CN111418081A - 有机功能材料的制剂 - Google Patents

有机功能材料的制剂 Download PDF

Info

Publication number
CN111418081A
CN111418081A CN201880076995.6A CN201880076995A CN111418081A CN 111418081 A CN111418081 A CN 111418081A CN 201880076995 A CN201880076995 A CN 201880076995A CN 111418081 A CN111418081 A CN 111418081A
Authority
CN
China
Prior art keywords
organic
formulation
solvent
materials
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201880076995.6A
Other languages
English (en)
Other versions
CN111418081B (zh
Inventor
格雷·比雷
克里斯托夫·莱昂哈德
曾信荣
曼纽尔·汉布格尔
安雅·雅提斯奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Patent GmbH
Original Assignee
Merck Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent GmbH filed Critical Merck Patent GmbH
Publication of CN111418081A publication Critical patent/CN111418081A/zh
Application granted granted Critical
Publication of CN111418081B publication Critical patent/CN111418081B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/15Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/90Multiple hosts in the emissive layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

本发明涉及含有至少一种有机功能材料和至少第一有机溶剂的制剂,其中所述第一有机溶剂是异山梨醇、其衍生物或立体异构体,并且涉及通过使用这些制剂制备的电子器件。

Description

有机功能材料的制剂
技术领域
本发明涉及包含取代的异山梨醇作为第一溶剂的制剂,以及涉及通过使用这些制剂制备的电致发光器件。
背景技术
长期以来已通过真空沉积工序来制造有机发光器件(OLED)。其它技术如喷墨印刷最近已由于其优点如节省成本和规模扩大可能性而得到充分研究。多层印刷中的主要挑战之一是确定相关参数,以获得墨在基底上的均匀沉积。为了触发这些参数如表面张力、粘度或沸点,可向制剂中加入一些添加剂。
技术问题和发明目的
在有机电子器件中已经提出了许多溶剂用于喷墨印刷。然而,在沉积和干燥工序期间起作用的重要参数的数量使得溶剂的选择非常具有挑战性。由此,用于通过喷墨印刷进行沉积的含有有机半导体的制剂仍然需要改善。本发明的一个目的是提供一种有机半导体的制剂,其使得能够进行受控沉积以形成具有良好的层性质和效率性能的有机半导体层。本发明的另一个目的是提供一种有机半导体的制剂,当例如在喷墨印刷方法中使用时,所述制剂使得墨微滴能够均匀施加在基底上,从而得到良好的层性质和效率性能。
问题的解决方案
本发明的上述目的是通过提供包含取代的异山梨醇作为第一溶剂的制剂来解决。
发明的有益效果
使用含有取代的异山梨醇作为第一溶剂的有机溶剂,使得能够完全控制表面张力并诱导有效的墨沉积,从而形成功能材料的非常均匀且清晰可辨的有机层,这些有机层具有良好的层性质和性能。由于此类溶剂可从可再生原料(糖)中获得,因此它们也是印刷OLED墨的可持续来源。如果将另外的溶剂,优选另外的有机溶剂与第一溶剂组合使用,则观察到特别有益的技术效果,如已经制备的下伏层的改善的润湿性、所制备的制剂的更好的储存稳定性以及所得到的层在干燥后改善的膜轮廓。下面描述关于溶剂的优选组合、优选组成及其浓度范围以及技术效果的细节。
附图说明
图1显示了以3×3矩阵布置的九个小的单微滴的编程打印图案。
图2显示了所有单微滴合并而成的单液滴。
图3显示了关于图2的液滴的示意图。
图4显示了在接触溶剂之前(虚线)和之后(实线)的表面轮廓,即表面高度[nm]作为距离x[μm]的函数。
图5显示了作为用于限定层稳定性的关键性能指标(KPI)的表面轮廓的峰-谷的确定。实线表示在接触溶剂和真空干燥之后的表面轮廓。
图6显示了如何对根据图5的KPI指定为损伤指标(DI)。
具体实施方式
本发明涉及一种含有至少一种有机功能材料和作为第一溶剂的至少双重取代的异山梨醇的制剂。众所周知,异山梨醇是杂环化合物,取决于所讨论的立体异构体,其源自葡萄糖和其它糖。
优选实施方式
在第一优选实施方式中,第一有机溶剂是根据通式(I)的化合物和/或其立体异构体,
Figure BDA0002512860340000031
其中
X在每次出现时相同或不同,是O或N,优选两个X相同并且非常优选两个X都是O;
Y在每次出现时相同或不同,是S、NR5、O,优选两个Y相同并且非常优选两个Y都是O;
R1和R2
在每次出现时相同或不同,并且是具有1至40个脂族碳原子、优选1至20个脂族碳原子的直链、支链或环状的脂族基团,其中一个CH2基团或多个非相邻的CH2基团可被-O-、-S-、-NR5-、-CONR5-、-CO-O-、-C=O-、-R5C=CR5-、-C≡C-、-Si(R5)2-、-Ge(R5)2-、-Sn(R5)2-、C=S、C=Se、C=NR5、P(=O)(R5)、-SO-、-SO2-代替,具有1至60个芳族碳原子的芳基或杂芳基基团,并且其中所述基团可被一个或多个R6取代;
R3和R4
在每次出现时相同或不同,并且是H,D,F,Cl,Br,具有1至40个脂族碳原子、优选1至20个脂族碳原子的直链、支链或环状的脂族基团,其中一个CH2基团或多个非相邻的CH2基团可被-O-、-S-、-NR5-、-CONR5-、-CO-O-、-C=O-、-R5C=CR5-、-C≡C-、-Si(R5)2-、-Ge(R5)2-、-Sn(R5)2-、C=S、C=Se、C=NR5、P(=O)(R5)、-SO-、-SO2-代替,具有1至60个芳族碳原子的芳基或杂芳基基团,并且其中所述基团可被一个或多个R6取代;
R5
在每次出现时相同或不同,并且是H,具有1至20个碳原子的直链的烷基或烷氧基基团或具有3至20个碳原子的支链或环状的烷基或烷氧基基团,并且其中一个或多个氢原子可被D、F、Cl、Br、I、CN或NO2代替,或在环系中具有2至60个碳原子的芳族或杂芳族环系,其中R5可被一个或多个R6取代;
R6
在每次出现时相同或不同,并且是H,具有1至20个碳原子的直链的烷基或烷氧基基团或具有3至20个碳原子的支链或环状的烷基或烷氧基基团,并且其中一个或多个氢原子可被D、F、Cl、Br、I、CN或NO2代替,或在环系中具有2至60个碳原子的芳族或杂芳族环系。
在一个优选的实施方式中,取代基R1和R2是相同的。
在另一个优选的实施方式中,取代基R1和R2彼此不同。
术语脂族基团是本领域技术人员众所周知的,并且应理解为非芳族烃基团。优选地,根据本发明的脂族基团是饱和脂族基团。甚至更优选地,脂族基团是烷基基团。
优选地,R1和R2在每次出现时相同或不同,是具有1至40个碳原子、优选1至20个脂族碳原子的直链、支链或环状的烷基基团,非常优选是具有1至40个碳原子、优选1至20个脂族碳原子的直链或支链的烷基基团,特别优选是具有1至40个碳原子、优选1至20个脂族碳原子的直链的烷基基团,并且其中所述基团可被一个或多个R6取代;
并且其中一个CH2基团或多个非相邻的CH2基团可被-O-、-S-、-NR5-、-CONR5-、-CO-O-、-C=O-、-R5C=CR5-、-C≡C-、-Si(R5)2-、-Ge(R5)2-、-Sn(R5)2-、C=S、C=Se、C=NR5、P(=O)(R5)、-SO-、-SO2-代替;非常优选地一个CH2基团或多个非相邻的CH2基团可被-O-、-S-、-NR5-、-CONR5-、-CO-O-、-C=O-、-Si(R5)2-、C=S、P(=O)(R5)、-SO-和-SO2-代替;特别优选地一个CH2基团或多个非相邻的CH2基团可被-O-、-S-代替,并且非常特别优选地一个CH2基团或多个非相邻的CH2基团可被-O-代替。
优选地,取代基R1和R2未被R6进一步取代。
优选地,R3和R4在每次出现时相同或不同,选自H,D,F,Cl,I,NO2,CN,具有1至40个碳原子的直链、支链或环状的烷基基团,其中一个CH2基团或多个非相邻的CH2基团可被-O-、-S-、-NR5-、-CONR5-、-CO-O-、-C=O-、-R5C=CR5-、-C≡C-、-Si(R5)2-、-Ge(R5)2-、-Sn(R5)2-、C=S、C=Se、C=NR5、P(=O)(R5)、-SO-、-SO2-代替,具有1至60个芳族碳原子的芳基或杂芳基基团,并且其中所述基团可被一个或多个R6取代;非常优选地一个CH2基团或多个非相邻的CH2基团可被-O-、-S-、-NR5-、-CONR5-、-CO-O-、-C=O-、-Si(R5)2-、C=S、P(=O)(R5)、-SO-和-SO2-代替;特别优选地,一个CH2基团或多个非相邻的CH2基团可被-O-、-S-代替,并且非常特别优选地一个CH2基团或多个非相邻的CH2基团可被-O-代替。
非常优选地,R3是H。
非常优选地,R4是H。
特别优选地,R3和R4是H。
R1至R4的脂族基团包含1至40个脂族碳原子,优选地1至20个脂族碳原子,非常优选地1至10个脂族碳原子,特别优选地1至5个脂族碳原子。
R1至R4的优选烷基基团包含1至40个碳原子,优选地1至20个碳原子,非常优选地1至10个碳原子,特别优选地1至5个碳原子。
优选地,与异山梨醇核心结构的基团Y结合的R1和R2的第一原子是非芳族碳原子,由此异山梨醇核心结构定义为具有以下结构:
Figure BDA0002512860340000061
在本申请的上下文中,非芳族碳原子定义为不是芳族体系的一部分的碳原子。
优选地,与异山梨醇核心结构的碳原子结合的R3和R4的第一原子是H或非芳族碳原子。
非常优选地,与异山梨醇核心结构的基团Y结合的R1和R2的第一原子是非芳族碳原子,并且与异山梨醇核心结构的碳原子结合的R3和R4的第一原子是H或非芳族碳原子。
如本领域技术人员通常所理解的,脂族基团是无环的(即直链或支链的)或环状的饱和或不饱和的碳化合物,也称为烃,其中芳族基团被排除在外。
为了本发明的目的,其中个别H原子或CH2基团还可被上述取代基取代或代替的具有1至40个C原子的直链的脂族烷基基团、具有3至40个C原子的支链或环状的脂族烷基基团、具有2至40个C原子的烯基基团或炔基基团,优选被认为是指如下的基团:甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、2-甲基丁基、正戊基、仲戊基、环戊基、新戊基、正己基、环己基、新己基、正庚基、环庚基、正辛基、环辛基、2-乙基己基、三氟甲基、五氟乙基、2,2,2-三氟乙基、乙烯基、丙烯基、丁烯基、戊烯基、环戊烯基、己烯基、环己烯基、庚烯基、环庚烯基、辛烯基、环辛烯基、乙炔基、丙炔基、丁炔基、戊炔基、己炔基、庚炔基或辛炔基。
根据本发明的芳基基团含有至少6个C原子;根据本发明的杂芳基基团含有至少2个C原子和至少一个杂原子,条件是C原子和杂原子之和至少为5。所述杂原子优选选自N、O和/或S。芳基基团或杂芳基基团在此被认为是指简单的芳族环,即苯,或简单的杂芳族环,例如吡啶、嘧啶、噻吩等,或稠合(缩合)芳基或杂芳基基团,例如萘、蒽、芘、喹啉、异喹啉等。
在本发明意义上的芳族环系在环系中含有6至60个C原子,优选地芳族环系在环系中含有6至20个C原子。在本发明意义上的杂芳族环系含有5至60个芳族环原子,其中的至少一个是杂原子,优选地在本发明意义上的杂芳族环系含有5至20个芳族环原子,其中的至少一个是杂原子。所述杂原子优选选自N、O和/或S。在本发明意义上的芳族或杂芳族环系旨在被认为是指以下体系,其不一定仅含有芳基或杂芳基基团、而是其中多个芳基或杂芳基基团还可通过非芳族单元(优选小于非H原子的10%)连接的体系,所述非芳族单元例如是sp3杂化的C、Si、N或O原子,sp2杂化的C或N,或者sp杂化的C原子。因此,例如,和其中两个或更多个芳基基团例如通过环状的烷基基团、烯基或炔基或通过甲硅烷基基团连接的体系一样,诸如9,9'-螺二芴、9,9-二芳基芴、三芳基胺、二芳基醚、茋等的体系也旨在被认为是在本发明意义上的芳族环系。此外,通过单键彼此连接的环系,例如联苯、三联苯或二苯基三嗪,被称为在本申请意义上的芳族和杂芳族环系。
具有5-60个芳族环原子、优选5-20个芳族环原子,在每种情况下还可被上述取代基取代并且可经由芳族或杂芳族基团上的任何希望的位置连接的芳族或杂芳族环系,被认为特别是指源自如下物质的基团:苯、萘、蒽、苯并蒽、菲、苯并菲、芘、苣、苝、荧蒽、并四苯、并五苯、苯并芘、联苯、联二苯叉、三联苯、三联苯撑、联三苯叉、四联苯、芴、螺二芴、二氢菲、二氢芘、四氢芘、顺式或反式茚并芴、三聚茚、异三聚茚、螺三聚茚、螺异三聚茚、呋喃、苯并呋喃、异苯并呋喃、二苯并呋喃、噻吩、苯并噻吩、异苯并噻吩、二苯并噻吩、吡咯、吲哚、异吲哚、咔唑、吲哚并咔唑、茚并咔唑、吡啶、喹啉、异喹啉、吖啶、菲啶、苯并-5,6-喹啉、苯并-6,7-喹啉、苯并-7,8-喹啉、吩噻嗪、吩
Figure BDA0002512860340000082
嗪、吡唑、吲唑、咪唑、苯并咪唑、萘并咪唑、菲并咪唑、吡啶并咪唑、吡嗪并咪唑、喹喔啉并咪唑、
Figure BDA0002512860340000083
唑、苯并
Figure BDA0002512860340000084
唑、萘并
Figure BDA0002512860340000085
唑、蒽并
Figure BDA0002512860340000086
唑、菲并
Figure BDA0002512860340000087
唑、异
Figure BDA0002512860340000088
唑、1,2-噻唑、1,3-噻唑、苯并噻唑、哒嗪、苯并哒嗪、嘧啶、苯并嘧啶、喹喔啉、1,5-二氮杂蒽、2,7-二氮杂芘、2,3-二氮杂芘、1,6-二氮杂芘、1,8-二氮杂芘、4,5-二氮杂芘、4,5,9,10-四氮杂苝、吡嗪、吩嗪、吩
Figure BDA0002512860340000089
嗪、吩噻嗪、荧红环、萘啶、氮杂咔唑、苯并咔啉、菲咯啉、1,2,3-三唑、1,2,4-三唑、苯并三唑、1,2,3-
Figure BDA00025128603400000810
二唑、1,2,4-
Figure BDA00025128603400000811
二唑、1,2,5-
Figure BDA00025128603400000812
二唑、1,3,4-
Figure BDA00025128603400000813
二唑、1,2,3-噻二唑、1,2,4-噻二唑、1,2,5-噻二唑、1,3,4-噻二唑、1,3,5-三嗪、1,2,4-三嗪、1,2,3-三嗪、四唑、1,2,4,5-四嗪、1,2,3,4-四嗪、1,2,3,5-四嗪、嘌呤、蝶啶、吲嗪和苯并噻二唑,或源自这些体系的组合的基团。
优选的取代基R1和R2是以下具有式(R-1)至(R-24)的基团,其中虚线表示R1或R2与式(1)的基团Y连接的键,其中所述基团可被一个或多个R6取代。优选地,取代基R1和R2未进一步被R6取代。
Figure BDA0002512860340000081
Figure BDA0002512860340000091
Figure BDA0002512860340000101
在一个特别优选的实施方式中,取代基R6是H。
下表中示出了最优选的式(I)的溶剂化合物及其沸点(BP)和熔点(MP)的实例。
Figure BDA0002512860340000102
Figure BDA0002512860340000111
优选地,第一溶剂的表面张力为≥20mN/m。更优选地,第一溶剂的表面张力在25mN/m至40mN/m的范围内。
以制剂中的溶剂总量计,第一溶剂的含量优选在50体积%至100体积%的范围内,更优选在75体积%至100体积%的范围内,最优选在90体积%至100体积%的范围内。
根据本发明的制剂在一个实施方式中包含至少一种不同于第一溶剂的第二溶剂。所述第二溶剂与第一溶剂一起使用。
以制剂中的溶剂总量计,第二溶剂的含量优选在0至50体积%的范围内,更优选在0至25体积%的范围内,最优选在0至10体积%的范围内。
在另一个非常优选的实施方式中,所述制剂包含所述第一溶剂和第二溶剂,其中第一溶剂的含量(以体积%表示)低于第二溶剂的含量。优选地,以制剂中的溶剂总量计,第一溶剂的含量在0.1体积%至49体积%的范围内,非常优选在0.1体积%至30体积%的范围内,特别优选在0.5体积%至20体积%的范围内,非常特别优选在1体积%至10体积%的范围内,最优选在2体积%至8体积%的范围内。这样的制剂显示出特别有益的技术效果,例如良好的长期稳定性而溶解的活性化合物无沉淀,基底或有机材料下伏层上的润湿改善,干燥时良好的成膜性(具有平坦轮廓的致密层)以及最终OLED器件的良好性能(在参数如颜色、效率和寿命方面)。
如果在制剂中使用甚至超过两种的溶剂,则能够进一步改善上述有益的技术效果。因此,本发明还涉及包含所述第一溶剂和所述第二溶剂的上述制剂,其中所述第二溶剂是两种不同溶剂的混合物。
在另一个实施方式中,本发明还涉及包含所述第一溶剂和所述第二溶剂的制剂,其中所述第二溶剂是三种不同溶剂的混合物。
在又一个实施方式中,本发明还涉及包含所述第一溶剂和所述第二溶剂的制剂,其中所述第二溶剂是四种不同溶剂的混合物。
优选地,第一溶剂的沸点为400℃或更低。更优选地,第一溶剂的沸点在100℃至400℃的范围内,非常优选在100℃至350℃的范围内,特别优选为150℃至350℃,非常特别优选为200℃至350℃。沸点在760mm Hg下测量。
合适的第二溶剂优选是有机溶剂,其尤其包括醇、醛、酮、醚、酯、酰胺如二C1-C2烷基甲酰胺、硫化合物、硝基化合物、烃、卤代烃(例如氯化烃)、芳族或杂芳族烃以及卤代芳族或杂芳族烃。
优选地,第二溶剂可以选自以下中的一种:取代和未取代的芳族或直链酯,例如苯甲酸乙酯、苯甲酸丁酯、辛酸辛酯、癸二酸二乙酯;取代和未取代的芳族或直链醚,例如3-苯氧基甲苯、3,4-二甲基苯甲醚、苯乙醚或苯甲醚;取代或未取代的芳烃衍生物,例如甲苯、二甲苯、戊苯、己苯、环己苯、2-甲基联苯、2,2'-二甲基联苯;茚满衍生物,例如六甲基茚满;取代和未取代的芳族或直链酮;取代和未取代的杂环化合物,例如吡咯烷酮、环状或非环状硅氧烷、吡啶、吡嗪;其它氟化或氯化芳族烃。
特别优选的第二有机溶剂是例如1,2,3,4-四甲基苯、1,2,3,5-四甲基苯、1,2,3-三甲基苯、1,2,4,5-四甲基苯、1,2,4-三氯苯、1,2,4-三甲基苯、1,2-二氢萘、1,2-二甲基萘、1,3-苯并二氧戊环、1,3-二异丙基苯、1,3-二甲基萘、1,4-苯并二
Figure BDA0002512860340000131
烷、1,4-二异丙基苯、1,4-二甲基萘、1,5-二甲基萘满、1-苯并噻吩、硫杂萘、1-溴萘、1-氯甲基萘、1-乙基萘、1-甲氧基萘、1-甲基萘、1-甲基吲哚、2,3-苯并呋喃、2,3-二氢苯并呋喃、2,3-二甲基苯甲醚、2,4-二甲基苯甲醚、2,5-二甲基苯甲醚、2,6-二甲基苯甲醚、2,6-二甲基萘、2-溴-3-溴甲基萘、2-溴甲基萘、2-溴萘、2-乙氧基萘、2-乙基萘、2-异丙基苯甲醚、2-甲基苯甲醚、2-甲基吲哚、3,4-二甲基苯甲醚、3,5-二甲基苯甲醚、3-溴喹啉、3-甲基苯甲醚、4-甲基苯甲醚、5-癸内酯、5-甲氧基茚满、5-甲氧基吲哚、5-叔丁基间二甲苯、6-甲基喹啉、8-甲基喹啉、苯乙酮、苯甲醚、苯甲腈、苯并噻唑、乙酸苄酯、溴苯、苯甲酸丁酯、丁基苯基醚、环己基苯、十氢萘酚、二甲氧基甲苯、3-苯氧基甲苯、二苯基醚、苯丙酮、乙基苯、苯甲酸乙酯、己基苯、茚满、六甲基茚满、茚、异色满、异丙基苯、间甲基异丙基苯、均三甲苯、苯甲酸甲酯、邻二甲苯、间二甲苯、对二甲苯、苯甲酸丙酯、丙基苯、邻二氯苯、戊基苯、苯乙醚、乙氧基苯、乙酸苯基酯、对甲基异丙基苯、苯丙酮、仲丁基苯、叔丁基苯、噻吩、甲苯、藜芦醚、单氯苯、邻二氯苯、吡啶、吡嗪、嘧啶、吡咯烷酮、吗啉、二甲基乙酰胺、二甲基亚砜、十氢化萘和/或这些化合物的混合物。
如上文所公开,这些溶剂可以单独使用或作为形成第二溶剂的两种、三种或更多种溶剂的混合物使用。
优选地,第二溶剂的沸点在100℃至400℃的范围内,更优选在150℃至350℃的范围内。
所述至少一种有机功能材料在第一溶剂以及第二溶剂中的溶解度优选在1g/l至250g/l的范围内,更优选在1g/l至50g/l的范围内。有机功能材料在溶剂中的溶解度可根据ISO 7579:2009中所述的程序确定。
以所述制剂的总重量计,所述至少一种有机功能材料在制剂中的含量在0.001重量%至20重量%的范围内,优选在0.01重量%至15重量%的范围内,更优选在0.1重量%至10重量%的范围内,最优选在0.3重量%至10重量%的范围内。
根据本发明的制剂的表面张力优选在10mN/m至70mN/m的范围内,非常优选在10mN/m至50mN/m的范围内,特别优选在15mN/m至40mN/m的范围内。
此外,根据本发明的制剂的粘度优选在0.8mPa.s至50mPa.s的范围内,非常优选在1mPa.s至40mPa.s的范围内,特别优选在2mPa.s至20mPa.s的范围内,非常特别优选在2mPa.s至10mPa.s的范围内。
优选地,有机溶剂共混物的表面张力在15mN/m至80mN/m的范围内,更优选在20mN/m至60mN/m的范围内,最优选在25mN/m至40mN/m的范围内。
可以使用FTA(First Ten Angstrom公司)1000接触角测角仪在20℃下测量表面张力。所述方法的细节可从First Ten Angstrom公司获得,如由Roger P.Woodward博士的“Surface Tension Measurements Using the Drop Shape Method(使用滴形法测量表面张力)”所公开的。优选地,可使用悬滴法来确定表面张力。该测量技术把从针头将液滴分配到整体的液相或气相中。液滴的形状由表面张力、重力和密度差之间的关系产生。使用悬滴法,使用http://www.kruss.de/services/education-theory/glossary/drop-shape-analys is从悬滴的阴影图像计算表面张力。使用常用且可商购获得的高精度液滴形状分析工具,即来自First Ten Angstrom公司的FTA1000,进行所有的表面张力测量。通过软件FTA1000确定表面张力。所有测量都是在室温下进行的,所述室温在20℃至22℃之间的范围内。标准操作程序包括使用新的一次性液滴分配系统(注射器和针头)确定每一种制剂的表面张力。在1分钟的持续时间内测量每一个液滴,进行六十次测量,随后将这些测量值取平均值。对于每一种制剂,测量三个液滴。最终值是在所述测量值上取平均值。将所述工具定期相对于具有公知表面张力的多种液体进行相互校验。
使用TA仪器公司的ARG2流变仪在10s-1至1000s-1的剪切速率范围内使用40mm平行板几何结构来测量实施例的制剂和溶剂的粘度。测量结果为在200s-1和800s-1之间的平均值,其中精确地控制温度和剪切速率。表3中给出的粘度是在25℃的温度和500s-1的剪切速率下测量的每种制剂的粘度。每种溶剂测量三次。所述粘度值是所述测量值的平均值。
本发明还涉及包含至少一种量子材料和作为第一溶剂的异山梨醇的制剂。本发明还涉及包含至少一种有机功能材料和至少一种量子材料的制剂。
根据本发明的制剂可以用于制造电子器件的功能层。
功能材料通常是在电子或光电器件、特别是电致发光器件的阳极与阴极之间引入的有机材料。
量子材料是本领域技术人员众所周知的。量子材料也被称为量子尺寸粒子、纳米晶体材料、半导体发光纳米粒子、量子点和量子棒。量子材料可以用作光致发光材料或用作电致发光材料。通常,量子材料的特征在于它们显示窄的尺寸分布并且具有窄的发光光谱。
量子材料通常包含一个核和一个或多个壳层,以及连接到所述材料的最外层表面的配体。优选地,量子材料的平均粒径在0.1nm至999nm的范围内,非常优选在1nm至150nm的范围内,特别优选在3nm至100nm的范围内,其中未考虑量子材料的配体球。
术语有机功能材料尤其表示有机导体、有机半导体、有机荧光化合物(其还包括有机延迟荧光化合物)、有机磷光化合物、有机光吸收化合物、有机感光化合物、有机光敏剂、有机p型掺杂剂、有机n型掺杂剂和其它有机光活性化合物。术语有机功能材料还涵盖过渡金属、稀土元素、镧系元素和锕系元素的有机金属络合物。
所述有机功能材料选自荧光发光体、磷光发光体、基于延迟荧光而发光的发光体、主体材料、基质材料、显示延迟荧光的主体材料、激子阻挡材料、电子传输材料、电子注入材料、空穴传输材料、空穴注入材料、n型掺杂剂、p型掺杂剂、宽带隙材料、电子阻挡材料和空穴阻挡材料。
有机功能材料的优选实施方式详细公开于WO 2011/076314A1中,其中该文献以引用的方式并入本申请中。
在一个优选的实施方式中,有机功能材料是选自空穴注入材料、空穴传输材料、发光材料、电子传输材料和电子注入材料的有机半导体。
更优选地,所述有机功能材料是选自空穴注入和空穴传输材料的有机半导体。
所述有机功能材料可以是具有低分子量的化合物、聚合物、低聚物或树枝状大分子,其中所述有机功能材料也可以是混合物的形式。因此,根据本发明的制剂可包含两种不同的具有低分子量的化合物、一种具有低分子量的化合物和一种聚合物或两种聚合物(共混物)。
有机功能材料经常通过前沿轨道的性质来描述,这将在下文中更详细地描述。材料的分子轨道,特别是最高占据分子轨道(HOMO)和最低未占分子轨道(LUMO)、它们的能级和最低三重态T1的能量或最低激发单重态S1的能量可经由量子化学计算来确定。为了计算不含金属的有机物质,首先使用“基态/半经验/默认自旋/AM1/电荷0/自旋单重态”方法进行几何结构优化。随后基于优化的几何结构进行能量计算。在此使用“TD-SCF/DFT/默认自旋/B3PW91”方法和“6-31G(d)”基组(电荷0,自旋单重态)。对于含金属的化合物,通过“基态/哈特里-福克/默认自旋/LanL2MB/电荷0/自旋单重态”方法来优化几何结构。类似于上述用于有机物质的方法进行能量计算,不同之处在于对于金属原子使用“LanL2DZ”基组,而对于配体使用“6-31G(d)”基组。能量计算以哈特里为单位给出了HOMO能级HEh或LUMO能级LEh。参照循环伏安法测量值校准的以电子伏特为单位的HOMO能级和LUMO能级由此如下确定:
HOMO(eV)=((HEh*27.212)-0.9899)/1.1206
LUMO(eV)=((LEh*27.212)-2.0041)/1.385
出于本申请的目的,这些值分别被视为材料的HOMO和LUMO能级。
最低三重态T1被定义为,具有由所述的量子化学计算产生的最低能量的三重态的能量。
最低激发单重态S1被定义为,具有由所述的量子化学计算产生的最低能量的激发单重态的能量。
本文所述的方法与所使用的软件包无关,并且始终给出相同的结果。经常使用的用于该目的的程序的实例是“Gaussian09W”(高斯公司)和Q-Chem 4.1(Q-Chem公司)。
具有空穴注入性质的化合物在本文中也被称作空穴注入材料,其简化或促进空穴即正电荷从阳极转移到有机层中。一般来说,空穴注入材料具有在阳极能级附近或高于阳极能级的HOMO能级,即通常至少-5.3eV的HOMO能级。
具有空穴传输性质的化合物在本文中也被称作空穴传输材料,其能够传输空穴即正电荷,所述空穴通常从阳极或相邻层如空穴注入层注入。空穴传输材料通常具有优选至少-5.4eV的高HOMO能级。根据电子器件的结构,也可以使用空穴传输材料作为空穴注入材料。
具有空穴注入和/或空穴传输性质的优选的化合物包括例如三芳基胺、联苯胺、四芳基对苯二胺、三芳基膦、吩噻嗪、吩
Figure BDA0002512860340000191
嗪、二氢吩嗪、噻蒽、二苯并对二氧杂己熳环、吩
Figure BDA0002512860340000192
噻、咔唑、薁、噻吩、吡咯和呋喃衍生物以及其它具有高HOMO(HOMO=最高占据分子轨道)的含O、S或N的杂环化合物。
作为具有空穴注入和/或空穴传输性质的化合物,可以特别提及苯二胺衍生物(US3615404)、芳基胺衍生物(US 3567450)、氨基取代的查耳酮衍生物(US 3526501)、苯乙烯基蒽衍生物(JP-A-56-46234)、多环芳族化合物(EP 1009041)、多芳基烷烃衍生物(US3615402)、芴酮衍生物(JP-A-54-110837)、腙衍生物(US 3717462)、酰腙、茋衍生物(JP-A-61-210363)、硅氮烷衍生物(US 4950950)、聚硅烷(JP-A-2-204996)、苯胺共聚物(JP-A-2-282263)、噻吩低聚物(JP平成1(1989)211399)、聚噻吩、聚(N-乙烯基咔唑)(PVK)、聚吡咯、聚苯胺和其它导电大分子、卟啉化合物(JP-A-63-2956965、US 4720432)、芳族二甲亚基型化合物、咔唑化合物(如CDBP、CBP、mCP)、芳族叔胺和苯乙烯基胺化合物(US 4127412)(如联苯胺型三苯胺、苯乙烯基胺型三苯胺和二胺型三苯胺)。也可以使用芳基胺树枝状大分子(JP平成8(1996)193191)、单体三芳基胺(US 3180730)、含有一个或多个乙烯基基团和/或至少一个含活性氢的官能团的三芳基胺(US 3567450和US 3658520)或四芳基二胺(两个叔胺单元通过芳基基团连接)。分子中还可以存在更多个三芳基氨基基团。酞菁衍生物、萘酞菁衍生物、丁二烯衍生物和喹啉衍生物如二吡嗪并[2,3-f:2',3'-h]喹喔啉六甲腈也是适合的。
优选含有至少两个叔胺单元的芳族叔胺(US 2008/0102311 A1、US 4720432和US5061569),如NPD(α-NPD=4,4'-双[N-(1-萘基)-N-苯基氨基]联苯)(US 5061569)、TPD 232(=N,N'-双(N,N'-二苯基-4-氨基苯基)-N,N-二苯基-4,4'-二氨基-1,1'-联苯)或MTDATA(MTDATA或m-MTDATA=4,4',4”-三[3-甲基苯基]苯基氨基]三苯基胺)(JP-A-4-308688)、TBDB(=N,N,N',N'-四(4-联苯)二氨基联二苯叉)、TAPC(=1,1-双(4-二-对甲苯基氨基苯基)环己烷)、TAPPP(=1,1-双(4-二-对甲苯基氨基苯基)-3-苯基丙烷)、BDTAPVB(=1,4-双[2-[4-[N,N-二(对甲苯基)氨基]苯基]乙烯基]苯)、TTB(=N,N,N',N'-四-对甲苯基-4,4'-二氨基联苯)、TPD(=4,4'-双[N-3-甲基苯基]-N-苯基氨基)联苯)、N,N,N',N'-四苯基-4,4”'-二氨基-1,1',4',1”,4”,1”'-四联苯,同样优选含咔唑单元的叔胺,如TCTA(=4-(9H-咔唑-9-基)-N,N-双[4-(9H-咔唑-9-基)苯基]苯胺)。还优选根据US 2007/0092755A1的六氮杂联三苯叉化合物和酞菁衍生物(例如H2Pc、CuPc(=铜酞菁)、CoPc、NiPc、ZnPc、PdPc、FePc、MnPc、ClAlPc、ClGaPc、ClInPc、ClSnPc、Cl2SiPc、(HO)AlPc、(HO)GaPc、VOPc、TiOPc、MoOPc、GaPc-O-GaPc)。
特别优选下式(TA-1)至(TA-12)的三芳基胺化合物,其在以下文献中公开:EP1162193 B1、EP 650 955 B1、Synth.Metals(合成金属)1997,91(1-3),209、DE 19646119A1、WO 2006/122630 A1、EP 1 860 097 A1、EP 1834945 A1、JP 08053397 A、US 6251531B1、US 2005/0221124、JP 08292586 A、US 7399537 B2、US 2006/0061265 A1、EP 1 661888和WO 2009/041635。所述式(TA-1)至(TA-12)的化合物也可以被取代:
Figure BDA0002512860340000201
Figure BDA0002512860340000211
Figure BDA0002512860340000221
可以用作空穴注入材料的其它化合物描述于EP 0891121 A1和EP 1029909 A1中,注入层一般描述于US 2004/0174116 A1中。
通常用作空穴注入和/或空穴传输材料的这些芳基胺和杂环化合物优选在聚合物中产生大于-5.8eV(相对于真空能级)、特别优选大于-5.5eV的HOMO。
具有电子注入和/或电子传输性质的化合物为例如吡啶、嘧啶、哒嗪、吡嗪、
Figure BDA0002512860340000222
二唑、喹啉、喹喔啉、蒽、苯并蒽、芘、苝、苯并咪唑、三嗪、酮、氧化膦和吩嗪衍生物,以及三芳基硼烷和其它具有低LUMO(LUMO=最低未占分子轨道)的含O、S或N的杂环化合物。
用于电子传输和电子注入层的特别适合的化合物为8-羟基喹啉的金属螯合物(例如LiQ、AlQ3、GaQ3、MgQ2、ZnQ2、InQ3、ZrQ4),BAlQ,Ga羟基喹啉络合物,4-氮杂菲-5-醇-Be络合物(US 5529853A,参考式ET-1),丁二烯衍生物(US 4356429),杂环光学增亮剂(US4539507),苯并咪唑衍生物(US 2007/0273272A1)如TPBI(US 5766779,参考式ET-2),1,3,5-三嗪,例如螺二芴基三嗪衍生物(例如根据DE 102008064200),芘,蒽,并四苯,芴,螺芴,树枝状大分子,并四苯(例如红荧烯衍生物),1,10-菲咯啉衍生物(JP 2003-115387、JP2004-311184、JP-2001-267080、WO 02/043449),硅杂环戊二烯衍生物(EP 1480280、EP1478032、EP 1469533),硼烷衍生物,如含有Si的三芳基硼烷衍生物(US 2007/0087219 A1,参考式ET-3),吡啶衍生物(JP 2004-200162),菲咯啉,尤其是1,10-菲咯啉衍生物,如BCP和Bphen,以及通过联苯或其它芳族基团连接的多种菲咯啉(US-2007-0252517 A1)或连接到蒽的菲咯啉(US 2007-0122656 A1,参考式ET-4和ET-5)。
Figure BDA0002512860340000231
杂环有机化合物同样适合,如噻喃二氧化物、
Figure BDA0002512860340000233
唑、三唑、咪唑或
Figure BDA0002512860340000234
二唑。使用的含N五元环的实例如
Figure BDA0002512860340000235
唑,优选1,3,4-
Figure BDA0002512860340000236
二唑,例如式ET-6、ET-7、ET-8和ET-9的化合物,其特别公开于US 2007/0273272A1中;噻唑、
Figure BDA0002512860340000237
二唑、噻二唑、三唑,特别见于US 2008/0102311A1和Y.A.Levin,M.S.Skorobogatova,Khimiya Geterotsiklicheskikh Soedinenii 1967(2),339-341,优选式ET-10的化合物,硅杂环戊二烯衍生物。优选化合物为下式(ET-6)至(ET-10)的化合物:
Figure BDA0002512860340000232
Figure BDA0002512860340000241
还可以使用如下有机化合物,如芴酮、芴亚基甲烷、苝四甲酸、蒽醌二甲烷、二苯醌、蒽酮和蒽醌二乙二胺的衍生物。
优选2,9,10-取代的蒽(用1-或2-萘基和4-或3-联苯取代)或含有两个蒽单元的分子(US2008/0193796 A1,参考式ET-11)。此外,将9,10-取代的蒽单元连接于苯并咪唑衍生物是极有利的(US 2006/147747 A和EP 1551206 A1,参考式ET-12和ET-13)。
Figure BDA0002512860340000242
Figure BDA0002512860340000251
能够产生电子注入和/或电子传输性质的化合物优选产生小于-2.5eV(相对于真空能级)、特别优选小于-2.7eV的LUMO。
本发明的制剂可以包含发光体。术语发光体表示如下材料,在可以通过转移任何类型的能量而发生的激发之后,所述材料可以辐射跃迁到基态并发光。一般来说,已知两类发光体,即荧光和磷光发光体。术语荧光发光体表示如下材料或化合物,其中发生从激发的单重态向基态的辐射跃迁。术语荧光发光体还包括显示延迟荧光的发光体,例如显示热活化延迟荧光的有机化合物。术语磷光发光体优选表示含有过渡金属的发光材料或化合物。
发光体通常也称为掺杂剂,在这种情况下该掺杂剂在体系中引起上述性质。包含基质材料和掺杂剂的体系中的掺杂剂被认为是指在混合物中比例较小的组分。相应地,包含基质材料和掺杂剂的体系中的基质材料被认为是指在混合物中比例较大的组分。因此,术语磷光发光体还可以被认为是指例如磷光掺杂剂。
能够发光的化合物尤其包括荧光发光体和磷光发光体。这些尤其包括含有茋、茋胺、苯乙烯基胺、香豆素、红荧烯、若丹明、噻唑、噻二唑、花青、噻吩、对苯亚基、苝、酞菁、卟啉、酮、喹啉、亚胺、蒽和/或芘结构的化合物。特别优选的是能够甚至在室温下以高效率从三重态发光、即表现出电致磷光而不是电致荧光的化合物,其通常导致能量效率增加。适合于此目的的首先是含有原子序数大于36的重原子的化合物。优选的是含有满足上述条件的d或f过渡金属的化合物。此处特别优选的是含有第8至10族元素(Ru、Os、Rh、Ir、Pd、Pt)的相应化合物。此处合适的功能化合物是例如多种络合物,如在例如WO 02/068435 A1、WO 02/081488 A1、EP 1239526 A2和WO 2004/026886 A2中所述的。
可以用作荧光发光体的优选化合物通过以下实例描述。优选的荧光发光体选自如下类别:单苯乙烯基胺、二苯乙烯基胺、三苯乙烯基胺、四苯乙烯基胺、苯乙烯基膦、苯乙烯基醚和芳基胺。
单苯乙烯基胺被认为是指含有一个取代或未取代的苯乙烯基基团和至少一个优选为芳族胺的胺的化合物。二苯乙烯基胺被认为是指含有两个取代或未取代的苯乙烯基基团和至少一个优选为芳族胺的胺的化合物。三苯乙烯基胺被认为是指含有三个取代或未取代的苯乙烯基基团和至少一个优选为芳族胺的胺的化合物。四苯乙烯基胺被认为是指含有四个取代或未取代的苯乙烯基基团和至少一个优选为芳族胺的胺的化合物。所述苯乙烯基基团特别优选是茋,其也可进一步被取代。以与胺类似的方式定义相应的膦和醚。在本发明意义上的芳基胺或芳族胺被认为是指含有三个直接键合至氮的取代或未取代的芳族或杂芳族环系的化合物。这些芳族或杂芳族环系中的至少一个优选是优选具有至少14个芳族环原子的稠合环系。其优选实例是芳族蒽胺、芳族蒽二胺、芳族芘胺、芳族芘二胺、芳族苣胺或芳族苣二胺。芳族蒽胺被认为是指其中一个二芳基氨基基团直接与蒽基团优选在9位处键合的化合物。芳族蒽二胺被认为是指其中两个二芳基氨基基团直接与蒽基团优选在2,6位或9,10位处键合的化合物。以与此类似的方式定义芳族的芘胺、芘二胺、苣胺和苣二胺,其中所述二芳基氨基基团优选与芘在1位或在1,6位处键合。
其它优选的荧光发光体选自茚并芴胺或茚并芴二胺,其尤其描述于WO 2006/122630中;苯并茚并芴胺或苯并茚并芴二胺,其尤其描述于WO 2008/006449中;和二苯并茚并芴胺或二苯并茚并芴二胺,其尤其描述于WO 2007/140847中。
可以用作荧光发光体的来自苯乙烯基胺类别的化合物的实例是取代或未取代的三茋胺或描述于WO 2006/000388、WO 2006/058737、WO 2006/000389、WO 2007/065549和WO2007/115610中的掺杂剂。二苯乙烯基苯和二苯乙烯基联苯衍生物描述于US 5121029中。其它苯乙烯基胺可见于US 2007/0122656 A1中。
特别优选的苯乙烯基胺化合物是US 7250532 B2中描述的式EM-1的化合物和DE10 2005 058557 A1中描述的式EM-2的化合物:
Figure BDA0002512860340000271
特别优选的三芳基胺化合物是CN 1583691 A、JP 08/053397 A和US 6251531 B1、EP 1957606 A1、US 2008/0113101 A1、US 2006/210830 A、WO 2008/006449和DE102008035413中公开的式EM-3至EM-15的化合物及其衍生物:
Figure BDA0002512860340000272
Figure BDA0002512860340000281
Figure BDA0002512860340000291
可以用作荧光发光体的其它优选化合物选自以下物质的衍生物:萘、蒽、并四苯、苯并蒽、苯并菲(DE 10 2009 005746)、芴、荧蒽、二茚并苝、茚并苝、菲、苝(US 2007/0252517 A1)、芘、苣、十环烯、晕苯、四苯基环戊二烯、五苯基环戊二烯、芴、螺芴、红荧烯、香豆素(US 4769292、US 6020078、US 2007/0252517 A1)、吡喃、
Figure BDA0002512860340000292
唑、苯并
Figure BDA0002512860340000293
唑、苯并噻唑、苯并咪唑、吡嗪、肉桂酸酯、二酮吡咯并吡咯、吖啶酮和喹吖啶酮(US 2007/0252517 A1)。
在蒽化合物中,特别优选9,10-取代的蒽,如9,10-二苯基蒽和9,10-双(苯基乙炔基)蒽。1,4-双(9'-乙炔基蒽基)苯也是优选的掺杂剂。
以下物质的衍生物也是优选的:红荧烯,香豆素,若丹明,喹吖啶酮,如DMQA(=N,N'-二甲基喹吖啶酮),二氰基甲亚基吡喃,如DCM(=4-(二氰基乙亚基)-6-(4-二甲基氨基苯乙烯基-2-甲基)-4H-吡喃),噻喃,聚甲炔,吡喃
Figure BDA0002512860340000294
和噻喃
Figure BDA0002512860340000295
盐,二茚并苝和茚并苝。
蓝色荧光发光体优选为多环芳族化合物,如9,10-二(2-萘基蒽)和其它蒽衍生物,并四苯的衍生物,氧杂蒽的衍生物,苝的衍生物,例如2,5,8,11-四-叔丁基苝,苯亚基的衍生物,例如4,4'-双(9-乙基-3-咔唑乙烯亚基)-1,1'-联苯,芴的衍生物,荧蒽的衍生物,芳基芘的衍生物(US 2006/0222886 A1),芳亚基乙烯亚基的衍生物(US 5121029,US5130603),双(吖嗪基)亚胺-硼化合物的衍生物(US 2007/0092753 A1),双(吖嗪基)甲亚基化合物的衍生物和喹啉-2-酮化合物的衍生物。
其它优选的蓝色荧光发光体描述于C.H.Chen等:“Recent developments inorganic electroluminescent materials(有机电致发光材料的最新发展)”Macromol.Symp.(大分子研讨会)125,(1997)1-48和“Recent progress of molecularorganic electroluminescent materials and devices(分子有机电致发光材料和器件的最新进展)”Mat.Sci.and Eng.R(材料科学与工程报告),39(2002),143-222中。
其它优选的蓝色荧光发光体为DE 102008035413中公开的烃。
显示延迟荧光的优选的荧光发光体是本领域中众所周知并公开于例如以下中的荧光发光体:C.Adachi等,Nature(自然),492,2012,234-238;A.P.Monkman等,MethodsAppl.Fluoresc.(荧光学方法和应用)5(2017)012001;或E.Zysman-Colman等,Adv.Mater(先进材料)2017,29,1605444。
下文举例描述可以充当磷光发光体的优选化合物。
WO 00/70655、WO 01/41512、WO 02/02714、WO 02/15645、EP 1191613、EP1191612、EP 1191614和WO 2005/033244揭示了磷光发光体的实例。一般来说,根据现有技术用于磷光OLED的和有机电致发光领域的技术人员已知的所有磷光络合物都是适合的,并且本领域技术人员能够不付出创造性劳动就使用其它磷光络合物。
磷光金属络合物优选地含有Ir、Ru、Pd、Pt、Os或Re,更优选地含有Ir。
优选配体为2-苯基吡啶衍生物、7,8-苯并喹啉衍生物、2-(2-噻吩基)吡啶衍生物、2-(1-萘基)吡啶衍生物、1-苯基异喹啉衍生物、3-苯基异喹啉衍生物或2-苯基喹啉衍生物。所有这些化合物都可以例如被氟、氰基和/或三氟甲基取代基取代以产生蓝光。辅助配体优选为乙酰丙酮化物或吡啶甲酸。
特别地,式EM-16的Pt或Pd与四齿配体的络合物是适合的。
Figure BDA0002512860340000311
式EM-16化合物更详细地描述于US 2007/0087219 A1中,其中,为了解释上式中的取代基和标记,出于公开目的而引用该说明书。此外,具有扩大的环系的Pt-卟啉络合物(US2009/0061681 A1)和Ir络合物,例如2,3,7,8,12,13,17,18-八乙基-21H,23H-卟啉-Pt(II),四苯基-Pt(II)四苯并卟啉(US 2009/0061681 A1),顺式-双(2-苯基吡啶根合-N,C2')Pt(II),顺式-双(2-(2'-噻吩基)吡啶根合-N,C3')Pt(II),顺式-双(2-(2'-噻吩基)喹啉根合-N,C5')Pt(II),(2-(4,6-二氟苯基)吡啶根合-N,C2')Pt(II)(乙酰丙酮化物),或三(2-苯基吡啶根合-N,C2')Ir(III)(=Ir(ppy)3,绿光),双(2-苯基吡啶根合-N,C2)Ir(III)(乙酰丙酮化物)(=Ir(ppy)2乙酰丙酮化物,绿光,US 2001/0053462 A1,Baldo,Thompson等,Nature(自然)403,(2000),750-753),双(1-苯基异喹啉根合-N,C2')(2-苯基吡啶根合-N,C2')铱(III),双(2-苯基吡啶根合-N,C2')(1-苯基异喹啉根合-N,C2')铱(III),双(2-(2'-苯并噻吩基)吡啶根合-N,C3')铱(III)(乙酰丙酮化物),双(2-(4',6'-二氟苯基)吡啶根合-N,C2')铱(III)(吡啶甲酸盐)(FIrpic,蓝光),双(2-(4',6'-二氟苯基)吡啶根合-N,C2')Ir(III)(四(1-吡唑基)硼酸盐),三(2-(联苯-3-基)-4-叔丁基吡啶)铱(III),(ppz)2Ir(5phdpym)(US 2009/0061681 A1),(45ooppz)2Ir(5phdpym)(US 2009/0061681 A1),2-苯基吡啶-Ir络合物的衍生物,如PQIr(=双(2-苯基喹啉基-N,C2')乙酰丙酮铱(III),三(2-苯基异喹啉根合-N,C)Ir(III)(红光),双(2-(2'-苯并[4,5-a]噻吩基)吡啶根合-N,C3)Ir(乙酰丙酮化物)([Btp2Ir(acac)],红光,Adachi等,Appl.Phys.Lett.(应用物理快报)78(2001),1622-1624))。
以下材料也是适合的:三价镧系元素如Tb3+和Eu3+的络合物(J.Kido等,Appl.Phys.Lett.65(1994),2124,Kido等,Chem.Lett.(化学快报)657,1990,US 2007/0252517A1),或Pt(II)、Ir(I)、Rh(I)与马来二腈二硫纶的磷光络合物(Johnson等,JACS105,1983,1795),Re(I)三羰基-二亚胺络合物(尤其是Wrighton,JACS 96,1974,998),Os(II)与氰基配体和联吡啶或菲咯啉配体的络合物(Ma等,Synth.Metals(合成金属)94,1998,245)。
具有三齿配体的其它磷光发光体描述于US 6824895和US 10/729238中。红色发光的磷光络合物见于US 6835469和US 6830828中。
用作磷光掺杂剂的特别优选的化合物尤其为尤其描述于US 2001/0053462 A1和Inorg.Chem.(无机化学)2001,40(7),1704-1711,JACS 2001,123(18),4304-4312中的式EM-17化合物和其衍生物。
Figure BDA0002512860340000321
衍生物描述于US 7378162 B2、US 6835469 B2和JP 2003/253145 A中。
此外,US 7238437 B2、US 2009/008607 A1和EP 1348711中所述的式EM-18至EM-21的化合物及其衍生物可以用作发光体。
Figure BDA0002512860340000331
量子点也可以用作发光体,这些材料详细地公开于WO 2012/013272 A1中。
作为主体材料尤其与发光化合物一起使用的化合物包括来自多种类别的物质的材料。
主体材料通常比所使用的发光体材料具有更大的在HOMO和LUMO之间的带隙。此外,优选的主体材料表现出空穴或电子传输材料的性质。此外,主体材料可以具有电子传输性质和空穴传输性质两者。
在一些情况下,主体材料也被称为基质材料,特别在主体材料与磷光发光体组合用于OLED中时更是如此。
特别与荧光掺杂剂一起使用的优选主体材料或共主体材料选自以下类别:低聚芳亚基(例如2,2',7,7'-四苯基螺二芴,根据EP 676461,或二萘基蒽),特别是含有稠合的芳族基团的低聚芳亚基,如蒽、苯并蒽、苯并菲(DE 10 2009 005746,WO 2009/069566)、菲、并四苯、晕苯、苣、芴、螺芴、苝、酞菁并苝、萘并苝、十环烯、红荧烯、低聚芳亚基乙烯亚基(例如DPVBi=4,4'-双(2,2-二苯基乙烯基)-1,1'-联苯或螺-DPVBi,根据EP 676461),多足金属络合物(例如根据WO 04/081017),特别是8-羟基喹啉的金属络合物,例如AlQ3(=三(8-羟基喹啉)铝(III))或双(2-甲基-8-羟基喹啉)-(4-苯基苯氧基)铝、以及咪唑螯合物(US2007/0092753 A1)和喹啉-金属络合物、氨基喹啉-金属络合物、苯并喹啉-金属络合物,空穴传导化合物(例如根据WO 2004/058911),电子传导化合物,特别是酮、氧化膦、亚砜等(例如根据WO 2005/084081和WO 2005/084082)、阻转异构体(例如根据WO 2006/048268)、硼酸衍生物(例如根据WO 2006/117052)、或苯并蒽(例如根据WO 2008/145239)。
可以充当主体材料或共主体材料的特别优选的化合物选自包括蒽、苯并蒽和/或芘的低聚芳亚基的类别,或这些化合物的阻转异构体。在本发明的意义上,低聚芳亚基旨在被认为是指如下化合物,其中至少三个芳基或芳亚基基团彼此键合。
优选的主体材料特别选自式(H-1)化合物,
Ar4-(Ar5)p-Ar6 (H-1)
其中Ar4、Ar5、Ar6在每次出现时相同或不同地为具有5至30个芳族环原子的芳基或杂芳基基团,所述基团可以任选被取代,并且p表示在1至5范围内的整数;Ar4、Ar5和Ar6中的π电子的总和在p=1时至少为30,在p=2时至少为36并且在p=3时至少为42。
在式(H-1)化合物中,基团Ar5特别优选地表示蒽,并且基团Ar4和Ar6键合在9和10位处,其中这些基团可以任选被取代。极特别优选地,基团Ar4和/或Ar6中的至少一个为稠合的芳基基团,其选自1-或2-萘基,2-、3-或9-菲基,或2-、3-、4-、5-、6-或7-苯并蒽基。蒽类化合物描述于US 2007/0092753 A1和US 2007/0252517 A1中,例如2-(4-甲基苯基)-9,10-二-(2-萘基)蒽、9-(2-萘基)-10-(1,1'-联苯)蒽和9,10-双[4-(2,2-二苯基乙烯基)苯基]蒽、9,10-二苯基蒽、9,10-双(苯基乙炔基)蒽和1,4-双(9'-乙炔基蒽基)苯。还优选含有两个蒽单元的化合物(US 2008/0193796 A1),例如10,10'-双[1,1',4',1”]三联苯-2-基-9,9'-联蒽。
其它优选的化合物为以下物质的衍生物:芳基胺、苯乙烯基胺、荧光素、二苯基丁二烯、四苯基丁二烯、环戊二烯、四苯基环戊二烯、五苯基环戊二烯、香豆素、
Figure BDA0002512860340000351
二唑、双苯并
Figure BDA0002512860340000352
唑啉、
Figure BDA0002512860340000353
唑、吡啶、吡嗪、亚胺、苯并噻唑、苯并
Figure BDA0002512860340000354
唑、苯并咪唑(US 2007/0092753 A1)例如2,2',2”-(1,3,5-苯亚基)三[1-苯基-1H-苯并咪唑]、醛连氮、茋、苯乙烯基芳亚基衍生物例如9,10-双[4-(2,2-二苯基乙烯基)苯基]蒽、和二苯乙烯基芳亚基衍生物(US 5121029)、二苯基乙烯、乙烯基蒽、二氨基咔唑、吡喃、噻喃、二酮吡咯并吡咯、聚甲炔、肉桂酸酯和荧光染料。
特别优选芳基胺和苯乙烯基胺的衍生物,例如TNB(=4,4'-双[N-(1-萘基)-N-(2-萘基)氨基]联苯)。金属-羟基喹啉络合物(如LiQ或AlQ3)可以用作共主体。
具有低聚芳亚基的作为基质的优选化合物公开于US 2003/0027016 A1、US7326371 B2、US 2006/043858 A、WO 2007/114358、WO 2008/145239、JP 3148176 B2、EP1009044、US 2004/018383、WO 2005/061656 A1、EP 0681019B1、WO 2004/013073A1、US5077142、WO 2007/065678和DE 102009005746中,其中特别优选的化合物由式H-2至H-8描述。
Figure BDA0002512860340000361
此外,可以用作主体或基质的化合物包括与磷光发光体一起使用的材料。
也可以用作聚合物中的结构单元的这些化合物包括CBP(N,N-双咔唑基联苯),咔唑衍生物(例如根据WO 2005/039246、US 2005/0069729、JP 2004/288381、EP 1205527或WO2008/086851),氮杂咔唑(例如根据EP 1617710、EP 1617711、EP 1731584或JP 2005/347160),酮(例如根据WO 2004/093207或根据DE 102008033943),氧化膦,亚砜和砜(例如根据WO 2005/003253),低聚苯亚基,芳族胺(例如根据US 2005/0069729),双极性基质材料(例如根据WO 2007/137725),硅烷(例如根据WO 2005/111172),9,9-二芳基芴衍生物(例如根据DE 102008017591),硼氮杂环戊熳或硼酸酯(例如根据WO 2006/117052),三嗪衍生物(例如根据DE 102008036982),吲哚并咔唑衍生物(例如根据WO 2007/063754或WO 2008/056746),茚并咔唑衍生物(例如根据DE102009023155和DE 102009031021),磷二氮杂环戊熳衍生物(例如根据DE 102009022858),三唑衍生物,
Figure BDA0002512860340000372
唑和
Figure BDA0002512860340000373
唑衍生物,咪唑衍生物,多环芳基烷烃衍生物,吡唑啉衍生物,吡唑啉酮衍生物,二苯乙烯基吡嗪衍生物,噻喃二氧化物衍生物,苯二胺衍生物,芳族叔胺,苯乙烯基胺,氨基取代的查耳酮衍生物,吲哚,腙衍生物,茋衍生物,硅氮烷衍生物,芳族二甲亚基化合物,碳化二亚胺衍生物,8-羟基喹啉衍生物的金属络合物如AlQ3,其还可以含有三芳基氨基苯酚配体(US 2007/0134514 A1),金属络合物/聚硅烷化合物和噻吩、苯并噻吩和二苯并噻吩衍生物。
优选的咔唑衍生物的实例为mCP(=1,3-N,N-二咔唑基苯(=9,9'-(1,3-苯亚基)双-9H-咔唑))(式H-9)、CDBP(=9,9'-(2,2'-二甲基[1,1'-联苯]-4,4'-二基)双-9H-咔唑)、1,3-双(N,N'-二咔唑基)苯(=1,3-双(咔唑-9-基)苯)、PVK(聚乙烯基咔唑)、3,5-二(9H-咔唑-9-基)联苯和CMTTP(式H-10)。特别提及US 2007/0128467 A1和US 2005/0249976A1中公开的化合物(式H-11和H-13)。
Figure BDA0002512860340000371
Figure BDA0002512860340000381
优选的四芳基-Si化合物例如公开于US 2004/0209115、US 2004/0209116、US2007/0087219 A1和H.Gilman,E.A.Zuech,Chemistry&Industry(化学与工业)(英国伦敦),1960,120中。
特别优选的四芳基-Si化合物由式H-14至H-21描述。
Figure BDA0002512860340000382
Figure BDA0002512860340000391
用于制备磷光掺杂剂用基质的来自第4类的特别优选化合物尤其公开于DE102009022858、DE 102009023155、EP 652273 B1、WO 2007/063754和WO 2008/056746中,其中特别优选的化合物由式H-22至H-25描述。
Figure BDA0002512860340000392
Figure BDA0002512860340000401
关于根据本发明可以使用并且可以充当主体材料的功能化合物,特别优选含有至少一个氮原子的物质。其优选包括芳族胺、三嗪衍生物和咔唑衍生物。由此,咔唑衍生物特别表现出令人惊讶的高效率。三嗪衍生物使电子器件的寿命出乎预料地长。
优选还可以使用混合物形式的多种不同基质材料,特别是至少一种电子传导基质材料与至少一种空穴传导基质材料的混合物。如例如WO 2010/108579中所述的,还优选使用电荷传输基质材料与电惰性基质材料的混合物,所述电惰性基质材料即使参与电荷传输,也不会在很大程度上参与电荷传输。
还可以使用如下化合物,所述化合物改善从单重态向三重态的跃迁,并且用于承载具有发光体性质的功能化合物,改善这些化合物的磷光性质。特别地,如例如WO 2004/070772 A2和WO 2004/113468 A1中所述的,咔唑和桥连咔唑二聚体单元适用于这个目的。如例如WO 2005/040302 A1中所述的,酮、氧化膦、亚砜、砜、硅烷衍生物和类似化合物也适用于这个目的。
在本文中,n型掺杂剂被认为是指还原剂,即电子供体。n型掺杂剂的优选实例为根据WO 2005/086251 A2的W(hpp)4和其它富电子金属络合物、P=N化合物(例如WO 2012/175535 A1、WO 2012/175219 A1)、萘亚基碳化二亚胺(例如WO 2012/168358 A1)、芴(例如WO 2012/031735A1)、自由基和双自由基(例如EP 1837926 A1、WO 2007/107306 A1)、吡啶(例如EP 2452946 A1、EP 2463927 A1)、N-杂环化合物(例如WO 2009/000237 A1)和吖啶以及吩嗪(例如US 2007/145355 A1)。
其它优选的主体材料是在S1与T1能级之间具有小间隙的有机化合物。这样的化合物可以用作如上所述显示延迟荧光的荧光发光体。然而,这些化合物也可以用作荧光发光体的主体化合物,即用作泵,以填充荧光发光体的单重态能级。通常,该过程称为高荧光。适当的主体化合物是上面已经提到的适合用作延迟荧光发光体的主体化合物。
此外,所述制剂可以包含宽带隙材料作为功能材料。宽带隙材料被认为是指在US7,294,849的公开内容的意义上的材料。这些体系在电致发光器件中表现出特别有利的性能数据。
用作宽带隙材料的化合物的带隙优选可以为2.5eV或更大,优选3.0eV或更大,特别优选3.5eV或更大。带隙可以尤其借助于最高占据分子轨道(HOMO)和最低未占分子轨道(LUMO)的能级来计算。
此外,所述制剂可以包含空穴阻挡材料(HBM)作为功能材料。空穴阻挡材料表示如下材料,其阻止或最小化多层体系中空穴(正电荷)的传输,特别是在该材料以层形式相邻于发光层或空穴传导层布置时更是如此。一般来说,空穴阻挡材料的HOMO能级比相邻层中的空穴传输材料的HOMO能级低。空穴阻挡层通常布置在OLED中的发光层与电子传输层之间。
基本上可以使用任何已知的空穴阻挡材料。除本申请中别处描述的其它空穴阻挡材料以外,有利的空穴阻挡材料为金属络合物(US 2003/0068528),如双(2-甲基-8-羟基喹啉)(4-苯基苯氧基)铝(III)(BAlQ)。面式-三(1-苯基吡唑根合-N,C2)铱(III)(Ir(ppz)3)同样用于这个目的(US 2003/0175553 A1)。也可以使用菲咯啉衍生物,如BCP;或邻苯二甲酰亚胺,如TMPP。
此外,有利的空穴阻挡材料描述于WO 00/70655 A2、WO 01/41512 和WO 01/93642A1中。
此外,所述制剂可以包含电子阻挡材料(EBM)作为功能材料。电子阻挡材料表示如下材料,其阻止或最小化多层体系中电子的传输,特别是在该材料以层形式相邻于发光层或电子传导层布置时更是如此。一般来说,电子阻挡材料的LUMO能级比相邻层中的电子传输材料的LUMO能级高。
基本上可以使用任何已知的电子阻挡材料。除本申请中别处描述的其它电子阻挡材料以外,有利的电子阻挡材料为过渡金属络合物,如Ir(ppz)3(US 2003/0175553)。
电子阻挡材料优选可以选自胺、三芳基胺和其衍生物。
此外,当可以用作制剂中的有机功能材料的功能化合物为低分子量化合物时,分子量优选为≤3,000g/摩尔,更优选≤2,000g/摩尔,最优选≤1,000g/摩尔。
此外,特别值得注意的是以高玻璃化转变温度为特征的功能化合物。在这方面,可以用作制剂中的有机功能材料的特别优选的功能化合物为如下化合物,根据DIN 51005测定,其玻璃化转变温度为≥70℃,优选≥100℃,更优选≥125℃,最优选≥150℃。
所述制剂还可以包含聚合物作为有机功能材料。还可以将上述作为有机功能材料的通常具有相对低分子量的化合物与聚合物混合。还可以将这些化合物共价引入聚合物中。这可以特别地用如下化合物实现,所述化合物被反应性离去基团如溴、碘、氯、硼酸取代或被硼酸酯或反应性可聚合基团如烯烃或氧杂环丁烷取代。这些可以用作制造相应的低聚物、树枝状大分子或聚合物的单体。此处,低聚或聚合优选通过卤素官能团或硼酸官能团或者通过可聚合基团进行。还可以通过此类基团将聚合物交联。根据本发明的化合物和聚合物可以用作交联层或非交联层。
可以用作有机功能材料的聚合物通常含有在上述化合物的意义下描述的单元或结构单元,尤其是WO 02/077060 A1、WO 2005/014689 A2和WO 2011/076314 A1中公开和广泛列出的单元或结构单元。所述案以引用的方式并入本申请中。功能材料可以例如来自以下类别:
第1类:能够产生空穴注入和/或空穴传输性质的结构单元;
第2类:能够产生电子注入和/或电子传输性质的结构单元;
第3类:组合了关于第1类和第2类所述的性质的结构单元;
第4类:具有发光性质、特别是磷光基团的结构单元;
第5类:改善从所谓的单重态向三重态的跃迁的结构单元;
第6类:影响所得聚合物的形态或者发光颜色的结构单元;
第7类:通常用作骨架的结构单元。
这里所述结构单元还可以具有多种功能,从而明确的归类未必是有利的。例如,第1类结构单元也可以充当骨架。
用作有机功能材料的含有来自第1类的结构单元的具有空穴传输或空穴注入性质的聚合物优选可以含有对应于上述空穴传输或空穴注入材料的单元。
第1类的其它优选结构单元为例如三芳基胺、联苯胺、四芳基-对苯二胺、咔唑、薁、噻吩、吡咯和呋喃衍生物和其它具有高HOMO的含O、S或N的杂环化合物。这些芳基胺和杂环化合物的HOMO优选为高于-5.8eV(相对于真空能级),特别优选高于-5.5eV。
尤其优选如下具有空穴传输或空穴注入性质的聚合物,其含有至少一个下式HTP-1的重复单元:
Figure BDA0002512860340000441
其中符号具有以下含义:
Ar1对于不同重复单元在每种情况下相同或不同地为单键或者单环或多环的芳基基团,其可以是任选取代的;
Ar2对于不同重复单元在每种情况下相同或不同地为单环或多环的芳基基团,其可以是任选取代的;
Ar3对于不同重复单元在每种情况下相同或不同地为单环或多环的芳基基团,其可以是任选取代的;
m为1、2或3。
特别优选式HTP-1的重复单元,其选自式HTP-1A至HTP-1C的单元:
Figure BDA0002512860340000442
Figure BDA0002512860340000451
其中符号具有以下含义:
Ra在每次出现时相同或不同地为H、取代或未取代的芳族或杂芳族基团、烷基、环烷基、烷氧基、芳烷基、芳氧基、芳硫基、烷氧基羰基、甲硅烷基或羧基基团、卤素原子、氰基基团、硝基基团或羟基基团;
r为0、1、2、3或4,并且
s为0、1、2、3、4或5。
尤其优选如下具有空穴传输或空穴注入性质的聚合物,其含有至少一个下式HTP-2的重复单元:
-(T1)c-(Ar7)d-(T2)e-(Ar8)f- HTP-2
其中符号具有以下含义:
T1和T2独立地选自噻吩、硒吩、噻吩并[2,3-b]噻吩、噻吩并[3,2-b]噻吩、二噻吩并噻吩、吡咯和苯胺,其中这些基团可以被一个或多个基团Rb取代;
Rb在每次出现时独立地选自卤素、-CN、-NC、-NCO、-NCS、-OCN、-SCN、-C(=O)NR0R00、-C(=O)X、-C(=O)R0、-NH2、-NR0R00、-SH、-SR0、-SO3H、-SO2R0、-OH、-NO2、-CF3、-SF5、任选取代的具有1至40个碳原子的甲硅烷基、二价碳基或烃基基团,所述基团可以任选为取代的并且可以任选地含有一个或多个杂原子;
R0和R00各自独立地为H或任选取代的具有1至40个碳原子的二价碳基或烃基基团,所述基团可以任选为取代的并且可以任选地含有一个或多个杂原子;
Ar7和Ar8彼此独立地表示单环或多环的芳基或杂芳基基团,所述基团可以任选为取代的并且可以任选地键合到一个或两个相邻的噻吩或硒吩基团的2,3位处;
c和e彼此独立地为0、1、2、3或4,其中1<c+e≤6;
d和f彼此独立地为0、1、2、3或4。
具有空穴传输或空穴注入性质的聚合物的优选实例尤其描述于WO 2007/131582A1和WO 2008/009343 A1中。
用作有机功能材料的含有来自第2类的结构单元的具有电子注入和/或电子传输性质的聚合物优选可以含有对应于上述电子注入和/或电子传输材料的单元。
具有电子注入和/或电子传输性质的其它优选第2类结构单元源自例如吡啶、嘧啶、哒嗪、吡嗪、
Figure BDA0002512860340000461
二唑、喹啉、喹喔啉和吩嗪基团,以及三芳基硼烷基团或具有低LUMO能级的其它含O、S或N的杂环化合物。这些第2类结构单元的LUMO优选低于-2.7eV(相对于真空能级),特别优选低于-2.8eV。
有机功能材料优选可以为含有来自第3类的结构单元的聚合物,其中改善空穴和电子迁移率的结构单元(即来自第1类和第2类的结构单元)彼此直接连接。此处,这些结构单元中的一些可以充当发光体,其中发光颜色可以转变为例如绿色、红色或黄色。因此,它们的使用对于例如由原来发蓝光的聚合物产生其它发光颜色或宽带发光是有利的。
用作有机功能材料的含有来自第4类的结构单元的具有发光性质的聚合物可以优选地含有对应于上述发光体材料的单元。此处,优选含有磷光基团的聚合物,特别是上述发光金属络合物,其含有相应的包含来自第8族至第10族的元素(Ru、Os、Rh、Ir、Pd、Pt)的单元。
含有改善从所谓单重态向三重态的跃迁的第5类单元的用作有机功能材料的聚合物可以优选用于承载磷光化合物、优选含有上述第4类结构单元的聚合物。此处可以使用聚合物三重态基质。
特别地,如例如DE 10304819 A1和DE 10328627 A1中所述的咔唑和连接的咔唑二聚体单元适用于这个目的。如例如DE 10349033 A1中所述的酮、氧化膦、亚砜、砜和硅烷衍生物和类似化合物也适用于这个目的。此外,优选结构单元可以源自上文关于与磷光化合物一起使用的基质材料描述的化合物。
其它有机功能材料优选为含有影响聚合物的形态和/或发光颜色的第6类单元的聚合物。除上述聚合物以外,这些聚合物为具有至少一种不在上述类别中的其它芳族结构或另外的共轭结构的聚合物。因此,这些类别对电荷载流子迁移率、非有机金属络合物或单重态-三重态跃迁的影响很小或没有影响。
这种类型的结构单元能够影响所得聚合物的形态和/或发光颜色。因此,依据结构单元而定,这些聚合物也可以用作发光体。
因此,在荧光OLED的情况下,优选具有6至40个C原子的芳族结构单元或此外优选二苯乙炔、茋或双苯乙烯基芳亚基衍生物单元,其各自可以被一个或多个基团取代。此处特别优选使用源自以下物质的基团:1,4-苯亚基,1,4-萘亚基,1,4-或9,10-蒽亚基,1,6-、2,7-或4,9-芘亚基,3,9或3,10-苝亚基,4,4'-联苯亚基,4,4”-三联苯亚基,4,4'-联-1,1'-萘亚基,4,4'-二苯乙炔亚基,4,4'-茋亚基或4,4”-双苯乙烯基芳亚基衍生物。
用作有机功能材料的聚合物优选含有第7类单元,其优选含有常用作骨架的具有6至40个C原子的芳族结构。
这些尤其包括4,5-二氢芘衍生物,4,5,9,10-四氢芘衍生物,芴衍生物,其例如公开于US 5962631、WO 2006/052457 A2和WO 2006/118345A1中,9,9-螺二芴衍生物,其例如公开于WO 2003/020790 A1中,9,10-菲衍生物,其例如公开于WO 2005/104264 A1中,9,10-二氢菲衍生物,其例如公开于WO 2005/014689 A2中,5,7-二氢二苯并氧杂环庚熳衍生物以及顺式-和反式-茚并芴衍生物,其例如公开于WO 2004/041901 A1和WO 2004/113412 A2中,和联二萘叉衍生物,其例如公开于WO 2006/063852 A1中,和例如公开于WO 2005/056633A1、EP 1344788A1、WO 2007/043495A1、WO 2005/033174 A1、WO 2003/099901 A1和DE 102006003710中的其它单元。
特别优选的第7类结构单元选自芴衍生物,其例如公开于US 5,962,631、WO 2006/052457 A2和WO 2006/118345 A1中,螺二芴衍生物,其例如公开于WO 2003/020790 A1中,苯并芴、二苯并芴、苯并噻吩和二苯并芴基团和它们的衍生物,其例如公开于WO 2005/056633 A1、EP 1344788 A1和WO 2007/043495 A1中。
尤其优选的第7类结构单元由通式PB-1表示:
Figure BDA0002512860340000481
其中符号和标记具有以下含义:
A、B和B'各自并且对于不同重复单元相同或不同地为二价基团,所述基团优选选自-CRcRd-、-NRc-、-PRc-、-O-、-S-、-SO-、-SO2-、-CO-、-CS-、-CSe-、-P(=O)Rc-、-P(=S)Rc-和-SiRcRd-;
Rc和Rd在每次出现时独立地选自H、卤素、-CN、-NC、-NCO、-NCS、-OCN、-SCN、-C(=O)NR0R00、-C(=O)X、-C(=O)R0、-NH2、-NR0R00、-SH、-SR0、-SO3H、-SO2R0、-OH、-NO2、-CF3、-SF5、任选取代的具有1至40个碳原子的甲硅烷基、二价碳基或烃基基团,所述基团可以任选为取代的并且可以任选地含有一个或多个杂原子,其中基团Rc和Rd可以任选地与其所键合至的芴基团形成螺环基团;
X为卤素;
R0和R00各自独立地为H或任选取代的具有1至40个碳原子的二价碳基或烃基基团,所述基团可以任选为取代的并且可以任选地含有一个或多个杂原子;
g在每种情况下独立地为0或1,并且h在每种情况下独立地为0或1,其中亚单元中g和h的总和优选为1;
m为≥1的整数;
Ar1和Ar2彼此独立地表示单环或多环的芳基或杂芳基基团,所述基团可以任选为取代的并且可以任选地键合到茚并芴基团的7,8位处或8,9位处;且
a和b彼此独立地为0或1。
如果基团Rc和Rd与这些基团所键合至的芴基团形成螺环基团,则该基团优选表示螺二芴。
特别优选式PB-1的重复单元,其选自式PB-1A至PB-1E的单元:
Figure BDA0002512860340000491
Figure BDA0002512860340000501
其中Rc具有上文对于式PB-1所述的含义,r为0、1、2、3或4,并且Re具有与基团Rc相同的含义。
Re优选为-F,-Cl,-Br,-I,-CN,-NO2,-NCO,-NCS,-OCN,-SCN,-C(=O)NR0R00,-C(=O)X,-C(=O)R0,-NR0R00,任选取代的具有4至40个、优选6至20个C原子的甲硅烷基、芳基或杂芳基基团,或具有1至20个、优选1至12个C原子的直链、支链或环状的烷基、烷氧基、烷基羰基、烷氧基羰基、烷基羰氧基或烷氧基羰氧基基团,其中一个或多个氢原子可以任选地被F或Cl取代,并且基团R0、R00和X具有上文对于式PB-1所述的含义。
特别优选式PB-1的重复单元,其选自式PB-1F至PB-1I的单元:
Figure BDA0002512860340000511
其中符号具有以下含义:
L为H、卤素或具有1至12个C原子的任选氟化的直链或支链的烷基或烷氧基基团,并且优选表示H、F、甲基、异丙基、叔丁基、正戊氧基或三氟甲基;并且
L'为具有1至12个C原子的任选氟化的直链或支链的烷基或烷氧基基团,并且优选表示正辛基或正辛氧基。
为实施本发明,优选含有多于一种的上述第1类至第7类结构单元的聚合物。此外,可以提出的是,所述聚合物优选含有多于一种的来自一个上述类别的结构单元,即包含选自一个类别的结构单元的混合物。
特别地,特别优选如下聚合物,所述聚合物除至少一种具有发光性质的结构单元(第4类)、优选至少一种磷光基团以外,还含有上述第1类至第3类、第5类或第6类的至少一种其它结构单元,其中所述结构单元优选选自第1类至第3类。
如果存在于聚合物中,则多种类别的基团的比例可以在宽的范围内,其中这为本领域技术人员所已知。如果存在于聚合物中的一个类别的比例优选在每种情况下≥5摩尔%、特别优选在每种情况下≥10摩尔%,则能够获得令人惊讶的优势,所述一个类别在每种情况下选自上述第1至7类结构单元。
白色发光共聚物的制备尤其详细地描述于DE 10343606 A1中。
为了改善溶解度,聚合物可以含有相应基团。可优选提供的是,聚合物含有取代基,使得每个重复单元中存在平均至少2个非芳族碳原子、特别优选至少4个非芳族碳原子、尤其优选至少8个非芳族碳原子,其中平均值指数量平均值。此处的个别碳原子可以例如被O或S代替。然而,特定比例的、任选所有的重复单元可以不含含有非芳族碳原子的取代基。此处,短链取代基为优选的,因为长链取代基可能对可以使用有机功能材料获得的层具有不利影响。取代基优选在直链中含有至多12个碳原子、优选至多8个碳原子、特别优选至多6个碳原子。
根据本发明用作有机功能材料的聚合物可以为无规、交替或区域规则共聚物、嵌段共聚物或这些共聚物形式的组合。
在另一个实施方式中,用作有机功能材料的聚合物可以为具有侧链的非共轭聚合物,其中这个实施方式对于基于聚合物的磷光OLED特别重要。一般来说,磷光聚合物可以通过乙烯基化合物的自由基共聚获得,其中这些乙烯基化合物含有至少一个具有磷光发光体的单元和/或至少一个电荷传输单元,如尤其在US 7250226 B2中公开的。其它磷光聚合物尤其描述于JP 2007/211243 A2、JP 2007/197574 A2、US 7250226 B2和JP 2007/059939 A中。
在另一个优选实施方式中,非共轭聚合物含有骨架单元,其通过间隔单元彼此连接。基于非共轭聚合物的这些三重态发光体的实例公开于例如DE 102009023154中,其中所述非共轭聚合物基于骨架单元。
在另一个优选实施方式中,可以将非共轭聚合物设计为荧光发光体。基于具有侧链的非共轭聚合物的优选荧光发光体在侧链中含有蒽或苯并蒽基团或这些基团的衍生物,其中这些聚合物公开于例如JP 2005/108556、JP 2005/285661和JP 2003/338375中。
这些聚合物通常可以用作电子或空穴传输材料,其中优选将这些聚合物设计为非共轭聚合物。
此外,在聚合物化合物的情况下,在制剂中用作有机功能材料的功能化合物的分子量Mw优选为≥10,000g/摩尔,特别优选≥20,000g/摩尔,尤其优选≥50,000g/摩尔。
此处,聚合物的分子量Mw优选在10,000g/摩尔至2,000,000g/摩尔的范围内,特别优选在20,000g/摩尔至1,000,000g/摩尔的范围内,极特别优选在50,000g/摩尔至300,000g/摩尔的范围内。分子量Mw借助于GPC(=凝胶渗透色谱法)相对于内部聚苯乙烯标准物来测定。
上文引用的描述功能化合物的出版物,出于公开目的而以引用的方式并入本申请中。
根据本发明的制剂可以包含制造电子器件的相应功能层所需的所有有机功能材料。例如,如果空穴传输、空穴注入、电子传输或电子注入层正好由一种功能化合物构建,则所述制剂正好包含这种化合物作为有机功能材料。如果发光层包含例如发光体与基质或主体材料的组合,则如本申请别处更详细描述的,所述制剂正好包含发光体与基质或主体材料的混合物作为有机功能材料。
除所述组分以外,根据本发明的制剂可以包含其它添加剂和加工助剂。这些尤其包括表面活性物质(表面活性剂)、润滑剂和油脂、调节粘度的添加剂、提高传导性的添加剂、分散剂、疏水剂、助粘剂、流动改善剂、消泡剂、脱气剂、可以为反应性或非反应性的稀释剂、填充剂、助剂、加工助剂、染料、颜料、稳定剂、敏化剂、纳米粒子和抑制剂。因此,根据本发明的制剂还可以包含在0.001体积%至5体积%范围内的至少一种添加剂,该添加剂以与其在制剂中的含量成非线性比例的方式降低表面张力。
此外,本发明涉及一种用于制备根据本发明的制剂的方法,其中将可用于制造电子器件的功能层的所述至少第一有机溶剂、1,1-二苯基乙烯衍生物和所述至少一种有机功能材料混合。
根据本发明的制剂可以用于制造层或多层结构,其中有机功能材料存在于如用于制造优选的电子或光电子组件(如OLED)所需的层中。
本发明制剂可以优选地用于在基底上或在施加于基底的层之一上形成功能层。所述基底可具有或不具有堤岸结构。
本发明也涉及一种制造电子器件的方法,其中将根据本发明的制剂施加至基底并且干燥。
功能层可以例如通过在基底上或在施加于基底的层之一上溢涂、浸涂、喷涂、旋涂、丝网印刷、凸版印刷、凹版印刷、轮转印刷、辊涂、柔性版印刷、胶版印刷或喷嘴印刷,优选喷墨印刷来制造。
向基底或已经施加的功能层施加根据本发明的制剂后,可以进行干燥步骤以便从上述连续相去除溶剂。干燥可以优选在相对低温下进行相对长时间以避免气泡形成,并且获得均匀涂层。干燥可以优选在80℃至300℃、更优选150℃至250℃、最优选160℃至200℃范围内的温度下进行。此处,干燥优选可以在10-6毫巴至2巴范围内、更优选在10-2毫巴至1巴范围内、最优选在10-1毫巴至100毫巴范围内的压力下进行。在干燥工序期间,基底的温度可以从-15℃到250℃变动。干燥持续时间取决于欲实现的干燥程度,其中少量水可以任选地在相对高温度下结合烧结去除,烧结是优选进行的。
还可以提供的是,将该工序重复多次来形成不同或相同的多个功能层。此处可以进行所形成的功能层的交联以防止其溶解,如例如EP 0637 899A1中所公开的。
本发明还涉及一种电子器件,其可通过制造电子器件的方法获得。
本发明还涉及一种电子器件,所述电子器件具有至少一个包含至少一种有机功能材料的功能层,所述电子器件可通过上述用于制造电子器件的方法获得。
电子器件被认为是指包含阳极、阴极和其间的至少一个功能层的器件,其中该功能层包含至少一种有机或有机金属化合物。
有机电子器件优选为有机电致发光器件(OLED)、聚合物电致发光器件(PLED)、有机集成电路(O-IC)、有机场效应晶体管(O-FET)、有机薄膜晶体管(O-TFT)、有机发光晶体管(O-LET)、有机太阳能电池(O-SC)、有机光伏(OPV)电池、有机光检测器、有机光感受器、有机场猝熄器件(O-FQD)、有机电传感器、发光电化学电池(LEC)或有机激光二极管(O-laser),更优选地是有机电致发光器件(OLED)或聚合物电致发光器件(PLED)。
有源组分通常为引入阳极与阴极之间的有机或无机材料,其中这些有源组分实现、维持和/或改善电子器件的性质,例如其性能和/或其寿命,有源组分例如为电荷注入、电荷传输或电荷阻挡材料,但特别是发光材料和基质材料。因此,可以用于制造电子器件的功能层的有机功能材料优选包含电子器件的有源组分。
有机电致发光器件为本发明的一个优选实施方式。有机电致发光器件包含阴极、阳极和至少一个发光层。
此外,优选使用两种或更多种三重态发光体与基质的混合物。具有较短波发光光谱的三重态发光体在此处充当具有较长波发光光谱的三重态发光体的共基质。
在这种情况下,发光层中基质材料的比例对于荧光发光层优选为50重量%至99.9重量%,更优选为70重量%至99.5重量%,最优选为85重量%至99.5重量%,并且对于磷光发光层为75重量%至97重量%。
相应地,对于荧光发光层,掺杂剂的比例优选为0.1重量%至50重量%,更优选为0.5重量%至30重量%,最优选为0.5重量%至15重量%,并且对于磷光发光层为3重量%至25重量%。
有机电致发光器件的发光层还可以包括包含多种基质材料(混合基质体系)和/或多种掺杂剂的体系。此外,在这种情况下,掺杂剂通常为在体系中的比例较小的材料,并且基质材料为在体系中的比例较大的材料。然而,在个别情况下,个别基质材料在体系中的比例可以小于个别掺杂剂的比例。
混合基质体系优选包含两种或三种不同基质材料,更优选两种不同基质材料。此处,所述两种材料之一优选为具有空穴传输性质的材料,并且另一种材料为具有电子传输性质的材料。然而,混合基质组分的期望电子传输和空穴传输性质还可以主要或完全合并在单一混合基质组分中,其中其它的一种或多种混合基质组分满足其它功能。此处,所述两种不同基质材料可以以1:50至1:1、优选1:20至1:1、更优选1:10至1:1、最优选1:4至1:1的比率存在。混合基质体系优选用于磷光有机电致发光器件中。关于混合基质体系的其它细节可以见于例如WO 2010/108579中。
除这些层以外,有机电致发光器件还可以包含其它层,例如在每种情况下一个或多个空穴注入层、空穴传输层、空穴阻挡层、电子传输层、电子注入层、激子阻挡层、电子阻挡层、电荷产生层(IDMC 2003,台湾;Session 21OLED(5),T.Matsumoto,T.Nakada,J.Endo,K.Mori,N.Kawamura,A.Yokoi,J.Kido,Multiphoton Organic EL Device Having ChargeGeneration Layer(具有电荷产生层的多光子有机EL器件))和/或有机或无机p/n结。此处,一个或多个空穴传输层可用例如金属氧化物(如MoO3或WO3)或用(全)氟化贫电子芳族化合物进行p型掺杂,和/或一个或多个电子传输层可被n型掺杂。也可将中间层引入两个发光层之间,所述中间层在电致发光器件中具有例如激子阻挡功能和/或控制电荷平衡。然而,应该指出这些层中的每一个不必都存在。如上文所定义,这些层也可以在使用根据本发明的制剂时存在。
在本发明的另一个实施方式中,所述器件包含多个层。此处,根据本发明的制剂优选可以用于制造空穴传输层、空穴注入层、电子传输层、电子注入层和/或发光层。
因此,本发明还涉及一种电子器件,所述电子器件包含至少三个层,但在一个优选实施方式中,所述电子器件包含来自空穴注入、空穴传输、发光、电子传输、电子注入、电荷阻挡和/或电荷产生层中的全部的所述层,并且其中至少一个层已经通过待根据本发明使用的制剂获得。所述层例如空穴传输和/或空穴注入层的厚度可以优选在1nm至500nm的范围内,更优选在2nm至200nm的范围内。
所述器件还可以包含由其它低分子量化合物或聚合物构建的层,所述层尚未通过使用根据本发明的制剂来施加。这些还可以通过在高真空中蒸发低分子量化合物来制造。
另外,可以优选使用这样的化合物,其不以纯物质形式使用,而是以与任何期望类型的其它聚合物、低聚物、树枝状大分子或低分子量物质的混合物(共混物)形式使用。这些可以例如改善电子性质或其自身发光。
在本发明的一个优选实施方式中,根据本发明的制剂包含有机功能材料,其用作发光层中的主体材料或基质材料。此处,除主体材料或基质材料以外,制剂可以包含上述发光体。此处,有机电致发光器件可以包含一个或多个发光层。如果存在多个发光层,则这些发光层优选在380nm至750nm之间具有多个发光峰值,使整体发白光,即,能够发荧光或发磷光的多种发光化合物被用于发光层中。非常特别优选三层体系,其中所述三个层表现蓝色、绿色和橙色或红色发光(对于基本结构,参见例如WO 2005/011013)。白色发光的器件例如适合用作LCD显示器的背光或用于一般照明应用。
多个OLED还可以以层叠方式布置,使得关于待实现的光输出的效率进一步提高。
为了改善光的耦合输出,OLED中的出光侧上的最终有机层例如也可以呈纳米泡沫的形式,从而引起全反射比例降低。
还优选如下有机电致发光器件,其中一个或多个层借助于升华方法施加,其中通过在真空升华单元中在低于10-5毫巴、优选低于10-6毫巴、更优选低于10-7毫巴的压力下的气相沉积来施加所述材料。
还可以提供的是,根据本发明的电子器件的一个或多个层借助于OVPD(有机气相沉积)方法或借助于载气升华来施加,其中在10-5毫巴至1巴的压力下施加所述材料。
还可以提供的是,从溶液例如通过旋涂或借助于任何期望印刷方法如丝网印刷、柔性版印刷或胶版印刷,但特别优选LITI(光引发热成像,热转印)或喷墨印刷来产生根据本发明的电子器件的一个或多个层。
所述器件通常包含阴极和阳极(电极)。出于本发明的目的,选择电极(阴极、阳极),使得其能带能量尽可能接近地对应于相邻有机层的能带能量,以确保高效的电子或空穴注入。
所述阴极优选包含金属络合物、具有低逸出功的金属、金属合金或多层结构,所述金属合金或多层结构包含多种金属,例如碱土金属、碱金属、主族金属或镧系元素(例如Ca、Ba、Mg、Al、In、Mg、Yb、Sm等)。在多层结构情况下,除所述金属之外,也可以使用具有相对高逸出功的其它金属例如Ag和Ag纳米线(Ag NW),在这种情况下,通常使用金属的组合,例如Ca/Ag或Ba/Ag。还可优选在金属阴极和有机半导体之间引入具有高介电常数的材料的薄中间层。适合于该目的的是例如碱金属氟化物或碱土金属氟化物,以及相应的氧化物(例如LiF、Li2O、BaF2、MgO、NaF等)。该层的层厚度优选为0.1nm至10nm,更优选0.2nm至8nm,最优选为0.5nm至5nm。
所述阳极优选包含具有高逸出功的材料。该阳极优选具有相对于真空大于4.5eV的电位。一方面,适合于该目的的是具有高氧化还原电位的金属,例如Ag、Pt或Au。另一方面,也可以优选金属/金属氧化物电极(例如Al/Ni/NiOx、Al/PtOx)。对于一些应用,所述电极的至少一个必须是透明的,以便促进有机材料的辐射(O-SC)或光的耦合输出(OLED/PLED、O-laser)。一个优选的结构使用透明阳极。此处优选的阳极材料是导电的混合金属氧化物。特别优选氧化锡铟(ITO)或氧化铟锌(IZO)。此外,优选导电的掺杂有机材料,特别是导电的掺杂聚合物,如聚(乙撑二氧基噻吩)(PEDOT)和聚苯胺(PANI)或这些聚合物的衍生物。此外,优选将p型掺杂的空穴传输材料作为空穴注入层施加至阳极,其中适合的p型掺杂剂是金属氧化物(例如MoO3或WO3)或(全)氟化贫电子芳族化合物。其它适合的p型掺杂剂为HAT-CN(六氰基六氮杂联三苯叉)或化合物NPD9(来自Novaled公司)。这种类型的层简化了具有低HOMO(即具有大的值的HOMO)的材料中的空穴注入。
一般来说,根据现有技术用于所述层的所有材料可以用于其它层中,并且本领域技术人员将能够不付出创造性劳动而将这些材料中的每一种与根据本发明的材料组合于电子器件中。
依据应用而定,将器件以本身已知的方式相应地结构化,设置接触点并且最后气密密封,这是因为这类器件的寿命在水和/或空气存在下急剧地缩短。
根据本发明的制剂和可由其获得的电子器件、特别是有机电致发光器件,相比于现有技术的突出之处在于以下令人惊讶的优点中的一个或多个:
1.与使用常规方法获得的电子器件相比,可使用根据本发明的制剂获得的电子器件表现出极高的稳定性和极长的寿命。
2.根据本发明的制剂可以使用常规方法处理,从而还能够实现成本优势。
3.用于根据本发明的制剂中的有机功能材料不受任何特别限制,使得本发明方法能够被全面使用。
4.可使用本发明的制剂获得的涂层表现出优异的质量,特别是在涂层的均匀性方面更是如此。
5.所述溶剂来源于糖,因此它们基于可再生资源。这使得这些溶剂成为印刷光电器件的绿色且可持续的来源。
6.所述制剂在溶解物质的沉淀方面显示出改善的长期稳定性。
这些上述优势不伴有其它电子性质的受损。
应该指出,本发明中描述的实施方式的变化落入本发明的范围。除非明确排除,否则本发明中公开的各个特征可以由用于相同、等效或类似目的的替代特征代替。因此,除非另外说明,否则本发明中公开的各个特征应被视为类属系列的实例或视为等效或类似特征。
本发明的所有特征可以以任何方式彼此组合,除非某些特征和/或步骤互相排斥。这特别适用于本发明的优选特征。同样地,非必要组合的特征可以单独使用(而不是组合使用)。
还应该指出,许多特征、特别是本发明优选实施方式的特征,本身是具备创造性的,并且不应仅仅被视为本发明实施方式的一部分。对于这些特征,除了目前要求保护的各发明之外,还可以寻求独立的保护,或寻求独立的保护以作为目前要求保护的各发明的替代方案。
可以提炼关于本发明所公开的技术行为的教导,并与其它实例组合。
下文参考实施例更详细地说明本发明,但不由此限制本发明。
本领域技术人员将能够使用该说明书来制造根据本发明的其它电子器件,而无需付出创造性劳动,由此可以在要求保护的范围内实施本发明。
实施例
测量材料在溶剂中的溶解度
材料在溶剂中的溶解度的测量可以遵循ISO规范7579:2009进行,该规范描述了通过光度测量法或重量分析法进行溶解度测量。由于所考虑的溶剂的沸点高于120℃,因此使用光度测量技术。
对于通常用于印刷OLED器件中的有源材料,根据本发明的溶剂显示出改善的溶解度。
溶解测试
将待分析的材料(其用于形成功能层)称入透明的玻璃烧瓶中。然后将溶剂(或预形成的溶剂混合物)立即加入到固体混合物中,进行计算使其达到7g/L的最终浓度。使用磁力搅拌器在室温(25℃)下以600rpm搅拌混合物直至完全溶解,这通过目视检查混合物来判断。在溶解测试快要结束时,另外在垂直于视线的照明下检查混合物,以帮助鉴定未溶解的粒子。使用精密计时器测量“溶解的时间”,有时也称为“溶解时间”t溶解,并且量化从添加溶剂并且开始搅拌直至最后的材料块消失在溶液中的时间。通过将7g/L除以直到获得完全溶解的时间(“溶解时间”)来确定溶解速率。
使用如WO 2016/107668中所述的空穴传输材料(HTL)聚合物(聚合物P1)。根据在25℃下的溶解时间t溶解和溶解类型对溶剂进行分类。表1总结了不同的溶解类型。
溶解类型 在25℃下的相应溶解时间t<sub>溶解</sub> 溶解速率[g/(L·分钟)]
A型 0至14分钟 >0.466
B型 15至29分钟 0.466–0.233
C型 30至59分钟 0.233–0.116
D型 60至120分钟 0.116–0.058
E型 超过120分钟 <0.058
F型 未溶解 0
表1:溶解时间和溶解速率的评价。
层稳定性测试实验
对根据本发明的溶剂在预形成的层上造成的损伤进行测试。下面将详细描述该实验。
1.基底准备
在30000×30000×1100微米大小的平面玻璃基底上,将“待测试”材料从溶液中旋涂。使用如WO 2016/107668中所述的空穴传输材料(HTL)聚合物(聚合物P1)。以每升溶剂计,溶液含有5克至50克所述材料。通过将固体材料称入溶剂中来制备制剂。通过在室温下使用磁力搅拌器在室温下将混合物搅拌1小时至6小时,可以促进制剂的溶解。完全溶解后,将制剂转移到手套箱中,并在惰性条件下使用0.2微米PTFE过滤器过滤。所述制剂用于在玻璃载片之上旋涂50nm厚的层。厚度是使用Alpha-step D-500触针式轮廓测量仪测量的。使用该制备程序制备的层的表面非常平坦和光滑。平均表面粗糙度(RMS)低于1nm。沉积后,通过将基底置于220℃的热板上30分钟,使层退火。
2.层损伤测试条件
为了测试沉积材料层的稳定性,将溶剂填充到打印机(Dimatix DMP-2831)的对溶剂稳定的10pl一次性墨盒中。墨盒的大小决定了微滴体积。在这种情况下,将使用10皮升的墨盒。打印机在无振动的环境中运行并且水平放置。将打印条件(详细程序请参见Dimatix用户手册)调节为每秒4米的微滴速度。使用单个喷嘴进行打印。将来自步骤1)的基底放置在打印机的基底支架上。将打印图案(图1)编程为具有特定液滴体积。表面上的液滴由九个小的单微滴组成,这些微滴以3×3矩阵非常靠近在一起地布置。打印后,所得液滴如图2所示,即所有单微滴合并而形成90皮升液滴体积的单个液滴(可以使用其它液滴体积,但在一组实验中需要保持恒定)。图2中的图像可以使用打印机的基准相机进行观察。它从上部向下与喷射方向平行地观察基底(示意图,参见图3)。
3.层损伤测试程序
打印后,立即使用打印机的基准相机拍摄照片(图2)并启动计时器。在五分钟的过程内拍摄了多张照片(参见表2),即所谓的“浸泡时间”。由于视场和x-/y-坐标已链接,打印后立即使用基准屏幕测量固着液滴的直径。这意味着可以导出每个标记位置的x-/y-数据,因此可以计算两点的距离。该值用作液滴直径,并描述了溶剂在表面上的相互作用。通过查看浸泡时间内拍摄的照片,能够鉴定溶剂与表面之间的相互作用,因此能够鉴定表面改性。微滴边界线周围的深色阴影环增加对应于溶剂对表面的损伤。五分钟浸泡时间后,将基底置于真空干燥室中以除去溶剂并完全干燥该层。泵送60秒后,压力达到1×10-4毫巴。将基底充分干燥至少十分钟。干燥后,移出基底,并量化对表面的损伤。再次使用打印机的基准相机拍摄了另一张照片,以鉴定对层的损伤。为了量化对层的损伤,进行触觉测量如轮廓测量法(图4)。作为量化层稳定性的关键性能指标(KPI),使用轮廓测量中最低点与最高点之间的差值(参见图5)。该值具有纳米单位。确定KPI后,将该值转化为损伤指标(DI),其可见于图6。然后可以将其进一步用于确定针对特定溶剂的层稳定性。
浸泡时间[秒] 0 60 120 180 300 干燥
拍摄照片
测量直径
表2:层损伤时间表。
为了确定层损伤率,即接触第二溶剂的层的溶解速率的量度,将KPI除以浸泡时间,该浸泡时间被选择为300秒。破坏因子的单位是单位时间的层磨损率,这里是纳米/秒[nm/秒]。通常,浸泡时间应在典型溶液处理步骤的范围内。根据DI,对于层中的材料和溶剂的给定组合,可接受使用小于0.066nm/秒的破坏因子。
根据本发明的溶剂对下伏层的损伤很小。
器件实施例
下文呈现的实施例是使用具有以下结构的器件进行的:Al阴极(100nm)/ETL(40nm)/HBL(10nm)/EML(60nm)/HTL(20nm)/HIL(40nm)/ITO阳极(50nm)/基底,其中ETL、HBL、EML、HTL和HIL分别代表电子传输层、空穴阻挡层、发光层、空穴传输层和空穴注入层。所有实施例的空穴注入层和空穴传输层通过喷墨印刷工序制备以实现所需的厚度。对于发光层,使用根据本发明的溶剂共混物。
制造工序的说明
在异丙醇中用超声波清洁覆盖有预先结构化的ITO和堤岸材料(其中堤岸被预先制造在基底上以形成像素化器件)的玻璃基底,然后在去离子水中清洁,然后使用气枪干燥,随后在230℃的热板上退火2小时。
将使用PEDOT-PSS(Clevios Al4083,Heraeus公司)的空穴注入层(HIL)喷墨印刷到基底上,并在真空中干燥。然后在空气中将HIL在185℃下退火30分钟。
在HIL之上,将空穴传输层(HTL)喷墨印刷,在真空中干燥并在210℃下在氮气气氛中退火30分钟。作为空穴传输层的材料,使用聚合物HTM-1。聚合物HTM-1的结构如下:
Figure BDA0002512860340000661
也将绿色发光层(G-EML)喷墨印刷,真空干燥,并在氮气气氛中于160℃退火10分钟。用于绿色发光层的墨含有两种主体材料(即HM-1和HM-2)以及一种三重态发光体(EM-1)。所述材料以下列比率使用:HM-1:HM-2:EM-1=40:40:20。这些材料的结构如下:
Figure BDA0002512860340000662
所有喷墨印刷过程均在黄光和环境条件下进行。
然后将器件转移到真空沉积室中,在该真空沉积室中使用热蒸发沉积空穴阻挡层(HBL)、电子传输层(ETL)和阴极(Al)。然后在手套箱中将器件进行表征。
使用ETM-1作为用于空穴阻挡层的空穴阻挡材料。所述材料具有以下结构:
Figure BDA0002512860340000671
在电子传输层(ETL)中,使用ETM-1和LiQ的50:50混合物。LiQ是8-羟基喹啉锂。
为了在电流密度-亮度-电压性能中测量OLED性能,所述器件由Keithley 2400源测量单元提供的从-5V至25V的扫描电压驱动。通过Keithley 2400SMU记录OLED器件上的电压以及通过OLED器件的电流。用校准的光电二极管检测器件的亮度。用Keithley 6485/E皮安计测量光电流。对于光谱,亮度传感器由连接到Ocean Optics USB2000+光谱仪的玻璃纤维代替。
器件实施例1
使用用于发光层的含异山梨醇的制剂来制备具有印刷层的喷墨印刷OLED器件。像素化OLED器件的结构为玻璃/ITO/HIL/HTM/EML/HBL/ETL/Al。绿色发光材料以14mg/ml的浓度溶解。
比较器件实施例1
使用3-苯氧基-甲苯作为发光层的溶剂来制备具有印刷层的喷墨印刷OLED器件。像素化OLED器件的结构是玻璃/ITO/HIL/HTM/EML/HBL/ETL/Al,其中在基底上预制堤岸以形成像素化器件。绿色发光材料以14mg/ml的浓度溶解。
在给定亮度下的发光效率、寿命和电压都相对于比较例显著提高。
从印刷子像素的EL发光的均匀性判断,根据本发明的制剂的所得膜相比于比较例显示出改善的成膜性质。

Claims (23)

1.一种含有至少一种量子材料和/或至少一种有机功能材料和作为第一溶剂的异山梨醇的制剂,其中所述至少一种有机功能材料优选选自有机导体,有机半导体,有机荧光材料,有机延迟荧光材料,有机磷光材料,有机光吸收材料,有机感光材料,有机光敏材料,有机p型掺杂剂,有机n型掺杂剂,过渡金属、稀土元素、镧系元素和锕系元素的有机金属络合物以及其它有机光活性材料。
2.根据权利要求1所述的制剂,其中所述第一溶剂是双重取代的异山梨醇。
3.根据权利要求1或2所述的制剂,其中所述第一有机溶剂是根据式(I)的化合物、其立体异构体或其立体异构体的混合物
Figure FDA0002512860330000011
其中
X在每次出现时相同或不同,是O或N,优选两个X相同并且非常优选两个X都是O;
Y在每次出现时相同或不同,是S、NR5、O,优选两个Y相同并且非常优选两个Y都是O;
R1和R2
在每次出现时相同或不同,并且是具有1至40个脂族碳原子、优选1至20个脂族碳原子的直链、支链或环状的脂族基团,其中一个CH2基团或多个非相邻的CH2基团可被-O-、-S-、-NR5-、-CONR5-、-CO-O-、-C=O-、-R5C=CR5-、-C≡C-、-Si(R5)2-、-Ge(R5)2-、-Sn(R5)2-、C=S、C=Se、C=NR5、P(=O)(R5)、-SO-、-SO2-代替,具有1至60个芳族碳原子的芳基或杂芳基基团,并且其中所述基团可被一个或多个R6取代;
R3和R4
在每次出现时相同或不同,并且是H,D,F,Cl,Br,具有1至40个脂族碳原子、优选1至20个脂族碳原子的直链、支链或环状的脂族基团,其中一个CH2基团或多个非相邻的CH2基团可被-O-、-S-、-NR5-、-CONR5-、-CO-O-、-C=O-、-R5C=CR5-、-C≡C-、-Si(R5)2-、-Ge(R5)2-、-Sn(R5)2-、C=S、C=Se、C=NR5、P(=O)(R5)、-SO-、-SO2-代替,具有1至60个芳族碳原子的芳基或杂芳基基团,并且其中所述基团可被一个或多个R6取代;
R5
在每次出现时相同或不同,并且是H,具有1至20个碳原子的直链的烷基或烷氧基基团或具有3至20个碳原子的支链或环状的烷基或烷氧基基团,并且其中一个或多个氢原子可被D、F、Cl、Br、I、CN或NO2代替,或在环系中具有2至60个碳原子的芳族或杂芳族环系,其中R5可被一个或多个R6取代;
R6
在每次出现时相同或不同,并且是H,具有1至20个碳原子的直链的烷基或烷氧基基团或具有3至20个碳原子的支链或环状的烷基或烷氧基基团,并且其中一个或多个氢原子可被D、F、Cl、Br、I、CN或NO2代替,或在环系中具有2至60个碳原子的芳族或杂芳族环系。
4.根据权利要求1至3中的一项或多项所述的制剂,其中式(I)中的R1和R2相同。
5.根据权利要求1至4中的一项或多项所述的制剂,其中R3和R4相同,优选地R3和R4都是H。
6.根据权利要求1至5中的一项或多项所述的制剂,其中R1和R2在每次出现时相同或不同,并且是具有1至40个脂族碳原子的直链、支链或环状的脂族基团,并且其中R1和R2可被一个或多个R6取代,其中R6具有如以上权利要求中所定义的含义。
7.根据权利要求1至6中的一项或多项所述的制剂,其中所述第一溶剂的表面张力≥20mN/m。
8.根据权利要求1至7中的一项或多项所述的制剂,其中所述制剂包含至少一种不同于所述第一溶剂的第二溶剂。
9.根据权利要求1至9中的一项或多项所述的制剂,其中以所述制剂中的溶剂的总量计,所述第一溶剂的含量在50体积%至100体积%的范围内。
10.根据权利要求1至8中的一项或多项所述的制剂,其中以所述制剂中的溶剂的总量计,所述第二溶剂的含量高于所述第一溶剂的含量。
11.根据权利要求9或10所述的制剂,其中所述第二溶剂的沸点在100℃至400℃的范围内。
12.根据权利要求1至11中的一项或多项所述的制剂,其中所述第一溶剂的沸点为400℃或更低,优选为350℃或更低。
13.根据权利要求1至12中的一项或多项所述的制剂,其中所述至少一种有机功能材料在所述第一溶剂中以及在所述第二溶剂中的溶解度在1g/l至250g/l的范围内。
14.根据权利要求1至13中的一项或多项所述的制剂,其中所述制剂包含相对于所述制剂的总体积在0.001体积%至5体积%范围内的至少一种添加剂。
15.根据权利要求1至14中的一项或多项所述的制剂,其中所述制剂的表面张力在10mN/m至70mN/m的范围内。
16.根据权利要求1至15中的一项或多项所述的制剂,其中所述制剂的粘度在0.8mPa.s至50mPa.s的范围内。
17.根据权利要求1至16中的一项或多项所述的制剂,其中以所述制剂的总重量计,所述至少一种有机功能材料在所述制剂中的含量在0.001重量%至20重量%的范围内。
18.根据权利要求1至17中的一项或多项所述的制剂,其中所述至少一种有机功能材料是选自空穴注入材料、空穴传输材料、发光材料、电子传输材料和电子注入材料的有机半导体。
19.根据权利要求1至18中的一项或多项所述的制剂,其中所述至少一种有机半导体选自空穴注入材料、空穴传输材料和发光材料。
20.根据权利要求1至19中的一项或多项所述的制剂,其中所述空穴注入材料和空穴传输材料是聚合物化合物或聚合物化合物与非聚合物化合物的共混物。
21.一种制备根据权利要求1至20中的一项或多项所述的制剂的方法,其中将所述至少一种有机功能材料和所述至少第一溶剂混合。
22.一种制备电致发光器件的方法,其中以下述方法制备所述电致发光器件的至少一个层:将根据权利要求1至20中的一项或多项所述的制剂沉积、优选印刷在表面上,并随后干燥。
23.一种电致发光器件,其中以下述方法制备至少一个层:将根据权利要求1至20中的一项或多项所述的制剂沉积、优选通过印刷沉积在表面上,并随后干燥。
CN201880076995.6A 2017-12-15 2018-12-12 有机功能材料的制剂 Active CN111418081B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP17207845 2017-12-15
EP17207845.3 2017-12-15
PCT/EP2018/084448 WO2019115573A1 (en) 2017-12-15 2018-12-12 Formulation of an organic functional material

Publications (2)

Publication Number Publication Date
CN111418081A true CN111418081A (zh) 2020-07-14
CN111418081B CN111418081B (zh) 2024-09-13

Family

ID=60935653

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880076995.6A Active CN111418081B (zh) 2017-12-15 2018-12-12 有机功能材料的制剂

Country Status (4)

Country Link
JP (1) JP7293229B2 (zh)
KR (1) KR102666621B1 (zh)
CN (1) CN111418081B (zh)
WO (1) WO2019115573A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113054107A (zh) * 2021-02-05 2021-06-29 广州追光科技有限公司 一种用于有机太阳能电池涂布的有机溶液组合

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009046402A (ja) * 2007-08-14 2009-03-05 National Institute Of Advanced Industrial & Technology ホール伝導性コレステリック液晶化合物
JP2010241919A (ja) * 2009-04-03 2010-10-28 Sumitomo Chemical Co Ltd 組成物、フィルム及びフィルムの製造方法
WO2011076314A1 (en) * 2009-12-22 2011-06-30 Merck Patent Gmbh Electroluminescent formulations
US20150034868A1 (en) * 2013-07-31 2015-02-05 Semiconductor Energy Laboratory Co., Ltd. Isosorbide derivative, liquid crystal composition, liquid crystal element, and liquid crystal display device
CN104509207A (zh) * 2012-07-31 2015-04-08 日东电工株式会社 显示装置及其制造方法
US20160002480A1 (en) * 2013-03-07 2016-01-07 Oce-Technologies B.V. Ink composition
WO2016107663A1 (de) * 2014-12-30 2016-07-07 Merck Patent Gmbh Formulierungen und elektronische vorrichtungen
US20160313642A1 (en) * 2015-04-21 2016-10-27 Fujifilm Electronic Materials U.S.A., Inc. Photosensitive polyimide compositions
CN106103543A (zh) * 2014-03-20 2016-11-09 帝人株式会社 聚碳酸酯树脂和光学膜
CN106471401A (zh) * 2014-04-16 2017-03-01 日东电工株式会社 相位差膜、圆偏振片及图像显示装置
JP2017207596A (ja) * 2016-05-17 2017-11-24 日東電工株式会社 光学積層体
CN108138042A (zh) * 2015-10-09 2018-06-08 默克专利有限公司 含有n,n-二烷基苯胺溶剂的制剂

Family Cites Families (196)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL250330A (zh) 1959-04-09
US3526501A (en) 1967-02-03 1970-09-01 Eastman Kodak Co 4-diarylamino-substituted chalcone containing photoconductive compositions for use in electrophotography
US3567450A (en) 1968-02-20 1971-03-02 Eastman Kodak Co Photoconductive elements containing substituted triarylamine photoconductors
US3658520A (en) 1968-02-20 1972-04-25 Eastman Kodak Co Photoconductive elements containing as photoconductors triarylamines substituted by active hydrogen-containing groups
US3615404A (en) 1968-04-25 1971-10-26 Scott Paper Co 1 3-phenylenediamine containing photoconductive materials
US3717462A (en) 1969-07-28 1973-02-20 Canon Kk Heat treatment of an electrophotographic photosensitive member
BE756943A (fr) 1969-10-01 1971-03-16 Eastman Kodak Co Nouvelles compositions photoconductrices et produits les contenant, utilisables notamment en electrophotographie
US4127412A (en) 1975-12-09 1978-11-28 Eastman Kodak Company Photoconductive compositions and elements
JPS54110837A (en) 1978-02-17 1979-08-30 Ricoh Co Ltd Electrophotographic photoreceptor
JPS5646234A (en) 1979-09-21 1981-04-27 Ricoh Co Ltd Electrophotographic receptor
US4356429A (en) 1980-07-17 1982-10-26 Eastman Kodak Company Organic electroluminescent cell
US4539507A (en) 1983-03-25 1985-09-03 Eastman Kodak Company Organic electroluminescent devices having improved power conversion efficiencies
JPS61210363A (ja) 1985-03-15 1986-09-18 Canon Inc 電子写真感光体
US4720432A (en) 1987-02-11 1988-01-19 Eastman Kodak Company Electroluminescent device with organic luminescent medium
US4769292A (en) 1987-03-02 1988-09-06 Eastman Kodak Company Electroluminescent device with modified thin film luminescent zone
US5121029A (en) 1987-12-11 1992-06-09 Idemitsu Kosan Co., Ltd. Electroluminescence device having an organic electroluminescent element
JPH01211399A (ja) 1988-02-19 1989-08-24 Toshiba Corp スキャン機能付きダイナミックシフトレジスタ
JPH02282263A (ja) 1988-12-09 1990-11-19 Nippon Oil Co Ltd ホール輸送材料
JP2727620B2 (ja) 1989-02-01 1998-03-11 日本電気株式会社 有機薄膜el素子
US5130603A (en) 1989-03-20 1992-07-14 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
US5077142A (en) 1989-04-20 1991-12-31 Ricoh Company, Ltd. Electroluminescent devices
US4950950A (en) 1989-05-18 1990-08-21 Eastman Kodak Company Electroluminescent device with silazane-containing luminescent zone
US5061569A (en) 1990-07-26 1991-10-29 Eastman Kodak Company Electroluminescent device with organic electroluminescent medium
JP3016896B2 (ja) 1991-04-08 2000-03-06 パイオニア株式会社 有機エレクトロルミネッセンス素子
US5529853A (en) 1993-03-17 1996-06-25 Sanyo Electric Co., Ltd. Organic electroluminescent element
DE4325885A1 (de) 1993-08-02 1995-02-09 Basf Ag Elektrolumineszierende Anordnung
JP3295088B2 (ja) 1993-09-29 2002-06-24 出光興産株式会社 有機エレクトロルミネッセンス素子
DE69412567T2 (de) 1993-11-01 1999-02-04 Hodogaya Chemical Co., Ltd., Tokio/Tokyo Aminverbindung und sie enthaltende Elektrolumineszenzvorrichtung
JPH07133483A (ja) 1993-11-09 1995-05-23 Shinko Electric Ind Co Ltd El素子用有機発光材料及びel素子
EP0676461B1 (de) 1994-04-07 2002-08-14 Covion Organic Semiconductors GmbH Spiroverbindungen und ihre Verwendung als Elektrolumineszenzmaterialien
EP0681019B1 (en) 1994-04-26 1999-09-01 TDK Corporation Phenylanthracene derivative and organic EL element
JP2686418B2 (ja) 1994-08-12 1997-12-08 東洋インキ製造株式会社 ジアリールアミン誘導体、その製造方法及び用途
JP3306735B2 (ja) 1995-01-19 2002-07-24 出光興産株式会社 有機電界発光素子及び有機薄膜
JPH08292586A (ja) 1995-04-21 1996-11-05 Hodogaya Chem Co Ltd 電子写真用感光体
US5708130A (en) 1995-07-28 1998-01-13 The Dow Chemical Company 2,7-aryl-9-substituted fluorenes and 9-substituted fluorene oligomers and polymers
EP0765106B1 (en) 1995-09-25 2002-11-27 Toyo Ink Manufacturing Co., Ltd. Light-emitting material for organic electroluminescence device, and organic electroluminescence device for which the light-emitting material is adapted
US5766779A (en) 1996-08-20 1998-06-16 Eastman Kodak Company Electron transporting materials for organic electroluminescent devices
DE19646119A1 (de) 1996-11-08 1998-05-14 Hoechst Ag Elektrolumineszenzvorrichtung
US6344283B1 (en) 1996-12-28 2002-02-05 Tdk Corporation Organic electroluminescent elements
JP3148176B2 (ja) 1998-04-15 2001-03-19 日本電気株式会社 有機エレクトロルミネッセンス素子
KR100805451B1 (ko) 1998-09-09 2008-02-20 이데미쓰 고산 가부시키가이샤 유기 전자발광 소자 및 페닐렌디아민 유도체
US6830828B2 (en) 1998-09-14 2004-12-14 The Trustees Of Princeton University Organometallic complexes as phosphorescent emitters in organic LEDs
US6361886B2 (en) 1998-12-09 2002-03-26 Eastman Kodak Company Electroluminescent device with improved hole transport layer
US6465115B2 (en) 1998-12-09 2002-10-15 Eastman Kodak Company Electroluminescent device with anthracene derivatives hole transport layer
US6020078A (en) 1998-12-18 2000-02-01 Eastman Kodak Company Green organic electroluminescent devices
EP1449238B1 (en) 1999-05-13 2006-11-02 The Trustees Of Princeton University Very high efficiency organic light emitting devices based on electrophosphorescence
EP3379591A1 (en) 1999-12-01 2018-09-26 The Trustees of Princeton University Complexes of form l2mx
US6821645B2 (en) 1999-12-27 2004-11-23 Fuji Photo Film Co., Ltd. Light-emitting material comprising orthometalated iridium complex, light-emitting device, high efficiency red light-emitting device, and novel iridium complex
JP4876311B2 (ja) 2000-01-14 2012-02-15 東レ株式会社 発光素子
US6660410B2 (en) 2000-03-27 2003-12-09 Idemitsu Kosan Co., Ltd. Organic electroluminescence element
JP4024009B2 (ja) 2000-04-21 2007-12-19 Tdk株式会社 有機el素子
JP4048521B2 (ja) 2000-05-02 2008-02-20 富士フイルム株式会社 発光素子
US6645645B1 (en) 2000-05-30 2003-11-11 The Trustees Of Princeton University Phosphorescent organic light emitting devices
US20020121638A1 (en) 2000-06-30 2002-09-05 Vladimir Grushin Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
CN102041001B (zh) 2000-08-11 2014-10-22 普林斯顿大学理事会 有机金属化合物和发射转换有机电致磷光
JP4154138B2 (ja) 2000-09-26 2008-09-24 キヤノン株式会社 発光素子、表示装置及び金属配位化合物
JP4154140B2 (ja) 2000-09-26 2008-09-24 キヤノン株式会社 金属配位化合物
JP4154139B2 (ja) 2000-09-26 2008-09-24 キヤノン株式会社 発光素子
WO2002043449A1 (fr) 2000-11-24 2002-05-30 Toray Industries, Inc. Materiau luminescent et element luminescent contenant celui-ci
AU2002222566A1 (en) 2000-11-30 2002-06-11 Canon Kabushiki Kaisha Luminescent element and display
DE10109027A1 (de) 2001-02-24 2002-09-05 Covion Organic Semiconductors Rhodium- und Iridium-Komplexe
JP4438042B2 (ja) 2001-03-08 2010-03-24 キヤノン株式会社 金属配位化合物、電界発光素子及び表示装置
EP1374320B1 (en) 2001-03-14 2020-05-06 The Trustees Of Princeton University Materials and devices for blue phosphorescence based organic light emitting diodes
US20040082813A1 (en) 2001-03-16 2004-04-29 Toshihiro Iwakuma Method for producting aromatic amino compound
US7288617B2 (en) 2001-03-24 2007-10-30 Merck Patent Gmbh Conjugated polymers containing spirobifluorene units and fluorene units, and the use thereof
DE10116962A1 (de) 2001-04-05 2002-10-10 Covion Organic Semiconductors Rhodium- und Iridium-Komplexe
US7071615B2 (en) 2001-08-20 2006-07-04 Universal Display Corporation Transparent electrodes
WO2003022007A1 (en) 2001-08-29 2003-03-13 The Trustees Of Princeton University Organic light emitting devices having carrier blocking layers comprising metal complexes
US7250226B2 (en) 2001-08-31 2007-07-31 Nippon Hoso Kyokai Phosphorescent compound, a phosphorescent composition and an organic light-emitting device
JP4629643B2 (ja) 2001-08-31 2011-02-09 日本放送協会 有機発光素子及び表示装置
DE10143353A1 (de) 2001-09-04 2003-03-20 Covion Organic Semiconductors Konjugierte Polymere enthaltend Spirobifluoren-Einheiten und deren Verwendung
JP2003115387A (ja) 2001-10-04 2003-04-18 Junji Kido 有機発光素子及びその製造方法
US6835469B2 (en) 2001-10-17 2004-12-28 The University Of Southern California Phosphorescent compounds and devices comprising the same
US6863997B2 (en) 2001-12-28 2005-03-08 The Trustees Of Princeton University White light emitting OLEDs from combined monomer and aggregate emission
JP2003253145A (ja) 2002-02-28 2003-09-10 Jsr Corp 発光性組成物
JP4256182B2 (ja) 2002-03-14 2009-04-22 Tdk株式会社 有機el素子
SG128438A1 (en) 2002-03-15 2007-01-30 Sumitomo Chemical Co Polymer compound and polymer light emitting deviceusing the same
KR100948700B1 (ko) 2002-03-22 2010-03-22 이데미쓰 고산 가부시키가이샤 유기 전기 발광 소자용 재료 및 이를 이용한 유기 전기발광 소자
WO2003099901A1 (fr) 2002-05-28 2003-12-04 Sumitomo Chemical Company, Limited Polymere et element luminescent polymere contenant ce polymere
US7169482B2 (en) 2002-07-26 2007-01-30 Lg.Philips Lcd Co., Ltd. Display device with anthracene and triazine derivatives
JP4025137B2 (ja) 2002-08-02 2007-12-19 出光興産株式会社 アントラセン誘導体及びそれを利用した有機エレクトロルミネッセンス素子
CN101628847B (zh) 2002-08-23 2013-05-29 出光兴产株式会社 有机电致发光器件和蒽衍生物
DE10238903A1 (de) 2002-08-24 2004-03-04 Covion Organic Semiconductors Gmbh Rhodium- und Iridium-Komplexe
EP1551206A4 (en) 2002-10-09 2007-12-05 Idemitsu Kosan Co ORGANIC ELECTROLUMINESCENCE ELEMENT
JP4142404B2 (ja) 2002-11-06 2008-09-03 出光興産株式会社 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
GB0226010D0 (en) 2002-11-08 2002-12-18 Cambridge Display Tech Ltd Polymers for use in organic electroluminescent devices
JP2004200162A (ja) 2002-12-05 2004-07-15 Toray Ind Inc 発光素子
CN100489056C (zh) 2002-12-23 2009-05-20 默克专利有限公司 有机电致发光元件
DE10304819A1 (de) 2003-02-06 2004-08-19 Covion Organic Semiconductors Gmbh Carbazol-enthaltende konjugierte Polymere und Blends, deren Darstellung und Verwendung
DE10310887A1 (de) 2003-03-11 2004-09-30 Covion Organic Semiconductors Gmbh Matallkomplexe
EP2174933B1 (en) 2003-03-13 2019-04-03 Idemitsu Kosan Co., Ltd. Benzimidazole derivatives for use in organic electroluminescent devices
JP4411851B2 (ja) 2003-03-19 2010-02-10 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子
JP2004311184A (ja) 2003-04-04 2004-11-04 Junji Kido 多核型フェナントロリン誘導体よりなる電子輸送材料、電荷制御材料およびそれを用いた有機発光素子
KR20040089567A (ko) 2003-04-14 2004-10-21 가부시키가이샤 도요다 지도숏키 자외선의 생성을 억제하는 유기 전계발광소자 및 이 유기전계발광소자를 가진 조명 시스템
EP2281861A3 (de) 2003-04-15 2012-03-28 Merck Patent GmbH Mischungen von organischen zur Emission befähigten Halbleitern und Matrixmaterialien, deren Verwendung und Elektronikbauteile enthaltend diese Mischungen
US20040209116A1 (en) 2003-04-21 2004-10-21 Xiaofan Ren Organic light emitting devices with wide gap host materials
US20040209115A1 (en) 2003-04-21 2004-10-21 Thompson Mark E. Organic light emitting devices with wide gap host materials
WO2004095889A1 (ja) 2003-04-23 2004-11-04 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子及び表示装置
EP1478032A2 (en) 2003-05-16 2004-11-17 Kabushiki Kaisha Toyota Jidoshokki Light emitting diode method for forming the same
JP2004349138A (ja) 2003-05-23 2004-12-09 Toyota Industries Corp 有機電界発光素子及びその製造方法
EP1491568A1 (en) 2003-06-23 2004-12-29 Covion Organic Semiconductors GmbH Semiconductive Polymers
DE10328627A1 (de) 2003-06-26 2005-02-17 Covion Organic Semiconductors Gmbh Neue Materialien für die Elektrolumineszenz
US8592614B2 (en) 2003-07-07 2013-11-26 Merck Patent Gmbh Mixtures of organic emissive semiconductors and matrix materials, their use and electronic components comprising said materials
DE10333232A1 (de) 2003-07-21 2007-10-11 Merck Patent Gmbh Organisches Elektrolumineszenzelement
DE10337346A1 (de) 2003-08-12 2005-03-31 Covion Organic Semiconductors Gmbh Konjugierte Polymere enthaltend Dihydrophenanthren-Einheiten und deren Verwendung
DE10343606A1 (de) 2003-09-20 2005-04-14 Covion Organic Semiconductors Gmbh Weiß emittierende Copolymere, deren Darstellung und Verwendung
JP2005108556A (ja) 2003-09-29 2005-04-21 Tdk Corp 有機el素子及び有機elディスプレイ
DE10345572A1 (de) 2003-09-29 2005-05-19 Covion Organic Semiconductors Gmbh Metallkomplexe
US7795801B2 (en) 2003-09-30 2010-09-14 Konica Minolta Holdings, Inc. Organic electroluminescent element, illuminator, display and compound
DE112004001856T5 (de) 2003-10-01 2006-07-27 Sumitomo Chemical Co., Ltd. Lichtemittierendes Polymermaterial und lichtemittierende polymere Vorrichtung
DE10349033A1 (de) 2003-10-22 2005-05-25 Covion Organic Semiconductors Gmbh Neue Materialien für die Elektrolumineszenz und deren Verwendung
EP2366752B1 (de) 2003-10-22 2016-07-20 Merck Patent GmbH Neue materialien für die elektrolumineszenz und deren verwendung
US6824895B1 (en) 2003-12-05 2004-11-30 Eastman Kodak Company Electroluminescent device containing organometallic compound with tridentate ligand
TW200530373A (en) 2003-12-12 2005-09-16 Sumitomo Chemical Co Polymer and light-emitting element using said polymer
WO2005061656A1 (ja) 2003-12-19 2005-07-07 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子用発光材料、それを利用した有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス素子用材料
WO2005063920A1 (ja) 2003-12-26 2005-07-14 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
DE102004008304A1 (de) 2004-02-20 2005-09-08 Covion Organic Semiconductors Gmbh Organische elektronische Vorrichtungen
DE102004010954A1 (de) 2004-03-03 2005-10-06 Novaled Gmbh Verwendung eines Metallkomplexes als n-Dotand für ein organisches halbleitendes Matrixmaterial, organisches Halbleitermaterial und elektronisches Bauteil
US7326371B2 (en) 2004-03-25 2008-02-05 Eastman Kodak Company Electroluminescent device with anthracene derivative host
JP4466160B2 (ja) 2004-03-30 2010-05-26 Tdk株式会社 有機el素子及び有機elディスプレイ
US7790890B2 (en) 2004-03-31 2010-09-07 Konica Minolta Holdings, Inc. Organic electroluminescence element material, organic electroluminescence element, display device and illumination device
KR100573137B1 (ko) 2004-04-02 2006-04-24 삼성에스디아이 주식회사 플루오렌계 화합물 및 이를 이용한 유기 전계 발광 소자
KR100787425B1 (ko) 2004-11-29 2007-12-26 삼성에스디아이 주식회사 페닐카바졸계 화합물 및 이를 이용한 유기 전계 발광 소자
DE102004020298A1 (de) 2004-04-26 2005-11-10 Covion Organic Semiconductors Gmbh Elektrolumineszierende Polymere und deren Verwendung
DE102004023277A1 (de) 2004-05-11 2005-12-01 Covion Organic Semiconductors Gmbh Neue Materialmischungen für die Elektrolumineszenz
JP4862248B2 (ja) 2004-06-04 2012-01-25 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、照明装置及び表示装置
CN100368363C (zh) 2004-06-04 2008-02-13 友达光电股份有限公司 蒽化合物以及包括此蒽化合物的有机电致发光装置
DE102004031000A1 (de) 2004-06-26 2006-01-12 Covion Organic Semiconductors Gmbh Organische Elektrolumineszenzvorrichtungen
TW200613515A (en) 2004-06-26 2006-05-01 Merck Patent Gmbh Compounds for organic electronic devices
US20060094859A1 (en) 2004-11-03 2006-05-04 Marrocco Matthew L Iii Class of bridged biphenylene polymers
EP1655359A1 (de) 2004-11-06 2006-05-10 Covion Organic Semiconductors GmbH Organische Elektrolumineszenzvorrichtung
TW200639140A (en) 2004-12-01 2006-11-16 Merck Patent Gmbh Compounds for organic electronic devices
TW200639193A (en) 2004-12-18 2006-11-16 Merck Patent Gmbh Electroluminescent polymers and their use
KR20100106626A (ko) 2005-01-05 2010-10-01 이데미쓰 고산 가부시키가이샤 방향족 아민 유도체 및 이를 이용한 유기 전기발광 소자
KR100803125B1 (ko) 2005-03-08 2008-02-14 엘지전자 주식회사 적색 인광 화합물 및 이를 사용한 유기전계발광소자
JP4263700B2 (ja) 2005-03-15 2009-05-13 出光興産株式会社 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
EP1860097B1 (en) 2005-03-18 2011-08-10 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescence device utilizing the same
US20060222886A1 (en) 2005-04-04 2006-10-05 Raymond Kwong Arylpyrene compounds
CN101184789B (zh) 2005-04-28 2012-05-30 住友化学株式会社 高分子化合物及使用了它的高分子发光元件
CN103204996B (zh) 2005-05-03 2015-12-09 默克专利有限公司 有机电致发光器件
DE102005023437A1 (de) 2005-05-20 2006-11-30 Merck Patent Gmbh Verbindungen für organische elektronische Vorrichtungen
WO2007043495A1 (ja) 2005-10-07 2007-04-19 Sumitomo Chemical Company, Limited 共重合体およびそれを用いた高分子発光素子
US7588839B2 (en) 2005-10-19 2009-09-15 Eastman Kodak Company Electroluminescent device
US20070092753A1 (en) 2005-10-26 2007-04-26 Eastman Kodak Company Organic element for low voltage electroluminescent devices
US20070092755A1 (en) 2005-10-26 2007-04-26 Eastman Kodak Company Organic element for low voltage electroluminescent devices
US7553558B2 (en) 2005-11-30 2009-06-30 Eastman Kodak Company Electroluminescent device containing an anthracene derivative
KR101082258B1 (ko) 2005-12-01 2011-11-09 신닛테츠가가쿠 가부시키가이샤 유기 전계 발광소자용 화합물 및 유기 전계 발광소자
DE102005058557A1 (de) 2005-12-08 2007-06-14 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtung
DE102005058543A1 (de) 2005-12-08 2007-06-14 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtungen
US7709105B2 (en) 2005-12-14 2010-05-04 Global Oled Technology Llc Electroluminescent host material
US7919010B2 (en) 2005-12-22 2011-04-05 Novaled Ag Doped organic semiconductor material
JP4879591B2 (ja) 2006-01-26 2012-02-22 昭和電工株式会社 高分子発光材料、有機エレクトロルミネッセンス素子および表示装置
DE102006003710A1 (de) 2006-01-26 2007-08-02 Merck Patent Gmbh Elektrolumineszierende Materialien und deren Verwendung
EP1837927A1 (de) 2006-03-22 2007-09-26 Novaled AG Verwendung von heterocyclischen Radikalen zur Dotierung von organischen Halbleitern
EP1837926B1 (de) 2006-03-21 2008-05-07 Novaled AG Heterocyclisches Radikal oder Diradikal, deren Dimere, Oligomere, Polymere, Dispiroverbindungen und Polycyclen, deren Verwendung, organisches halbleitendes Material sowie elektronisches Bauelement
DE102006015183A1 (de) 2006-04-01 2007-10-04 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
JP4995475B2 (ja) 2006-04-03 2012-08-08 出光興産株式会社 ベンズアントラセン誘導体、及びそれを用いた有機エレクトロルミネッセンス素子
US20070252517A1 (en) 2006-04-27 2007-11-01 Eastman Kodak Company Electroluminescent device including an anthracene derivative
KR20090007641A (ko) 2006-05-12 2009-01-19 메르크 파텐트 게엠베하 인데노플루오렌 중합체 기반 유기 반도체 물질
DE102006025777A1 (de) 2006-05-31 2007-12-06 Merck Patent Gmbh Neue Materialien für organische Elektrolumineszenzvorrichtungen
DE102006025846A1 (de) 2006-06-02 2007-12-06 Merck Patent Gmbh Neue Materialien für organische Elektrolumineszenzvorrichtungen
DE102006031990A1 (de) 2006-07-11 2008-01-17 Merck Patent Gmbh Neue Materialien für organische Elektrolumineszenzvorrichtungen
JP2009544772A (ja) 2006-07-21 2009-12-17 メルク パテント ゲーエムベーハー インデノフルオレンとチオフェンのコポリマー
JPWO2008016018A1 (ja) 2006-08-04 2009-12-24 出光興産株式会社 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
JP4388590B2 (ja) 2006-11-09 2009-12-24 新日鐵化学株式会社 有機電界発光素子用化合物及び有機電界発光素子
JP2008124156A (ja) 2006-11-09 2008-05-29 Idemitsu Kosan Co Ltd 有機el材料含有溶液、有機el材料の薄膜形成方法、有機el材料の薄膜、有機el素子
JP5294872B2 (ja) 2006-11-20 2013-09-18 出光興産株式会社 有機エレクトロルミネッセンス素子
DE102007002714A1 (de) 2007-01-18 2008-07-31 Merck Patent Gmbh Neue Materialien für organische Elektrolumineszenzvorrichtungen
JP4902381B2 (ja) 2007-02-07 2012-03-21 昭和電工株式会社 重合性化合物の重合体
DE102007024850A1 (de) 2007-05-29 2008-12-04 Merck Patent Gmbh Neue Materialien für organische Elektrolumineszenzvorrichtungen
EP2009014B1 (de) 2007-06-22 2018-10-24 Novaled GmbH Verwendung eines Precursors eines n-Dotanden zur Dotierung eines organischen halbleitenden Materials, Precursor und elektronisches oder optoelektronisches Bauelement
US8034256B2 (en) 2007-07-07 2011-10-11 Idemitsu Kosan Co., Ltd. Naphthalene derivative, material for organic electroluminescence device, and organic electroluminescence device using the same
US7645142B2 (en) 2007-09-05 2010-01-12 Vivant Medical, Inc. Electrical receptacle assembly
JPWO2009041635A1 (ja) 2007-09-28 2011-01-27 出光興産株式会社 有機el素子
US8507106B2 (en) 2007-11-29 2013-08-13 Idemitsu Kosan Co., Ltd. Benzophenanthrene derivative and organic electroluminescent device employing the same
DE102008017591A1 (de) 2008-04-07 2009-10-08 Merck Patent Gmbh Neue Materialien für organische Elektrolumineszenzvorrichtungen
DE102008033943A1 (de) 2008-07-18 2010-01-21 Merck Patent Gmbh Neue Materialien für organische Elektrolumineszenzvorrichtungen
DE102008035413A1 (de) 2008-07-29 2010-02-04 Merck Patent Gmbh Verbindungen für organische elektronische Vorrichtungen
DE102008036982A1 (de) 2008-08-08 2010-02-11 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtung
DE102009022858A1 (de) 2009-05-27 2011-12-15 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtungen
DE102008064200A1 (de) 2008-12-22 2010-07-01 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtung
DE102009005746A1 (de) 2009-01-23 2010-07-29 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
DE102009014513A1 (de) 2009-03-23 2010-09-30 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtung
DE102009023154A1 (de) 2009-05-29 2011-06-16 Merck Patent Gmbh Zusammensetzung, enthaltend mindestens eine Emitterverbindung und mindestens ein Polymer mit konjugationsunterbrechenden Einheiten
DE102009023155A1 (de) 2009-05-29 2010-12-02 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
DE102009031021A1 (de) 2009-06-30 2011-01-05 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
EP2599141B1 (en) 2010-07-26 2019-12-11 Merck Patent GmbH Quantum dots and hosts
JP2013541837A (ja) 2010-09-10 2013-11-14 ノヴァレッド・アクチエンゲゼルシャフト 有機光電変換素子用化合物
EP2452946B1 (en) 2010-11-16 2014-05-07 Novaled AG Pyridylphosphinoxides for organic electronic device and organic electronic device
EP2463927B1 (en) 2010-12-08 2013-08-21 Novaled AG Material for organic electronic device and organic electronic device
US9142781B2 (en) 2011-06-09 2015-09-22 Novaled Ag Compound for organic electronic device
EP2724389B1 (de) 2011-06-22 2018-05-16 Novaled GmbH Organisches elektronisches bauelement
WO2012175219A1 (en) 2011-06-22 2012-12-27 Novaled Ag Electronic device and compound
WO2015024966A1 (en) 2013-08-21 2015-02-26 Oleon N.V. Offset printing inks comprising an isosorbide fatty acid ester solvent
EP3241250B1 (de) 2014-12-30 2022-01-05 Merck Patent GmbH Zusammensetzungen umfassend mindestens ein polymer und mindestens ein salz sowie elektrolumineszenzvorrichtungen enthaltend diese zusammensetzungen
DE102015103742A1 (de) * 2015-03-13 2016-09-15 Osram Oled Gmbh Organisches optoelektronisches Bauelement und Verfahren zum Herstellen eines organischen optoelektronischen Bauelements

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009046402A (ja) * 2007-08-14 2009-03-05 National Institute Of Advanced Industrial & Technology ホール伝導性コレステリック液晶化合物
JP2010241919A (ja) * 2009-04-03 2010-10-28 Sumitomo Chemical Co Ltd 組成物、フィルム及びフィルムの製造方法
WO2011076314A1 (en) * 2009-12-22 2011-06-30 Merck Patent Gmbh Electroluminescent formulations
JP2013515360A (ja) * 2009-12-22 2013-05-02 メルク パテント ゲーエムベーハー エレクトロルミネッセンス配合物
CN104509207A (zh) * 2012-07-31 2015-04-08 日东电工株式会社 显示装置及其制造方法
US20160002480A1 (en) * 2013-03-07 2016-01-07 Oce-Technologies B.V. Ink composition
US20150034868A1 (en) * 2013-07-31 2015-02-05 Semiconductor Energy Laboratory Co., Ltd. Isosorbide derivative, liquid crystal composition, liquid crystal element, and liquid crystal display device
CN106103543A (zh) * 2014-03-20 2016-11-09 帝人株式会社 聚碳酸酯树脂和光学膜
CN106471401A (zh) * 2014-04-16 2017-03-01 日东电工株式会社 相位差膜、圆偏振片及图像显示装置
WO2016107663A1 (de) * 2014-12-30 2016-07-07 Merck Patent Gmbh Formulierungen und elektronische vorrichtungen
US20160313642A1 (en) * 2015-04-21 2016-10-27 Fujifilm Electronic Materials U.S.A., Inc. Photosensitive polyimide compositions
CN108138042A (zh) * 2015-10-09 2018-06-08 默克专利有限公司 含有n,n-二烷基苯胺溶剂的制剂
JP2017207596A (ja) * 2016-05-17 2017-11-24 日東電工株式会社 光学積層体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113054107A (zh) * 2021-02-05 2021-06-29 广州追光科技有限公司 一种用于有机太阳能电池涂布的有机溶液组合

Also Published As

Publication number Publication date
KR102666621B1 (ko) 2024-05-16
JP7293229B2 (ja) 2023-06-19
JP2021508407A (ja) 2021-03-04
CN111418081B (zh) 2024-09-13
KR20200093653A (ko) 2020-08-05
WO2019115573A1 (en) 2019-06-20

Similar Documents

Publication Publication Date Title
CN111477768B (zh) 作为用于有机电子制剂的溶剂的含芳族基团的酯
CN107690720B (zh) 作为用于oled制剂的溶剂的含有非芳族环的酯
CN109563402B (zh) 有机功能材料的制剂
CN109890939B (zh) 有机功能材料的制剂
CN109863223B (zh) 有机功能材料的制剂
KR102655461B1 (ko) N,n-디알킬아닐린 용매를 함유하는 제형
CN107431139B (zh) 包含硅氧烷溶剂的有机功能材料的制剂
KR102472751B1 (ko) 전자 디바이스의 제조 방법
KR20180110125A (ko) 유기 기능성 재료의 제형
JP2024105302A (ja) 電子デバイスの有機素子を形成する方法
KR102515195B1 (ko) 전자 디바이스의 유기 소자를 형성하는 방법
KR102374183B1 (ko) 유기 기능성 재료의 제형
JP7379389B2 (ja) 有機機能材料の調合物
KR102710151B1 (ko) 유기 기능성 재료의 포뮬레이션
CN111418081B (zh) 有机功能材料的制剂
KR102632027B1 (ko) 유기 기능성 재료의 제형
KR102698061B1 (ko) 유기 기능성 재료의 제형
CN110168047B (zh) 有机功能材料的制剂
KR102721891B1 (ko) 유기 전자 제형을 위한 용매로서의 방향족기를 함유하는 에스테르
KR102723604B1 (ko) 고체 용매를 함유하는 제형
EP4413836A1 (en) Method for forming an organic element of an electronic device
JP2020520049A (ja) 有機機能材料の調合物

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant