CN1238843A - 频压转换电路,延迟量确定电路,包括频压转换电路的系统,用于调节频压转换电路的输入和输出特性的方法,以及用于自动调节频压转换电路的输入和输出特性的装置 - Google Patents
频压转换电路,延迟量确定电路,包括频压转换电路的系统,用于调节频压转换电路的输入和输出特性的方法,以及用于自动调节频压转换电路的输入和输出特性的装置 Download PDFInfo
- Publication number
- CN1238843A CN1238843A CN97180005A CN97180005A CN1238843A CN 1238843 A CN1238843 A CN 1238843A CN 97180005 A CN97180005 A CN 97180005A CN 97180005 A CN97180005 A CN 97180005A CN 1238843 A CN1238843 A CN 1238843A
- Authority
- CN
- China
- Prior art keywords
- circuit
- voltage
- frequency
- delay
- pulse signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R23/00—Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
- G01R23/02—Arrangements for measuring frequency, e.g. pulse repetition rate; Arrangements for measuring period of current or voltage
- G01R23/06—Arrangements for measuring frequency, e.g. pulse repetition rate; Arrangements for measuring period of current or voltage by converting frequency into an amplitude of current or voltage
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/04—Generating or distributing clock signals or signals derived directly therefrom
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/26—Power supply means, e.g. regulation thereof
- G06F1/32—Means for saving power
- G06F1/3203—Power management, i.e. event-based initiation of a power-saving mode
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D10/00—Energy efficient computing, e.g. low power processors, power management or thermal management
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Pulse Circuits (AREA)
- Electric Clocks (AREA)
Abstract
频压转换电路(21)接收作为输入的时钟CLK,并按照时钟频率提供电压IVdd作为输出。频压转换电路(21)的输入和输出特性被调节成基本与给定的输入和输出特性匹配。
Description
技术领域
本发明涉及频压转换电路及其应用,以及延迟量确定电路。
背景技术
通常,在设计半导体集成电路(LSI)时,已经在考虑了工艺波动和温度波动的最坏条件的情况下确定了LSI的技术指标(如LSI的最小电源电压,最大工作频率等)。
在LSI工作在低于最大工作频率的频率的情况下,或者在LSI的处理能力由温度波动而改变的情况下,根据LSI的技术指标,应该可以使LSI工作在低于最小电源电压的电压下。但是,提供给LSI的电源电压已被固定,与LSI的工作环境无关。因此,LSI的功耗被部分地浪费。
本发明一个目的是提供一种适应目标电路的特性的可调节频压转换电路。
本发明另一个目的是提供一种包括频压转换电路的系统,用于提供使目标电路正常工作所要求的最小工作电压。
本发明再一个目的是提供调节该系统的频压转换电路的输入和输出特性的方法。
本发明又一个目的是提供用于自动调节该系统的频压转换电路的输入和输出特性的装置。
本发明还有一个目的是提供适于用在频压转换电路中的具有简单结构的延迟量确定电路。
发明的公开
根据本发明的频压转换电路接收作为输入的时钟,并按照该时钟的频率提供一个电压作为输出。频压转换电路的输入和输出特性可调节,使之基本上与给定的输入和输出特性相匹配。如此达到上述目的。
可以将频压转换电路构造成使得频压转换电路的输入和输出特性的斜率和偏移量可调节。
根据本发明的另一个频压转换电路包括:输入脉冲信号产生电路,用于按照时钟频率产生输入脉冲信号,该信号具有代表目标延迟量的脉宽;用于延迟输入脉冲信号的延迟电路,该延迟电路将通过延迟输入脉冲信号而获得的脉冲信号作为输出脉冲信号输出;以及延迟量-电压转换电路,用于根据输出脉冲信号相对于输入脉冲信号的延迟量,输出与目标延迟量相应的电压,并将该电压提供给延迟电路。延迟电路按照从延迟量-电压转换电路输出的电压对输入脉冲信号进行延迟。如此达到上述目的。
输入脉冲信号产生电路可以间歇地产生输入脉冲信号。
间歇地产生输入脉冲信号的周期可以改变。
在一个特定模式中,输入脉冲信号产生电路可以停止输入脉冲信号的产生。
可以将延迟电路构造成使得延迟电路的延迟时间段-电源电压特性可调节。
可以将延迟电路构造成使得延迟电路的延迟时间段-电源电压特性的斜率和偏移量可调节。
延迟电路可以包括第一延迟块,该延迟块按照从延迟量-电压转换电路输出的电压工作。第一延迟块可以包括多个第一延迟单元。可以按照第一延迟控制信号,调节多个第一延迟单元中有输入脉冲信号通过的第一延迟单元的级数。
延迟电路可以还包括按照预定的固定电压工作的第二延迟块。第二延迟块可以包括多个第二延迟单元。可以按照第二延迟控制信号,调节多个第二延迟单元中有输入脉冲信号通过的第二延迟单元的级数。
输入脉冲信号的脉宽可以被作为时钟频率的函数来确定。
该函数可以用Pw=α/f+β表示,其中Pw是输入脉冲信号的脉宽,f是时钟的频率,而α和β是常数。
延迟量-电压转换电路可以反馈控制输出电压,以便在输出脉冲信号相对于输入脉冲信号的延迟量大于目标延迟量时增大输出电压,并在输出脉冲信号相对于输入脉冲信号的延迟量小于目标延迟量时减小输出电压。
延迟量-电压转换电路可以包括确定电路,用于确定输出脉冲信号相对于输入脉冲信号的延迟量是否大于目标延迟量,并输出表示确定结果的确定信号;和电压选择电路,用于按照确定结果选择输出多个电压中的一个。
电压选择电路可以包括双向移位控制电路,用于按与确定信号对应的方向将数据移位,该数据指定在多个电压中要被选择的一个电压;和开关电路,用于根据该数据选择多个电压中的一个。
电压选择电路可以将多个电压中最高的电压作为初始输出电压输出。
电压选择电路可以包括一个电阻器,其中电阻器的一端连接到高电位,电阻器的另一端连接到低电位,并且通过将该电阻器分开来获得多个电压。
电压选择电路可以还包括与电阻器串联的开关,该开关在一个特定模式中被断开。
双向移位控制电路可以包括多级单元,并且多级单元的每一个可以包括存储数据的存储电路和2-输入、1-输出选择器。被包括在多级单元中特定级单元中的选择器的输出可以连接到存储电路上。被包括在多级单元中特定级单元中的选择器的输入可以连接到被包括在该特定级单元的前一级单元中的存储电路上,和被包括在该特定级单元的后一级单元中的存储电路上。被包括在多级单元中的每一个中的选择器可以由确定信号来控制。
双向移位控制设备可以还包括用于防止数据的删除的设备,该数据存储于在多级单元中的最前面一级单元中包括的存储电路中;和用于防止数据的删除的设备,该数据存储于在多级单元中的最后面一级单元中包括的存储电路中。
延迟量-电压转换电路可以还包括用于存储当前输出电压的前一个输出电压的设备。延迟量-电压转换电路可以将当前电压作为第一输出电压输出,并且可以将当前输出电压或当前输出电压的前一个输出电压之一作为第二输出电压输出。第一输出电压可以提供给延迟电路。
延迟量-电压转换电路可以还包括用于存储初始输出电压的设备。延迟量-电压转换电路可以将当前电压作为第一输出电压输出,并且可以将初始输出电压作为第二输出电压输出。第一输出电压可以提供给延迟电路。当当前电压增大时,初始输出电压可以被更新为当前电压。
根据本发明的延迟量确定电路包括输入脉冲信号产生电路,用于产生输入脉冲信号,该信号具有代表目标延迟量的脉宽;用于延迟输入脉冲信号的延迟电路,该延迟电路将通过延迟输入脉冲信号而获得的脉冲信号作为输出脉冲信号输出;以及确定电路,用于确定输出脉冲信号相对于输入脉冲信号的延迟量是否大于目标延迟量,并输出表示确定结果的确定信号。如此达到上述目的。
输入脉冲信号的脉宽可以可变地调节。
确定电路可以包括数据锁存电路,该电路接收作为时钟输入的输入脉冲信号和作为数据输入的输出脉冲信号,来自数据锁存电路的输出可以作为确定信号输出。
根据本发明的系统包括:按照时钟工作的目标电路,和电源管理电路,用于按照时钟频率提供使目标电路可工作所要求的最小电压。电源管理电路包括上述频压转换电路。电源管理电路将从频压转换电路输出的电压作为最小电压提供。如此达到上述目的。
该系统可以形成在单个半导体芯片上。
电源管理电路可以还包括电压转换设备,用于将给定的电源电压转换成从频压转换电路输出的电压,并且电源管理电路可以将来自电压转换设备的输出作为最小电压提供给目标电路。
根据本发明的另一个系统包括:按照时钟工作的目标电路,和频压转换电路,该电路用于接收作为输入的时钟,并按照该时钟的频率提供一个电压作为目标电路的工作电压,该系统的特征是,频压转换电路的输入和输出特性可调节,使从频压转换电路输出的电压基本上与在时钟频率下使目标电路可工作所要求的最小电压相匹配。如此达到上述目的。
目标电路可以具有多个不同的延迟时间段-电源电压特性,并且根据由合成该多个不同的延迟时间段-电源电压特性而获得的延迟时间段-电源电压特性,可以调节频压转换电路的输入和输出特性。
频压转换电路可以具有与多个不同的延迟时间段-电源电压特性相对应的多个延迟电路,可以将多个延迟电路的每一个构造成使得延迟时间段-电源电压特性可调节。
可以将频压转换电路构造成使频压转换电路的输入和输出特性的斜率和偏移量可调节。
根据本发明的方法是用于调节系统中的频压转换电路的输入和输出特性的方法,该系统包括按照时钟工作的目标电路,和频压转换电路,该电路用于接收作为输入的时钟,并按照该时钟的频率提供一个电压作为目标电路的工作电压,该方法包括如下步骤:根据按照时钟的多个频率测量的目标电路的工作电压,调节频压转换电路的输入和输出特性的斜率;和调节频压转换电路的输入和输出特性的偏移量,使目标电路在预定的时钟频率范围内可以工作。如此达到上述目的。
频压转换电路可以包括:输入脉冲信号产生电路,用于按照时钟频率产生输入脉冲信号,该信号具有代表目标延迟量的脉宽;用于延迟输入脉冲信号的延迟电路,该延迟电路将通过延迟输入脉冲信号而获得的脉冲信号作为输出脉冲信号输出;以及延迟量-电压转换电路,用于根据输出脉冲信号相对于输入脉冲信号的延迟量,输出与目标延迟量相应的电压,并将该电压提供给延迟电路;延迟电路按照从延迟量-电压转换电路输出的电压对输入脉冲信号进行延迟。通过调节延迟电路的延迟时间段-电源电压特性的斜率来调节频压转换电路的输入和输出特性的斜率。通过调节延迟电路的延迟时间段-电源电压特性的偏移量来调节频压转换电路的输入和输出特性的偏移量。
延迟电路可以包括第一延迟块,和第二延迟块,第一延迟块按照从延迟量-电压转换电路输出的电压工作,第二延迟块按照预定的固定电压工作。第一延迟块可以包括多个第一延迟单元。第二延迟块可以包括多个第二延迟单元。可以借助调节多个第一延迟单元中有输入脉冲信号通过的第一延迟单元的级数来调节延迟电路的延迟时间段-电源电压特性的斜率。可以借助调节多个第二延迟单元中有输入脉冲信号通过的第二延迟单元的级数来调节延迟电路的延迟时间段-电源电压特性的偏移量。
频压转换电路可以包括:输入脉冲信号产生电路,用于按照时钟频率产生输入脉冲信号,该信号具有代表目标延迟量的脉宽;用于延迟输入脉冲信号的延迟电路,该延迟电路将通过延迟输入脉冲信号而获得的脉冲信号作为输出脉冲信号输出;以及延迟量-电压转换电路,用于根据输出脉冲信号相对于输入脉冲信号的延迟量,输出与目标延迟量相应的电压,并将该电压提供给延迟电路;延迟电路按照从延迟量-电压转换电路输出的电压对输入脉冲信号进行延迟。通过调节作为时钟频率的函数的输入脉冲信号的脉宽来调节频压转换电路的输入和输出特性的斜率和偏移量。
该函数可以用Pw=α/f+β表示,其中Pw是输入脉冲信号的脉宽,f是时钟的频率,而α和β是常数。可以通过调节α的值来调节频压转换电路的输入和输出特性的斜率。可以通过调节β的值来调节频压转换电路的输入和输出特性的偏移量。
根据本发明的装置是用于自动调节系统中的频压转换电路的输入和输出关系的装置,该系统包括按照时钟工作的目标电路,和频压转换电路,该频压转换电路用于接收作为输入的时钟,并按照该时钟的频率提供一个电压作为目标电路的工作电压,该装置包括:自诊断设备,用于确定目标电路是否按照工作电压和时钟频率之间的关系正常工作;和调节设备,用于根据自诊断设备的确定结果来调节频压转换电路的输入和输出关系。如此实现上述目的。
自诊断设备可以包括:操作设备,用于根据输入矢量来操作目标电路,该输入矢量用于实现目标电路的最大延迟路径;和比较设备,用于将与输入矢量有关的来自目标电路的输出和与输入矢量有关的预定的期望值进行比较。
调节设备可以包括用于调节频压转换电路的输入和输出特性的斜率的设备;以及用于调节频压转换电路的输入和输出特性的偏移量的设备。
所述的装置和系统可以形成在单个半导体芯片上。
附图的简单说明
图1是示出本发明第一例中系统1的结构的示意图。
图2是示出目标电路10的延迟时间段-电源电压特性和延迟电路40的延迟时间段-电源电压特性之间关系的示意图。
图3是示出延迟电路40的结构的示意图。
图4是用于说明调节延迟电路40的延迟时间段-电源电压特性的方法的示意图。
图5是示出最小电压检测电路30的结构的示意图。
图6是示出电压选择电路33的结构的示意图。
图7是示出延迟量确定电路32的结构的示意图。
图8A到8C是示出输入脉冲信号P1和输出脉冲信号P2之间相位关系的示意图。
图9是示出从过渡状态到锁定状态的最小电压IVdd的变化的示意图。
图10A到10C是示出用于分开电阻器332的方法的示意图。
图11A是示出在适当的锁定状态下输入脉冲信号P1的上升沿和输出脉冲信号P2的上升沿之间的一致性的示意图。
图11B是示出在不适当的锁定状态下输入脉冲信号P1的上升沿和输出脉冲信号P2的上升沿之间的一致性的示意图。
图12A是示出在过渡响应时输入脉冲信号P1的产生间隔I1的实例的示意图。
图12B是示出在锁定状态下输入脉冲信号P1的产生间隔I2的实例的示意图。
图13是示出改进的电压选择电路33a的结构的示意图。
图14是示出从过渡状态到锁定状态的改进的电压选择电路33a的变化的示意图。
图15A是示出改进的状态保持电路334a的结构的示意图。
图15B是示出脉冲信号P3和P4的波形的示意图。
图16是示出从过渡状态到锁定状态的改进的电压选择电路33a的电压输出变化的示意图。
图17是示出根据本发明第一例中系统1的结构的示意图。
图18是示出延迟量-电压转换电路30a的结构的示意图。
图19是示出在将电源管理电路20用做电源管理电路的核的情况下的系统1的示意图。
图20A到20E是说明在目标电路10具有多个关键路径的情况下,根据电源电压调节频压转换电路21的输入和输出特性的原理的示意图。
图21是示出频压转换电路21的一种变型的示意图。
图22A和22B是示出输入脉冲信号P1、输出脉冲信号PA、输出脉冲信号PB和输出脉冲信号P2的示意图。
图23是示出在根据本发明第二例中系统2的变型的结构的示意图。
图24A和24B是说明通过调节输入脉冲信号P1的脉宽来调节频压转换电路21a的输入和输出特性的原理的示意图。
图25是说明用于调节频压转换电路21a的输入和输出特性的方法的示意图。
图26是示出在将电源管理电路20a用做电源管理电路的核的情况下的系统2的结构的示意图。
图27是示出用于自动调节频压转换电路21a的输入和输出特性的装置3的结构的示意图。
实施本发明的优选方式
下面将以参照附图说明实例的方式描述本发明。(例1)
图1示出了在根据本发明第一例中系统1的结构。系统1包括目标电路10和用于按照时钟CLK的频率给目标电路10提供最小工作电压Vop的电源管理电路20。系统1可以形成在单个半导体芯片上。
目标电路10例如可以是数字信号处理器(DSP)或中央处理单元(CPU)。目标电路10按照时钟CLK工作。
电源管理电路20包括最小电压检测电路30,延迟电路40和电源电路50。
最小电压检测电路30根据输入到延迟电路40的输入脉冲信号P1和从延迟电路40输出的输出脉冲信号P2之间的相位差来控制最小电压IVdd。最小电压IVdd被提供给延迟电路40和电源电路50。
输入脉冲信号P1由最小电压检测电路30产生,并被输入到延迟电路40。输入脉冲信号P1具有代表目标延迟量的脉宽。目标延迟量根据时钟CLK的频率确定。目标延迟量例如是时钟CLK的一个周期的长度。
延迟电路40对输入脉冲信号P1进行延迟。输入脉冲信号P1被延迟电路40延迟的时间长度根据最小电压IVdd而改变。被延迟电路40延迟的输入脉冲信号P1被作为输出脉冲信号P2输出到最小电压检测电路30。
电源电路50根据最小电压IVdd产生工作电压Vop。例如,电源电路50可以是电压转换器,用于在最小电压IVdd是目标电压的情况下将电源电压Vdd转换成工作电压Vop。这种电压转换器最好是DC/DC转换器,用于以高效率(例如95%)将DC电源电压Vdd(例如3V)转换成DC工作电压Vop,从而减小整个电源管理电路20的功耗。另一方面,电源电路50可以是运算放大器。
但是,在电源管理电路20中包括电源电路50并不是必须的。代替根据最小电压IVdd产生工作电压Vop,可以将受最小电压检测电路30控制的最小电压IVdd作为工作电压Vop提供给目标电路10。
图2示出目标电路10的延迟时间段-电源电压特性和延迟电路40的延迟时间段-电源电压特性之间的关系。目标电路10以工作电压Vop作为电源电压来工作。目标电路在电源电压较高时以较短的延迟时间段工作,在电源电压较低时以较长的延迟时间段工作。延迟电路40以最小电压IVdd作为电源电压来工作。
预先调节延迟电路40的延迟时间段-电源电压特性,以使之适应目标电路10的延迟时间段-电源电压特性,从而维持容差ΔV。如图2所示,当电源电压在目标电路10工作在目标延迟时间段Td的情况下为Vmin时,与目标延迟时间段Td对应的最小电压IVdd用下式表示:IVdd=Vmin+ΔV。这里ΔV≥0。
为缓冲最小电压IVdd(或由电源电路50提供的工作电压Vop)的电压下降和不同半导体芯片之间性能偏差的影响,设置这一容差ΔV。当ΔV=0(即IVdd=Vmin)时,最好在最小电压检测电路30和目标电路10之间设置一个用于将容差ΔV与从最小电压检测电路30输出的最小电压IVdd相加的电路。
目标电路10的延迟时间段-电源电压特性和延迟电路40的延迟时间段-电源电压特性之间的关系改变,从而相对于工艺波动和温度波动将容差ΔV维持在基本恒定的值。由于目标电路10和延迟电路40被集成在同一LSI芯片上,因此以这种方式维持上述关系。因此,可以通过监测延迟电路40的延迟时间段-电源电压特性,在任何环境下找到满足目标电路10的处理能力的最小电压IVdd。
图3示出延迟电路40的结构。延迟电路40包括:延迟块41,固定电压IVfix加到其上;和延迟块42,可变电压IVdd加到其上。输入脉冲信号P1通过延迟块41和延迟块42,然后被作为输出脉冲信号P2输出。
延迟块41包括m个延迟单元41-1到41-m和一个选择器41-s。这里,m是任意整数。延迟单元41-1到41-m的每一个例如可以是反相器。选择器41-s用于调节延迟单元41-1到41-m中有输入脉冲信号P1通过的延迟单元的级数N1。选择器41-s由延迟量控制信号SCTL1控制。延迟量控制信号SCTL1通过外部接线端61输入到延迟电路40(见图1)。
延迟块42包括n个延迟单元42-1到42-n和一个选择器42-s。这里,n是任意整数。延迟单元42-1到42-n的每一个例如可以是反相器。选择器42-s用于调节延迟单元42-1到42-n中有输入脉冲信号P1通过的延迟单元的级数N2。选择器42-s由延迟量控制信号SCTL2控制。延迟量控制信号SCTL2通过外部接线端62输入到延迟电路40(见图1)。这里,外部接线端61和62可以是同一个外部接线端。
在另一个结构中,目标电路10在目标电路10工作期间产生延迟控制信号SCTL1和/或延迟控制信号SCTL2,并将该信号输入给延迟电路40,从而改变延迟块41中延迟单元的级数N1和/或延迟块42中的延迟单元的级数N2。
图4是用于说明调节延迟电路40的延迟时间段-电源电压特性的方法的示意图。在图4中,实线代表目标电路10的延迟时间段-电源电压特性。目标电路10的延迟时间段-电源电压特性例如通过向目标电路10输入多个测试矢量,然后对于多个测试矢量的每一个将目标电路10的实际工作结果与预定的期望值进行比较来获得,其中多个测试矢量包括与目标电路10的最大延迟(关键路径)对应的一个测试矢量。
代表延迟电路40的延迟时间段-电源电压特性的曲线在Y轴方向上的偏移量可以借助于按照延迟控制信号SCTL1调节延迟块41中有输入脉冲信号P1通过的延迟单元的级数N1来调节。
代表延迟电路40的延迟时间段-电源电压特性的曲线的斜率可以借助于按照延迟控制信号SCTL2调节延迟块42中有输入脉冲信号P1通过的延迟单元的级数N2来调节。
例如,在图4中,黑三角(_)的曲线表示N1=0和N2=50时延迟电路40的延迟时间段-电源电压特性。黑圆圈(l)的曲线表示N1=0和N2=150时延迟电路40的延迟时间段-电源电压特性。黑三角(_)的曲线和黑圆圈(l)的曲线之间的比较显示黑圆圈(l)的曲线具有比黑三角(_)的曲线大的曲率。白圆圈()的曲线示出N1=150和N2=150目标电路10的延迟时间段-电源电压特性。黑圆圈(l)的曲线和白圆圈()的曲线之间的比较显示白圆圈()的曲线具有比黑圆圈(l)的曲线大的偏移量。
可以通过以这种方式,预先调节代表延迟电路40的延迟时间段-电源电压特性的曲线的偏移量和斜率,使延迟电路40的延迟时间段-电源电压特性按容差ΔV来适应目标电路10的延迟时间段-电源电压特性。另一方面,在一些情况下,可以通过调节曲线的斜率而不调节曲线的偏移量,使延迟电路40的延迟时间段-电源电压特性按容差ΔV来适应目标电路10的延迟时间段-电源电压特性。在这种情况下,在延迟电路40中可以省去延迟块41,从而使输入脉冲信号P1在不通过延迟块41的情况下输入到延迟块42。
图5示出最小电压检测电路30的结构。最小电压检测电路30包括输入脉冲信号产生电路31,延迟量确定电路32和电压选择电路33。
输入脉冲信号产生电路31根据时钟CLK的频率间歇地产生输入脉冲信号P1。每个输入脉冲信号P1具有代表目标延迟量的脉宽。目标延迟量由时钟CLK的频率确定。目标延迟量例如是时钟CLK的一个周期的长度。
延迟量确定电路32确定输出脉冲信号P2相对于输入脉冲信号P1的延迟量是否大于目标延迟量,并向电压选择电路33输出代表确定结果的确定信号K1。在输出脉冲信号P2相对于输入脉冲信号P1的延迟量大于目标延迟量的情况下,确定信号K1处于高电平。因此,确定信号K1可以用1位来代表。
电压选择电路33根据确定信号K1选择预先准备好的多个不同的电压之一,并将选择的电压作为最小电压IVdd输出。确定信号K1用来指示是否应输出多个电压中一个较高的电压或一个较低的电压。具体地说,当确定信号K1为高时,意味着应输出多个电压中一个较高的电压;而当确定信号K1为低时,意味着应输出多个电压中一个较低的电压。输出脉冲信号P2用来控制更新最小电压IVdd的时间。
图6示出电压选择电路33的结构。电压选择电路33包括双向移位控制电路331,电阻器332和选择电路333。
双向移位控制电路331包括D触发器331f-1到331f-5,2输入、1输出复用器331m-1到331m-5,和OR电路331o-1和331o-2。
与输出脉冲信号P2的上升沿同步地向D触发器331f-1到331f-5的每一个输入前一级D触发器或后一级D触发器。D触发器331f-1到331f-5之一保持具有值“1”的数据,而其余D触发器保持具有值“0”的数据。
复用器331m-1到331m-5各根据确定信号K1的电平选择要存储在与之对应的D触发器中的数据。
提供OR电路331o-1是为在值为“1”的数据存贮在D触发器331f-1中,并且确定信号K1处于低电平的情况下防止删除该值为“1”的数据。
类似地,提供OR电路331o-2是为在该值为“1”的数据存贮在D触发器331f-5中,并且确定信号K1处于高电平的情况下防止删除该值为“1”的数据。
OR电路331o-1和331o-2还具有当打开电源时防止处于过渡状态中的电源电路20的误动作的功能。
具有上述结构的双向移位控制电路331工作,从而按照确定信号K1使控制信号S1到S5中的一个为高,而保持其余控制信号为低。例如,当控制信号S5为高,而控制信号S1到S4为低时双向移位控制电路331的状态被称为状态1。状态1可以按如下表示。
状态1:(S1,S2,S3,S4,S5)=(0,0,0,0,1)
在状态1中,当将处于低电平的确定信号K1输入到双向移位控制电路331时,状态1改变为状态2。
状态2:(S1,S2,S3,S4,S5)=(0,0,0,1,0)
在状态2中,当将处于低电平的确定信号K1输入到双向移位控制电路331时,状态2改变为状态3。
状态3:(S1,S2,S3,S4,S5)=(0,0,1,0,0)
在状态3中,当将处于高电平的确定信号K1输入到双向移位控制电路331时,状态3改变为状态4。
状态4:(S1,S2,S3,S4,S5)=(0,0,0,1,0)
以这种方式,处于高电平的控制信号在控制信号S1到S5之间依次移位。确定信号K1的电平指示移位的方向。双向移位控制电路331状态改变的定时与输出脉冲信号P2的上升沿同步。
这样,双向移位控制电路331只根据确定信号K1和输出脉冲信号P2工作。因此,非常容易控制双向移位控制电路331。
电阻器332的一端连接到电源电压VC,电阻器332的另一端连接到地电压。按照电阻分压方法,电阻器332的点R1到R5处的电压作为电压V1到V5分别被提供给开关电路333。这里V1<V2<V3<V4<V5。
开关电路333包括多个开关元件333-1到333-5。开关元件333-1到333-5的每一个的一端连接到与之对应的电压上。控制信号S1到S5分别用于接通或关断开关元件333-1到333-5。只有对应于处于高电平的控制信号的开关元件是接通的,并且与这一开关元件对应的电压被选择输出。
由于按照目标电路10的技术指标,目标电路10在低电压范围时不工作,因此电压选择电路33最好具有将从电压选择电路333输出的电压IVdd的范围限制在预定范围的功能。电压IVdd的范围例如通过限制在双向移位控制电路331中包括的D触发器和选择器的级数来限制。
图7示出延迟量确定电路32的结构。延迟量确定电路32包括D触发器321。D触发器321具有数据输入端D,时钟输入端CK和输出端Q。输出脉冲信号P2被输入到数据输入端D。输入脉冲信号P1被输入到时钟输入端CK。确定信号K1从输出端Q输出。
两种情况中输入脉冲信号P1和输出脉冲信号P2之间的相位关系是不同的。在一种情况下,输出脉冲信号P2在输入脉冲信号P1的上升端处于低电平。在另一种情况下,输出脉冲信号P2在输入脉冲信号P1的上升端处于高电平。
图8A示出输出脉冲信号P2在输入脉冲信号P1的上升端处于低电平的情况。由于输入脉冲信号P1的脉宽与目标延迟量对应,因而这种情况对应于输出脉冲信号P2相对于输入脉冲信号P1的延迟量(实际延迟量)小于目标延迟量的情况。
在图8A所示情况下,由于延迟量确定电路32中D触发器321将输出脉冲信号P2的电平(低电平)作为输入脉冲信号P1的上升沿处的数据接收,因此延迟量确定电路32输出低电平确定信号K1。如上所述,电压选择电路33根据低电平确定信号K1控制最小电压IVdd使之比以前(接收低电平确定信号K1之前)低。结果,输出脉冲信号P2相对于输入脉冲信号P1的延迟量增加。这样,输出脉冲信号P2相对于输入脉冲信号P1的延迟量被反馈控制,从而更接近于目标延迟量。
图8B示出输出脉冲信号P2在输入脉冲信号P1的上升端处于高电平的情况。由于输入脉冲信号P1的脉宽与目标延迟量对应,因而这种情况对应于输出脉冲信号P2相对于输入脉冲信号P1的延迟量(实际延迟量)大于目标延迟量的情况。
在图8B所示情况下,由于延迟量确定电路32中D触发器321将输出脉冲信号P2的电平(高电平)作为输入脉冲信号P1的上升沿处的数据接收,因此延迟量确定电路32输出高电平确定信号K1。如上所述,电压选择电路33根据高电平确定信号K1控制最小电压IVdd,使之比以前(接收高电平确定信号K1之前)高。结果,输出脉冲信号P2相对于输入脉冲信号P1的延迟量减小。这样,输出脉冲信号P2相对于输入脉冲信号P1的延迟量被反馈控制,从而更接近于目标延迟量。
图8C示出通过上述反馈控制锁定了输入脉冲信号P1和输出脉冲信号P2之间相位关系的状态。这样,电压选择电路33反馈控制最小电压IVdd,使输入脉冲信号P1的上升沿与输出脉冲信号P2的下降沿一致。
应该注意,在这种锁定状态下,最小电压IVdd在两个电压之间交替变化。其原因是即使在锁定状态下,确定信号K1也只能处于高电平或低电平。后面将描述对于在锁定状态下维持最小电压IVdd的电平的改进。
图9示出最小电压IVdd从过渡状态到锁定状态的变化。在本例中,最小电压IVdd被初始化成可以从电压选择电路33输出的最高电压V5。为防止因目标电路10的处理能力的下降而发生误动作,最小电压IVdd最好被初始化成可以从电压选择电路33输出的最高电压。
如图9中所示,在锁定状态下最小电压IVdd在两个电压(例如电压V2和V1)之间交替变化。在该两个电压之差足够小的情况下,锁定状态下最小电压IVdd的交替变化基本上不会在目标电路10的工作中造成问题。
在预先知道锁定状态下最小电压IVdd所收敛的电压的情况下,例如以图10A和10B所示的特殊方式,通过分开电阻器332,可以抑制最小电压IVdd的交替变化。
图10A示出一个例子,在其中电压V2到V4集中在电压在锁定状态下最终所收敛的电压的附近。这样,可以抑制最小电压IVdd的交替变化,而不增大硬件的尺寸。
图10B示出一个例子,在其中电阻器332被以较短的间距分开,并且开关332-1设置在电源电压VC1/VC2和电阻器332的一端之间,因而加到电阻器332的一端的电源电压是可切换的。这样,可以根据目标电路10的类型来抑制最小电压IVdd的交替变化。
借助于通过一个低通滤波器也可以消除最小电压IVdd的交替变化。
在上述第一例中,由输入脉冲信号产生电路31间歇地产生输入脉冲信号P1。间歇地产生输入脉冲信号P1的原因为下面的(1)到(3)。
(1)为了抑制无用的功耗。
(2)在以上的描述中,电压选择电路33与输出脉冲信号P2
的上升沿同步地更新最小电压IVdd。因此,要求借助于向延迟电
路40的下一个输入脉冲信号P1使电源电压(与最小电压IVdd相
等)充分地稳定。
(3)为避免不适当的锁定状态。当连续产生输入脉冲信号P1
时,最小电压IVdd可能被不希望地反馈控制,使输入脉冲信号P1
的上升沿与输出脉冲信号P2的下降沿一致,而该输出脉冲信号
P2并不与上述输入脉冲信号P1对应。
图11A示出在适当的锁定状态下输入脉冲信号P1的上升沿和输出脉冲信号P2的上升沿之间的一致性。图11B示出在不适当的锁定状态下输入脉冲信号P1的上升沿和输出脉冲信号P2的上升沿之间的一致性。
下面将考虑由最小电压检测电路30和延迟电路40消耗的功率。
由最小电压检测电路30和延迟电路40消耗的功率主要是延迟电路40的间歇工作和电阻器332的工作消耗的。双向移位控制电路321具有基本上不消耗功率的优点。其原因是在双向移位控制电路321中,在所有D触发器中保持的数据中只有两个数据段同时改变。
为降低最小电压检测电路30和延迟电路40的功耗,下面方法是有效的。
通常,在用于便携式装置的LSI中常常准备了被称作静止模式的模式。在这种LSI是目标电路10的情况下,最好如图10C所示那样,在电阻器332的一端和电源电压VC之间设置开关332-2,使开关332-2在静止模式期间断开,以防止电流流过电阻器332。还可以构造成在静止模式期间不产生输入脉冲信号P1。
一旦被置于锁定状态,最小电压检测电路30只会跟随延迟电路40的温度变化。因此,最好在过渡响应时以较短的间隔产生输入脉冲信号P1,以将最小电压检测电路30引导到锁定状态,并在最小电压检测电路30被置于锁定状态之后以较长的间隔产生输入脉冲信号P1。这样,可以降低锁定状态下的功耗。
图12A示出在过渡响应时输入脉冲信号P1的产生间隔I1的实例。
图12B示出在锁定状态下输入脉冲信号P1的产生间隔I2的实例。
可以与LSI的复位时段相结合,利用系统来切换输入脉冲信号P1的产生间隔。其原因是在复位时最好以较短的间隔产生输入脉冲信号P1,以使最小电压检测电路30快速地进入稳定状态,并在复位之后在LSI的工作期间产生输入脉冲信号P1。这样,可以降低在复位之后在LSI的工作期间的功耗。
在来自电阻器332的输出阻抗高的情况下,可以通过缓冲器向延迟电路40提供最小电压IVdd。这样,可以降低电阻器332消耗的功率。其原因是这种缓冲器的插入提高了电阻,并从而减小了在稳定状态下流过电阻器332的电流。
下面将描述在锁定状态下用于维持最小电压IVdd的电平的电压选择电路33a。
图13示出改进的电压选择电路33a的结构。除了如图6所示的电压选择电路33的结构以外,电压选择电路33a包括状态保持电路334和开关电路335。
状态保持电路334包括D触发器334f-1到334f-5,AND电路334a-1到334a-7,和OR电路334o-1到334o-4。
与输出脉冲信号P2的上升沿同步地分别向D触发器334f-1到334f-5输入来自D触发器331f-1到331f-5的数据。因此,状态保持电路334保持紧接在当前状态之前的双向移位控制电路331的状态。下面,将紧接在当前状态之前的双向移位控制电路331的状态称为“前一状态”,而将双向移位控制电路331的当前状态称为“当前状态”。
状态保持电路334根据控制信号S1到S5输出控制信号S11到S15。当满足下面条件时控制信号S11到S15变为高,否则为低。
S11:在前一状态中S1为高,并且在当前状态中S1为高。
S12:(在前一状态中S2为高,并且在当前状态中S1为高)或(在前一状态中S1为高,并且在当前状态中S2为高)。
S13:(在前一状态中S3为高,并且在当前状态中S2为高)或(在前一状态中S2为高,并且在当前状态中S3为高)。
S14:(在前一状态中S4为高,并且在当前状态中S3为高)或(在前一状态中S3为高,并且在当前状态中S4为高)。
S15:在前一状态中S5为高,并且在当前状态中S5为高。
控制信号S1到S5之一变为高,并且在前一状态和当前状态中都为高的控制信号的位置被移动一位。因此,按照控制信号S11到S15的上述逻辑,控制信号S11到S15中变为高的控制信号,是与控制信号S1到控制信号S5的在前一状态中为高的一个控制信号的电压和控制信号S1到控制信号S5的在当前状态中为高的一个控制信号的电压中较高的那个电压对应的控制信号。
开关电路335包括多个开关元件335-1到335-5。对于开关元件335-1到335-5的每一个的一个,提供相应的电压。控制信号S11到S15分别用于控制开关元件335-1到335-5是否接通或关断。只有对应于处于高电平的控制信号的开关元件是接通的,并且与这一开关元件对应的电压被选择输出。
以这种方式,从开关电路335输出电压IVdd’。电压IVdd’被提供给电源电路50。从开关电路333输出的电压IVdd被提供给延迟电路40。
图14示出从改进的电压选择电路33a输出的电压从过渡状态到锁定状态的变化。在图14中,细线代表从电压选择电路33a提供给电源电路50的电压IVdd’的变化,粗线代表从电压选择电路33a提供给延迟电路40的电压IVdd的变化。如图14所示,在锁定状态中电压IVdd’被维持在给定的电平。
图15A示出改进的状态保持电路334a。状态保持电路334a具有比图13中所示的状态保持电路334简单的结构。可以用状态保持电路334a代替状态保持电路334。
状态保持电路334a包括D触发器334f-1到334f-5以及OR电路334o-1。
从D触发器331f-1到331f-5向D触发器334f-1到334f-5分别与脉冲信号P4的上升沿同步地输入数据。
通过对确定信号K1的非和脉冲信号P3进行逻辑0R运算获得脉冲信号P4。换句话说,脉冲信号P4只在确定信号K1处于高电平期间按照脉冲信号P3输出。确定信号K1处于高电平的阶段对应于电压IVdd被升高的阶段。
如图15B所示,脉冲信号P3与输入脉冲信号P1的相位不同。脉冲信号P3可以由输入脉冲信号产生电路31产生。
以这种方式,当从开关电路335输出的电压IVdd被升高时,将存储在D触发器334f-1到334f-5的数据更新。
因此,当从开关电路333输出的电压IVdd被升高时,从开关电路335输出的电压IVdd’被更新成具有电压IVdd的值。否则电压IVdd’不被更新。电压IVdd’的初始值等于电压IVdd的初始值。
图16示出从包括改进的状态保持电路334a的电压选择电路33a输出的电压从过渡状态到锁定状态的变化。在图16中,细线代表从电压选择电路33a提供给电源电路50的电压IVdd’的变化,粗线代表从电压选择电路33a提供给延迟电路40的电压IVdd的变化。如图16所示,在锁定状态中电压IVdd’被维持在给定的电平。
图17示出与图1的形式不同的根据本发明的第一例中系统1的结构。在图17中,与图1所示的系统1相同的元件具有相同的参考标号。
图1中的最小电压检测电路30的功能在图17中被分成输入脉冲信号产生电路31和延迟量-电压转换电路30a。
输入脉冲信号产生电路31按照时钟CLK的频率间歇地产生输入脉冲信号P1。每个输入脉冲信号P1具有代表目标延迟量的脉宽。输入脉冲信号P1被提供给延迟电路40和延迟量-电压转换电路30a。
向延迟量-电压转换电路30a输入输入脉冲信号P1和从延迟电路40输出的输出脉冲信号P2。延迟量-电压转换电路30a按照输出脉冲信号P2相对于输入脉冲信号P1的延迟量输出电压IVdd。
图18示出延迟量-电压转换电路30a的结构。延迟量-电压转换电路30a包括延迟量确定电路32和电压选择电路33。延迟量确定电路32和电压选择电路33的功能和操作与图5所示的相同,因此在这里省略对它们的说明。
本领域的技术人员可以理解,图1中所示的系统1和图17中所示的系统1实现相同的功能和操作。
可以理解输入脉冲信号产生电路31、延迟电路40和延迟量-电压转换电路31a实现的功能是,将时钟CLK作为输入来接收,并按照时钟CLK的频率提供作为输出的电压IVdd。换句话说,在图17中以虚线表示的频压转换电路21按照预定的输入和输出特性,将时钟CLK的频率(输入)转换成电压IVdd(输出)。这里,电压IVdd是通过将容差ΔV与使目标电路10工作所要求的最小电压Vmin相加而获得的。最小电压Vmin按照时钟CLK的频率来确定。这里ΔV≥0。
当ΔV=0(即IVdd=Vmin)时,最好在频压转换电路21和目标电路10之间设置一个用于将容差ΔV与从频压转换电路21输出的电压IVdd相加的电路。
在第一例中,使用延迟控制信号SCTL2对延迟电路40的延迟时间段-电源电压特性的斜率进行的调节意味着对频压转换电路21的输入和输出特性的斜率的调节。其原因是延迟电路40的电源电压等于电压IVdd,而延迟电路40的延迟时间段和时钟CLK的频率互为倒数。类似的含义是,使用延迟控制信号SCTL1对延迟电路40的延迟时间段-电源电压特性的偏移量进行的调节意味着对频压转换电路21的输入和输出特性的偏移量的调节。因此,频压转换电路21提供了被构造成其输入和输出特性的斜率和偏移量可以调节的频压转换电路的一个实施例。
延迟电路40的延迟量-电源电压特性的斜率和偏移量的调节通过调节在延迟电路40中所包括的延迟块41的延迟级数N1和延迟块42的延迟级数N2来实现。关于延迟块41和42的结构参见图3。
延迟电路40的延迟时间段-电源电压特性的斜率例如通过按照公式(1)确定延迟块42的延迟级数N2来调节。
N2=n.(KT/KINIT)…(1)
这里,KINIT代表在输入脉冲信号P1的脉宽等于时钟CLK的一个周期,延迟块42的延迟级数为n,而延迟块41的延迟级数为0的情况下延迟电路40的延迟时间段-电源电压特性的斜率。KT代表目标电路10的延迟时间段-电源电压特性的斜率。n代表延迟块42的初始延迟级数。
延迟电路40的延迟时间段-电源电压特性的偏移量,通过在确定延迟块42的延迟级数N2后,按照公式(2)确定延迟级数N1来调节。
N1=τ/t0…(2)
这里,τ代表在预定频率范围内为使频压转换电路21的输入和输出特性相对于目标电路10的特性位于上流所需要的最小偏移量。t0代表延迟块41每一级的延迟时间段。
如上所述,电源管理电路20包括可适应于具有任意特性的目标电路10的频压转换电路21。这意味着可以将电源管理电路20作为按照目标电路10供给最佳工作电压Vop的电源管理电路的核来提供。
图19示出电源管理电路20被用作电源管理电路的核的情况下系统1的结构。除图17所示的元件外,系统1包括分数除法器(PLL)65。通过接线端63向分数除法器(PLL)65输入用于设定整数倍的控制信号。
分数除法器(PLL)65通过将系统时钟SCLK与整数倍相成来产生内部时钟CLK。内部时钟CLK被提供给目标电路10和输入脉冲信号产生电路31。内部时钟CLK的频率可以通过改变在分数除法器(PLL)65中设定的整数倍来改变。这样,可以控制目标电路10的工作频率。
目标电路10的最佳频率-电源电压特性可以通过如上所述的调节延迟电路40的延迟级数来实现。
在上述第一例中,是在假设只有一个与目标电路10有关的最大延迟路径(关键路径)的条件下,描述调节频压转换电路21的输入和输出特性的方法的。但是,在实际的LSI中,目标电路10的关键路径可以根据电源电压而改变。例如,在具有RAM,ROM等被集成到一个芯片中的复杂门结构的许多LSI中,目标电路10的关键路径按照电源电压变化。
目标电路10的延迟路径有各种不同的类型。例如,有由一定数量的门级数产生的延迟路径,和由通过布线延迟在RAM或ROM中产生的延迟路径。
门的一种类型,诸如多输入NAND,当电源电压降低时会使延迟量变得大于正常的门。
这样,在实际的LSI中,目标电路10可以具有与每种电源电压有关的多个关键路径。
下面参照图20A到20E讨论在目标电路10具有依赖于电源电压的多个关键路径的情况下,调节频压转换电路21的输入和输出特性的原理。
在图20A中,直线A代表与目标电路10的第一关键路径对应的延迟时间段-电源电压特性。直线B代表与目标电路10的第二关键路径对应的延迟时间段-电源电压特性。延迟时间段-电源电压特性一般用曲线代表。但由于任何曲线都可以用适当数量的直线来近似,在这里用直线来近似延迟时间段-电源电压特性。
使用频压转换电路21(图17),有可能调节延迟电路40中包括的延迟单元的级数,从而使延迟电路40(图17)的延迟时间段-电源电压特性基本上与直线A匹配。在图20B中,虚线代表按此方式调节的延迟电路40的延迟时间段-电源电压特性。但是,根据这种调节,在延迟时间段(=时钟周期)短于时间段t1的范围内,目标电路10因第二关键路径而出现误动作。
类似地,使用图17中的频压转换电路21,有可能调节延迟电路40中包括的延迟单元的级数,从而使延迟电路40(图17)的延迟时间段-电源电压特性基本上与直线B匹配。在图20C中,虚线代表按此方式调节的延迟电路40的延迟时间段-电源电压特性。但是,根据这种调节,在延迟时间段(=时钟周期)长于时间段t1的范围内目标电路10因第一关键路径而出现误动作。
为保证相对于目标电路10可工作的所有时钟周期目标电路10都正常工作,需要实现由图20D中虚线表示的延迟时间段-电源电压特性。使用频压转换电路21(图17)可以实现这种延迟时间段-电源电压特性。但是,按照如图20D所示的延迟时间段-电源电压特性,相对于时钟周期t1来说不必要地较大的电源电压V2被提供给目标电路10。结果功率被浪费地消耗。
为保证相对于目标电路10可工作的所有时钟周期目标电路10都正常工作,同时防止无用的功耗,需要实现由图20E中虚线表示的延迟时间段-电源电压特性。
图21示出频压转换电路21(图17)的一种变型。图21中所示的频压转换电路21实现了图20E中虚线所表示的延迟时间段-电源电压特性。
图21所示的频压转换电路21包括延迟电路40a,延迟电路40b和OR电路40c,代替延迟电路40。延迟电路40a和40b的结构与延迟电路40的结构相同。关于延迟电路40的结构请参看图3。
预先调节延迟电路40a的延迟时间段-电源电压特性,使之与图20A中所示的直线A基本匹配。这种调节借助于通过接线端61a和62a向延迟电路40a输入控制信号来实现。预先调节延迟电路40b的延迟时间段-电源电压特性,使之与图20A中所示的直线B基本匹配。这种调节借助于通过接线端61b和62b向延迟电路40b输入控制信号来实现。这样,可以彼此独立地调节延迟电路40a的延迟时间段-电源电压特性和延迟电路40b的延迟时间段-电源电压特性。
输入脉冲信号产生电路31产生具有代表目标延迟量的脉宽的输入脉冲信号。这里,目标延迟量等于时钟CLK的频率的倒数(即时钟CLK的一个周期的长度=时钟周期)。将输入脉冲信号P1输入到延迟电路40a和40b。
延迟电路40a按照从延迟量-电压转换电路30a输出的电压IVdd来延迟输入脉冲信号P1。被延迟电路40a延迟的输入信号脉冲P1作为输出脉冲信号PA被输出到0R电路40c。
延迟电路40b按照从延迟量-电压转换电路30a输出的电压IVdd来延迟输入脉冲信号P1。被延迟电路40b延迟的输入信号脉冲P1作为输出脉冲信号PB被输出到OR电路40c。
OR电路40c计算输出脉冲信号PA和输出脉冲信号PB的或,并将结果作为输出脉冲信号P2输出到延迟量-电压转换电路30a。
延迟量-电压转换电路30a反馈控制最小电压IVdd,使输入脉冲信号P1的上升沿与输出脉冲信号P2的下降沿基本上相互一致,如参照图8A到8C所述的。
图22A示出在时钟周期短于时间段t1的情况下脉冲信号的波形。当时钟周期短于时间段t1时,直线B代表关键路径,如图20A中所示。因此,延迟电路40b的延迟量大于延迟电路40a的延迟量。结果,输出脉冲信号P2的下降沿与输出脉冲信号PB的下降沿一致。
图22B示出在时钟周期长于时间段t1的情况下脉冲信号的波形。当时钟周期长于时间段t1时,直线A代表关键路径,如图20A中所示。因此,延迟电路40a的延迟量大于延迟电路40b的延迟量。结果,输出脉冲信号P2的下降沿与输出脉冲信号PA的下降沿一致。
这样,当时钟周期短于时间段t1时,最小电压IVdd被反馈控制,使输入脉冲信号P1的上升沿与输出脉冲信号PB的下降沿相互一致。当时钟周期长于时间段t1时,最小电压IVdd被反馈控制,使输入脉冲信号P1的上升沿与输出脉冲信号PA的下降沿相互一致。这种控制实现了由图20E中虚线表示的延迟时间段-电源电压特性。
以这种方式,借助于图21中所示的频压转换电路21,可以调节延迟电路40a和40b的延迟时间段-电源电压特性,使之基本与通过合成对应于两个不同类型的关键路径的延迟时间段-电源电压特性而获得的延迟时间段-电源电压特性匹配。这意味着可以调节频压转换电路21的输入和输出特性,使之与合成的延迟时间段-电源电压特性对应。因此,即使当目标电路10具有两种不同类型的关键路径时,频压转换电路21也可以按照时钟CLK的频率向目标电路10输出最小电压。
即使当目标电路10具有三个或更多个关键路径时,频压转换电路21也可以按照时钟CLK的频率向目标电路10输出最小电压。当目标电路10具有三个或更多的关键路径时,并联排列与该三个或更多个关键路径对应的三个或更多个延迟电路,并将来自延迟电路的输出的OR输入到延迟量-电压转换电路30a。(例2)
图23示出了根据本发明第二例的系统2的结构。与图17所示的系统1相同的元件具有相同的参考标号。
系统2包括目标电路10和用于提供使目标电路10在时钟频率下可工作所要求的最小工作电压Vop的电源管理电路20a。系统2可以形成在单个半导体芯片上。
目标电路10例如可以是数字信号处理器(DSP)或中央处理单元(CPU)。目标电路10按照时钟CLK工作。
电源管理电路20a包括频压转换电路21a和电源电路50。
频压转换电路21a接收作为输入的时钟CLK,并按照该时钟CLK的频率提供一个电压IVdd作为输出。这样构造频压转换电路21a,使其输入和输出特性可根据两个独立的参数来调节。两个参数之一是频压转换电路21a的斜率,另一个是频压转换电路21a的偏移量。调节频压转换电路21a的输入和输出特性,使从频压转换电路21a输出的电压IVdd基本上与在时钟CLK的频率下使目标电路10工作所需的最小电压相匹配。
从频压转换电路21a输出的电压IVdd被提供给电源电路50。
电源电路50根据电压IVdd产生工作电压Vop。例如,电源电路50可以是电压转换器,用于在最小电压IVdd是目标电压的情况下将电源电压Vdd转换成工作电压Vop。这种电压转换器最好是DC/DC转换器,用于以高效率(例如95%)将DC电源电压Vdd(例如3V)转换成DC工作电压Vop,从而减小整个电源管理电路20的功耗。另一方面,电源电路50可以是运算放大器。
但是,在电源管理电路20中包括电源电路50并不是必须的。代替根据电压IVdd产生工作电压Vop,可以将来自频压转换电路21a的电压IVdd作为工作电压Vop提供给目标电路10。
频压转换电路21a包括输入脉冲信号产生电路131,延迟电路140和延迟量-电压转换电路30a。
输入脉冲信号产生电路131按照输入脉冲信号产生电路131的频率间歇地产生输入脉冲信号P1。输入脉冲信号P1具有代表目标延迟量的脉宽。输入脉冲信号P1的脉宽被作为时钟CLK的频率的函数来确定。该函数由公式(3)限定。
Pw=α/f+β…(3)
这里,Pw代表输入脉冲信号P1的脉宽,f代表时钟CLK的频率,而α和β代表常数。如下面所述,通过调节常数α的值来调节频压转换电路21a的输入和输出特性的斜率,而通过调节常数β的值来调节频压转换电路21a的输入和输出特性的偏移量。
用于调节常数α的值的控制信号通过接线端161输入。用于调节常数β的值的控制信号通过接线端162输入。
向延迟电路140提供从频压转换电路21a输出的IVdd。延迟电路140按照IVdd对输入脉冲信号P1进行延迟。来自延迟电路140的输出被提供给延迟量-电压转换电路30a作为输出脉冲信号P2。延迟电路140例如可以包括多个串联连接的延迟单元。但是,与第一例中的延迟电路40不同,不需要利用延迟控制电路控制多个延迟单元中有输入脉冲信号P1通过的延迟单元的级数。其原因是,在第二例中,可以通过调节用于确定输入脉冲信号P1的脉宽的常数α和β的值来调节频压转换电路21a的输入和输出特性。
延迟量-电压转换电路30a按照输出脉冲信号P2相对于输入脉冲信号P1的延迟量输出电压IVdd。延迟量-电压转换电路30a的结构如图18所示。
下面参照图24A和24B描述通过调节输入脉冲信号P1的脉宽来调节频压转换电路21a的输入和输出特性的原理。
在图24A和24B中,实线代表延迟电路140的初始延迟时间段-电源电压特性。延迟时间段-电源电压特性通常由图4中所示的双曲线代表。但是,由于任何曲线都可以用适当数量的直线来近似,在图24A和24B的每一个中,用直线来近似延迟时间段-电源电压特性。延迟电路140在电源电压较高时按较短的延迟时间段工作,而在电源电压较低时按较长的延迟时间段工作。延迟电路140将电压IVdd作为电源电压来工作。
下面,参照图24A,描述调节延迟时间段-电源电压特性的斜率的原理。
在图24A中,实线上的点A代表与目标延迟时间段t对应的电源电压为V(t)。换句话说,点A的坐标是(V(t),t)。实线上的点B代表与目标延迟时间段t/2对应的电源电压为V(t/2)。换句话说,点B的坐标是(V(t/2),t/2)。因此,连接点A和B的直线(实线)的斜率KAB用公式(4)获得。
KAB=(t/2-t)/{V(t/2)-V(t)}…(4)
在图24A中,通过转换延迟电路140的延迟时间段-电源电压特性,使与目标延迟时间段t对应的电源电压为V(t/2),从而获得延迟电路140的已转换的延迟时间段-电源电压特性。在图24A中用虚线表示该已转换的延迟时间段-电源电压特性。这种转换通过将具有与目标延迟时间段t有关的脉宽t/2的输入脉冲信号P1输入到延迟电路140来实现。这种转换将点A转换到点A’,将点B转换到点B’。
虚线上的点A’代表与目标延迟时间段t对应的电源电压为V(t/2)。换句话说,点A’的坐标是(V(t/2),t)。虚线上的点B’代表与目标延迟时间段t/2对应的电源电压为V(t/4)。换句话说,点B’的坐标是(V(t/4),t/2)。因此,连接点A’和B’的直线(虚线)的斜率KA’B’用公式(5)获得。
KA’B’=(t/2-t)/{V(t/4)-V(t/2)}
=(t/2-t)/{(1/2){V(t/2)-V(t)}
=2.KAB…(5)
以这种方式,通过向延迟电路140输入具有与目标延迟时间段t有关的脉宽t/2的输入脉冲信号P1,延迟电路140的延迟时间段/电源电压特性的斜率变为延迟电路140的初始延迟时间段/电源电压特性的斜率的两倍。类似地,通过向延迟电路140输入具有与目标延迟时间段t有关的脉宽t/3的输入脉冲信号P1,可以使延迟电路140的延迟时间段/电源电压特性的斜率是延迟电路140的初始延迟时间段/电源电压特性的斜率的三倍。
下面,参照图24B,描述调节延迟时间段-电源电压特性的偏移量的原理。
在图24B中,实线上的点A代表与目标延迟时间段t对应的电源电压为V(t)。换句话说,点A的坐标是(V(t),t)。实线上的点B代表与目标延迟时间段(t+5)对应的电源电压为V(t+5)。换句话说,点B的坐标是(V(t+5),t+5)。
在图24B中,通过转换延迟电路140的延迟时间段-电源电压特性,使与目标延迟时间段t对应的电源电压为V(t+5),从而获得延迟电路140的已转换的延迟时间段-电源电压特性。在图24B中用虚线表示该已转换的延迟时间段-电源电压特性。这种转换通过将具有与目标延迟时间段t有关的脉宽(t+5)的输入脉冲信号P1输入到延迟电路140来实现。这种转换将点A转换到点A’,将点B转换到点B’。
虚线上的点A’代表与目标延迟时间段t对应的电源电压为V(t+5)。换句话说,点A’的坐标是(V(t+5),t)。虚线上的点B’代表与目标延迟时间段(t+5)对应的电源电压为V(t+10)。换句话说,点B’的坐标是(V(t+10),t+5)。
以这种方式,通过向延迟电路140输入具有与目标延迟时间段t有关的脉宽(t+5)的输入脉冲信号P1,延迟电路140的延迟时间段/电源电压特性沿Y轴移动-5(nsec.)。类似地,通过向延迟电路140输入具有与目标延迟时间段t有关的脉宽(t-10)的输入脉冲信号P1,可以使延迟电路140的延迟时间段-电源电压特性沿Y轴移动+10(nsec.)。延迟时间段-电源电压特性沿Y轴的移动距离被称为延迟时间段-电源电压特性的偏移量。
这样,输入脉冲信号P1的脉宽Pw由公式(6)给出。
Pw=α.t+β…(6)
这里,α和β各为任意的常数。延迟电路140的延迟时间段-电源电压特性的斜率通过调节常数α来调节。延迟电路140的延迟时间段-电源电压特性的偏移量通过调节常数β来调节。具有脉宽Pw的输入脉冲信号P1由输入脉冲信号产生电路131产生。
当f为时钟CLK的频率时,t=1/f。因此,应理解公式(3)和公式(6)是彼此等效的。
在第二例中,使用常数α对延迟电路140的延迟时间段-电源电压特性的斜率进行的调节意味着对频压转换电路21a的输入和输出特性的斜率的调节。其原因是延迟电路140的电源电压等于电压IVdd,而延迟电路140的延迟时间段和时钟CLK的频率互为倒数。类似的含义是,使用常数β对延迟电路140的延迟时间段-电源电压特性的偏移量进行的调节意味着对频压转换电路21a的输入和输出特性的偏移量的调节。因此,频压转换电路21a提供了被构造成其输入和输出特性的斜率和偏移量可以调节的频压转换电路的一个实施例。
下面参照图25,描述调节频压转换电路21a的输入和输出特性,使按照时钟CLK的频率从频压转换电路21a输出的电压IVdd基本与使目标电路10在时钟CLK的频率下可工作所需要的最小电压匹配的方法。
步骤1:获得目标电路10的特性的斜率。可以通过对时钟CLK的至少两个工作频率,测量使目标电路10工作所需的最小电源电压,来获得目标电路10的特性的斜率;在示出延迟时间段-电源电压特性的图上画出测量的点;以及获得连接测量的点的直线的斜率。例如,假设测量了作为目标电路10在时钟CLK的频率fA下工作的最小电源电压的电压V(1/fA),并且测量了作为目标电路10在时钟CLK的频率fB下工作的最小电源电压的电压V(1/fB)。在这种情况下,通过在示出延迟时间段-电源电压特性的图上画出具有坐标(V(1/fA),1/fA)的点A和具有坐标(V(1/fB),1/fB)的点B获得图25。在图25中,直线LT代表目标电路10的特性。目标电路10的特性的斜率KTAB按公式(7)给出。
KTAB=(1/fA-1/fB)/{(V(1/fA)-V(1/fB)}…(7)
步骤2:调节频压转换电路21a的输入和输出特性,使频压转换电路21a的输入和输出特性的斜率K基本与目标电路10的特性的斜率KTAB一致。例如,可以调节频压转换电路21a的输入和输出特性,使之满足公式(8)。
|K-KTAB|<ε…(8)
这里,ε是常数,代表频压转换电路21a的输入和输出特性的斜率K和目标电路的特性的斜率KTAB之间差的绝对值的目标值。
通过按照公式(9)确定输入脉冲信号P1的脉宽Pw实现这种调节。图25中,直线L1代表在调节斜率K之后频压转换电路21a的输入和输出特性的实例。
Pw=(KINIT/KTAB)·t…(9)。
这里,KINIT代表在输入脉冲信号P1的脉宽Pw等于时钟CLK的一个周期的情况下延迟电路140的初始延迟时间段-电源电压特性的斜率。KTAB代表目标电路10的特性的斜率。t代表时钟CLK的频率的倒数(即1/f)。
步骤3:调节频压转换电路21a的输入和输出特性的偏移量,使目标电路10在预定的时钟CLK的频率范围内可以工作。通过按照公式(10)确定输入脉冲信号P1的脉宽Pw来实现这种调节。
Pw=(KINIT/KTAB)·t-τ…(10)
这里,τ代表使频压转换电路21a的输入和输出特性在预定频率范围内相对于目标电路10的特性位于上流所要求的最小偏移量的斜率。换句话说,当预定的频率范围是fmin或更大,以及fmax或更小时,确定偏移量τ使之满足公式(11)并使VL2(Y)尽可能小。
VLT(Y)≤VL2(Y)(fmin≤Y≤fmax)…(11)
这里,VLT代表表示目标电路10的特性的函数x=VLT(Y),而VL2代表表示频压转换电路21a的输入和输出特性的函数x=VL2(Y)。图25中,直线L2示出在调节斜率K和偏移量τ后频压转换电路21a的输入和输出特性的实例。
从KINIT/KTAB=α,和-τ=β,可以理解公式(10)和公式(6)彼此等效。
可以结合使用对输入脉冲信号P1的脉宽Pw的调节和在第一例中描述的对延迟电路中包括的延迟单元的级数的调节。以这种方式,有可能使频压转换电路21a的输入和输出特性基本与目标电路10的特性匹配。
如上所述,电源管理电路20a包括可适应具有任意特性的目标电路10的频压转换电路21a。这意味着可以将电源管理电路20a作为按照目标电路10供给最佳工作电压的电源管理电路的核来提供。
图26示出电源管理电路20a被用作电源管理电路的核的情况下系统2的结构。除图23所示的元件外,系统2包括分数除法器(PLL)165。通过接线端163向分数除法器(PLL)165输入用于设定整数倍的控制信号。
分数除法器(PLL)165通过将系统时钟SCLK与整数倍相乘来产生内部时钟CLK。内部时钟CLK被提供给目标电路10和输入脉冲信号产生电路131。内部时钟CLK的频率可以通过改变在分数除法器(PLL)165中设定的整数倍来改变。这样,可以控制目标电路10的工作频率。
分数除法器(PLL)165给输入脉冲信号产生电路131提供最高的时钟HCLK,该最高时钟是从分数除法器(PLL)165中包括的VCO(未示出)输出的。在该系统中,时钟CLK是通过将HCLK分频获得的时钟。使用时钟CLK和HCLK,可以在输入脉冲信号产生电路131中调节常数α的值。
向输入脉冲信号产生电路131输入系统时钟SCLK。系统时钟SCLK被用来在输入脉冲信号产生电路131中调节常数β的值。其原因是系统时钟SCLK不依赖于温度或工艺。
目标电路10的最佳频率-电源电压特性可以通过使用上述时钟调节输入脉冲信号P1的脉宽来实现。
下面将描述用于自动调节在包括目标电路10和频压转换电路21a的系统2中的频压转换电路21a的输入和输出特性的装置3。系统2和装置3可以形成在单个半导体芯片上。
目标电路10按照时钟CLK工作。频压转换电路21a接收作为输入的时钟CLK,并按照时钟CLK的频率输出作为输出的电压IVdd。电源电路50根据电压IVdd给目标电路10提供用于目标电路10的工作电压Vop。另一方面,从频压转换电路21a输出的电压IVdd可以作为用于目标电路10的工作电压Vop提供给目标电路10。
图27示出装置3的结构。装置3包括工作电路180,比较电路181和调节电路182。
工作电路180在时钟CLK的频率下根据输入矢量实际操作目标电路10,并输出操作结果。作为输入矢量,使用用于实现最大延迟路径的输入矢量。
比较电路181将目标电路10的操作结果与预期的值进行比较,并输出比较结果。根据目标电路10的工作技术指标预先在存储器(未示出)中存储预期的值。比较结果按正常(OK)或不正常(NG)表示。
这样,工作电路180和比较电路181具有确定目标电路10是否正常工作的自诊断功能,这与目标电路10的工作电压Vop和时钟CLK的频率之间的关系有关。
当比较结果表示正常工作(OK)时,调节电路182将工作电压Vop增加预定的电压ΔV。当比较结果表示不正常工作(NG)时,调节电路182将工作电压Vop减小预定的电压ΔV。通过这种反馈控制,调节电路182相对于时钟CLK的频率检测出使目标电路10可工作所需的最小电压。以这种方式,调节电路182至少相对于时钟CLK的两个频率检测出最小电压。这样,调节电路182可以检测目标电路10的特性。
接着,调节电路182调节频压转换电路21a的输入和输出特性的斜率和偏移量,使在时钟CLK的频率处从频压转换电路21a输出的电压IVdd基本与在时钟CLK的频率处使目标电路10可工作所要求的最小电压匹配。调节频压转换电路21a的输入和输出特性的斜率和偏移量的方法与参照图25描述的方法类似。
另一方面,调节电路182可以通过调节在延迟电路中包括的延迟单元的级数来调节频压转换电路21a的输入和输出特性的斜率和偏移量,如在第一例中所述的那样。再另一方面,调节电路182可以将输入脉冲信号P1的脉宽Pw的调节与延迟电路中包括的延迟单元级数的调节结合起来。
已通过最佳实施例的方式描述了本发明。但是,上述实例不是用来限制本发明范围的。本领域的技术人员应理解对上述实例的修改和变化是可能的。这种修改和变化应被解释为包括在本发明的范围内。
工业实用性
根据本发明的频压转换电路,可以调节该频压转换电路的输入和输出特性,使之适应目标电路的特性。这样,可以给任何目标电路提供适当的电压。
根据本发明包括频压转换电路的系统,可以提供目标电路正常工作所要求的最小工作电压。这样,减小无用的功耗。
根据本发明调节频压转换电路的输入和输出特性的方法和装置,可以调节该频压转换电路的输入和输出特性,使之适应目标电路的特性。这样,可以给任何目标电路提供适当的电压。
根据本发明的延迟量确定电路,可以以简单的结构确定实际的延迟量是否大于所希望的延迟量。这种延迟量确定电路适用于频压转换电路中。
Claims (41)
1.一种频压转换电路,用于接收作为输入的时钟,并按照该时钟的频率提供一个电压作为输出,
其中,频压转换电路的输入和输出特性可调节,使之基本上与给定的输入和输出特性相匹配。
2.如权利要求1的频压转换电路,其特征在于,将频压转换电路构造成使得频压转换电路的输入和输出特性的斜率和偏移量可调节。
3.一种频压转换电路,包括:
输入脉冲信号产生电路,用于按照时钟频率产生输入脉冲信号,该信号具有代表目标延迟量的脉宽;
用于延迟输入脉冲信号的延迟电路,该延迟电路将通过延迟输入脉冲信号而获得的脉冲信号作为输出脉冲信号输出;以及
延迟量-电压转换电路,用于根据输出脉冲信号相对于输入脉冲信号的延迟量,输出与目标延迟量相应的电压,并将该电压提供给延迟电路;
其中,延迟电路按照从延迟量-电压转换电路输出的电压对输入脉冲信号进行延迟。
4.如权利要求3的频压转换电路,其特征在于,输入脉冲信号产生电路间歇地产生输入脉冲信号。
5.如权利要求4的频压转换电路,其特征在于,间歇地产生输入脉冲信号的周期可以改变。
6.如权利要求3的频压转换电路,其特征在于,在一个特定模式中,输入脉冲信号产生电路停止输入脉冲信号的产生。
7.如权利要求3的频压转换电路,其特征在于,将延迟电路构造成使得延迟电路的延迟时间段-电源电压特性可调节。
8.如权利要求3的频压转换电路,其特征在于,将延迟电路构造成使得延迟电路的延迟时间段-电源电压特性的斜率和偏移量可调节。
9.如权利要求3的频压转换电路,其特征在于,延迟电路包括第一延迟块,该延迟块按照从延迟量-电压转换电路输出的电压工作,第一延迟块包括多个第一延迟单元,并且按照第一延迟控制信号,调节多个第一延迟单元中有输入脉冲信号通过的第一延迟单元的级数。
10.如权利要求9的频压转换电路,其特征在于,延迟电路还包括按照预定的固定电压工作的第二延迟块,第二延迟块包括多个第二延迟单元,并且按照第二延迟控制信号,调节多个第二延迟单元中有输入脉冲信号通过的第二延迟单元的级数。
11.如权利要求3的频压转换电路,其特征在于,输入脉冲信号的脉宽被作为时钟频率的函数来确定。
12.如权利要求11的频压转换电路,其特征在于,该函数用Pw=α/f+β表示,其中Pw是输入脉冲信号的脉宽,f是时钟的频率,而α和β是常数。
13.如权利要求3的频压转换电路,其特征在于,延迟量-电压转换电路反馈控制输出电压,以便在输出脉冲信号相对于输入脉冲信号的延迟量大于目标延迟量时增大输出电压,并在输出脉冲信号相对于输入脉冲信号的延迟量小于目标延迟量时减小输出电压。
14.如权利要求3的频压转换电路,其特征在于,延迟量-电压转换电路包括:
确定电路,用于确定输出脉冲信号相对于输入脉冲信号的延迟量是否大于目标延迟量,并输出表示确定结果的确定信号;和
电压选择电路,用于按照确定结果选择输出多个电压中的一个。
15.如权利要求14的频压转换电路,其特征在于,电压选择电路包括:
双向移位控制电路,用于按与确定信号对应的方向将数据移位,该数据指定在多个电压中要被选择的一个电压;和
开关电路,用于根据该数据选择多个电压中的一个。
16.如权利要求14的频压转换电路,其特征在于,电压选择电路将多个电压中最高的电压作为初始输出电压输出。
17.如权利要求14的频压转换电路,其特征在于,电压选择电路包括一个电阻器,电阻器的一端连接到高电位,电阻器的另一端连接到低电位,并且通过将该电阻器分开来获得多个电压。
18.如权利要求17的频压转换电路,其特征在于,电压选择电路还包括与电阻器串联的开关,该开关在一个特定模式中被断开。
19.如权利要求15的频压转换电路,其特征在于,
双向移位控制电路包括多级单元,并且多级单元的每一个包括存储数据的存储电路和2-输入、1-输出选择器,
被包括在多级单元中特定级单元中的选择器的输出连接到存储电路上,
被包括在多级单元中特定级单元中的选择器的输入连接到被包括在该特定级单元的前一级单元中的存储电路上,和被包括在该特定级单元的后一级单元中的存储电路上,以及
被包括在多级单元中的每一个中的选择器由确定信号来控制。
20.如权利要求19的频压转换电路,其特征在于,双向移位控制设备还包括:
用于防止数据的删除的设备,该数据存储于在多级单元中的最前面一级单元中包括的存储电路中;和
用于防止数据的删除的设备,该数据存储于在多级单元中的最后面一级单元中包括的存储电路中。
21.如权利要求3的频压转换电路,其特征在于,
延迟量-电压转换电路还包括用于存储当前输出电压的前一个输出电压的设备,和
延迟量-电压转换电路将当前电压作为第一输出电压输出,并且将当前输出电压或当前输出电压的前一个输出电压之一作为第二输出电压输出,并且第一输出电压被提供给延迟电路。
22.如权利要求3的频压转换电路,其特征在于,
延迟量-电压转换电路还包括用于存储初始输出电压的设备,
延迟量-电压转换电路将当前电压作为第一输出电压输出,并且将初始输出电压作为第二输出电压输出,并且第一输出电压被提供给延迟电路,并且
当当前电压增大时,初始输出电压被更新为当前电压。
23.一种延迟量确定电路,包括:
输入脉冲信号产生电路,用于产生输入脉冲信号,该信号具有代表目标延迟量的脉宽;
用于延迟输入脉冲信号的延迟电路,该延迟电路将通过延迟输入脉冲信号而获得的脉冲信号作为输出脉冲信号输出;以及
确定电路,用于确定输出脉冲信号相对于输入脉冲信号的延迟量是否大于目标延迟量,并输出表示确定结果的确定信号。
24.如权利要求23的延迟量确定电路,其特征在于,输入脉冲信号的脉宽可以可变地调节。
25.如权利要求23的延迟量确定电路,其特征在于,确定电路包括数据锁存电路,该电路接收作为时钟输入的输入脉冲信号和作为数据输入的输出脉冲信号,来自数据锁存电路的输出被作为确定信号输出。
26.一种系统,包括按照时钟工作的目标电路,和电源管理电路,用于按照时钟频率提供使目标电路可工作所要求的最小电压,其中,
电源管理电路包括如权利要求1到22的任意一个的频压转换电路,和
电源管理电路将从频压转换电路输出的电压作为最小电压提供。
27.如权利要求26的系统,其特征在于,该系统形成在单个半导体芯片上。
28.如权利要求26的系统,其特征在于,电源管理电路还包括电压转换设备,用于将给定的电源电压转换成从频压转换电路输出的电压,并且电源管理电路将来自电压转换设备的输出作为最小电压提供给目标电路。
29.一种系统,包括:按照时钟工作的目标电路,和频压转换电路,该频压转换电路用于接收作为输入的时钟,并按照该时钟的频率提供一个电压作为目标电路的工作电压,该系统的特征是,频压转换电路的输入和输出特性可调节,使从频压转换电路输出的电压基本上与在时钟频率下使目标电路可工作所要求的最小电压相匹配。
30.如权利要求29的系统,其特征在于,目标电路具有多个不同的延迟时间段-电源电压特性,并且根据由合成该多个不同的延迟时间段-电源电压特性而获得的延迟时间段-电源电压特性,调节频压转换电路的输入和输出特性。
31.如权利要求30的系统,其特征在于,频压转换电路具有与多个不同的延迟时间段-电源电压特性相对应的多个延迟电路,将多个延迟电路的每一个构造成使得延迟时间段-电源电压特性可调节。
32.如权利要求29的系统,其特征在于,将频压转换电路构造成使频压转换电路的输入和输出特性的斜率和偏移量可调节。
33.用于在系统中调节频压转换电路的输入和输出特性的方法,该系统包括按照时钟工作的目标电路,和频压转换电路,该频压转换电路用于接收作为输入的时钟,并按照该时钟的频率提供一个电压作为目标电路的工作电压,该方法包括如下步骤:
根据对于时钟的多个频率测量的目标电路的工作电压,调节频压转换电路的输入和输出特性的斜率;和
调节频压转换电路的输入和输出特性的偏移量,使目标电路在预定的时钟频率范围内可以工作。
34.如权利要求33的方法,其特征在于,
频压转换电路包括:输入脉冲信号产生电路,用于按照时钟的频率产生输入脉冲信号,该信号具有代表目标延迟量的脉宽;用于延迟输入脉冲信号的延迟电路,该延迟电路将通过延迟输入脉冲信号而获得的脉冲信号作为输出脉冲信号输出;以及延迟量-电压转换电路,用于根据输出脉冲信号相对于输入脉冲信号的延迟量,输出与目标延迟量相应的电压,并将该电压提供给延迟电路;延迟电路按照从延迟量-电压转换电路输出的电压对输入脉冲信号进行延迟,
通过调节延迟电路的延迟时间段-电源电压特性的斜率来调节频压转换电路的输入和输出特性的斜率,和
通过调节延迟电路的延迟时间段-电源电压特性的偏移量来调节频压转换电路的输入和输出特性的偏移量。
35.如权利要求34的方法,其特征在于,
延迟电路包括第一延迟块,和第二延迟块,第一延迟块按照从延迟量-电压转换电路输出的电压工作,第二延迟块按照预定的固定电压工作,第一延迟块包括多个第一延迟单元,第二延迟块包括多个第二延迟单元,
借助调节多个第一延迟单元中有输入脉冲信号通过的第一延迟单元的级数来调节延迟电路的延迟时间段-电源电压特性的斜率,和
借助调节多个第二延迟单元中有输入脉冲信号通过的第二延迟单元的级数来调节延迟电路的延迟时间段-电源电压特性的偏移量。
36.如权利要求33的方法,其特征在于,
频压转换电路包括:输入脉冲信号产生电路,用于按照时钟频率产生输入脉冲信号,该信号具有代表目标延迟量的脉宽;用于延迟输入脉冲信号的延迟电路,该延迟电路将通过延迟输入脉冲信号而获得的脉冲信号作为输出脉冲信号输出;以及延迟量-电压转换电路,用于根据输出脉冲信号相对于输入脉冲信号的延迟量,输出与目标延迟量相应的电压,并将该电压提供给延迟电路;延迟电路按照从延迟量-电压转换电路输出的电压对输入脉冲信号进行延迟,和
通过调节作为时钟频率的函数的输入脉冲信号的脉宽来调节频压转换电路的输入和输出特性的斜率和偏移量。
37.如权利要求36的方法,其特征在于,
该函数用Pw=α/f+β表示,其中Pw是输入脉冲信号的脉宽,f是时钟的频率,而α和β是常数,
通过调节α的值来调节频压转换电路的输入和输出特性的斜率,和
通过调节β的值来调节频压转换电路的输入和输出特性的偏移量。
38.用于在系统中自动调节频压转换电路的输入和输出关系的装置,该系统包括按照时钟工作的目标电路,和频压转换电路,该频压转换电路用于接收作为输入的时钟,并按照该时钟的频率提供一个电压作为目标电路的工作电压,该装置包括:
自诊断设备,用于确定目标电路是否按照工作电压和时钟频率之间的关系正常工作;和
调节设备,用于根据自诊断设备的确定结果来调节频压转换电路的关系中的输入和输出。
39.如权利要求38的装置,其特征在于,自诊断设备包括:
操作设备,用于根据输入矢量来操作目标电路,该输入矢量用于实现目标电路的最大延迟路径;和
比较设备,用于将与输入矢量有关的来自目标电路的输出和与输入矢量有关的预定的期望值进行比较。
40.如权利要求38的装置,其特征在于,调节设备包括:
用于调节频压转换电路的输入和输出特性的斜率的设备;以及
用于调节频压转换电路的输入和输出特性的偏移量的设备。
41.如权利要求38的装置,其特征在于所述的装置和系统形成在单个半导体芯片上。
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25259796 | 1996-09-25 | ||
JP252597/1996 | 1996-09-25 | ||
JP010716/97 | 1997-01-23 | ||
JP1071697 | 1997-01-23 | ||
JP010716/1997 | 1997-01-23 | ||
JP069610/97 | 1997-03-24 | ||
JP069610/1997 | 1997-03-24 | ||
JP6961097 | 1997-03-24 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1238843A true CN1238843A (zh) | 1999-12-15 |
CN1154903C CN1154903C (zh) | 2004-06-23 |
Family
ID=27279060
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB971800057A Expired - Fee Related CN1154903C (zh) | 1996-09-25 | 1997-09-24 | 接收时钟作为输入信号并提供电压作为输出信号的频压转换电路 |
Country Status (9)
Country | Link |
---|---|
US (1) | US6424184B1 (zh) |
EP (1) | EP1008923A4 (zh) |
JP (1) | JP3323207B2 (zh) |
KR (1) | KR100343301B1 (zh) |
CN (1) | CN1154903C (zh) |
AU (1) | AU4320197A (zh) |
CA (1) | CA2267371C (zh) |
TW (1) | TW364199B (zh) |
WO (1) | WO1998013742A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100458659C (zh) * | 2003-06-10 | 2009-02-04 | Nxp股份有限公司 | 最佳ic性能的实时自适应控制 |
US7921312B1 (en) | 2007-09-14 | 2011-04-05 | National Semiconductor Corporation | System and method for providing adaptive voltage scaling with multiple clock domains inside a single voltage domain |
CN102422622A (zh) * | 2009-03-02 | 2012-04-18 | 美国亚德诺半导体公司 | 信号映像技术 |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6970313B1 (en) * | 1999-03-31 | 2005-11-29 | Matsushita Electric Industrial Co., Ltd. | Write compensation circuit and signal interpolation circuit of recording device |
US6667651B2 (en) | 1999-12-22 | 2003-12-23 | Sony Corporation | Voltage supply circuit and control method of the same |
JP4783976B2 (ja) * | 1999-12-22 | 2011-09-28 | ソニー株式会社 | 電圧供給回路及びその制御方法 |
JP2002100967A (ja) | 2000-03-17 | 2002-04-05 | Sony Corp | 電源電圧制御装置、半導体装置およびその駆動方法 |
US7050478B1 (en) * | 2000-08-03 | 2006-05-23 | International Business Machines Corporation | Apparatus and method for synchronizing clock modulation with power supply modulation in a spread spectrum clock system |
JP5034139B2 (ja) * | 2001-02-07 | 2012-09-26 | 富士通セミコンダクター株式会社 | 電圧発生回路および半導体記憶装置 |
US7061292B2 (en) * | 2001-11-09 | 2006-06-13 | The Regents Of The University Of Colorado | Adaptive voltage regulator for powered digital devices |
US6944780B1 (en) * | 2002-01-19 | 2005-09-13 | National Semiconductor Corporation | Adaptive voltage scaling clock generator for use in a digital processing component and method of operating the same |
US6868503B1 (en) * | 2002-01-19 | 2005-03-15 | National Semiconductor Corporation | Adaptive voltage scaling digital processing component and method of operating the same |
US7024568B2 (en) * | 2002-09-06 | 2006-04-04 | National Semiconductor Corporation | Method and system for providing self-calibration for adaptively adjusting a power supply voltage in a digital processing system |
US7149903B1 (en) * | 2002-12-18 | 2006-12-12 | National Semiconductor Corporation | System and method for signal delay in an adaptive voltage scaling slack detector |
JP4413516B2 (ja) * | 2003-03-31 | 2010-02-10 | シャープ株式会社 | 信号タイミング調整システムおよび信号タイミング調整量設定プログラム |
US20050024903A1 (en) * | 2003-07-28 | 2005-02-03 | Ta-Yung Yang | Half bridge power supply with standby-mode power saving apparatus |
JPWO2005085882A1 (ja) * | 2004-03-09 | 2007-08-09 | 松下電器産業株式会社 | 周波数センサおよび半導体装置 |
US7205805B1 (en) | 2004-11-02 | 2007-04-17 | Western Digital Technologies, Inc. | Adjusting power consumption of digital circuitry relative to critical path circuit having the largest propagation delay error |
US7129763B1 (en) | 2004-11-08 | 2006-10-31 | Western Digital Technologies, Inc. | Adjusting power consumption of digital circuitry by generating frequency error representing error in propagation delay |
JP4630122B2 (ja) * | 2005-05-11 | 2011-02-09 | 株式会社アドバンテスト | 試験装置、及び試験方法 |
US7486060B1 (en) | 2006-03-30 | 2009-02-03 | Western Digital Technologies, Inc. | Switching voltage regulator comprising a cycle comparator for dynamic voltage scaling |
US7551383B1 (en) | 2006-06-28 | 2009-06-23 | Western Digital Technologies, Inc. | Adjusting voltage delivered to disk drive circuitry based on a selected zone |
US7330019B1 (en) | 2006-10-31 | 2008-02-12 | Western Digital Technologies, Inc. | Adjusting on-time for a discontinuous switching voltage regulator |
US7733189B1 (en) | 2007-09-14 | 2010-06-08 | Western Digital Technologies, Inc. | Oscillator comprising foldover detection |
US8085020B1 (en) | 2008-06-13 | 2011-12-27 | Western Digital Technologies, Inc. | Switching voltage regulator employing dynamic voltage scaling with hysteretic comparator |
DE102008054067B4 (de) * | 2008-10-31 | 2010-09-16 | Advanced Micro Devices, Inc., Sunnyvale | Kompensation der Verringerung der Arbeitsgeschwindigkeit abhängig von der Betriebszeit durch einen Modus mit konstanter Gesamtchipleistung |
US8661274B2 (en) * | 2009-07-02 | 2014-02-25 | Qualcomm Incorporated | Temperature compensating adaptive voltage scalers (AVSs), systems, and methods |
US8937404B1 (en) | 2010-08-23 | 2015-01-20 | Western Digital Technologies, Inc. | Data storage device comprising dual mode independent/parallel voltage regulators |
FR2985045B1 (fr) * | 2011-12-21 | 2014-11-28 | Commissariat Energie Atomique | Controle tension-frequence optimise |
US9910473B2 (en) * | 2013-03-14 | 2018-03-06 | Silicon Storage Technology, Inc. | Power management for a memory device |
TWI747561B (zh) * | 2020-10-19 | 2021-11-21 | 創意電子股份有限公司 | 效能計算系統、效能計算方法與電子裝置 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57152218A (en) * | 1981-03-13 | 1982-09-20 | Pioneer Electronic Corp | Frequency and voltage converting circuit |
JPS58171842A (ja) * | 1982-03-31 | 1983-10-08 | Matsushita Electronics Corp | 集積回路装置 |
JPS58195218A (ja) | 1982-05-08 | 1983-11-14 | Matsushita Electronics Corp | 集積回路装置 |
JPS6019222A (ja) | 1983-07-13 | 1985-01-31 | Nec Corp | クロツク発生回路 |
JPS61274813A (ja) * | 1985-05-30 | 1986-12-05 | Fanuc Ltd | 放電加工装置における孔明き確認装置 |
US4922141A (en) * | 1986-10-07 | 1990-05-01 | Western Digital Corporation | Phase-locked loop delay line |
BR8901539A (pt) * | 1989-03-27 | 1990-10-30 | Brasil Compressores Sa | Processo e circuito eletronico para controle de motor de corrente continua sem escovas |
JPH03241403A (ja) | 1990-02-20 | 1991-10-28 | Canon Inc | 電子機器 |
US5118975A (en) * | 1990-03-05 | 1992-06-02 | Thinking Machines Corporation | Digital clock buffer circuit providing controllable delay |
WO2004077656A1 (ja) * | 1992-11-10 | 2004-09-10 | Hayato Naito | ブラシレスモータの速度検出装置 |
JPH076156A (ja) | 1993-06-15 | 1995-01-10 | Nec Ic Microcomput Syst Ltd | マイクロコンピュータ |
JP2924995B2 (ja) | 1994-06-16 | 1999-07-26 | 日本電気株式会社 | 論理機能試験方法およびその装置 |
JP3705842B2 (ja) * | 1994-08-04 | 2005-10-12 | 株式会社ルネサステクノロジ | 半導体装置 |
US6311287B1 (en) * | 1994-10-11 | 2001-10-30 | Compaq Computer Corporation | Variable frequency clock control for microprocessor-based computer systems |
JPH08130449A (ja) * | 1994-11-01 | 1996-05-21 | Mitsubishi Electric Corp | 電圧制御型遅延回路およびそれを用いた内部クロック発生回路 |
JPH09270690A (ja) | 1996-03-29 | 1997-10-14 | Toshiba Microelectron Corp | 駆動電圧制御回路 |
JP3739525B2 (ja) * | 1996-12-27 | 2006-01-25 | 富士通株式会社 | 可変遅延回路及び半導体集積回路装置 |
US6125157A (en) * | 1997-02-06 | 2000-09-26 | Rambus, Inc. | Delay-locked loop circuitry for clock delay adjustment |
JP3717289B2 (ja) * | 1997-10-20 | 2005-11-16 | 富士通株式会社 | 集積回路装置 |
JP3973308B2 (ja) * | 1998-11-27 | 2007-09-12 | 富士通株式会社 | セルフタイミング制御回路を内蔵する集積回路装置 |
-
1997
- 1997-09-24 JP JP51549598A patent/JP3323207B2/ja not_active Expired - Fee Related
- 1997-09-24 US US09/269,315 patent/US6424184B1/en not_active Expired - Fee Related
- 1997-09-24 TW TW086113923A patent/TW364199B/zh not_active IP Right Cessation
- 1997-09-24 WO PCT/JP1997/003397 patent/WO1998013742A1/ja active IP Right Grant
- 1997-09-24 CA CA002267371A patent/CA2267371C/en not_active Expired - Fee Related
- 1997-09-24 KR KR1019997002551A patent/KR100343301B1/ko not_active IP Right Cessation
- 1997-09-24 AU AU43201/97A patent/AU4320197A/en not_active Abandoned
- 1997-09-24 EP EP97941225A patent/EP1008923A4/en not_active Withdrawn
- 1997-09-24 CN CNB971800057A patent/CN1154903C/zh not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100458659C (zh) * | 2003-06-10 | 2009-02-04 | Nxp股份有限公司 | 最佳ic性能的实时自适应控制 |
US7921312B1 (en) | 2007-09-14 | 2011-04-05 | National Semiconductor Corporation | System and method for providing adaptive voltage scaling with multiple clock domains inside a single voltage domain |
CN102422622A (zh) * | 2009-03-02 | 2012-04-18 | 美国亚德诺半导体公司 | 信号映像技术 |
Also Published As
Publication number | Publication date |
---|---|
CN1154903C (zh) | 2004-06-23 |
EP1008923A1 (en) | 2000-06-14 |
EP1008923A4 (en) | 2009-09-09 |
KR20000048611A (ko) | 2000-07-25 |
KR100343301B1 (ko) | 2002-07-15 |
TW364199B (en) | 1999-07-11 |
CA2267371C (en) | 2001-02-20 |
WO1998013742A1 (fr) | 1998-04-02 |
AU4320197A (en) | 1998-04-17 |
JP3323207B2 (ja) | 2002-09-09 |
US6424184B1 (en) | 2002-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1154903C (zh) | 接收时钟作为输入信号并提供电压作为输出信号的频压转换电路 | |
CN1311618C (zh) | 开关电源装置 | |
CN1826691A (zh) | 多电源电压半导体器件 | |
CN1277351C (zh) | D类放大器 | |
CN1252914C (zh) | 差动电路、放大电路及使用它们的显示装置 | |
CN1159846C (zh) | 输出控制装置 | |
CN101031805A (zh) | 相位差测定电路 | |
CN1691100A (zh) | 电流驱动器 | |
CN1766658A (zh) | 电压检测电路、过电流检测电路、充电电流控制系统及电压检测方法 | |
CN1292623A (zh) | 照明闪烁检测、补偿装置和交流电源频率检测装置及其方法 | |
CN1638275A (zh) | 滤波器和通信仪器的自动调谐装置 | |
CN1858981A (zh) | 电源调整电路及半导体器件 | |
CN1574289A (zh) | 半导体集成电路装置操作分析方法和系统及最优设计方法 | |
CN1466764A (zh) | 内部电压电平控制电路和半导体存储装置以及其控制方法 | |
CN1568569A (zh) | 电压检测电路和使用它的内部电压发生电路 | |
CN1629760A (zh) | 使输出电压稳定化的电流放大电路和具备其的液晶显示装置 | |
CN1310426C (zh) | 半导体电路 | |
CN1581861A (zh) | 断线与短路检测电路 | |
CN1132287C (zh) | 电子机器和电子机器的控制方法 | |
CN1248513C (zh) | 彩色图象显示器中的自动白平衡调整电路 | |
CN1540870A (zh) | 比较电路和偏置补偿装置 | |
CN1467916A (zh) | 模数转换器电路和电流源电路 | |
CN1300972C (zh) | 时钟信号切换装置、时钟信号切换方法、数据总线切换装置及数据总线切换方法 | |
CN1181615C (zh) | 信号检测电路、数据传送控制装置和电子设备 | |
CN1595807A (zh) | 能以数字量观测降压转换器输出的半导体集成电路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C19 | Lapse of patent right due to non-payment of the annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |