CN110586953A - 二维铜纳米片的高产率制备 - Google Patents

二维铜纳米片的高产率制备 Download PDF

Info

Publication number
CN110586953A
CN110586953A CN201910428192.9A CN201910428192A CN110586953A CN 110586953 A CN110586953 A CN 110586953A CN 201910428192 A CN201910428192 A CN 201910428192A CN 110586953 A CN110586953 A CN 110586953A
Authority
CN
China
Prior art keywords
copper
nanoplates
tda
solution
aspects
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910428192.9A
Other languages
English (en)
Other versions
CN110586953B (zh
Inventor
陈书堂
陈固纲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Publication of CN110586953A publication Critical patent/CN110586953A/zh
Application granted granted Critical
Publication of CN110586953B publication Critical patent/CN110586953B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0551Flake form nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/056Submicron particles having a size above 100 nm up to 300 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/068Flake-like particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/12Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon dioxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/052Electrodes comprising one or more electrocatalytic coatings on a substrate
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/01Products
    • C25B3/03Acyclic or carbocyclic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • C25B3/26Reduction of carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/64Flat crystals, e.g. plates, strips or discs
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/14Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions the crystallising materials being formed by chemical reactions in the solution
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/528Geometry or layout of the interconnection structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/20Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B41/23Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B41/27Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/20EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/30EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B69/00Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/72Copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Geometry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

基于Cu的纳米结构因其独特的化学和物理性质而具有优异的催化、电子和等离子体激元性能。已针对催化CO2电还原探索了一系列Cu材料,包括箔、球形纳米颗粒、纳米线和纳米立方体。然而,CO2电还原反应的实际应用要求Cu催化剂保持高的裸露表面原子百分数以提高产物选择性。本公开描述了一种高温还原方法来在疏水体系中制备尺寸范围为约40nm至约13μm的Cu纳米片。三辛基膦(TOP)的纯度对于Cu纳米片的形状控制合成起着重要作用。通过调节TOP/Cu‑十四烷基胺络合物的进给摩尔比研究了形貌演变。通过本公开的方法形成的Cu纳米片具有高的表面积和在溶液中超过三个月的稳定性。这些Cu纳米片在将CO2还原为燃料中具有应用。

Description

二维铜纳米片的高产率制备
技术领域
本公开涉及铜纳米颗粒,特别是铜纳米片、其制备方法及其催化应用。
背景技术
贵金属纳米结构的形状控制合成由于其结构依赖性的催化、电子和光学性质而吸引了广泛关注。与Au和Ag相比,Cu基纳米催化剂已由于其较低的逸出功和成本以及较高的地球丰度而已表现出优异的CO2还原反应催化性能。已针对催化CO2电还原探索了一系列Cu纳米结构,如球形、纳米立方体、纳米棱柱和纳米线。此外,实验结果已表明,CO2电还原对Cu电极的表面形貌敏感。虽然具有高表面积百分数的Cu基Ni(OH)2纳米片已经证实对CO2还原反应具有优异的催化效率和选择性,但是纯Cu纳米片的合成方法还没有很好地建立,并且纯Cu纳米片用作电催化剂的应用在文献中很少见。因此,开发高产率制备二维Cu纳米结构的高效方法对于将CO2转化为燃料和化学品来说变得越来越重要和迫切。
近年来,若干报道已集中在盘状形状Cu纳米颗粒的水性合成上,例如,通过水热路线、表面活性剂辅助方法和硬模板方法。然而,以上这些方法需要在水溶液中进行并且其尺寸大于几微米。而且,它们的纯度、稳定性和Cu纳米片的产率非常有限。
发明内容
下文呈现本公开的一个或多个方面的简要概述以提供对这些方面的基本认识。该概述不是对全部所设想方面的广泛综述,并且既不意图标识所有方面的关键或重要要素,也不意图描绘任何或所有方面的范围。其目的在于以简化的形式呈现一个或多个方面的一些概念作为稍后呈现的更详细描述的序言。
在一些实施方案中,本公开涉及一种制备铜纳米片的方法,所述方法包括:将包含还原剂和一种或多种表面活性剂的反应物溶液加热到约280℃至约330℃的温度,以形成经加热的溶液;和向所述经加热的溶液中注入含铜前体的热溶液以形成铜纳米片。
在一些实施方案中,本公开涉及一种制备二氧化碳转化催化剂的方法,所述方法包括:将包含油胺和三辛基膦(TOP)的反应物溶液加热到约280℃至约330℃的温度,以形成经加热的溶液;和向所述经加热的溶液中注入铜-十四烷基胺(Cu-TDA)的热溶液以形成铜纳米片。
在一些实施方案中,本公开涉及一种包含铜纳米片的二氧化碳还原催化剂,所述铜纳米片的特征在于厚度小于100nm;且长度为约40nm至约13μm。
通过阅读下面的详细描述,将更全面地理解本发明的这些及其他方面。
附图说明
图1示出了根据本公开的一些方面的Cu纳米片的形状控制合成的实验方案。
图2A示出了根据本公开的一些方面通过添加1.0mL 97%的TOP制得的Cu纳米片的低分辨率SEM图像。
图2B示出了根据本公开的一些方面通过添加1.0mL 97%的TOP制得的Cu纳米片的高分辨率SEM图像。
图2C示出了根据本公开的一些方面通过添加1.0mL 97%的TOP制得的Cu纳米片的TEM图像。
图3A-3D示出了根据本公开的一些方面通过调节TOP(97%):Cu-TDA络合物的摩尔比制得的Cu纳米结构的SEM图像:0.4:1(图3A)、1.8:1(图3B)、2.8:1(图3C)和3.4:1(图3D)。
图4A-4D示出了根据本公开的一些方面通过添加1.0mL 90%的TOP在不同反应区间——20分钟(图4A)、40分钟(图4B)、60分钟(图4C)和120分钟(图4D)——下制得的Cu纳米片的SEM图像。插图为相应的TEM图像。
图5A示出了通过采用TOP(97%,暴露于空气一周)制得的准立方体纳米晶的SEM图像。
图5B示出了通过向未暴露于空气的97%TOP中添加200mg TOPO制得的Cu纳米立方体的SEM图像。
图6A和6B示出了根据本公开的一些方面通过在不同纯度的TOP中注入CuBr-TDA前体制得的Cu纳米片的SEM图像:97%TOP,反应20分钟(图6A);和90%TOP,反应60分钟(图6B)。
图7示出了根据本公开的一些方面制得的Cu纳米片的XRD图案,这些Cu纳米片贮存在己烷中超过3个月。
图8示出了根据本公开的一些方面制得的Cu纳米片的Cu2p XPS光谱,这些Cu纳米片贮存在己烷中超过3个月。
图9示出了根据本公开的一些方面由Cu纳米片催化CO2还原时形成的各种产物的法拉第效率。
图10示出了根据本公开的一些方面源自标准Cu箔和Cu纳米片的析氢反应和CO2还原反应产物的法拉第效率。
具体实施方式
以下结合附图阐述的详细描述意图作为各种配置的描述而无意于表示其中可实践本文所描述的概念的仅有配置。详细描述包括具体细节以提供对各种概念的透彻理解。然而,对于本领域技术人员显而易见的是,可在没有这些具体细节的情况下实践这些概念。
本公开涉及使用热注入方法在高温下于疏水体系中制备Cu纳米片的高温还原方法。三辛基膦(TOP)的纯度对于片状形状的形成起着重要作用。通过调节三辛基膦/Cu-十四烷基胺络合物的进给摩尔比来研究形状演变。使用我们的方法,已实现了Cu纳米片的大规模合成并且它们的尺寸可在约40nm至约13μm的范围内调节。而且,纯Cu纳米片可在溶液中稳定超过三个月。由于高的表面积百分数,这些纳米片将为研究其等离子体激元(plasmonic)特性提供令人兴奋的新机会,并丰富将CO2转化为燃料的催化剂的选择。另外,本公开的催化剂也可在更环保的条件下使用。此外,它们优异的导电性还将赋予Cu纳米片在电子产品制造中的巨大潜力。
如本文所用,术语“约”的定义与本领域普通技术人员所理解的接近。在一个非限制性实施方案中,术语“约”定义为在10%内,优选在5%内,更优选在1%内,最优选在0.5%内。
除非另有说明,否则本文公开的任何试剂的纯度至高达到并包括市售的或使用本领域普通技术人员已知的方法可获得的最高水平。
在一些实施方案中,本公开涉及一种制备铜纳米片的方法,所述方法包括:将包含还原剂和一种或多种表面活性剂的反应物溶液加热到约280℃至约330℃的温度,以形成经加热的溶液;和向所述经加热的溶液中注入含铜前体的热溶液以形成铜纳米片。反应物溶液合适地在惰性条件下加热,即在惰性气氛(例如,Ar或N2)中。反应温度受该方法中使用的任何液体试剂和/或一种或多种溶剂的沸点的限制。
反应时间将随温度而异,并且在给定的温度下,较长的反应时间导致较大的纳米片,但过度反应可能引起聚集。例如,在300℃的反应温度下,反应时间合适地为约2至约90分钟,长于90分钟的反应时间会导致纳米片的部分聚集。2分钟的反应时间将产生较小的纳米片,而90分钟的反应时间会产生较大的纳米片。当在TOP(97%)体系中把反应时间从2分钟增加到90分钟时,平均纳米片尺寸从40nm变为13μm。在330℃下,5分钟的反应产生平均尺寸为7.6μm的纳米片。在280℃下,2小时的反应时间产生基本上不聚集的纳米片。如本文所用,如果聚集存在的水平不超过5%、优选不超过3%、更优选不超过2%、甚至更优选不超过1%、最优选不超过0.5%,则纳米片“基本上不聚集”。如本领域普通技术人员所知,加热到较高温度将缩短达到反应进程的给定点所需的反应时间。在300℃下,20分钟的反应时间可产生平均尺寸为8.9μm、具有一些聚集的较大纳米片。改变反应温度和时间以获得具有所需分散水平的所需纳米片尺寸在本领域普通技术人员的水平内。另外,低于约280℃的反应温度可能不允许含铜前体的充分还原来允许纳米片的形成。
还原剂合适地为C16至C22胺,如C16至C18胺。在一些方面,还原剂为油胺、十六烷基胺或十八烷基胺。
在一些方面,还原剂为油胺。
在一些方面,所述一种或多种表面活性剂包含三辛基膦(TOP)。
在一些方面,表面活性剂为TOP。可将TOP暴露于空气或环境条件下,或贮存在惰性条件下。优选地,将TOP贮存在惰性气氛下,如在手套箱或干燥箱中。
在一些方面,所述一种或多种表面活性剂还包含十四烷基胺(TDA)。TDA(沸点=289℃)可能需要比TOP(沸点=284-291℃)更长的反应时间,取决于所需纳米片的尺寸和/或分散水平;本领域普通技术人员可确定合适的反应时间。TDA的纯度水平合适地为>96%。TOP和TDA可以任何比率混合,如TOP:TDA为1:1、2:1、3:1、5:1、10:1、15:1、20:1、1:2、1:3、1:4、1:5、1:10或其间的任何比率。
已发现TOP的纯度和TOP与含铜前体(例如,Cu-TDA)的摩尔比对于二维铜纳米结构的形成起着重要作用,这将在下文更详细地讨论。使用90%纯和97%纯的TOP体系分别合成出圆形和三角形的铜纳米片。
TOP的纯度合适地为至少90%或大于90%,如至少或大于:91%、92%、93%、94%、95%、96%、97%、98%或99%。在一些方面,TOP的纯度为至少97%。
在一些方面,TOP基本上不含三辛基氧化膦(TOPO)。如本领域普通技术人员所知,TOPO可在TOP暴露于空气时形成。如本文所用,如果TOPO浓度小于或等于约0.4M,如小于或等于约0.3M、小于或等于约0.2M、小于或等于约0.1M、小于或等于约0.08M或其间的任何值或范围,则TOP“基本上不含三辛基氧化膦”。
在一些方面,TOP的纯度为至少90%。
在一些方面,TOP与含铜前体的摩尔比为约1.5:1至约2.8:1。在97%的TOP体系中于300℃下,超过90%的三角形纳米片以TOP与Cu-TDA前体为2.2:1的摩尔比获得,反应时间为5至90分钟;而在90%的TOP体系中于300℃下,2.2:1的TOP与Cu-TDA前体摩尔比产生纯圆形纳米片,反应时间为20至120分钟。
在一些方面,TOP与含铜前体的摩尔比为约1.8:1至约2.8:1。在该摩尔比范围内,当在300℃下反应20分钟时,反应产物为至少90%的铜纳米片,其余为其他铜纳米颗粒。
在一些方面,TOP与含铜前体的摩尔比为约2.2:1。
本公开的方法合适地在高沸点溶剂/试剂、如沸点在约280℃至约330℃的范围内的溶剂/试剂中进行。在一些方面,将含铜前体溶解在十八烯中。
在一些方面,将反应物溶液加热至约300℃。
合适的含铜前体包括铜-十六烷基胺(Cu-HDA)、铜-十八烷基胺(Cu-ODA)、铜-十四烷基胺(Cu-TDA)或铜-十二烷基胺(Cu-DDA)。在一些方面,含铜前体为Cu-TDA。Cu-TDA、Cu-HDA、Cu-ODA或Cu-DDA的储备溶液可分别在惰性条件下由氯化铜(I)与TDA、HDA、ODA或DDA的反应制备。TDA纯度合适地为>96%。可使用本领域普通技术人员已知的方法制备Cu-TDA、Cu-HDA、Cu-ODA或Cu-DDA的储备溶液。在一些方面,可使用5-30ml油胺每200mg Cu-TDA来获得铜纳米片。
根据本公开的方法产生的铜纳米片的尺寸和厚度在一定范围内。在97%的TOP体系中,三角形纳米片的长度范围为约40nm至约13μm,且厚度范围为约15nm至约500nm。在90%的TOP体系中,圆形纳米片的长度和厚度范围分别为约30nm至约200nm和约15nm至约50nm。
不同尺寸的铜纳米片具有不同的应用。例如,已发现厚度小于约500nm的铜纳米片对催化应用具有反应性,如二氧化碳还原,包括还原成甲烷。不希望受任何特定理论的束缚,据信较小的纳米片具有较大的表面积,这有利于气体的催化产生。
颗粒尺寸也影响纳米片的光学性质,较大的纳米片表现出红移吸收光谱。例如,大于约1μm的纳米片在约1000nm下具有λmax,而尺寸小于约500nm的纳米片在约600nm下具有λmax
在一些实施方案中,本公开涉及一种制备二氧化碳转化催化剂的方法,所述方法包括:将包含油胺和三辛基膦(TOP)的反应物溶液加热到约280℃至约330℃的温度,以形成经加热的溶液;和向所述经加热的溶液中注入铜-十四烷基胺(Cu-TDA)的热溶液以形成铜纳米片。一种方法的所有方面同等地适用于另一种方法。
在一些方面,TOP与Cu-TDA的摩尔比为约1.8:1至约2.8:1。
在一些方面,TOP与Cu-TDA的摩尔比为约2.2:1。
TOP的纯度合适地为至少90%或大于90%,如至少或大于:91%、92%、93%、94%、95%、96%、97%、98%或99%。在一些方面,TOP的纯度为至少97%。
在一些方面,TOP基本上不含三辛基氧化膦(TOPO)。
在一些方面,TOP的纯度为至少90%。
在一些实施方案中,本公开涉及一种包含铜纳米片的二氧化碳还原催化剂,所述铜纳米片的特征在于厚度小于500nm;且长度为约40nm至约13μm。
在一些方面,本公开涉及一种生成甲烷的方法,所述方法包括使二氧化碳与包含铜纳米片的二氧化碳还原催化剂反应,所述铜纳米片的特征在于厚度小于500nm;且长度为约40nm至约13μm。
实施例
实施例1
实验
化学品。氯化铜(I)(99.99%)、溴化铜(I)(99.999%)、氯化铜(II)(99.99%)、乙酸铜(I)(99.999%)、乙酰丙酮铜(II)(99.9%)、三辛基膦(TOP,90%)、三辛基膦(TOP,97%)、三辛基氧化膦(TOPO,99%)、油胺(OLA,70%)、油胺(OLA,80~90%)、十六烷基胺(HDA,98%)、十八烷基胺(ODA)、甲苯(99.9%)、丙酮(99%)、和氯仿(99.9%)、1-十八烯(ODE,98%)购自Sigma-Aldrich。十三烷基胺(TDA,>96%)购自TCI。五水硫酸铜(99+%)购自ACROS ORGANICS。己烷(99%)、甲醇(99%)和乙醇(200标准(200proof))购自FisherChemicals。所有化学品均按收到的原样使用。
Cu-TDA前体储备溶液的合成:向已于Ar或N2流下除去氧气的烧瓶中加入100mg氯化铜(I)、200mg TDA和2mL ODE。在Ar或N2吹扫20分钟后,将混合溶液在热板上加热至190℃并在该温度下保持30分钟。在加热过程中,TDA于38-40℃熔化并与Cu原子配位形成Cu-TDA蓝色络合物溶液。氯化铜(I)的量可在50mg至300mg之间变化,同时TDA、TOP和油胺的量也成比例地增加。还可通过用HDA或ODA代替TDA来制备储备溶液。
Cu纳米片的合成。在已通过Ar吹扫20分钟除去氧气的25mL三颈烧瓶中装入6.0mLOLA(70%)。然后在Ar流下向烧瓶中注入1.0mL TOP(97%)。Ar流动20分钟后,将烧瓶快速加热至300℃。接下来,向热烧瓶中快速注入2mL Cu储备溶液,反应溶液立即变为红色。将反应在300℃下保持20分钟。然后让反应混合物自然冷却至100℃并注入5mL己烷(或另一种疏水性溶剂如甲苯或氯仿)。通过在2000rpm下离心2分钟来分离产物。弃去上清液。然后向沉降物中加入总共10mL己烷(或另一种疏水性溶剂如甲苯或氯仿),并将混合物于2000rpm下离心3分钟。重复洗涤程序两次以除去未反应的前体和表面活性剂。在表征之前,将Cu纳米片贮存在疏水性溶剂(例如:己烷、甲苯和氯仿)中。可用TOP(90%)或TOP(97%和90%)的混合物代替相同量的TOP(97%)。也可通过用OLA(80-90%)、HDA或ODA代替OLA(70%)来制备Cu纳米片。
表征
通过来自FEI的扫描电子显微镜(QUANTA FEG 650)研究表面形貌,该扫描电子显微镜以场发射器作为电子源。在配备于SEM上的能量分散光谱(EDS)系统上进行元素分析。使用具有Cu Kα辐射并在40kV的管电压和40mA的电流下运行的Bruker D8Advance X射线衍射仪来获得X射线衍射(XRD)图案。使用具有200kV加速电压的FEI Tecnai 20显微镜捕获透射电子显微镜(TEM)图像。通过采用X-射线光电子能谱(XPS,Kratos Axis)来检测Cu纳米片的表面组成。该仪器配备有单色(Al)和双色(Mg和Al)x-射线枪。通过将C 1s峰的结合能校准至284.6eV来进行结合能的校准。
结果与讨论
在我们的方法中,采用不同纯度的三辛基膦(TOP)作为形状控制配体来合成Cu纳米片。圆形和三角形片分别在90%和97%的TOP体系中合成,如图1中所示。首先,选择97%的TOP作为配体,我们发现TOP与Cu-TDA络合物的摩尔比对于合成Cu纳米片很重要。当TOP与Cu-TDA络合物的摩尔比为2.2:1时,在300℃下注入铜前体后反应溶液立即变为红色。图2A-C示出大多数产物为三角形片,且不到10%的片是多边形的。片的尺寸范围在数百纳米至十五微米之间。以0.4的最低摩尔比制备一维Cu纳米线,如图3A中所示。尽管TOP与铜晶体具有强的配位能力,但由于TOP的浓度较低,故Cu纳米结构的形状由油胺决定。最近的研究证实生长机制是由于烷基胺与Cu{110}平面(facet)的弱相互作用。参见F.Cui,Y.Yu,L.Dou,J.Sun,Q.Yang,C.Schildknecht,K.Schierle-Arndt and P.Yang,“Synthesis ofUltrathin Copper Nanowires Using Tris(trimethylsilyl)silane for High-Performance and Low-Haze Transparent Conductors",Nano Letters,Vol.15,7610-7615,2015,其全部内容通过引用并入本文。在将摩尔比增加至1.8:1之后,产物中二维Cu纳米片占主导地位(图3B),这表明TOP限制了Cu{110}平面的优先生长。在2.2的摩尔比下获得超过90%的Cu三角形纳米片(图2A-C)。随着TOP(97%)与Cu-TDA络合物的摩尔比的进一步增大,出现了Cu多面体纳米颗粒(2.8)并然后在产物中占主导地位(3.4)。因此,可通过优化表面活性剂和前体的摩尔比来合成纯的Cu三角形纳米片。
先前的一项研究报道在TOP(90%)和油胺体系中于330℃下制备Cu纳米立方体。参见H.Yang,S.He,H.Chen and H.Yuan,“Monodisperse Copper Nanocubes:Synthesis,Self-Assembly,and Large-Area Dense-Packed Films”,Chemistry of Materials,Vol.26,1785-1793,2014,其全部内容通过引用并入本文。在我们的方法中采用TOP(90%)时,由于TOP纯度对反应热动力学的影响,在注入铜前体溶液并反应3分钟后反应溶液变为红色。在延长反应至20分钟后合成出圆形的较薄Cu纳米片(图4A),这表明TOP的纯度对Cu纳米片的形状控制合成具有重要作用。在将反应时间延长至120分钟时,纳米片的平均直径和厚度分别从40nm增至190nm和从15nm增至37nm,如图4C-D中所示。众所周知,TOP对空气敏感,其可容易地被氧化形成三辛基氧化膦(TOPO)。当新鲜TOP(97%)暴露于空气超过一周,或在TOP(97%)中混合另外的TOPO时,由于TOPO的存在,按我们的方法合成出Cu纳米立方体,分别如图5A-B中所示。已经报道了类似的研究来通过采用TOPO作为配体制备铜纳米立方体。参见H.Guo,Y.Chen,M.B.Cortie,X.Liu,Q.Xie,X.Wang and D.Peng,“Shape-Selective Formation of Monodisperse Copper Nanospheres and Nanocubes viaDisproportionation Reaction Route and Their Optical Properties”,Journal ofPhysical Chemistry C,Vol.118,9801-9808,2014,其全部内容通过引用并入本文。因此,本公开强调新鲜的TOP对Cu纳米片的形成起重要作用。
除了TOP的纯度外,TOP(97%)与Cu-TDA络合物的摩尔比、反应时间和铜前体的类型也对Cu纳米片的形成起重要作用。对Cu纳米片合成保持相同的反应条件,不同仅在于用溴化铜(I)代替氯化铜(I)来制备铜储备溶液。图6A-B指示了通过在不同的TOP体系中采用溴化铜合成的片状Cu纳米结构。分别地,在TOP(97%)体系中制备出了尺寸范围为500nm至4μm的三角形Cu纳米片,而在TOP(90%)体系中制备出了平均厚度为25nm且尺寸为68nm的多边形Cu纳米片,这与使用氯化铜(I)作为储备溶液前体的那些相似。除了氯化铜(I)和溴化铜(I)之外,当采用乙酸铜(I)或五水硫酸铜(II)作为前体时,也合成出了Cu纳米片。然而,当用乙酰丙酮铜(II)或氯化铜(II)代替氯化铜(I)时,由于它们的成核和生长速率的差异,故未发现片状产物。
由于Cu纳米结构可易于在空气中被氧化,故Cu纳米片的稳定性将影响其表面性质并决定其进一步的应用。采用X-射线衍射技术来研究贮存在己烷溶液中的Cu三角形纳米片的稳定性,如图7中所示。Cu纳米片具有最强的{111}衍射峰,这与fcc块状Cu(JPCDS 04-0836)的非常不同。参见S.Chen,S.Jenkins,J.Tao,Y.Zhu,and J.Chen,“Anisotropicseeded growth of Cu-M(M=Au,Pt,or Pd)bimetallic nanorods with tunable opticaland catalytic properties,the Journal of Physical Chemistry C,Vol.117,8924-8932,2013,其全部内容通过引用并入本文。这里我们应强调,通过在室温下于载玻片上干燥Cu纳米片溶液来制备XRD样品。结果,几乎所有的Cu纳米片都具有{111}平面平行于玻璃基板的优选取向。与新鲜Cu纳米片的XRD图案相比,在将产品贮存于己烷中超过三个月后未发现明显的相变。尽管发现了较弱的氧化铜峰,但Cu纳米片的表面氧化量可忽略不计。通过X-射线光电子能谱(XPS)技术进一步检测Cu纳米片的表面组成。图8示出了Cu纳米片的Cu2pXPS光谱。在~932.8和952.5eV处的强峰可归因于Cu的2p3/2和2p1/2电子的结合能。注意,在三个月后观察到了来自Cu(II)(940~950eV)的非常弱的峰,其与XRD分析一致。因此,用本公开的方法合成的Cu纳米片是稳定的并可用于进一步的应用。
结论
总之,已通过热注入方法在300℃下于疏水相中获得了Cu纳米片。SEM结果表明,TOP的纯度和TOP/Cu-TDA的摩尔比对二维Cu纳米结构的形成起着重要作用。使用我们当前的方法,Cu纳米片的尺寸和厚度可分别控制在40nm至13μm和15nm至500nm。XRD和XPS研究表明,Cu纳米片在贮存于疏水性溶剂中时是稳定的。由于高的表面积百分数,这些Cu纳米片可在电子学、催化和光学器件中提供潜在的应用。
实施例2
用于催化实验的仪器:
采用气相色谱仪(GC 17A,SHIMADZU)分析气体产物的浓度。通过高效液相色谱仪(HPLC,Dionex UltiMate 3000;UHPLC+,Thermo Scientific)分析液体产物。
电化学测量
使用恒电位仪(VersaSTAT MC)在由阴离子交换膜(Selemion AMV)隔开的两室电化学电池中进行电化学CO2还原实验。在三电极配置中使用铂板对电极和无泄漏Ag/AgCl参比电极(innovative Instruments,直径:2.0mm)。通过向玻碳电极(Alfa Aesar:直径1.0cm2)上滴落涂布1.0μg的Cu或Cu三角形纳米片(平均尺寸:8.9μm,分散在己烷中)并在室温下于氩气下干燥来制备工作电极。工作电极和对电极隔室各自容纳2.0mL的电解质,并密封工作隔室以允许对气体产物进行测量。通过E(相对于RHE)=E(相对于Ag/AgCl)+0.205V+0.0591×pH,将该工作中的所有电位转换为RHE标度。由用CO2饱和的K2CO3(pH 7.5)制备0.1M KHCO3电解质。
在电化学过程中,CO2以5sccm的速率流过工作隔室。在计时电流法中,来自电池的废气通过GC的采样回路以分析气体产物的浓度。使用源自标准校准气体的转换因子进行产物的定量。然后通过HPLC分析液体产物。浓度通过软件计算并基于我们为每个单独的组分开发出的校准曲线。根据产生每种产物所通过的电荷量除以在特定时间或整个运行期间通过的总电荷来计算法拉第效率。
讨论和催化结果
已在相对于可逆氢电极(RHE)-1.05V至-1.45V的电位范围内的恒电位条件下、在平均尺寸为8.9μm的Cu三角形纳米片上进行了2.5小时的系统CO2还原反应。如图9中的法拉第效率(FE)图(FA,甲酸)所示,电位依赖性产物分布存在明显差异。图9中针对主要和次要产物示出了每种产物的法拉第效率随电位的变化。采用平均尺寸为8.9μm的Cu三角形纳米片作为CO2还原反应的催化剂。扫描电位相对于的是可逆氢电极(RHE)。第一个显著差异涉及产氢的FE,其在相对于RHE-1.25V下显著较低。FEH2值从-1.05V下的75.3%逐渐降至-1.25V下的42.1%,然后增至-1.45V下的91.7。另一个差异是FECH4值,其从-1.05V下的3.6%逐渐增至-1.25V下的21.7%,并然后降至-1.45V下的7.8%。在上述分析结果的基础上,作为CO2还原反应催化剂的Cu三角形纳米片在相对于RHE-1.25V下对CH4产物具有选择性。我们的XRD结果(图7)已证实Cu三角形纳米片的表面平面为{111}。最近的计算研究显示,Cu{111}有利于COH*的形成,通过它,将在高的过电位下经由共同的CH2物种产生甲烷和乙烯。参见W.Luo,X.Nie,M.Janik and A.Asthagiri,“Facet dependence of CO2 reductionpaths on Cu electrodes,”ACS Catalysis,Vol 6,219-229,2016,其全部内容通过引用并入本文。因此,具有{111}的裸露大面积的Cu三角形纳米片作为CO2还原反应的催化剂的产物选择性与理论计算一致。
产物选择性的差异可能受到Cu催化剂的表面平面的影响。我们可确认,Cu三角形纳米片具有比块状Cu箔更高的CH4产物FE(图10)。对CH4的选择性令人惊奇。虽然理解Cu{111}将有利于C1产物(例如,CH4、CO、HCHO、HCOOH)(参见例如“Facet dependence ofCO2reduction paths on Cu electrodes,”ACS Catalysis,Vol 6,219-229,2016),但没有预期过对CH4的特异性选择性。目前的实验结果显示对CH4的选择性高于其他C1产物,这是令人惊奇的。图10中示出了以标准Cu箔和平均尺寸为8.9μm的Cu三角形纳米片作为催化剂所衍生的析氢反应/CO2还原反应产物的法拉第效率(FE)。扫描电位为相对于可逆氢电极(RHE)-1.25V。在我们的催化实验中,析氢反应(HER)与CO2还原反应相竞争。在相对于RHE-1.25V的电位下,块状Cu箔的FEH2值几乎是Cu三角形纳米片的两倍,而Cu三角形纳米片的FECH4比块状Cu箔的大2.5倍。Cu三角形纳米片的较高{111}表面百分数不仅可改善CH4生成的选择性,还可减慢HER。对CH4的选择性是令人惊奇或出人意料的。催化活性和选择性也取决于催化剂的尺寸和形状。通常,标准化催化活性随催化剂尺寸的减小而提高。正在进行进一步的实验来验证这种效果。
本书面描述使用实例来公开本发明,包括优选实施方案,并还使本领域技术人员能够实践本发明,包括制造和使用任何装置或系统以及执行任何引入的方法。本发明的可专利范围由权利要求限定,并可包括本领域技术人员想到的其他实例。如果这些其他实例具有与权利要求的字面语言没有不同的结构元件,或者如果它们包括与权利要求的字面语言无实质性差别的等同结构元件,则这些其他实例意图在权利要求的范围内。本领域普通技术人员可结合和匹配所描述的各种实施方案的方面以及每个这样的方面的其他已知等同物来构建根据本申请的原理的其他实施方案和技术。
虽然已结合上面概述的实例方面描述了本文描述的方面,但各种替代、修改、变化、改进和/或实质等同物(无论是已知的还是当前可能无法预见的)对于本领域至少具有普通技术的人员来说都可能是显而易见的。相应地,上文阐述的实例方面意在示意而非限制。可作各种改变而不偏离本公开的精神和范围。因此,本公开意在涵盖所有已知的或以后发展的替代、修改、变化、改进和/或实质等同物。
除非特别说明,否则以单数形式提及要素并不意在指“一个且仅一个”,而是“一个或多个”。在整个本公开中描述的各种方面的要素的、本领域普通技术人员已知或将来会已知的所有结构和功能等同物通过引用明确并入本文。而且,本文所公开的内容并非意在贡献给公众。
此外,“实例”一词在本文中用来指“用作实例、例子或示意”。本文中描述为“实例”的任何方面不一定理解为比其他方面更优选或更具优势。除非另有特别说明,否则术语“一些”是指一个或多个。组合如“A、B或C中的至少一个”、“A、B和C中的至少一个”和“A、B、C或它们的任何组合”包括A、B和/或C的任何组合,并可包括A的倍数、B的倍数或C的倍数。具体而言,组合如“A、B或C中的至少一个”、“A、B和C中的至少一个”和“A、B、C或它们的任何组合”可以是仅A、仅B、仅C、A和B、A和C、B和C、或A和B和C,其中任何此类组合均可含有A、B或C中的一个或多个成员。
此外,整个本申请中的所有参考文献,例如专利文献,包括已颁发或授权的专利或等同物;专利申请公开;非专利文献或其他来源材料的全部内容在此通过引用并入本文,就好像一个一个单独地通过引用并入一样。
已出于示意和描述的目的呈现了各种方面和实例的前述描述。其并非意在详尽无遗,也不意在将本公开限制于所描述的形式。在一些情况下,附图中示意的实施方案可理解为出于示意的目的按比例示出。鉴于上面的教导,包括前述方面的组合,可以进行许多修改。已讨论了这些修改中的一些,并且本领域技术人员应理解其他修改。选择和描述各种方面是为了最好地说明本公开的原理和适合于设想的特定用途的各种方面。当然,本公开的范围不限于本文阐述的实例或方面,相反,本领域普通技术人员可能在任何数量的应用和等同装置中采用。在此意图是本发明的范围由附随的权利要求限定。

Claims (22)

1.一种制备铜纳米片的方法,所述方法包括:
将包含还原剂和一种或多种表面活性剂的反应物溶液加热到约280℃至约330℃的温度,以形成经加热的溶液;和
向所述经加热的溶液中注入含铜前体的热溶液以形成所述铜纳米片。
2.根据权利要求1所述的方法,其中所述还原剂为油胺、十六烷基胺或十八烷基胺。
3.根据权利要求2所述的方法,其中所述还原剂为油胺。
4.根据权利要求1所述的方法,其中所述一种或多种表面活性剂包含三辛基膦(TOP)。
5.根据权利要求4所述的方法,其中所述一种或多种表面活性剂还包含十四烷基胺(TDA)。
6.根据权利要求4所述的方法,其中所述TOP的纯度为至少97%。
7.根据权利要求6所述的方法,其中所述TOP基本上不含三辛基氧化膦(TOPO)。
8.根据权利要求4所述的方法,其中所述TOP的纯度为至少90%。
9.根据权利要求4所述的方法,其中TOP与所述含铜前体的摩尔比为约1.5:1至约2.8:1。
10.根据权利要求9所述的方法,其中TOP与所述含铜前体的摩尔比为约1.8:1至约2.8:1。
11.根据权利要求9所述的方法,其中TOP与所述含铜前体的摩尔比为约2.2:1。
12.根据权利要求1所述的方法,其中将所述含铜前体溶解在十八烯或角鲨烯中。
13.根据权利要求1所述的方法,其中将所述反应物溶液加热至约300℃。
14.根据权利要求1所述的方法,其中所述含铜前体为铜-十四烷基胺(Cu-TDA)。
15.一种制备二氧化碳转化催化剂的方法,所述方法包括:
将包含油胺和三辛基膦(TOP)的反应物溶液加热到约280℃至约330℃的温度,以形成经加热的溶液;和
向所述经加热的溶液中注入铜-十四烷基胺(Cu-TDA)的热溶液以形成所述铜纳米片。
16.根据权利要求15所述的方法,其中TOP与Cu-TDA的摩尔比为约1.8:1至约2.8:1。
17.根据权利要求16所述的方法,其中TOP与Cu-TDA的摩尔比为约2.2:1。
18.根据权利要求15所述的方法,其中所述TOP的纯度为至少97%。
19.根据权利要求18所述的方法,其中所述TOP基本上不含三辛基氧化膦(TOPO)。
20.根据权利要求15所述的方法,其中所述TOP的纯度为至少90%。
21.一种二氧化碳还原催化剂,所述催化剂包含:
铜纳米片,所述铜纳米片的特征在于
厚度小于100nm;且
长度为约40nm至约13μm。
22.一种产生甲烷的方法,所述方法包括使二氧化碳与根据权利要求21所述的二氧化碳还原催化剂反应。
CN201910428192.9A 2018-06-12 2019-05-22 二维铜纳米片的高产率制备 Active CN110586953B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/006,673 2018-06-12
US16/006,673 US11131031B2 (en) 2018-06-12 2018-06-12 High-yield preparation of two-dimensional copper nanosheets

Publications (2)

Publication Number Publication Date
CN110586953A true CN110586953A (zh) 2019-12-20
CN110586953B CN110586953B (zh) 2022-09-16

Family

ID=68652015

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910428192.9A Active CN110586953B (zh) 2018-06-12 2019-05-22 二维铜纳米片的高产率制备

Country Status (4)

Country Link
US (1) US11131031B2 (zh)
JP (1) JP2020023745A (zh)
CN (1) CN110586953B (zh)
DE (1) DE102019208252A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112795961A (zh) * 2020-12-28 2021-05-14 武汉大学 一种利用电化学方法单步制备三角形铜纳米片的方法
CN113500202A (zh) * 2021-07-14 2021-10-15 哈尔滨理工大学 一种高纯度六边形Cu纳米晶的制备方法
CN115595618A (zh) * 2022-10-27 2023-01-13 深圳大学(Cn) 一种铜基单原子合金电催化剂及其制备方法和应用
WO2024012313A1 (zh) * 2022-07-15 2024-01-18 东南大学 Co2电还原制甲烷的刻蚀铜催化剂及其制备与应用

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11311939B2 (en) * 2019-08-09 2022-04-26 Honda Motor Co., Ltd. Method for fabrication of copper-silver and copper-gold porous microsheets
CN112517921B (zh) * 2020-11-23 2023-02-03 延边大学 一种空心铜纳米片的制备方法及系统
CN113059173B (zh) * 2021-03-23 2022-02-08 西北有色金属研究院 一种叶片状多孔铜纳米片的制备方法
CN114892209B (zh) * 2022-06-06 2023-06-16 安徽师范大学 一种非晶氢氧化镍纳米管包裹Cu纳米粒子异质结构材料、制备方法及其应用
CN115465886B (zh) * 2022-09-16 2023-11-21 合肥工业大学 一种具有优异光电性能多维Cu-Ti3C2Cl2复合膜的制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102837004A (zh) * 2012-09-25 2012-12-26 吉林大学 多面体铜纳米颗粒的制备方法
CN103170647A (zh) * 2013-04-03 2013-06-26 浙江理工大学 一种自组装形成铜纳米片的方法
US20130230717A1 (en) * 2011-09-02 2013-09-05 Washington University In St. Louis Copper nanostructures and methods for their preparation
KR20130114436A (ko) * 2012-04-09 2013-10-18 삼성전자주식회사 나노입자와 그의 제조방법, 상기 나노입자를 포함하는 용액, 및 나노입자 필름과 그의 제조방법
CN106064239A (zh) * 2016-05-31 2016-11-02 贵州理工学院 一种高分散度的空心反摇铃型铜/二氧化硅核壳纳米颗粒及其制备方法
CN106363165A (zh) * 2016-09-05 2017-02-01 国核电力规划设计研究院 一种片状铜颗粒及其制备方法、催化剂、电极
CN106670496A (zh) * 2015-11-10 2017-05-17 南京理工大学 一种铜纳米线或铜纳米颗粒的制备方法
WO2017091831A1 (en) * 2015-11-29 2017-06-01 Nano-Dimension Technologies, Ltd. Metallic, geometrically discrete nanoparticle composition and methods of forming the same
CN107282942A (zh) * 2017-06-14 2017-10-24 中国科学院山西煤炭化学研究所 一种热分解法制备尺寸可调的CuFe纳米粒子的制备方法
CN108127125A (zh) * 2016-12-01 2018-06-08 中国科学院大连化学物理研究所 一种高稳定性的铜纳米片的制备方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7547347B2 (en) 2005-05-13 2009-06-16 University Of Rochester Synthesis of nano-materials in ionic liquids
CA2652713A1 (en) 2006-05-19 2008-02-21 Purdue Research Foundation Rapid synthesis of ternary, binary and multinary chalcogenide nanoparticles
JP2011502946A (ja) 2007-11-14 2011-01-27 アドバンスド テクノロジー マテリアルズ,インコーポレイテッド 可溶性ナノ結晶の無溶媒合成
WO2009137637A2 (en) 2008-05-09 2009-11-12 Board Of Regents, The University Of Texas System Nanoparticles and methods of making and using
KR101125050B1 (ko) 2009-11-18 2012-03-21 한국과학기술원 입방 모양 PtCo 나노합금 촉매의 제조방법
FR2966474B1 (fr) 2010-10-25 2013-12-20 Solarwell Procede de fabrication d'un materiau nanocristallin
CN103112885A (zh) 2012-12-12 2013-05-22 南京工业大学 铜基纳米太阳能电池材料的制备方法
US20140179941A1 (en) 2012-12-20 2014-06-26 Board Of Trustees Of The University Of Alabama Synthesis and Surface Functionalization of Particles
EP2879211B1 (en) 2013-11-28 2019-03-06 Belenos Clean Power Holding AG Antimony based anode material for rechargeable batteries and preparation method
US9751071B2 (en) 2013-12-27 2017-09-05 State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Continuous microwave-assisted segmented flow reactor for high-quality nanocrystal synthesis
WO2015195650A1 (en) 2014-06-16 2015-12-23 Kansas State University Research Foundation Direct transformation of bulk materials to nanoparticles
WO2016049430A1 (en) 2014-09-26 2016-03-31 The Regents Of The University Of California Methods to produce ultra-thin metal nanowires for transparent conductors
JP6343258B2 (ja) * 2015-06-05 2018-06-13 日本電信電話株式会社 二酸化炭素の還元方法及び還元装置
WO2017046268A1 (en) 2015-09-16 2017-03-23 The University Of Manchester 2d materials
KR101842763B1 (ko) * 2016-03-11 2018-05-14 경희대학교 산학협력단 구리 나노구조물의 제조방법

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130230717A1 (en) * 2011-09-02 2013-09-05 Washington University In St. Louis Copper nanostructures and methods for their preparation
KR20130114436A (ko) * 2012-04-09 2013-10-18 삼성전자주식회사 나노입자와 그의 제조방법, 상기 나노입자를 포함하는 용액, 및 나노입자 필름과 그의 제조방법
CN102837004A (zh) * 2012-09-25 2012-12-26 吉林大学 多面体铜纳米颗粒的制备方法
CN103170647A (zh) * 2013-04-03 2013-06-26 浙江理工大学 一种自组装形成铜纳米片的方法
CN106670496A (zh) * 2015-11-10 2017-05-17 南京理工大学 一种铜纳米线或铜纳米颗粒的制备方法
WO2017091831A1 (en) * 2015-11-29 2017-06-01 Nano-Dimension Technologies, Ltd. Metallic, geometrically discrete nanoparticle composition and methods of forming the same
CN106064239A (zh) * 2016-05-31 2016-11-02 贵州理工学院 一种高分散度的空心反摇铃型铜/二氧化硅核壳纳米颗粒及其制备方法
CN106363165A (zh) * 2016-09-05 2017-02-01 国核电力规划设计研究院 一种片状铜颗粒及其制备方法、催化剂、电极
CN108127125A (zh) * 2016-12-01 2018-06-08 中国科学院大连化学物理研究所 一种高稳定性的铜纳米片的制备方法
CN107282942A (zh) * 2017-06-14 2017-10-24 中国科学院山西煤炭化学研究所 一种热分解法制备尺寸可调的CuFe纳米粒子的制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112795961A (zh) * 2020-12-28 2021-05-14 武汉大学 一种利用电化学方法单步制备三角形铜纳米片的方法
CN112795961B (zh) * 2020-12-28 2021-11-02 武汉大学 一种利用电化学方法单步制备三角形铜纳米片的方法
CN113500202A (zh) * 2021-07-14 2021-10-15 哈尔滨理工大学 一种高纯度六边形Cu纳米晶的制备方法
WO2024012313A1 (zh) * 2022-07-15 2024-01-18 东南大学 Co2电还原制甲烷的刻蚀铜催化剂及其制备与应用
CN115595618A (zh) * 2022-10-27 2023-01-13 深圳大学(Cn) 一种铜基单原子合金电催化剂及其制备方法和应用

Also Published As

Publication number Publication date
DE102019208252A1 (de) 2019-12-12
US11131031B2 (en) 2021-09-28
JP2020023745A (ja) 2020-02-13
US20190376194A1 (en) 2019-12-12
CN110586953B (zh) 2022-09-16

Similar Documents

Publication Publication Date Title
CN110586953B (zh) 二维铜纳米片的高产率制备
Jia et al. Symmetry‐broken Au–Cu heterostructures and their tandem catalysis process in electrochemical CO2 reduction
Zhang et al. Facile syntheses and enhanced electrocatalytic activities of Pt nanocrystals with {hkk} high-index surfaces
Nasretdinova et al. Methylviologen mediated electrochemical synthesis of catalytically active ultrasmall bimetallic PdAg nanoparticles stabilized by CTAC
CN112296347B (zh) 利用三丁基膦作为配体来制备铜纳米立方体的方法
Sierra-Ávila et al. Synthesis of copper nanoparticles using mixture of allylamine and polyallylamine
Li et al. Sulfur-doped graphene anchoring of ultrafine Au25 nanoclusters for electrocatalysis
Roy et al. Size-controlled synthesis, characterization and electrocatalytic behaviors of polymer-protected nickel nanoparticles: a comparison with respect to two polymers
JP7113781B2 (ja) 二酸化炭素還元反応に用いられる新規窒素ドープ銅ナノ触媒
US20220241857A1 (en) Synthetic method for preparing small palladium nanocubes
Nganglumpoon et al. Growing 3D-nanostructured carbon allotropes from CO2 at room temperature under the dynamic CO2 electrochemical reduction environment
CN112672974B (zh) 四六面体纳米颗粒
Shahzad et al. Recent progress in two-dimensional metallenes and their potential application as electrocatalyst
KR101771368B1 (ko) 전기화학적 이산화탄소 환원을 위한 조촉매가 코팅된 3차원 금속 촉매 전극의 제조방법
US20230381745A1 (en) Synthesis of bimetallic structures for use as catalysts
CN111013658B (zh) 用表面配体调节co2还原反应的产物选择性
Nikolaev et al. Electrochemically active dispersed tungsten oxides obtained from tungsten hexacarbonyl in supercritical carbon dioxide
CN115551636A (zh) 二氧化碳还原催化剂和二氧化碳还原方法
Pirskyy et al. Nanostructured catalysts for oxygen electroreduction based on bimetallic monoethanolamine complexes of Co (III) and Ni (II)
JP7082342B2 (ja) 燃料電池の空気側電極用触媒
Fazli et al. Investigation of electrochemical synthesis temperature effect of the binary transition metals sulfide on nickel foam in water oxidation study
Yun Wet-chemical synthesis of noble metal-based nanostructures with controlled phase
Liu Synthesis of metal nanomaterials with unconventional crystal phases and their applications in electrocatalysis
Holder Discovery of Materials for Renewable Energy Applications
Jia A FACILE SYNTHESIS OF TRANSITION METAL OXIDE AND CHALCOGENIDES NANOCRYSTALS FOR ELECTROCATALYTIC APPLICA TIONS

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant