
在这种情况下,供入反应器100中的催化剂母体或催化剂用局部加热的方法进行加热,如微波加热法。催化剂可以飘浮于反应器100中。供入反应器100中的烃或其同类的物质发生反应,在飘浮的催化剂上长出碳纳米管。按上述方法供入气态的催化剂,可以在气相中合成碳纳米管。从而实现碳纳米管的大量生产。
图13是在本发明实施方案中采用电磁感应加热法时,所适用的合成碳纳米管的设备的示意图。图6所示的碳纳米管合成设备,乃是采用本发明实施方案中所提出的微波照射法来实现局部加热。局部加热也可以通过电磁感应加热法来实现。例如,如图13所示,它所示出的碳纳米管合成设备包括局部加热器200′,其设置为在反应器100的周围安装一高频线圈215,高频线圈215连接到高频电源255上。施加到高频线圈215上的高频电流在高频线圈215的周围形成电磁场。由于电磁场的变化,引入到反应器100中的催化剂135可以被选择性地加热。
图14是在本发明实施方案中采用激光加热法时,所适用的合成碳纳米管的设备的示意图。局部加热可以通过图14所示的激光加热法来实现。例如,在反应器100的附近配备一激光束发生器710。由激光束发生器710所产生的激光束750,通过透镜夹727上的透镜725进行聚焦,以实现本发明实施方案中所提出的局部加热。在这种情况下,通过控制激光束750的聚焦,可以将引入到反应器100中的催化剂135或催化剂粉末135′进行选择性地加热。
图15是在本发明实施方案中采用射频加热法时,所适用的合成碳纳米管的设备的示意图。局部加热可以通过图15所示的射频加热法来实现。例如,在反应器100的附近配备一射频(RF)发生器800。由射频束发生器800所产生的射频,可以实现本发明实施方案中的局部加热。通过使用射频,气态的催化剂135或催化剂粉末135′可以被选择性地加热。
上述的本发明改进了在高温下对整个反应器进行加热的、传统的合成碳纳米管的方法。根据本发明,即使整个反应器维持在较低温度下,仍然可以合成碳纳米管。即使当整个反应器的温度处于较低的情况下,通过局部加热的方法来选择性地加热催化剂,仍然可以达到合成碳纳米管所需的温度。因而,可以采用由玻璃或聚合物材料如塑料制成的基板或载体,而它们在高温下是无法使用的。
尽管本发明是用具体的实施方案予以说明的,很明显,本领域的普通技术人员在不偏离本发明的精神和范围的前体下,可以对所述的实施方案进行改进。
Claims (16)
1、一种合成碳纳米管的方法,包括如下步骤:
将催化剂引入到反应器中;
在催化剂上通入含有碳源气体的反应气体;
选择性地局部加热反应器中的催化剂;以及
从加热的催化剂上生长碳纳米管。
2、如权利要求1所述的方法,其中,所述的催化剂由下列物质形成:过渡金属如铁、镍或钴;过渡金属的金属硫化物、金属碳化物、金属氧化物或其金属盐;或含有过渡金属的有机化合物。
3、如权利要求1所述的方法,其中,所述的催化剂用浸渍法、早期润湿法或离子交换法负载到载体上,并以粉末形式供入到反应器中。
4、如权利要求1所述的方法,其中,所述的、要供入到反应器中的催化剂用沉积法、涂抹法和喷涂法负载到基板上。
5、如权利要求1所述的方法,其中,将金属母体负载于基板或基体上,并通过还原、煅烧、硫化或碳化使其转化为金属相,并将所得的金属催化剂供入到反应器中作为所述的催化剂。
6、如权利要求1所述的方法,其中,使用用硫化氢硫化金属母体所得到的金属硫化物作为所述的催化剂。
7、如权利要求1所述的方法,其中,所述的催化剂以气态的、催化剂母体的形式供入到反应器中。
8、如权利要求7所述的方法,其中,所述的催化剂母体为二茂铁或五羰铁。
9、如权利要求1所述的方法,其中,所述的碳源气体含有选自下列组中的一种:乙炔、甲烷、丙烷和苯。
10、如权利要求1所述的方法,其中,所述的反应气体还含有氢气或惰性气体。
11、如权利要求1所述的方法,其中,所述的反应气体还含有硫化氢气体。
12、如权利要求1所述的方法,其中,所述的催化剂的局部加热通过微波照射加热来实现。
13、如权利要求1所述的方法,其中,所述的催化剂的局部加热通过电磁感应加热来实现。
14、如权利要求1所述的方法,其中,所述的催化剂的局部加热通过激光加热来实现。
15、如权利要求1所述的方法,其中,所述的催化剂的局部加热通过射频加热来实现。
16、一种合成碳纳米管的设备,包括:
接受催化剂的反应器;
为反应器提供碳源气体的反应气体供应源;以及
对反应器所接受的催化剂进行选择性加热的局部加热器。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR55829/2000 | 2000-09-22 | ||
KR10-2000-0055829A KR100382879B1 (ko) | 2000-09-22 | 2000-09-22 | 탄소 나노튜브 합성 방법 및 이에 이용되는 탄소 나노튜브합성장치. |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1345694A true CN1345694A (zh) | 2002-04-24 |
CN1164484C CN1164484C (zh) | 2004-09-01 |
Family
ID=19690004
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB011155477A Expired - Fee Related CN1164484C (zh) | 2000-09-22 | 2001-04-27 | 合成碳纳米管的方法及其所用的设备 |
Country Status (5)
Country | Link |
---|---|
US (1) | US6759025B2 (zh) |
EP (1) | EP1190987A1 (zh) |
JP (1) | JP3481925B2 (zh) |
KR (1) | KR100382879B1 (zh) |
CN (1) | CN1164484C (zh) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100369205C (zh) * | 2003-05-01 | 2008-02-13 | 三星电子株式会社 | 用碳纳米管形成半导体装置用导电线的方法及半导体装置 |
CN101658817A (zh) * | 2008-08-29 | 2010-03-03 | 三星电子株式会社 | 碳纳米管板的制造方法 |
CN1982212B (zh) * | 2005-12-16 | 2010-05-19 | 细美事有限公司 | 合成碳纳米管的装置和方法 |
CN1723171B (zh) * | 2003-01-09 | 2010-10-06 | 索尼株式会社 | 制造管状碳分子的方法 |
US7828620B2 (en) | 2003-01-09 | 2010-11-09 | Sony Corporation | Method of manufacturing tubular carbon molecule and tubular carbon molecule, method of manufacturing field electron emission device and field electron emission device, and method of manufacturing display unit and display unit |
CN102161481A (zh) * | 2011-05-18 | 2011-08-24 | 浙江大学 | 一种用于低成本大量合成碳纳米管的制备方法 |
CN102191485A (zh) * | 2011-03-23 | 2011-09-21 | 长春理工大学 | 一种激光加热生长石墨烯的制作方法 |
CN102388171A (zh) * | 2009-04-10 | 2012-03-21 | 应用纳米结构方案公司 | 用于在连续移动的基底上生产碳纳米管的设备和方法 |
CN1960942B (zh) * | 2004-06-04 | 2013-04-10 | 独立行政法人科学技术振兴机构 | 原料喷射式碳纳米结构体制造方法及装置 |
US8580342B2 (en) | 2009-02-27 | 2013-11-12 | Applied Nanostructured Solutions, Llc | Low temperature CNT growth using gas-preheat method |
US8784937B2 (en) | 2010-09-14 | 2014-07-22 | Applied Nanostructured Solutions, Llc | Glass substrates having carbon nanotubes grown thereon and methods for production thereof |
US8815341B2 (en) | 2010-09-22 | 2014-08-26 | Applied Nanostructured Solutions, Llc | Carbon fiber substrates having carbon nanotubes grown thereon and processes for production thereof |
US8951631B2 (en) | 2007-01-03 | 2015-02-10 | Applied Nanostructured Solutions, Llc | CNT-infused metal fiber materials and process therefor |
US8951632B2 (en) | 2007-01-03 | 2015-02-10 | Applied Nanostructured Solutions, Llc | CNT-infused carbon fiber materials and process therefor |
US8969225B2 (en) | 2009-08-03 | 2015-03-03 | Applied Nano Structured Soultions, LLC | Incorporation of nanoparticles in composite fibers |
US9005755B2 (en) | 2007-01-03 | 2015-04-14 | Applied Nanostructured Solutions, Llc | CNS-infused carbon nanomaterials and process therefor |
CN104812701A (zh) * | 2012-11-22 | 2015-07-29 | 捷恩智株式会社 | 碳纳米管阵列的制造方法、纺织源构件及具备碳纳米管的构造体 |
CN107803208A (zh) * | 2017-11-14 | 2018-03-16 | 湘潭大学 | 一种微波催化剂、其制备方法及催化分解硫化氢的方法 |
CN108511682A (zh) * | 2018-06-11 | 2018-09-07 | 四会市恒星智能科技有限公司 | 一种锂离子电池正极极片 |
US10138128B2 (en) | 2009-03-03 | 2018-11-27 | Applied Nanostructured Solutions, Llc | System and method for surface treatment and barrier coating of fibers for in situ CNT growth |
CN110479310A (zh) * | 2019-09-04 | 2019-11-22 | 西南石油大学 | 用于选择性合成碳纳米管的负载型硫化钴催化剂的制备及应用 |
CN111517304A (zh) * | 2020-05-30 | 2020-08-11 | 海宏(唐河)新能源科技有限公司 | 一种锂离子电池负极材料及其制备方法 |
CN112909259A (zh) * | 2021-02-04 | 2021-06-04 | 陕西科技大学 | 一种电磁感应加热法制备FeNi合金催化生长的碳纳米管材料的方法 |
Families Citing this family (124)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4619539B2 (ja) | 1998-11-03 | 2011-01-26 | ウィリアム・マーシュ・ライス・ユニバーシティ | 高温一酸化炭素気体からの単層カーボンナノチューブの結晶核形成および成長 |
WO2002068323A1 (fr) * | 2001-02-26 | 2002-09-06 | Nanolight International Ltd. | Procede pour former un revetement, constitue de nanotubes de carbone, sur la surface d'un substrat |
KR100951013B1 (ko) | 2001-07-27 | 2010-04-02 | 유니버시티 오브 서레이 | 탄소나노튜브의 제조방법 |
KR20030013552A (ko) * | 2001-08-08 | 2003-02-15 | 엘지전자 주식회사 | 탄소나노튜브의 정제방법 |
JP3579689B2 (ja) * | 2001-11-12 | 2004-10-20 | 独立行政法人 科学技術振興機構 | 吸熱性反応を利用した機能性ナノ材料の製造方法 |
TWI236505B (en) * | 2002-01-14 | 2005-07-21 | Nat Science Council | Thermal cracking chemical vapor deposition process for nanocarbonaceous material |
KR100450028B1 (ko) * | 2002-04-03 | 2004-09-24 | (주) 나노텍 | 탄화수소 화합물의 폭발을 이용한 단층 탄소 나노튜브의합성장치 |
KR20030080521A (ko) * | 2002-04-09 | 2003-10-17 | (주) 나노텍 | 플라즈마를 이용한 단층 탄소 나노튜브의 합성방법 및그것을 위한 장치 |
WO2003106030A1 (en) * | 2002-06-13 | 2003-12-24 | National University Of Singapore | Selective area growth of aligned carbon nanotubes on a modified catalytic surface |
FR2844510B1 (fr) * | 2002-09-12 | 2006-06-16 | Snecma Propulsion Solide | Structure fibreuse tridimensionnelle en fibres refractaires, procede pour sa realisation et application aux materiaux composites thermostructuraux |
CN1248959C (zh) * | 2002-09-17 | 2006-04-05 | 清华大学 | 一种碳纳米管阵列生长方法 |
CN1239387C (zh) * | 2002-11-21 | 2006-02-01 | 清华大学 | 碳纳米管阵列及其生长方法 |
CN1234604C (zh) * | 2002-11-27 | 2006-01-04 | 清华大学 | 一种碳纳米管、其制备方法和制备装置 |
US7713583B2 (en) * | 2002-11-27 | 2010-05-11 | Tsinghua University | Method for forming isotope-doped light element nanotube |
JP3962773B2 (ja) * | 2002-12-05 | 2007-08-22 | 独立行政法人科学技術振興機構 | 原料吹き付け式カーボンナノ構造物の製造方法及び装置 |
US20040265212A1 (en) * | 2002-12-06 | 2004-12-30 | Vijay Varadan | Synthesis of coiled carbon nanotubes by microwave chemical vapor deposition |
JP4642658B2 (ja) * | 2003-02-07 | 2011-03-02 | 茂夫 丸山 | 直径のそろった単層カーボンナノチューブの製造方法 |
JP4378350B2 (ja) | 2003-03-20 | 2009-12-02 | チェオル−ジン リー | 気相成長法による二重壁炭素ナノチューブの大量合成方法 |
JP2004292231A (ja) * | 2003-03-26 | 2004-10-21 | Canon Inc | ナノカーボン材料の製造方法 |
US7097906B2 (en) * | 2003-06-05 | 2006-08-29 | Lockheed Martin Corporation | Pure carbon isotropic alloy of allotropic forms of carbon including single-walled carbon nanotubes and diamond-like carbon |
WO2005007565A2 (en) * | 2003-06-10 | 2005-01-27 | Nuvotec, Inc. | Continuous production of carbon nanomaterials using a high temperature inductively coupled plasma |
US20050000437A1 (en) * | 2003-07-03 | 2005-01-06 | Tombler Thomas W. | Apparatus and method for fabrication of nanostructures using decoupled heating of constituents |
JP4524546B2 (ja) * | 2003-07-15 | 2010-08-18 | ソニー株式会社 | カーボンナノチューブおよびその製造方法 |
KR20070026370A (ko) * | 2003-12-15 | 2007-03-08 | 레슬리 그린가드 | 화학적 촉매 작용의 전자기 제어 |
US7504136B2 (en) * | 2003-12-15 | 2009-03-17 | California Institute Of Technology | Method and system for forming a film of material using plasmon assisted chemical reactions |
US7998538B2 (en) * | 2003-12-15 | 2011-08-16 | California Institute Of Technology | Electromagnetic control of chemical catalysis |
WO2005065425A2 (en) * | 2003-12-30 | 2005-07-21 | The Regents Of The University Of California | Localized synthesis and self-assembly of nanostructures |
KR100562701B1 (ko) * | 2004-01-07 | 2006-03-23 | 삼성전자주식회사 | 전자 소스 및 이를 이용한 구멍의 오픈 불량 검사 장치와방법 |
US7144563B2 (en) * | 2004-04-22 | 2006-12-05 | Clemson University | Synthesis of branched carbon nanotubes |
KR100663717B1 (ko) * | 2004-05-12 | 2007-01-03 | 성균관대학교산학협력단 | 화학 증착법을 이용한 얇은 다층탄소나노튜브 대량합성법 |
US20110024697A1 (en) * | 2004-05-18 | 2011-02-03 | Board Of Trustees Of The University Of Arkansas | Methods of Producing Carbon Nanotubes and Applications of Same |
US7365289B2 (en) * | 2004-05-18 | 2008-04-29 | The United States Of America As Represented By The Department Of Health And Human Services | Production of nanostructures by curie point induction heating |
US7473873B2 (en) * | 2004-05-18 | 2009-01-06 | The Board Of Trustees Of The University Of Arkansas | Apparatus and methods for synthesis of large size batches of carbon nanostructures |
WO2005113854A2 (en) * | 2004-05-18 | 2005-12-01 | Board Of Trustees Of The University Of Arkansas | Apparatus and methods of making nanostructures by inductive heating |
US20080226535A1 (en) | 2004-05-20 | 2008-09-18 | Korea Advanced Institute Of Science And Technology | Method and Apparatus for Manufacturing Carbon Nano Tube |
US9346673B2 (en) * | 2004-06-23 | 2016-05-24 | Samsung Sdi Co., Ltd. | Electrode for fuel cell, membrane-electrode assembly for fuel cell comprising the same, fuel cell system comprising the same, and method for preparing the electrode |
US7846415B2 (en) | 2004-07-23 | 2010-12-07 | Showa Denko K.K. | Production method of vapor-grown carbon fiber and apparatus therefor |
US20070287202A1 (en) * | 2004-08-31 | 2007-12-13 | Kenzo Maehashi | Method for Producing Nano-Scale Low-Dimensional Quantum Structure, and Method for Producing Integrated Circuit Using the Method for Producing the Structure |
KR100578981B1 (ko) | 2004-09-08 | 2006-05-12 | 삼성에스디아이 주식회사 | 연료전지용 전극, 이를 포함하는 연료전지 시스템 |
WO2006137852A2 (en) * | 2004-09-17 | 2006-12-28 | Board Of Trustees Of The University Of Arkansas | Apparatus and methods for synthesis of large size batches of carbon nanostructures |
KR100656985B1 (ko) * | 2004-11-02 | 2006-12-13 | 한국에너지기술연구원 | 나노필터 여재 제조 방법과 제조 장치 |
KR100657913B1 (ko) * | 2004-11-20 | 2006-12-14 | 삼성전자주식회사 | 상온 및 상압에서의 단일벽 탄소나노튜브 합성 방법 |
KR100658675B1 (ko) * | 2004-11-26 | 2006-12-15 | 삼성에스디아이 주식회사 | 연료전지용 전극, 이를 포함하는 연료전지 및 연료전지용전극의 제조방법 |
KR100669456B1 (ko) * | 2004-11-26 | 2007-01-15 | 삼성에스디아이 주식회사 | 연료전지용 전극, 이를 포함하는 연료전지 및 연료전지용전극의 제조방법 |
KR100649744B1 (ko) * | 2005-02-17 | 2006-11-27 | (주)씨엔티 | 탄소나노튜브 대량합성장치 및 대량합성방법 |
US20060198956A1 (en) * | 2005-03-04 | 2006-09-07 | Gyula Eres | Chemical vapor deposition of long vertically aligned dense carbon nanotube arrays by external control of catalyst composition |
KR100664545B1 (ko) * | 2005-03-08 | 2007-01-03 | (주)씨엔티 | 탄소나노튜브 대량합성장치 및 대량합성방법 |
GB0509499D0 (en) | 2005-05-11 | 2005-06-15 | Univ Surrey | Use of thermal barrier for low temperature growth of nanostructures using top-down heating approach |
US7754183B2 (en) * | 2005-05-20 | 2010-07-13 | Clemson University Research Foundation | Process for preparing carbon nanostructures with tailored properties and products utilizing same |
US20080199389A1 (en) * | 2005-05-23 | 2008-08-21 | Chiu Wilson K S | Method and device for producing carbon nanotubes |
KR100684797B1 (ko) * | 2005-07-29 | 2007-02-20 | 삼성에스디아이 주식회사 | 연료 전지용 전극, 이를 포함하는 막-전극 어셈블리 및이를 포함하는 연료 전지 시스템 |
AU2006347615A1 (en) * | 2005-08-08 | 2008-04-10 | Cabot Corporation | Polymeric compositions containing nanotubes |
KR100741401B1 (ko) * | 2005-08-10 | 2007-07-20 | 한국기계연구원 | 마이크로파를 이용한 나노튜브의 분리 및 정제방법 및 그에사용되는 나노튜브의 분리 및 정제장치 |
CN100418876C (zh) * | 2005-08-19 | 2008-09-17 | 清华大学 | 碳纳米管阵列制备装置及方法 |
WO2007026213A1 (en) * | 2005-08-29 | 2007-03-08 | University Of The Witwatersrand, Johannesburg | A process for producing carbon nanotubes |
CN100482580C (zh) * | 2005-10-13 | 2009-04-29 | 鸿富锦精密工业(深圳)有限公司 | 一种碳纳米管制备装置及方法 |
KR100772661B1 (ko) | 2005-11-17 | 2007-11-01 | 학교법인 포항공과대학교 | 촉매의 사용 없이 전자기파 방사를 통한 나노와이어의 제조방법 및 그에 의해 제조된 나노와이어 |
KR100741078B1 (ko) | 2005-11-22 | 2007-07-20 | 삼성에스디아이 주식회사 | 중형 다공성 탄소, 그 제조방법 및 이를 이용한 연료전지 |
KR100749542B1 (ko) * | 2005-12-07 | 2007-08-14 | 세메스 주식회사 | 탄소나노튜브 회수를 위한 장치 |
KR100749541B1 (ko) * | 2005-12-07 | 2007-08-14 | 세메스 주식회사 | 탄소나노튜브 생산을 위한 촉매 도포 장치 |
KR100732623B1 (ko) * | 2006-01-17 | 2007-06-27 | (주)씨엔티 | 탄소나노튜브 대량합성장치 |
US7955479B2 (en) * | 2006-03-07 | 2011-06-07 | Cem Corporation | Method and apparatus for conducting microwave assisted organic reactions with gas-phase reactants |
KR100832300B1 (ko) * | 2006-03-22 | 2008-05-26 | 한국에너지기술연구원 | 나노튜브 또는 나노섬유가 직접 합성 성장된 고효율금속필터의 제조방법 |
US20070281086A1 (en) * | 2006-06-05 | 2007-12-06 | Hon Hai Precision Industry Co., Ltd. | Apparatus and method for producing carbon nanotubes |
US8617650B2 (en) | 2006-09-28 | 2013-12-31 | The Hong Kong University Of Science And Technology | Synthesis of aligned carbon nanotubes on double-sided metallic substrate by chemical vapor depositon |
CN101205059B (zh) * | 2006-12-20 | 2010-09-29 | 清华大学 | 碳纳米管阵列的制备方法 |
US8075869B2 (en) * | 2007-01-24 | 2011-12-13 | Eden Energy Ltd. | Method and system for producing a hydrogen enriched fuel using microwave assisted methane decomposition on catalyst |
US8092778B2 (en) * | 2007-01-24 | 2012-01-10 | Eden Energy Ltd. | Method for producing a hydrogen enriched fuel and carbon nanotubes using microwave assisted methane decomposition on catalyst |
US8021448B2 (en) * | 2007-01-25 | 2011-09-20 | Eden Energy Ltd. | Method and system for producing a hydrogen enriched fuel using microwave assisted methane plasma decomposition on catalyst |
US7794797B2 (en) * | 2007-01-30 | 2010-09-14 | Cfd Research Corporation | Synthesis of carbon nanotubes by selectively heating catalyst |
KR100829759B1 (ko) * | 2007-04-04 | 2008-05-15 | 삼성에스디아이 주식회사 | 카바이드 유도 탄소를 이용한 카본나노튜브 혼성체, 이를포함하는 전자 방출원 및 상기 전자 방출원을 구비한 전자방출 소자 |
KR20080113805A (ko) * | 2007-06-26 | 2008-12-31 | 주식회사 비코 | 고주파 가열로를 이용한 탄소나노튜브의 대량 합성 장치 |
KR100936774B1 (ko) * | 2007-08-01 | 2010-01-15 | 세메스 주식회사 | 촉매 공급 방법, 촉매 공급 장치 및 이를 갖는탄소나노튜브 합성 장치 |
KR100901455B1 (ko) * | 2007-08-02 | 2009-06-08 | 세메스 주식회사 | 수직형 탄소나노튜브 합성 장치 |
KR101443222B1 (ko) | 2007-09-18 | 2014-09-19 | 삼성전자주식회사 | 그라펜 패턴 및 그의 형성방법 |
KR100924945B1 (ko) | 2007-11-12 | 2009-11-05 | 한국과학기술연구원 | 항균 여재 제조장치 |
US20090205254A1 (en) * | 2008-02-14 | 2009-08-20 | Zhonghua John Zhu | Method And System For Converting A Methane Gas To A Liquid Fuel |
KR100898071B1 (ko) * | 2008-08-27 | 2009-05-18 | 삼성에스디아이 주식회사 | 전자 방출 소자, 이를 구비한 전자 방출 디스플레이 장치 및 이의 제조방법 |
WO2010120572A1 (en) * | 2009-02-16 | 2010-10-21 | Board Of Trustees Of The University Of Arkansas | Methods of producing carbon nanotubes and applications of same |
SG175115A1 (en) | 2009-04-17 | 2011-11-28 | Seerstone Llc | Method for producing solid carbon by reducing carbon oxides |
DE102009023467B4 (de) * | 2009-06-02 | 2011-05-12 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Beschichtungsanlage und -verfahren |
CN102574688A (zh) | 2009-07-31 | 2012-07-11 | 麻省理工学院 | 涉及形成碳基纳米管的系统和方法 |
KR101135767B1 (ko) * | 2010-02-03 | 2012-04-16 | 고려대학교 산학협력단 | 성게 모양의 탄소나노튜브 제조 방법, 전도성 첨가제-고분자 복합재료 및 이를 이용한 연료전지용 분리판 |
WO2011109421A1 (en) * | 2010-03-01 | 2011-09-09 | Auburn University | Novel nanocomposite for sustainability of infrastructure |
WO2012091789A1 (en) | 2010-10-28 | 2012-07-05 | Massachusetts Institute Of Technology | Carbon-based nanostructure formation using large scale active growth structures |
KR101304216B1 (ko) * | 2011-04-25 | 2013-09-05 | 한국에너지기술연구원 | 나노 크기의 금속간화합물을 포함하는 탄소나노와이어의 합성방법 및 이에 의하여 합성된 탄소나노와이어 |
RU2497752C2 (ru) * | 2011-11-29 | 2013-11-10 | Инфра Текнолоджис Лтд. | Способ получения длинных углеродных нанотрубок и устройство для осуществления этого способа |
KR101424910B1 (ko) * | 2012-01-11 | 2014-07-31 | 주식회사 엘지화학 | 카본나노튜브 및 그 제조방법 |
US9475699B2 (en) | 2012-04-16 | 2016-10-25 | Seerstone Llc. | Methods for treating an offgas containing carbon oxides |
NO2749379T3 (zh) | 2012-04-16 | 2018-07-28 | ||
MX2014012551A (es) * | 2012-04-16 | 2015-05-11 | Seerstone Llc | Metodos para utilizar catalizadores de metal en convertidores catalíticos de óxido de carbono. |
JP6328611B2 (ja) | 2012-04-16 | 2018-05-23 | シーアストーン リミテッド ライアビリティ カンパニー | 非鉄触媒で炭素酸化物を還元するための方法および構造 |
CN104302575B (zh) | 2012-04-16 | 2017-03-22 | 赛尔斯通股份有限公司 | 通过还原二氧化碳来产生固体碳的方法 |
CN104302576B (zh) | 2012-04-16 | 2017-03-08 | 赛尔斯通股份有限公司 | 用于捕捉和封存碳并且用于减少废气流中碳氧化物的质量的方法和系统 |
US9896341B2 (en) | 2012-04-23 | 2018-02-20 | Seerstone Llc | Methods of forming carbon nanotubes having a bimodal size distribution |
KR101381646B1 (ko) * | 2012-04-30 | 2014-04-14 | 한국에너지기술연구원 | 동시기화법을 이용한 코어-쉘 구조의 금속-탄소 복합체의 제조방법 및 이에 의해 제조된 코어-쉘 구조의 금속-탄소 복합체 |
KR101341550B1 (ko) * | 2012-06-20 | 2013-12-13 | 한국에너지기술연구원 | 동시기화법을 이용하는 연료전지용 전극 촉매의 제조방법, 이에 의해 제조된 촉매를 포함하는 연료전지용 전극의 제조방법 및 이를 포함하는 연료전지 |
JP6284934B2 (ja) | 2012-07-12 | 2018-02-28 | シーアストーン リミテッド ライアビリティ カンパニー | カーボンナノチューブを含む固体炭素生成物およびそれを形成する方法 |
US10815124B2 (en) | 2012-07-12 | 2020-10-27 | Seerstone Llc | Solid carbon products comprising carbon nanotubes and methods of forming same |
MX2015000580A (es) | 2012-07-13 | 2015-08-20 | Seerstone Llc | Metodos y sistemas para formar productos de carbono solido y amoniaco. |
US9779845B2 (en) | 2012-07-18 | 2017-10-03 | Seerstone Llc | Primary voltaic sources including nanofiber Schottky barrier arrays and methods of forming same |
CN104718170A (zh) | 2012-09-04 | 2015-06-17 | Ocv智识资本有限责任公司 | 碳强化的增强纤维在含水或非水介质内的分散 |
CN104936893A (zh) | 2012-11-29 | 2015-09-23 | 赛尔斯通股份有限公司 | 用于产生固体碳材料的反应器和方法 |
CN103013441B (zh) * | 2013-01-10 | 2014-03-19 | 贵州大学 | 原位催化生长低螺旋碳纳米复合物微波吸收材料的方法 |
JP6029482B2 (ja) * | 2013-02-06 | 2016-11-24 | 日立造船株式会社 | カーボンナノチューブの剥離装置 |
WO2014134484A1 (en) | 2013-02-28 | 2014-09-04 | N12 Technologies, Inc. | Cartridge-based dispensing of nanostructure films |
EP3129135A4 (en) | 2013-03-15 | 2017-10-25 | Seerstone LLC | Reactors, systems, and methods for forming solid products |
WO2014150944A1 (en) | 2013-03-15 | 2014-09-25 | Seerstone Llc | Methods of producing hydrogen and solid carbon |
US10115844B2 (en) | 2013-03-15 | 2018-10-30 | Seerstone Llc | Electrodes comprising nanostructured carbon |
EP3113880A4 (en) | 2013-03-15 | 2018-05-16 | Seerstone LLC | Carbon oxide reduction with intermetallic and carbide catalysts |
WO2014151898A1 (en) | 2013-03-15 | 2014-09-25 | Seerstone Llc | Systems for producing solid carbon by reducing carbon oxides |
JP6355969B2 (ja) * | 2014-05-22 | 2018-07-11 | 国立研究開発法人宇宙航空研究開発機構 | グラフェン製造装置およびグラフェン製造方法 |
KR101805405B1 (ko) * | 2014-12-19 | 2017-12-07 | 이화여자대학교 산학협력단 | 무기 나노입자-탄소나노튜브 복합체, 및 이의 제조 방법 |
JP6418690B2 (ja) * | 2015-02-20 | 2018-11-07 | 学校法人早稲田大学 | カーボンナノチューブの製造装置 |
RU2614966C2 (ru) * | 2015-09-17 | 2017-03-31 | Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт машиностроения" (ФГУП ЦНИИмаш) | Способ получения углеродных нанотрубок в сверхзвуковом потоке и устройство для его осуществления |
WO2018022999A1 (en) | 2016-07-28 | 2018-02-01 | Seerstone Llc. | Solid carbon products comprising compressed carbon nanotubes in a container and methods of forming same |
CN106898494B (zh) * | 2017-03-15 | 2018-09-25 | 西安理工大学 | 一种中间相碳微球-碳纳米管复合材料的制备方法 |
FR3068028B1 (fr) * | 2017-06-26 | 2021-06-11 | Nawatechnologies | Procede de fabrication de nanotubes de carbone fixes sur un substrat |
KR101993604B1 (ko) | 2018-05-04 | 2019-06-27 | 주식회사 화인카보텍 | 화학기상증착법을 이용한 탄소나노튜브를 포함하는 금속 필터의 제조방법 |
KR102059337B1 (ko) | 2018-05-04 | 2019-12-26 | 주식회사 화인카보텍 | 화학기상증착법을 이용한 아세틸렌 가스의 분해장치 및 분해방법 |
WO2020092547A1 (en) * | 2018-10-30 | 2020-05-07 | Universty Of Washington | Radiation-assisted nanostructure synthesis and compositions thereof |
EP3988207A1 (en) | 2020-10-22 | 2022-04-27 | Bestrong International Limited | Supported metal structure |
KR20230055992A (ko) * | 2021-10-19 | 2023-04-26 | 주식회사 엘지화학 | 탄소나노튜브의 합성방법 |
KR20240022895A (ko) * | 2022-08-12 | 2024-02-20 | 대주전자재료 주식회사 | 열플라즈마를 이용한 탄소나노튜브의 합성방법 및 합성장치 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5165909A (en) * | 1984-12-06 | 1992-11-24 | Hyperion Catalysis Int'l., Inc. | Carbon fibrils and method for producing same |
US5707916A (en) * | 1984-12-06 | 1998-01-13 | Hyperion Catalysis International, Inc. | Carbon fibrils |
JPH11116218A (ja) * | 1997-10-17 | 1999-04-27 | Osaka Gas Co Ltd | 単層ナノチューブの製造方法 |
JP3363759B2 (ja) * | 1997-11-07 | 2003-01-08 | キヤノン株式会社 | カーボンナノチューブデバイスおよびその製造方法 |
US6045769A (en) * | 1997-12-08 | 2000-04-04 | Nanogram Corporation | Process for carbon production |
KR100775878B1 (ko) * | 1998-09-18 | 2007-11-13 | 윌리엄 마쉬 라이스 유니버시티 | 단일벽 탄소 나노튜브의 용매화를 용이하게 하기 위한 단일벽 탄소 나노튜브의 화학적 유도체화 및 그 유도체화된 나노튜브의 사용 방법 |
JP2000223012A (ja) * | 1999-01-31 | 2000-08-11 | Futaba Corp | 電子放出源の製造方法及び電子放出源 |
KR100376197B1 (ko) * | 1999-06-15 | 2003-03-15 | 일진나노텍 주식회사 | 탄소 소오스 가스 분해용 촉매금속막을 이용한탄소나노튜브의 저온 합성 방법 |
AT407754B (de) * | 1999-09-29 | 2001-06-25 | Electrovac | Verfahren und vorrichtung zur herstellung einer nanotube-schicht auf einem substrat |
KR100371161B1 (ko) * | 1999-12-18 | 2003-02-07 | 엘지전자 주식회사 | 전계방출소자의 제조방법 |
-
2000
- 2000-09-22 KR KR10-2000-0055829A patent/KR100382879B1/ko active IP Right Grant
-
2001
- 2001-04-25 EP EP01303763A patent/EP1190987A1/en not_active Withdrawn
- 2001-04-27 US US09/842,714 patent/US6759025B2/en not_active Expired - Fee Related
- 2001-04-27 CN CNB011155477A patent/CN1164484C/zh not_active Expired - Fee Related
- 2001-07-26 JP JP2001226015A patent/JP3481925B2/ja not_active Expired - Fee Related
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1723171B (zh) * | 2003-01-09 | 2010-10-06 | 索尼株式会社 | 制造管状碳分子的方法 |
US7828620B2 (en) | 2003-01-09 | 2010-11-09 | Sony Corporation | Method of manufacturing tubular carbon molecule and tubular carbon molecule, method of manufacturing field electron emission device and field electron emission device, and method of manufacturing display unit and display unit |
US7892063B2 (en) | 2003-01-09 | 2011-02-22 | Sony Corporation | Method of manufacturing tubular carbon molecule and tubular carbon molecule, method of manufacturing recording apparatus and recording apparatus, method of manufacturing field electron emission device and field electron emission device, and method of manufacturing display unit and display unit |
CN100369205C (zh) * | 2003-05-01 | 2008-02-13 | 三星电子株式会社 | 用碳纳米管形成半导体装置用导电线的方法及半导体装置 |
CN1960942B (zh) * | 2004-06-04 | 2013-04-10 | 独立行政法人科学技术振兴机构 | 原料喷射式碳纳米结构体制造方法及装置 |
CN1982212B (zh) * | 2005-12-16 | 2010-05-19 | 细美事有限公司 | 合成碳纳米管的装置和方法 |
US9574300B2 (en) | 2007-01-03 | 2017-02-21 | Applied Nanostructured Solutions, Llc | CNT-infused carbon fiber materials and process therefor |
US9005755B2 (en) | 2007-01-03 | 2015-04-14 | Applied Nanostructured Solutions, Llc | CNS-infused carbon nanomaterials and process therefor |
US9573812B2 (en) | 2007-01-03 | 2017-02-21 | Applied Nanostructured Solutions, Llc | CNT-infused metal fiber materials and process therefor |
US8951631B2 (en) | 2007-01-03 | 2015-02-10 | Applied Nanostructured Solutions, Llc | CNT-infused metal fiber materials and process therefor |
US8951632B2 (en) | 2007-01-03 | 2015-02-10 | Applied Nanostructured Solutions, Llc | CNT-infused carbon fiber materials and process therefor |
CN101658817A (zh) * | 2008-08-29 | 2010-03-03 | 三星电子株式会社 | 碳纳米管板的制造方法 |
US8580342B2 (en) | 2009-02-27 | 2013-11-12 | Applied Nanostructured Solutions, Llc | Low temperature CNT growth using gas-preheat method |
US10138128B2 (en) | 2009-03-03 | 2018-11-27 | Applied Nanostructured Solutions, Llc | System and method for surface treatment and barrier coating of fibers for in situ CNT growth |
CN102388171A (zh) * | 2009-04-10 | 2012-03-21 | 应用纳米结构方案公司 | 用于在连续移动的基底上生产碳纳米管的设备和方法 |
CN102388171B (zh) * | 2009-04-10 | 2015-02-11 | 应用纳米结构方案公司 | 用于在连续移动的基底上生产碳纳米管的设备和方法 |
US8969225B2 (en) | 2009-08-03 | 2015-03-03 | Applied Nano Structured Soultions, LLC | Incorporation of nanoparticles in composite fibers |
US8784937B2 (en) | 2010-09-14 | 2014-07-22 | Applied Nanostructured Solutions, Llc | Glass substrates having carbon nanotubes grown thereon and methods for production thereof |
US8815341B2 (en) | 2010-09-22 | 2014-08-26 | Applied Nanostructured Solutions, Llc | Carbon fiber substrates having carbon nanotubes grown thereon and processes for production thereof |
CN102191485A (zh) * | 2011-03-23 | 2011-09-21 | 长春理工大学 | 一种激光加热生长石墨烯的制作方法 |
CN102161481A (zh) * | 2011-05-18 | 2011-08-24 | 浙江大学 | 一种用于低成本大量合成碳纳米管的制备方法 |
CN102161481B (zh) * | 2011-05-18 | 2012-11-28 | 浙江大学 | 一种用于低成本大量合成碳纳米管的制备方法 |
CN104812701A (zh) * | 2012-11-22 | 2015-07-29 | 捷恩智株式会社 | 碳纳米管阵列的制造方法、纺织源构件及具备碳纳米管的构造体 |
CN104812701B (zh) * | 2012-11-22 | 2016-09-07 | 捷恩智株式会社 | 碳纳米管阵列的制造方法、纺织源构件、构造体及复合构造体 |
CN107803208A (zh) * | 2017-11-14 | 2018-03-16 | 湘潭大学 | 一种微波催化剂、其制备方法及催化分解硫化氢的方法 |
CN108511682A (zh) * | 2018-06-11 | 2018-09-07 | 四会市恒星智能科技有限公司 | 一种锂离子电池正极极片 |
CN108511682B (zh) * | 2018-06-11 | 2021-02-12 | 信丰永冠塑电科技有限公司 | 一种锂离子电池正极极片 |
CN110479310A (zh) * | 2019-09-04 | 2019-11-22 | 西南石油大学 | 用于选择性合成碳纳米管的负载型硫化钴催化剂的制备及应用 |
CN110479310B (zh) * | 2019-09-04 | 2022-03-25 | 西南石油大学 | 用于选择性合成碳纳米管的负载型硫化钴催化剂的制备及应用 |
CN111517304A (zh) * | 2020-05-30 | 2020-08-11 | 海宏(唐河)新能源科技有限公司 | 一种锂离子电池负极材料及其制备方法 |
CN112909259A (zh) * | 2021-02-04 | 2021-06-04 | 陕西科技大学 | 一种电磁感应加热法制备FeNi合金催化生长的碳纳米管材料的方法 |
Also Published As
Publication number | Publication date |
---|---|
US6759025B2 (en) | 2004-07-06 |
JP2002121015A (ja) | 2002-04-23 |
CN1164484C (zh) | 2004-09-01 |
KR100382879B1 (ko) | 2003-05-09 |
JP3481925B2 (ja) | 2003-12-22 |
US20020127170A1 (en) | 2002-09-12 |
EP1190987A1 (en) | 2002-03-27 |
KR20020023522A (ko) | 2002-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1164484C (zh) | 合成碳纳米管的方法及其所用的设备 | |
JP4514334B2 (ja) | 炭素ナノ繊維を得るためのプラズマ触媒反応 | |
US20070020167A1 (en) | Method of preparing catalyst for manufacturing carbon nanotubes | |
EP1652573B1 (en) | Method and device for manufacturing nanofilter media | |
EP1948562B1 (en) | Carbon nanotubes functionalized with fullerenes | |
US6790426B1 (en) | Carbonaceous nanotube, nanotube aggregate, method for manufacturing a carbonaceous nanotube | |
JP5747333B2 (ja) | カーボンナノチューブ配向集合体の製造方法 | |
JP5242563B2 (ja) | カーボンナノファイバー、その製造方法及び用途 | |
US20060067872A1 (en) | Method of preparing catalyst base for manufacturing carbon nanotubes and method of manufacturing carbon nanotubes employing the same | |
US20070281086A1 (en) | Apparatus and method for producing carbon nanotubes | |
JP2003238123A (ja) | ナノグラファイト構造体の作製方法 | |
US20090263310A1 (en) | Method for making carbon nanotubes | |
KR101313746B1 (ko) | 탄소 나노튜브의 저온 대량합성 방법 | |
US7897131B2 (en) | Nitrogen-mediated manufacturing method of transition metal-carbon nanotube hybrid materials | |
WO2005032711A1 (en) | Method of making catalyst for carbon nanotubes and carbon nanofibers and catalyst for carbon nanotubes and nanofibers thereof | |
KR101679693B1 (ko) | 탄소나노튜브 제조방법 및 하이브리드 탄소나노튜브 복합체 | |
Kuo et al. | Microwave-assisted chemical vapor deposition process for synthesizing carbon nanotubes | |
KR100659343B1 (ko) | 화학기상증착법을 이용한 카본 마이크로 코일 제조방법 및그 방법으로 제조된 카본 마이크로 코일 | |
KR101109046B1 (ko) | 컵형 탄소나노튜브 및 그 제조방법 | |
CN1221048A (zh) | 一种制备单壁纳米碳管的方法 | |
JP2009046325A (ja) | カーボンナノチューブおよびその製造方法 | |
JP2010126403A (ja) | ナノ炭素材料複合体及びその製造方法 | |
JP5476883B2 (ja) | ナノ炭素材料複合体及びその製造方法 | |
CN111960405A (zh) | 一种基于解耦联热处理控制碳纳米管生长状态的装置和方法及其应用 | |
JP4723228B2 (ja) | ムスターシュ繊維 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C06 | Publication | ||
PB01 | Publication | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20040901 Termination date: 20130427 |