CN1313832A - 纳米级金属氧化物粉末的制备方法 - Google Patents

纳米级金属氧化物粉末的制备方法 Download PDF

Info

Publication number
CN1313832A
CN1313832A CN99809832A CN99809832A CN1313832A CN 1313832 A CN1313832 A CN 1313832A CN 99809832 A CN99809832 A CN 99809832A CN 99809832 A CN99809832 A CN 99809832A CN 1313832 A CN1313832 A CN 1313832A
Authority
CN
China
Prior art keywords
metal
multipolymer
salt
oxyethane
condensing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN99809832A
Other languages
English (en)
Inventor
H·J·M·格伦巴尤
J·A·F·布鲁斯
R·范沃斯特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Chemical Co
Original Assignee
Dow Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Chemical Co filed Critical Dow Chemical Co
Publication of CN1313832A publication Critical patent/CN1313832A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/30Making metallic powder or suspensions thereof using chemical processes with decomposition of metal compounds, e.g. by pyrolysis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/18Methods for preparing oxides or hydroxides in general by thermal decomposition of compounds, e.g. of salts or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/212Scandium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/218Yttrium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • C01F17/229Lanthanum oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • C01F17/235Cerium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/241Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion containing two or more rare earth metals, e.g. NdPrO3 or LaNdPrO3
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • C01G23/0536Producing by wet processes, e.g. hydrolysing titanium salts by hydrolysing chloride-containing salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Catalysts (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

本发明公开了一种由金属盐和含环氧乙烷的两亲型共聚物制备纳米级金属基粉末的方法。该共聚物与金属盐混合形成金属盐/共聚物糊,之后将该糊在足以去除水和有机物的温度下煅烧形成金属氧化物。

Description

纳米级金属氧化物粉末的制备方法
本发明涉及纳米级金属或金属基粉末的制备方法。特别是,本发明涉及由金属盐溶液和两亲型材料制备纳米级粉末的方法。
已发现纳米级和亚微粒大小的金属或金属氧化物颗粒在许多应用领域是极具价值的工业品,这些应用包括制造在诸如化学工业中使用的工业催化剂,制造陶瓷、电子元件、涂料,制造催化剂、电容器、机械-化学抛光浆料、磁带,以及作为例如用于塑料、油漆或化妆品的填料。
可利用各种技术来生产具有很细粒度的金属或金属氧化物粉末。这些技术包括溶液法和高温气相以及凝相合成。对用于生产纳米级颗粒的通用技术的综合评述可参见,例如工业工程和化学研究刊物(1996年,第35卷,第349-377页)上发表的V.Hlavacek和J.A.Puszynski的“高级陶瓷材料的化学工业进展”。在由DayidJ.Wedlock,Butterworth-Heinemann Ltd.,1994,1-38页,编辑的可控颗粒,液滴和气泡形成中全面概述了溶胶-凝胶法。
尽管可使用各种各样的工艺,但大量生产纳米级粉末通常是很昂贵的并且很困难,因此这就限制了它们在诸如高技术陶瓷等方面的应用。
生产纳米级颗粒的简单化步骤披露在美国专利5240493中。所述方法需要对含有金属阳离子的聚氨酯泡沫体进行煅烧。在一相关的工艺美国专利5698483中描述了将含有金属盐的含水连续相与亲水有机聚合物混合,形成凝胶,然后对凝胶热处理以驱散掉水和有机物,剩下的残留物是纳米级粉末。通过所公开的方法由聚合物溶液生产的金属氧化物的产量是很低的,其产量可通过在中间使用干燥步骤来提高。
因此,人们希望找到一种成本合算的工艺,以使得生产出的金属或金属氧化物粉末具有一致的细粒度。也希望该工艺在金属与聚合物的比例较高的情况下进行。如果该工艺能够以高的产量生产出金属粉末则也是有利的。
本发明涉及一种通过在足以从下述组合物中驱散有机物的温度下对其进行煅烧来制备纳米级金属或金属基粉末的方法,该组合物包括(a)含有至少一种金属盐的溶液,(b)含有环氧乙烷的两亲共聚物,其中共聚物的平均分子量大于400,环氧乙烷的含量为1~90%,并且亲水-亲油平衡(HLB)为-15~15之间,以及(c)任选地一种凝结剂,但前提是当铝是唯一的金属时,该凝结剂才存在。
该方法生产高纯度和尺寸均匀的金属基粉末。与其它已知方法相比,在本方法中通过金属盐和共聚物混合形成的糊含有高浓度的金属。形成高金属浓度的糊是有利的,因为这可以减少在煅烧之前或煅烧期间需从糊中去除的水的量,并且相对于现有技术而言可降低成本。
根据本发明的方法意想不到地发现,与使用亲水聚合物的类似已知方法相比,通过将至少一种金属盐与含有环氧乙烷的两亲型共聚物混合,可使用高浓度的金属盐和盐与共聚物的较高比率。采用盐与共聚物的高比率可以使在加入共聚物时盐溶液活性的降低最小化。活性在本文中定义为,在100克金属盐溶液或金属盐/共聚物糊煅烧之后所得到的金属氧化物的克数。另外,与在没有共聚物情况下制备的颗粒的表面积相比,本方法的纳米级颗粒的表面积显著增加。纳米级颗粒指的是,原始颗粒或结晶尺寸为约200纳米或更小,优选为5~100纳米范围内的颗粒。
根据本发明将共聚物与金属盐相混合,生产出金属盐/共聚物糊。此处所用术语“糊”指的是一种柔软而光滑的固体或半固体。当将共聚物加入到金属溶液中时形成糊。
适用于本发明的共聚物为含有环氧乙烷的两亲共聚物,其中环氧乙烷的含量在1~90%之间。环氧乙烷的百分比为共聚物总重量中环氧乙烷单元的重量百分比。优选环氧乙烷的含量大于约5%的共聚物。更优选为共聚物中环氧乙烷的含量为约8%或更大。最优选的共聚物中环氧乙烷的含量为约10%或更大。优选环氧乙烷要小于约80%的共聚物。更优选的共聚物中环氧乙烷的含量要小于约75%。在本发明方法的一个优选实施方案中,共聚物为含有环氧乙烷的嵌段共聚物。
此处所用的术语“两亲的”指的是HLB在-15~15(按Davis,Proc.Intern.Congr.Surface Activity,Vol.1,伦敦1957,p.426来计算)之间的化合物。该工艺可对各种基团赋值,例如分别对亲水基团-SO- 4Na+,-COO-K+和-COOH赋值为+38.7,+21.1和+2.1;所有的疏水基团>CH-,-CH2-和-CH3均赋值为-0.475。对于给定的结构,可通过将基团数且代入下面的公式中来计算HLB的值:
HLB=∑(亲水基团数)+∑(亲油基团数)+7
在本方法中优选使用的共聚物的HLB要大于-10,并优选小于13。更优选共聚物的HLB在-5~10之间。
由上面HLB限定的亲水化合物在环境条件下或固体材料在略高于其熔点(例如,对于高分子量的线型聚环氧乙烷聚合物来说为约60℃)的高温情况下,具有与水以任意比完全混溶的趋势。与之相比,亲油化合物甚至在高温下与水也不混溶。对于本发明的共聚物来说,HLB值的范围代表了一种介于中间的情况,其所含有的材料在与水混合(或对于固体来说,在温和加热后)时形成液体两相体系,从而使两相中的至少一相含有高于痕量的另一相。与分别代表HLB值范围上下部分的亲水和亲油级相比,本发明中将中间级设定为两亲型。总之,此处所用的HLB>15表示的是亲水化合物;HLB在-15~15之间表示的是两亲化合物;HLB<-15表示的是亲油化合物。
除了共聚物中的环氧乙烷含量外,为了获得所希望的金属氧化物产量,本发明所使用的共聚物的平均分子量要大于400。优选共聚物的平均分子量要大于500。更优选共聚物的平均分子量大于750。最优选共聚物的平均分子量大于1000。通常共聚物的平均分子量要小于100000。优选共聚物的平均分子量要小于80000。更优选共聚物的平均分子量要小于50000。
具有上述环氧乙烷百分含量和平均分子量的环氧乙烷共聚物可通过本领域中用于制备环氧乙烷共聚物的标准工艺制备。
此处所用术语“金属”指的是选自元素周期表中所限定的2a,3a,4a,5a,6a;2b,3b,4b,5b,6b,7b,8,1b和2b;镧系元素;以及锕系元素中的金属或非金属元素。原则上金属可以是任何能够获得所希望粉末的元素,然而那些具有最大工业价值并适于本发明使用的元素包括:镧,钡,锶,铬,锆,钇,铝,锂,铁,锑,铋,铅,钙,镁,铜,硼,镉,铯,铈,镝,铒,铕,金,铪,钬,镥,汞,钼,铌,锇,钯,铂,镨,铼,铑,铷,钌,钐,钪,钠,钽,钍,铥,锡,锌,镍,钛,钨,铀,钒,镱,锰,钴,钆,或两种或多种的混合物。
当使用金属盐,硝酸铝,以便仅在金属盐上获得具有增加表面积的纳米级颗粒时,现已观察到铝需要与此处所披露的凝结剂结合使用。
所使用的金属可根据其用途改变,例如在用于电用途如电容器时,优选金属Bi,Ba,Cu,La,Mg,Nb,Sn,Ti,Zr,或其混合物。在用于自催化剂时,优选Al,Ce,La,Mg,Nb,Y,Zr,或其混合物。
金属通常以其盐的形式使用,这些盐溶解于溶剂体系如水,乙醇,丙酮,四氢呋喃,二甲基甲酰胺,或根据其溶解金属盐的能力和其与共聚物的相容性而选择的其它溶剂体系中。优选该溶剂是水。该溶剂中的金属盐浓度应尽可能与其溶解度极限同样高。在可能的情况下,优选使用在室温下基本上饱和的溶液的含水组合物。该盐溶液的活性取决于金属盐的溶解度以及金属或金属基化合物的分子量对金属盐分子量的比率。对易于溶解在水中的金属盐如硝酸盐来说,金属溶液的活性通常大于5%。优选该溶液的活性为7%或更大。更优选该溶液的活性为10%或更大。最优选该溶液的活性为15%或更大。通常商业上感兴趣的金属盐溶液的活性小于50%。
通常加入到金属盐中的共聚物的量不能使起始盐溶液的活性下降超过50%(与在煅烧金属盐/共聚物混合物后得到的氧化物克数相比,煅烧金属盐溶液后得到的氧化物克数)。优选加入到金属盐中的共聚物的量要使其活性下降小于45%。更优选加入到金属盐中的共聚物的量要使其活性下降小于40%。最优选要使金属盐与聚合物的比率满足使其活性下降30%或更小。
虽然不是优选的,但是可向金属盐/两亲共聚物中加入一种凝结剂。该凝结剂公开在1999年1月28日出版的WO99/03629中。通常,凝结剂为任何能引起凝固的物质,也就是能够将液态转变为固态或半固态即糊的物质。
除了有助于形成糊外,与仅加入共聚物相比,还观察到对于某些金属而言,例如钛和锆,加入凝结剂和共聚物将增加纳米级颗粒的表面积。与仅使用共聚物相比,对于某些金属而言,例如铈,加入凝结剂将减少纳米级颗粒的表面积。根据此处教导的方法,可以确定与仅使用共聚物所获得的颗粒相比,加入凝结剂是否会增加颗粒的表面积。
加入凝结剂和任何水分或含凝结剂的载体溶剂将显著降低活性。
该凝结剂可以为有机物或无机物。有利的是,该物质在高温分解/煅烧后不会留下任何残余物。当凝结剂为有机物时,适合的有机物为伯胺或仲胺,酰胺或烷醇胺。特别适合的是,例如单乙醇胺,二乙醇胺。当凝结剂为无机物时,适合的基本物质包括,例如氢氧化铵,碳酸氢铵,碳酸铵。无机的、酸性凝结剂的例子包括硫化氢。有机凝结剂的例子包括柠檬酸,亚乙基二胺四乙酸,和其它羧酸化合物。
使用时,优选的凝结剂为氢氧化物,例如铵溶液,或碱性氢氧化物溶液,例如钠或钾。由于氢氧化铵具有导致快速凝结的高碱性、高水溶解度,并且无需其它金属,因此是优选的。氢氧化铵也可在加热时挥发掉。氢氧化铵可以含水溶液,起泡的NH4气体,或可选择的由其前体原位生成来引入。前体的例子包括氨气和尿素。尿素在暴露于热能下时将分解形成初期的氨,氨在有水的环境下可立即形成氢氧化铵。通过尿素形成的氢氧化铵可极有效的使凝结剂分布在整个组合物内,并且在任何情况下优于通过直接引入或机械混合所获得的结果。
凝结剂的加入量优选至少为要使预计的金属凝结所需的量。
本发明方法所形成的金属基粉末与未加入共聚物情况下生产的粉末相比具有增加的表面积。通常,当选择此处所公开的条件时,表面积增加大于30%。加入到金属盐中的共聚物的量优选要使得粉末表面积的增加大于50%。加入到金属盐中的共聚物更优选要使得粉末的表面积增加75%。
可采用混合粘性液体时通常使用的任何设备来生产本发明的组合物。该设备在高剪切条件下,可对控制含量的含水碱性溶液与含金属盐和共聚组合物的含水组合物进行充分混合。据信在混合期间,需要高剪切以便在糊中使盐很好地分散。与之相反,据信在混合期间,低剪切速率会导致生产过程中不希望的金属盐晶体的生长。优选的方法要能够使组分有效地混合,例如在美国专利5688842中所公开的技术。
当在受控条件下煅烧以去除所有有机物时,所公开的组合物可形成尺寸基本均匀的含金属粉末。通常的煅烧条件要使组合物的温度处于300~3000℃,优选400~1000℃温度下达几分钟至几小时。任选地,所形成的金属盐/共聚物糊在煅烧前进行干燥,特别是当使用凝结剂时,在煅烧前对所形成的糊进行干燥可增加纳米级颗粒的表面积。
具有纳米级尺寸的所述含金属粉末在制造陶瓷制品、工业催化剂、电子元件、以及作为用于塑料、油漆或化妆品的填料是很有价值的。当作为填料使用的含金属粉末存在时,基于整个基体和粉末的总重量,其含量通常为0.1~50,更通常为1~25重量%。
整个基体例如可以是包括热固性或热塑性聚合物的塑料,油漆,或化妆品组合物,乳状液,或油。纳米级颗粒也可用在如美国专利4057939中公开的化学-机械抛光中。
本发明特别适用于在催化剂载体上提供催化剂,例如用于减少废弃排放的那些载体。例如,在煅烧前,首先将组合物沉积在适于废弃排放控制的催化剂载体(例如,金属,陶瓷,或其组合)的至少部分表而上。优选的催化剂基体是选自堇青石,针状莫来石和其组合的陶瓷。更优选的基体为堇青石,针形莫来石或其组合。
本发明可通过下述实施例进行说明。除特别说明外,所有含量均用重量份表示。
实施例1~9
通过将0.5,1,2和3kg的硝酸铈加入到1升水中来制备一系列硝酸铈(Ce(NO3)3·6H2O)溶液。这分别代表13.2,19.8,26.4和29.7的活性计算值。向80份的各种盐溶液中加入20重量份表1所列出的共聚物,表Ⅰ给出了引发剂的名称,配方,分子量,环氧乙烷的百分含量,环氧丙烷和/或丁烯的含量,以及共聚物的HLB。将20重量份的共聚物加入到0.5,1,2和3kg加1升水的溶液中,得到起始金属盐/共聚物混合物的活性计算值分别为10.6,15.9,21.1和23.8。共聚物A-I是本发明的实施例,共聚物J-Q用于比较。
                                                                          表Ⅰ共聚物的说明
共聚物     MW     引发剂片段     %EO     %PO     %BO     HLB
    A*     458.5  CH3+11.6CH2+O(名称为C12.6脂肪醇)     57.6     0.0     0.0     4.3
    B*     502.5  CH3+11+6CH2+O(名称为C12.6脂肪醇)     61.3     0.0     0.0     4.6
    C*     704  CH3+15CH2+O(名称为C16脂肪醇)     37.5     33.0     0.0     2.1
    D*     1563  CH3+12CH2+O(名称为C13线性醇)     46.4     40.8     0.0     5.9
    E     1691     CH3+O(甲醇)     33.8     0.0     64.3     2.7
    F     2152     CH3+O(甲醇)     67.1     0.0     31.4     12.8
    G     4090     CH3+O(甲醇)     54.6     0.0     44.6     8.7
    H*     5000     2CH2+3O+CH(甘油)     12.0     86.2     0.0     0.2
    I*     11148     2CH2+60+4CH(山梨糖醇)     14.8     83.6     0.0     0.2
    J*a     400  2CH2+2CH3+2CH+3O(一缩二丙二醇)     0.0     100.0     0.0     6.0
    K*a     400     4CH2+30(二甘醇)     100.0     0.0     0.0     10.0
    L*a     974     2CH2+60+4CH(山梨糖醇)     81.3     0.0     0.0     17.9
    M*a     4000  2CH2+2CH3+2CH+30(一缩二丙二醇)     0.0     100.0     0.0     -3.3
    N*a     5000     2CH2+30+CH(甘油)     74.0     24.2     0.0     31.5
    Oa     8000     2CH2+60+4CH(山梨糖醇)     90.0     7.7     0.0     64.4
    P*a     8000     4CH2+30(二甘醇)     100.0     0.0     0.0     67.0
    Qa     10000     4CH2+30(二甘醇)     80.0     0.0     0.0     61.8
*商业上可购自DOW化学公司a不是本发明的实施例
将共聚物加入到金属盐中之后,该混合物在旋转混合器(ServisHeidolph Model RGL 500)中快速混合。在30秒内形成糊。然后将所得到的糊在500℃下煅烧2小时,以烧去有机物(以25℃/分钟升温直至达到煅烧温度)。所得粉末的表面积用Micromeritics仪器公司的Pulse Chemisorb Model 2700通过BET N2吸附技术进行测量。表Ⅱ中给出了,在不同的金属盐浓度下获得的粉末产量和表面积。在未加入任何聚合物的情况下,由0.5,1,2和3kg金属盐加1升水(在表Ⅱ中标记为Ⅰ,Ⅱ,Ⅲ和Ⅳ)的起始溶液得到的颗粒表面积分别为54,62,65和65m2/g。其结果表明,与未使用共聚物或使用亲水或亲油共聚物相比,使用两亲型共聚物生产的纳米级颗粒的表面积明显增加。
                                                                     表Ⅱ依据表面积(S.A.)和活性得到的结果,活性定义为每100克起始共聚物凝胶中氧化物的克数
实施例 共聚物 Ⅰ的活性 Ⅰ的S.A. Ⅱ的活性 Ⅱ的S.A. Ⅲ的活性 Ⅲ的S.A. Ⅳ的活性 Ⅳ的S.A.
    1     A*     12.8     160     17.0     150     24.0     97     24.3     51
    2     B*     12.5     175     18.4     159     23.2     97     23.5     60
    3     C*     12.7     115     18.1     121     23.2     74     26.6     68
    4     D*     11.6     169     17.1     156     22.8     150     25.8     155
    5     E     11.9     143     17.3     133     23.6     140     26.5     146
    6     F     11.7     143     17.1     118     22.7     121     25.9     153
    7     G     11.2     137     16.8     110     22.0     74     24.8     21
    8     H*     12.1     132     17.9     117     22.3     101     25.3     102
    9     I*     12.9     159     18.3     129     23.4     110     26.9     123
    1C     J*a     14.1     116     17.1     56     16.1     15     16.0     14
    2C     K*a     14.2     105     16.1     78     21.4     75     21.5     47
    3C     L*a     11.4     137     16.3     24     20.6     3     23.9     4
    4C     M*a     12.1     103     20.6     84     23.8     81     23.1     44
    5c     N*a     12.9     78     17.3     61     17.5     37     20.0     42
    6C     Oa     14.5     80     17.7     60     14.9     31     9.9     28
    7c     P*a     13.0     84     17.5     72     20.1     33     15.2     31
    8C     Qa     14.2     75     17.0     56     21.5     30     18.5     17
*商业上可购自DOW化学公司a不是本发明的实施例
实施例10~13
27%的氯化钛活性水溶液是由64.4重量份TiCl4与35.6重量份水缓慢混合制成的。糊是通过将预定量的TiCl4溶液与共聚物D以表Ⅲ(Pbw=重量份)中所示的各种溶液/共聚物比率在强力搅拌下混合制备的。所得的糊在500℃下煅烧2小时。表Ⅲ中给出了加入和不加入NH4OH作为凝结剂的情况下所形成金属粉末的表面积和活性。在加入共聚物后加入氢氧化铵。表Ⅲ氯化钛的纳米级颗粒
    样品     9C*     10C*     10     11     12     13
PbwTiCl4溶液     50     50     30     30     40     40
Pbw共聚物D     0     0     20     20     10     10
PbwNH4OH(25%)     0     40     0     30     0     40
表而积(m2/g)     41     58     71     84     59     73
活性(氧化物克数/100克树脂)     27     16.7     16.1     10.6     22.4     12.6
*不是本发明的实施例
实施例14~17
锆和铈的混合金属溶液是通过将100克由Magnesium电力有限公司获得的氧化锆溶胶与18.3克硝酸铈(Ⅲ)·6H2O混合制备的。经煅烧,该Zr/Ce混合物得到约80/20重量%的ZrO/CeO2。在表Ⅳ中给出了将不同含量的金属溶液,共聚物D和作为凝结剂的NH4OH在强力搅拌下混合来制备凝胶。在加入共聚物后加入氢氧化铵。所得凝胶在500℃下煅烧2小时,表Ⅳ中给出了所形成金属粉末的表面积和活性。表Ⅳ使用锆/铈得到的纳米级粉末
    样品   11C*   12C*     14     15   13C*   14C*     16     17
    PBW金属溶液     25     25     25     25     40     40     40     40
    PBW共聚物D      0      0     15     15      0      0     10     10
 25%PBW的NH4OH      0     10      0     10      0      5      0      5
  表面积(m2/g)     10     54     87     92     11     30     76     88
      活性   1.69   3.08   2.63    1.6   2.61   2.45   3.11   1.53
*实施例不是本发明的部分
实施例18~37
醋酸铈溶液是通过将20克醋酸铈·H2O与100克水混合制备的。在表Ⅴ中给出了将不同含量的金属溶液,共聚物D和作为凝结剂的NH4OH在强力搅拌下混合来制备糊。在加入共聚物后加入氢氧化铵。所得的糊在500℃下煅烧2小时,表Ⅴ中给出了所形成金属粉末的表面积和活性。
                                                                 表Ⅴ使用醋酸铈得到的纳米级粉末
    样品     18     19     20     21     22     23     24     25     26     27
    PBW金属溶液     7.59     7.59     16.00     16.00     40.02     40.02     40.00     40.00     9.02     9.02
    PBW共聚物D     9.40     9.40     9.90     9.90     16.51     16.51     14.25     14.25     22.32     22.32
    PBW附加的水     26.75     26.75     16.75     16.75     8.87     8.87     0.00     0.00     20.60     20.60
 25%PBW的NH4OH     3.25     0.00     6.86     0.00     17.15     0.00     17.00     0.00     3.86     0.00
500℃煅烧后的表面积(m2/g)     95     111     98     121     115     123     121     130     109     107
       活性     1.4     1.3     2.8     2.9     1.5     3.9     4.3     5.1     0.7     1.6
                                                                               表Ⅴ(续)
    样品     28     29     30     31     32     33     34     35     36     37
 PBW金属溶液     15.00     15.00     25.35     25.35     11.38     11.38     19.51     19.51     10.54     10.54
 PBW共聚物D     18.57     18.57     24.14     24.14     42.26     42.26     41.81     41.81     60.20     60.20
 PBW附加的水     6.42     6.42     0.00     0.00     11.92     11.92     0.00     0.00     0.00     0.00
 25%PBW的NH4OH     6.42     0.00     10.86     0.00     4.88     0.00     8.36     0.00     4.52     0.00
 500℃煅烧后的表面积(m2/g)     124     123     128     128     113     113     111     125     98     123
      活性     0.9     3.3     1.4     3.7     1.2     1.5     1.9     2.7     1.1     1.3
实施例38~57
在实施例38~57中,除了煅烧在400℃进行2小时外,重复实施例18~37的步骤。所得纳米级颗粒的表面积如下:
    实施例 表面积(m2/g)     实施例 表面积(m2/g)
    38     125     48     109
    39     87     49     108
    40     113     50     123
    41     105     51     136
    42     126     52     114
    43     124     53     117
    44     110     54     117
    45     129     55     125
    46     111     56     106
    47     91     57     106
参考在本文中所公开的详细说明或具体实例,本发明的其它实施方案对于本领域熟练技术人员而言是显而易见的。

Claims (15)

1、一种制备纳米级金属或金属基粉末的方法,该方法通过在足以从下述组合物中驱散有机物的温度下对其进行煅烧来制备纳米级金属或金属基粉末,该组合物包括(a)含有至少一种金属盐的溶液,(b)含有环氧乙烷的两亲共聚物,其中共聚物的平均分子量大于400,环氧乙烷的含量为1~90%,并且HLB在-15~15之间,以及(c)任选的一种凝结剂;但前提是当铝是唯一的金属时,该凝结剂才存在。
2、根据权利要求1的方法,其中所述共聚物中含有5~80%的环氧乙烷,优选8~75%的环氧乙烷,更优选为10~75%的环氧乙烷。
3、根据权利要求1或2的方法,其中所述共聚物的平均分子量在500~100000之间,优选在750~80000之间。
4、根据上述任一项权利要求的方法,其中所述共聚物的HLB为-10~13,优选为0~13。
5、根据权利要求4的方法,其中所述金属盐选自元素周期表中2a~6a族,1b~8族,镧系和锕系元素中的一种或多种金属。
6、根据权利要求5的方法,其中所述金属盐选自镧,钡,锶,铬,锆,钇,铝,锂,铁,锑,铋,铅,钙,镁,铜,硼,镉,铯,铈,镝,铒,铕,金,铪,钬,钕,镥,汞,钼,铌,锇,钯,铂,镨,铼,铑,铷,钌,钐,钪,钠,钽,钍,铥,锡,锌,镍,钛,钨,铀,钒和镱中的一种或多种金属。
7、根据权利要求6的方法,其中所述金属为锆,钇,铈,镧,铌,镁,铝或其混合物。
8、根据上述任一项权利要求的方法,其中所述组合物在300~1000℃范围内的温度下热处理。
9、根据上述任一项权利要求的方法,其中所述金属盐溶液为含水盐溶液。
10、根据权利要求1的方法,其中所述组合物进一步含有(c)一种凝结剂。
11、根据权利要求10的方法,其中所述凝结剂包括氢氧化铵或烷醇胺。
12、根据上述任一项权利要求的方法,进一步包括在煅烧前,将组合物沉积在至少一部分催化剂基体表面上。
13、根据权利要求12的方法,其中所述催化剂基体是由金属,陶瓷或其组合组成的。
14、根据权利要求13的方法,其中所述催化剂基体是一种选自堇青石,莫来石和其组合的陶瓷。
15、一种催化剂,包括具有一个表面的催化剂基体,在至少一部分所述表面上沉积有权利要求1~11中任一项的金属或金属基纳米级粉末。
CN99809832A 1998-08-19 1999-08-17 纳米级金属氧化物粉末的制备方法 Pending CN1313832A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US9711998P 1998-08-19 1998-08-19
US60/097,119 1998-08-19

Publications (1)

Publication Number Publication Date
CN1313832A true CN1313832A (zh) 2001-09-19

Family

ID=22261235

Family Applications (1)

Application Number Title Priority Date Filing Date
CN99809832A Pending CN1313832A (zh) 1998-08-19 1999-08-17 纳米级金属氧化物粉末的制备方法

Country Status (16)

Country Link
US (1) US6527825B1 (zh)
EP (1) EP1112223B1 (zh)
JP (1) JP2002523618A (zh)
KR (1) KR20010072724A (zh)
CN (1) CN1313832A (zh)
AR (1) AR021774A1 (zh)
AT (1) ATE240261T1 (zh)
AU (1) AU5570799A (zh)
BR (1) BR9913381A (zh)
CA (1) CA2340096A1 (zh)
CO (1) CO5111029A1 (zh)
DE (1) DE69907931D1 (zh)
TR (1) TR200100553T2 (zh)
TW (1) TW458827B (zh)
WO (1) WO2000010913A1 (zh)
ZA (1) ZA200101050B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1317285C (zh) * 2002-09-29 2007-05-23 辽宁师范大学 催化法合成镧系金属有机化合物及其热分解制备纳米尺寸的镧系金属粉末
CN1557817B (zh) * 2004-02-03 2011-09-14 辽宁师范大学 萘镧系金属有机化合物合成及其真空热解制备纳米尺寸镧系金属粉末
CN102638974A (zh) * 2009-12-02 2012-08-15 巴斯夫欧洲公司 用表面修饰的纳米颗粒铜盐处理致植物病微生物的方法
CN104150437A (zh) * 2014-08-01 2014-11-19 宁波大学 一种负载氧化铈纳米棒的大孔材料

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1223398C (zh) 1999-12-23 2005-10-19 陶氏环球技术公司 催化装置
US6500871B1 (en) * 2000-06-08 2002-12-31 Rhodia Chimie Process for preparing colloids of particles coming from the hydrolysis of a salt of a metal cation
US6844026B2 (en) * 2001-02-12 2005-01-18 Rhodia Chimie Preparation of particles by hydrolysis of a metal cation in the presence of a polymer
AU2002363057A1 (en) * 2001-08-03 2003-05-06 Elisha Holding Llc An electrolytic and electroless process for treating metallic surfaces and products formed thereby
KR100483482B1 (ko) * 2001-08-24 2005-04-15 일양화학 주식회사 오산화안티몬의 나노분말 제조 방법
EP1298092A1 (de) * 2001-09-28 2003-04-02 Spiess -Urania Chemicals GmbH Kontrollierte Morphogenese von Kupfersalzen
KR100476557B1 (ko) * 2002-04-24 2005-03-17 삼성전기주식회사 나노크기의 금속입자 형성방법 및 이를 이용한 전도층형성방법
US7205049B2 (en) * 2004-04-16 2007-04-17 Tioxoclean Inc. Metal peroxide films
US7482382B2 (en) * 2004-05-19 2009-01-27 The Texas A&M University System Process for preparing nano-sized metal oxide particles
US20070004840A1 (en) * 2004-05-19 2007-01-04 Texas A&M University Zinc oxide polymer nanocomposites and methods of producing zinc oxide polymer nanocomposites
CN1622283A (zh) * 2004-12-15 2005-06-01 贺平 复合氧化物半导体纳米材料的制备方法
JP4767562B2 (ja) * 2005-03-11 2011-09-07 住友大阪セメント株式会社 ナノ粒子の製造方法
EP1879833A4 (en) * 2005-05-02 2009-09-30 Symyx Technologies Inc HIGH SURFACE METAL, METAL OXIDE MATERIALS AND METHOD OF MANUFACTURING THEREOF
KR100713298B1 (ko) * 2005-09-08 2007-05-04 한화석유화학 주식회사 내열성이 우수한 금속산화물 및 이의 제조방법
JP4950569B2 (ja) * 2006-06-20 2012-06-13 大陽日酸株式会社 シール材
JP4960453B2 (ja) 2006-07-21 2012-06-27 ダウ グローバル テクノロジーズ エルエルシー 改善されたディーゼル粒子フィルター
US8344054B2 (en) * 2007-07-24 2013-01-01 The Texas A & M University System Polymer nanocomposites including dispersed nanoparticles and inorganic nanoplatelets
EP2093192A1 (en) * 2008-02-25 2009-08-26 Koninklijke Philips Electronics N.V. Preparation of nanoparticles from metal salts
PE20110204A1 (es) * 2008-07-08 2011-04-28 Basf Se Proceso para la obtencion de compuestos de cobre nanoparticulados de superficie modificada
EP2310157B1 (de) * 2008-07-23 2013-04-10 Construction Research & Technology GmbH Verfahren zur herstellung von metallnanopartikeln in polyolen
RU2442751C1 (ru) * 2010-11-08 2012-02-20 Учреждение Российской академии наук Институт проблем химико-энергетических технологий Сибирского отделения РАН (ИПХЭТ СО РАН) Способ получения наноразмерных частиц оксида меди
WO2012109126A1 (en) 2011-02-08 2012-08-16 Dow Global Technologies Llc System and method for reducing emissions from a combustion process
RU2461668C1 (ru) * 2011-03-16 2012-09-20 Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук Способ получения наноразмерных частиц сложных оксидов металлов
RU2505379C1 (ru) * 2012-10-30 2014-01-27 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Способ получения нанопорошков оксида цинка с поверхностным модифицированием для использования в строительных герметиках
WO2021251436A1 (ja) * 2020-06-10 2021-12-16 東レ株式会社 酸化セリウムナノ粒子、酸化セリウムナノ粒子を含む分散液、抗酸化剤、酸化剤および酸化セリウムナノ粒子の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4367259A (en) 1981-07-27 1983-01-04 W. R. Grace & Co. Sound deadening material
US4929433A (en) 1987-10-22 1990-05-29 Alfred University Method for the preparation of sinterable nitrides
GB8913978D0 (en) * 1989-06-17 1989-08-09 Atomic Energy Authority Uk Catalytic treatment
US5102639A (en) 1991-04-12 1992-04-07 Engelhard Corporation Praseodymium-palladium binary oxide, catalyst compositions containing the same, and methods of use
US5338334A (en) 1992-01-16 1994-08-16 Institute Of Gas Technology Process for preparing submicron/nanosize ceramic powders from precursors incorporated within a polymeric foam
US5240493A (en) 1992-01-16 1993-08-31 Institute Of Gas Technology Process for preparing submicron/nanosize ceramic powders from precursors incorporated within a polymeric foam
US5698483A (en) 1995-03-17 1997-12-16 Institute Of Gas Technology Process for preparing nanosized powder
US5874374A (en) 1995-03-17 1999-02-23 Institute Of Gas Technology Method for producing engineered materials from salt/polymer aqueous solutions
DE19520448C2 (de) * 1995-06-03 1997-09-04 Schott Glaswerke Verfahren zur Herstellung von feinteiligen Multikomponenten-Glaspulvern zur Verwendung als Glasfluß für die Erzeugung von Schichten und Dekoren auf Glas, Glaskeramik oder Keramik
GB9709449D0 (en) * 1997-05-10 1997-07-02 Univ Warwick Low temperature production of metal oxides
US5998523A (en) * 1997-07-18 1999-12-07 The Dow Chemical Company Composition comprising a metal salt and metal powder therefrom by the calcining thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1317285C (zh) * 2002-09-29 2007-05-23 辽宁师范大学 催化法合成镧系金属有机化合物及其热分解制备纳米尺寸的镧系金属粉末
CN1557817B (zh) * 2004-02-03 2011-09-14 辽宁师范大学 萘镧系金属有机化合物合成及其真空热解制备纳米尺寸镧系金属粉末
CN102638974A (zh) * 2009-12-02 2012-08-15 巴斯夫欧洲公司 用表面修饰的纳米颗粒铜盐处理致植物病微生物的方法
CN104150437A (zh) * 2014-08-01 2014-11-19 宁波大学 一种负载氧化铈纳米棒的大孔材料

Also Published As

Publication number Publication date
AU5570799A (en) 2000-03-14
KR20010072724A (ko) 2001-07-31
ZA200101050B (en) 2001-10-18
JP2002523618A (ja) 2002-07-30
CA2340096A1 (en) 2000-03-02
AR021774A1 (es) 2002-08-07
EP1112223B1 (en) 2003-05-14
US6527825B1 (en) 2003-03-04
TW458827B (en) 2001-10-11
CO5111029A1 (es) 2001-12-26
BR9913381A (pt) 2001-05-22
ATE240261T1 (de) 2003-05-15
TR200100553T2 (tr) 2001-07-23
WO2000010913A1 (en) 2000-03-02
DE69907931D1 (de) 2003-06-18
EP1112223A1 (en) 2001-07-04

Similar Documents

Publication Publication Date Title
CN1313832A (zh) 纳米级金属氧化物粉末的制备方法
CN1083402C (zh) 钙钛矿型复合氧化物析出物的制造方法
DE3882952T2 (de) Lanthanide enthaltender Katalysatorträger.
CN100439252C (zh) 金属氧化物固溶体及其制备方法和用途
DE69904674T2 (de) Mischoxid auf der Basis von Cerium und Zirkonium, Verfahren zu seiner Herstellung und Katalysatormaterial für Abgasreinigung
JP5127380B2 (ja) セリア−ジルコニア系複合酸化物及びその製造方法、並びにそのセリア−ジルコニア系複合酸化物を用いた排ガス浄化用触媒
DE10392447T5 (de) Ceroxid-basierte Mischmetall-Oxidstruktur, einschließlich des Herstellungsverfarhrens und der Verwendung
CN101056815A (zh) 磁性氧化物纳米颗粒和金属氧化物纳米颗粒的制造方法
CN103182302B (zh) 具有核壳结构的稀土锆基复合氧化物及其制备方法和应用
JP7352487B2 (ja) アンモニア分解触媒
CN1054972A (zh) 丙烯酸的生产方法
DE60111690T2 (de) Katalysator für die Dampfreformierung von Methanol und Methode zur Herstellung von Wasserstoff mit diesem Katalysator
CN1962051A (zh) 高比表面铈锆复合氧化物固溶体组合物及其制备方法
DE112018001183T5 (de) Mischoxidkatalysator für oxidative Kopplung von Methan
CN100351178C (zh) 铈基复合氧化物、其烧结体和制备方法
JP3985111B2 (ja) ジルコニア−セリア組成物の製造方法
JP7370522B2 (ja) Voc除去触媒及びその製造方法
DE102010049604B4 (de) Niedertemperatur-NOx-Adsorptionsmaterial, Verfahren zu dessen Herstellung und Verfahren zum Reinigen von Abgas, bei dem dieses verwendet wird
DE602004002021T2 (de) Katalysatorträger auf der Basis eines Al-Ti Verbundoxid, seine Herstellung, Katalysator und Verfahren zur Abgasenreinigung
CN1264329A (zh) 含有金属盐的组合物和通过煅烧组合物而制得的金属粉末
JP2001232191A (ja) 活性および活性持続性を改善した光触媒
CN1038253A (zh) 碱土金属钛酸盐的制备方法
CN1309811C (zh) 一氧化碳助燃剂及其制备方法和用途
DE102009054287A1 (de) Synthese von Seltenerdelement enthaltenden Aluminiumoxid-Nanodrähten
US20230166984A1 (en) Calcium ruthenate composition of matter and calcium ruthenate catalysts

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication