WO2024012313A1 - Co2电还原制甲烷的刻蚀铜催化剂及其制备与应用 - Google Patents

Co2电还原制甲烷的刻蚀铜催化剂及其制备与应用 Download PDF

Info

Publication number
WO2024012313A1
WO2024012313A1 PCT/CN2023/105676 CN2023105676W WO2024012313A1 WO 2024012313 A1 WO2024012313 A1 WO 2024012313A1 CN 2023105676 W CN2023105676 W CN 2023105676W WO 2024012313 A1 WO2024012313 A1 WO 2024012313A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
electroreduction
methane
copper foil
etching
Prior art date
Application number
PCT/CN2023/105676
Other languages
English (en)
French (fr)
Inventor
肖睿
徐维聪
刘超
李培君
丁晓文
李馨雨
陆贤俊
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Publication of WO2024012313A1 publication Critical patent/WO2024012313A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • C25B3/26Reduction of carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/042Electrodes formed of a single material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/01Products
    • C25B3/03Acyclic or carbocyclic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/02Etching

Definitions

  • the invention relates to the technical field of catalysts, in particular to an etching copper catalyst for electroreduction of CO2 to produce methane and its preparation and application.
  • CO 2 electroreduction reaction CO 2 RR
  • CO 2 RR CO 2 electroreduction reaction
  • the generation of methane requires 8 electron transfer, so exploring the electrocatalytic reduction process of converting CO 2 into methane is of great significance to achieve the directional conversion of CO 2 into methane.
  • Copper is the most reliable metal material for catalyzing the electroreduction of CO2 to multi-electron products.
  • the key issues that need to be solved are regulating reaction intermediates and inhibiting the occurrence of CC coupling reactions to avoid CO and the formation of multicarbon products, thereby promoting methane production.
  • the commonly used nano-copper-based catalysts have complex preparation processes, high process requirements and high costs, resulting in low scale production and application value.
  • the present invention provides an etched copper catalyst for the electroreduction of CO2 to produce methane and its preparation and application, with the purpose of improving the methane selectivity of the catalyst.
  • a first aspect of the present invention provides an etched copper catalyst for the electroreduction of CO2 to produce methane.
  • the catalyst uses commercial copper foil as the main body and obtains catalytic active sites through electroetching.
  • the catalytic active sites are Cu(111 )Planes.
  • the catalytically active sites are in the shape of valleys with unsaturated coordination, their longitudinal height and number can be controllably adjusted, and the longitudinal height is 10 to 300 nm.
  • a second aspect of the present invention provides a method for preparing an etching copper catalyst for CO2 electroreduction to produce methane, which includes the following steps:
  • the etched copper foil is cleaned and then vacuum dried in an inert atmosphere to obtain the catalyst.
  • the voltage of constant potential etching is 1 ⁇ 4V, and the etching time is 20 ⁇ 200s.
  • the acidic electrolyte is phosphoric acid or nitric acid, with a concentration of 15% to 75%.
  • the pickling solution is acetic acid or boric acid, and the pickling time is 5-30 minutes.
  • a third aspect of the present invention provides an application of an etched copper catalyst for the electroreduction of CO 2 to produce methane.
  • the catalyst is used as a working electrode to catalyze the electroreduction of CO 2 to produce methane.
  • the specific steps are as follows:
  • the constant potential is -1.9 ⁇ -1.5V (vs.Ag/AgCl), and the electrolysis time is 60 ⁇ 240min.
  • the catholyte is KHCO 3 solution or KCl solution, with a concentration of 0.1 to 1 mol/L.
  • the time for CO 2 pre-saturation of the catholyte is 10 to 40 minutes.
  • the present invention can produce a high-performance copper catalyst that can catalyze the electroreduction of CO 2 to methane in one step by electro-etching commercial copper foil.
  • the electro-etching process is simple. , low process condition requirements, easy to operate, low cost, and great potential for large-scale production.
  • the present invention reconstructs the surface of traditional commercial copper foil catalysts by electroetching.
  • the valley-shaped active sites on the surface can provide effective charge transfer channels, accelerate electron transfer, and promote mass-electron coupling on the catalyst surface, thereby significantly improving Catalytic performance of the catalyst after etching.
  • the vertical height and number of active sites can be adjusted to achieve controllable preparation of catalysts.
  • the catalytically active site of the present invention is mainly Cu(111) crystal plane, which has the best conversion Gibbs free energy during the electrocatalytic reduction of CO2 , and has a low energy barrier for combining intermediates or adsorbates. It is conducive to the specific adsorption of the intermediate *CO on the Cu(111) crystal face to further couple with the *H proton to generate the key intermediate *OCHO of methane, instead of further carbon-carbon coupling to generate multi-carbon products, and at the same time, it can inhibit the dispersion of the intermediate.
  • the polymerization reaction further improves the selectivity of methane products.
  • Figure 1 is an SEM image of the commercial copper foil of catalyst A2 prepared in Example 2 of the present invention and a comparative catalyst.
  • Figure 2 is an AFM image of the commercial copper foil of catalyst A2 prepared in Example 2 of the present invention and a comparative catalyst.
  • the present invention obtains a copper catalyst with unsaturated coordination valley-shaped catalytic active sites by electrically etching commercial copper foil in an acidic electrolyte.
  • the catalyst exhibits excellent CO binding energy, which is helpful for further hydrogenation to form the The key intermediate of methane *OCHO, while the valley-like structure constructs an effective charge transfer channel, controls the reaction intermediate products, and has high selectivity for methane in electrocatalytic CO 2 reduction.
  • the present invention provides an etched copper catalyst for the electroreduction of CO2 to produce methane.
  • the catalyst uses commercial copper foil as the main body and obtains catalytic active sites through electroetching.
  • the catalytic active sites are Cu(111) crystal planes. .
  • the catalytically active sites are in the shape of valleys with unsaturated coordination, their longitudinal height and number can be controllably adjusted, and the longitudinal height is 10 to 300 nm.
  • the valley-shaped active sites of the catalyst of the present application can provide effective charge transfer channels, accelerate electron transfer, and promote mass-electron coupling on the catalyst surface, thereby significantly improving the catalytic performance of the etched catalyst.
  • the invention also provides a method for preparing an etched copper catalyst for CO2 electroreduction to produce methane, which includes the following steps:
  • the etched copper foil is cleaned and then vacuum dried in an inert atmosphere to obtain the catalyst.
  • the voltage of constant potential etching is 1 ⁇ 4V, and the etching time is 20 ⁇ 200s.
  • the acidic electrolyte is phosphoric acid or nitric acid, with a concentration of 15% to 75%.
  • the pickling solution is acetic acid or boric acid, and the pickling time is 5-30 minutes.
  • the preparation method of this application is to electroetch commercial copper foil to obtain the active site as Cu(111) crystal face instead of low surface energy crystal face such as Cu(100) crystal face, which can solve the problem of low surface energy Cu(100) crystal face.
  • the crystal plane does not have the optimal Gibbs free energy for the conversion of CO2 into methane, and the energy barrier of binding intermediates or adsorbates is high, resulting in the desorption of the intermediate *CO from the catalyst surface to generate CO, resulting in generally low methane selectivity. The problem.
  • the present invention also provides an application of an etched copper catalyst for the electroreduction of CO 2 to produce methane.
  • the catalyst is used as a working electrode to catalyze the electroreduction of CO 2 to produce methane.
  • the specific steps are as follows:
  • the constant potential is -1.9 ⁇ -1.5V (vs.Ag/AgCl), and the electrolysis time is 60 ⁇ 240min.
  • the catholyte is KHCO 3 solution or KCl solution, with a concentration of 0.1 to 1 mol/L.
  • the time for CO 2 pre-saturation of the catholyte is 10 to 40 minutes.
  • the Cu(111) crystal face of the catalytic active site has the best conversion Gibbs free energy, and the energy barrier for binding intermediates or adsorbates is low, which is conducive to the specificity of intermediates*CO Adsorbed on the Cu(111) crystal plane, it further couples with *H protons to generate the key intermediate *OCHO of methane, instead of further carbon-carbon coupling to generate multi-carbon products. At the same time, it can inhibit the dimerization reaction of the intermediate and improve the selection of methane products. sex.
  • FIG. 1 it is an SEM image of the commercial copper foil of the catalyst A2 prepared in Example 2 and the comparative catalyst. It can be seen from the figure that the catalytic active sites on the surface of the catalyst A2 prepared in this application have a "valley-like" structure with continuous concave and convex bends, and the surface of the commercial copper foil of the catalyst is relatively smooth.
  • FIG. 2 it is the AFM image of the commercial copper foil of the catalyst A2 prepared in Example 2 and the comparative catalyst. It can be seen from the figure that the surface roughness of the catalyst A2 prepared in this application is higher than that of commercial copper foil, and the distance span between peaks and valleys is also larger than that of commercial copper foil.
  • Table 1 shows the parameters and results of Examples 1 to 6.
  • controllable adjustment of the longitudinal depth of the valley-shaped active sites can be achieved by controlling the electrolyte concentration and electroetching voltage.
  • the number of active sites can be controlled by controlling the electroetching time.
  • Table 2 shows the parameters and results of Examples 7 to 12 and Comparative Examples 1 to 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种CO2电还原制甲烷的刻蚀铜催化剂及其制备方法与应用,所述催化剂以商业铜箔为主体,通过电刻蚀得到活性位点,所述活性位点为Cu(111)晶面。所述制备方法包括:对商业铜箔酸洗去除表面杂质和氧化层;将酸洗后的铜箔放入酸性电解液中进行恒电位刻蚀;清洗刻蚀后的铜箔,而后在惰性气氛下真空干燥而获得。所述应用包括:向阴极电解池中通入CO2,对电解液预饱和,并对工作电极进行活化处理;在持续通入CO2的情况下,采用恒电位电解,将CO2电还原为甲烷。本发明的催化剂制备方法简单、催化活性高,可实现电催化CO2还原制备甲烷,并具有较高的选择性。

Description

CO2电还原制甲烷的刻蚀铜催化剂及其制备与应用 技术领域
本发明涉及催化剂技术领域,尤其是一种CO2电还原制甲烷的刻蚀铜催化剂及其制备与应用。
背景技术
耦合可再生电能将CO2还原为甲烷是一种有吸引力的实现碳中和能源循环的策略。CO2电还原反应(CO2RR)本质上是一个多质子耦合电子转移的过程,随着转移电子和耦合质子数量的增加,反应路径变得越来越复杂。甲烷的生成需要经过8电子转移,因此探索CO2转化为甲烷的电催化还原过程对实现CO2定向转化为甲烷具有重要意义。
铜是催化CO2电还原为多电子产物最可靠的金属材料,要实现Cu催化剂上CO2向甲烷的转化,需要解决的关键问题是调节反应中间体及抑制C-C偶联反应的发生,避免CO以及多碳产物的形成,从而促进甲烷的产生。现有技术中,普遍采用的纳米铜基催化剂,制备工艺复杂、工艺要求和成本较高,造成规模化生产和应用价值不高。
发明内容
针对现有技术的不足,本发明提供一种CO2电还原制甲烷的刻蚀铜催化剂及其制备与应用,目的是提高催化剂的甲烷选择性。
本发明采用的技术方案如下:
本发明第一方面提供一种CO2电还原制甲烷的刻蚀铜催化剂,所述催化剂以商业铜箔为主体,通过电刻蚀得到催化活性位点,所述催化活性位点为Cu(111)晶面。
所述催化活性位点呈具有不饱和配位的山谷状,其纵向高度和数量能够可控调节,且纵向高度为10~300nm。
本发明第二方面提供一种CO2电还原制甲烷的刻蚀铜催化剂的制备方法,包括如下步骤:
对商业铜箔酸洗,去除表面杂质和氧化层;
将酸洗后的铜箔放入酸性电解液中进行恒电位刻蚀;
清洗刻蚀后的铜箔,而后在惰性气氛下真空干燥,即得到所述催化剂。
恒电位刻蚀的电压为1~4V,刻蚀时间为20~200s。
所述酸性电解液为磷酸或硝酸,浓度为15%~75%。
酸洗溶液为醋酸或硼酸,酸洗时间为5-30min。
本发明第三方面提供一种CO2电还原制甲烷的刻蚀铜催化剂的应用,以所述催化剂作为工作电极,催化CO2电还原制备甲烷,具体步骤如下:
向阴极电解池中通入CO2,对电解液预饱和,并对工作电极进行活化处理;
在持续通入CO2的情况下,采用恒电位电解,将CO2电还原为甲烷。
所述恒电位为-1.9~-1.5V(vs.Ag/AgCl),电解时间为60~240min。
所述阴极电解液为KHCO3溶液或KCl溶液,浓度为0.1~1mol/L。
对阴极电解液进行CO2预饱和的时间为10~40min。
本发明的有益效果如下:
1、本发明通过电刻蚀商业铜箔,一步法即可制得能催化CO2电还原为甲烷的高性能铜催化剂,相比于现有常规使用的纳米铜基催化剂,电刻蚀工艺简单、工艺条件要求低,易于操作,且成本低廉、规模化生产潜力大。
2、本发明通过电刻蚀方式对传统的商业铜箔催化剂表面进行重构,表面山谷状活性位点可以提供有效的电荷转移通道,加快电子转移,促进催化剂表面的质电子耦合,从而显著提高刻蚀后催化剂的催化性能。且能够根据不同反应体系和应用场景的需求,调控活性位点的纵向高度和数量,实现催化剂的可控制备。
3、本发明的催化活性位点主要为Cu(111)晶面,在CO2电催化还原过程中,具有最佳的转换吉布斯自由能,结合中间体或者吸附物的能量屏障较低,有利于中间体*CO特异性吸附在Cu(111)晶面进一步与*H质子耦合生成甲烷的关键中间体*OCHO,而不是进一步碳碳偶联生成多碳产物,同时可抑制中间体的二聚反应进而提高甲烷产物的选择性。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。
附图说明
图1为本发明实施例2制备的催化剂A2和对比催化剂商业铜箔的SEM图。
图2为本发明实施例2制备的催化剂A2和对比催化剂商业铜箔的AFM图。
具体实施方式
本发明通过将商业铜箔在酸性电解液中电刻蚀得到具有不饱和配位的山谷状催化活性位点的铜催化剂,催化剂表现出优异的CO结合能,有助于进一步加氢形成能够生成甲烷的关键中间体*OCHO,同时山谷状结构构建了有效的电荷转移通道,控制反应中间体产物,应用在电催化CO2还原中对甲烷具有较高的选择性。
以下说明本发明的具体实施方式。
本发明提供一种CO2电还原制甲烷的刻蚀铜催化剂,所述催化剂以商业铜箔为主体,通过电刻蚀得到催化活性位点,所述催化活性位点为Cu(111)晶面。
所述催化活性位点呈具有不饱和配位的山谷状,其纵向高度和数量能够可控调节,且纵向高度为10~300nm。
本申请催化剂的山谷状活性位点可以提供有效的电荷转移通道,加快电子转移,促进催化剂表面的质电子耦合,从而显著提高刻蚀后催化剂的催化性能。
本发明还提供一种CO2电还原制甲烷的刻蚀铜催化剂的制备方法,包括如下步骤:
对商业铜箔酸洗,去除表面杂质和氧化层;
将酸洗后的铜箔放入酸性电解液中进行恒电位刻蚀;
清洗刻蚀后的铜箔,而后在惰性气氛下真空干燥,即得到所述催化剂。
其中,恒电位刻蚀的电压为1~4V,刻蚀时间为20~200s。
其中,所述酸性电解液为磷酸或硝酸,浓度为15%~75%。
其中,酸洗溶液为醋酸或硼酸,酸洗时间为5-30min。
本申请制备方法通过对商业铜箔电刻蚀,获得活性位点为Cu(111)晶面,而非Cu(100)晶面等低表面能晶面,能够解决由于低表面能Cu(100)晶面不具有CO2转化为甲烷的最佳吉布斯自由能、结合中间体或者吸附物的能量屏障较高导致中间体*CO从催化剂表面脱附生成CO,造成的甲烷选择性普遍较低的问题。
本发明还提供一种CO2电还原制甲烷的刻蚀铜催化剂的应用,以所述催化剂作为工作电极,催化CO2电还原制备甲烷,具体步骤如下:
向阴极电解池中通入CO2,对电解液预饱和,并对工作电极进行活化处理;
在持续通入CO2的情况下,采用恒电位电解,将CO2电还原为甲烷。
其中,所述恒电位为-1.9~-1.5V(vs.Ag/AgCl),电解时间为60~240min。
其中,所述阴极电解液为KHCO3溶液或KCl溶液,浓度为0.1~1mol/L。
其中,对阴极电解液进行CO2预饱和的时间为10~40min。
在CO2电催化还原过程中,催化活性位点Cu(111)晶面具有最佳的转换吉布斯自由能,结合中间体或者吸附物的能量屏障较低,有利于中间体*CO特异性吸附在Cu(111)晶面进一步与*H质子耦合生成甲烷的关键中间体*OCHO,而不是进一步碳碳偶联生成多碳产物,同时可抑制中间体的二聚反应进而提高甲烷产物的选择性。
以下以具体实施例1~6进一步说明本申请的CO2电还原制甲烷的刻蚀铜催化剂的制备方法。
实施例1
用醋酸对商业铜箔(0.3mm×1cm×1cm)酸洗5min,去除表面杂质和氧化层;将酸洗后的铜箔放入浓度为15%的磷酸电解液中,在1V恒电位下刻蚀20s;清洗刻蚀后的铜箔,而后在氮气氛围下真空干燥,即得到具有不饱和配位山谷状活性位点的催化剂,其纵向高度为10nm,记为A1。
实施例2
用醋酸对商业铜箔(0.3mm×1cm×1cm)酸洗20min,去除表面杂质和氧化层;将酸洗后的铜箔放入浓度为25%的磷酸电解液中,在2V恒电位下刻蚀80s;清洗刻蚀后的铜箔,而后在氮气氛围下真空干燥,即得到具有不饱和配位山谷状活性位点的催化剂,其纵向高度为100nm,记为A2。
实施例3
用醋酸对商业铜箔(0.3mm×1cm×1cm)酸洗30min,去除表面杂质和氧化层;将酸洗后的铜箔放入浓度为75%的磷酸电解液中,在4V恒电位下刻蚀200s;清洗刻蚀后的铜箔,而后在氮气氛围下真空干燥,即得到具有不饱和配位山谷状活性位点的催化剂,其纵向高度为300nm,记为A3。
实施例4
用硼酸对商业铜箔(0.3mm×1cm×1cm)酸洗5min,去除表面杂质和氧化层;将酸洗后的铜箔放入浓度为15%的硝酸电解液中,在1V恒电位下刻蚀20s;清洗刻蚀后的铜箔,而后在氮气氛围下真空干燥,即得到具有不饱和配位山谷状活性位点的催化剂,其纵向高度为10nm,记为A4。
实施例5
用硼酸对商业铜箔(0.3mm×1cm×1cm)酸洗20min,去除表面杂质和氧化层;将酸洗后 的铜箔放入浓度为25%的硝酸电解液中,在2V恒电位下刻蚀80s;清洗刻蚀后的铜箔,而后在氮气氛围下真空干燥,即得到具有不饱和配位山谷状活性位点的催化剂,其纵向高度为100nm,记为A5。
实施例6
用硼酸对商业铜箔(0.3mm×1cm×1cm)酸洗30min,去除表面杂质和氧化层;将酸洗后的铜箔放入浓度为75%的硝酸电解液中,在4V恒电位下刻蚀200s;清洗刻蚀后的铜箔,而后在氮气氛围下真空干燥,即得到具有不饱和配位山谷状活性位点的催化剂,其纵向高度为300nm,记为A6。
如图1所示,为实施例2制备的催化剂A2和对比催化剂商业铜箔的SEM图。由图可知,本申请制备的催化剂A2表面催化活性位点为具有连续凹凸折弯的“山谷状”结构,催化剂商业铜箔表面较为平整。
如图2所示,为实施例2制备的催化剂A2和对比催化剂商业铜箔的AFM图。由图可知,本申请制备的催化剂A2表面粗糙化程度较商业铜箔更高,且峰谷之间的距离跨度较商业铜箔也更大。
表1为实施例1~6的参数及结果。
表1实施例1~6的参数及结果
由表1可知,通过控制电解液浓度和电刻蚀电压可实现山谷状活性位点纵向深度的可控调节。活性位点的数量可通过控制电刻蚀时间进行调控。
以下以实施例7~12说明将实施例1~6制备的催化剂在CO2电还原制甲烷的应用。
实施例7
将催化剂A1放入盛有经CO2预饱和10min的0.1mol/L KHCO3的H型电解池中,持续通入CO2并采用恒电位电解的方法,在-1.5V(vs.Ag/AgCl)电压条件下电催化CO2还原60min。通过GC在线检测,甲烷法拉第效率为17.32%。
实施例8
将催化剂A2放入盛有经CO2预饱和20min的0.5mol/L KHCO3的H型电解池中,持续通入CO2并采用恒电位电解的方法,在-1.7V(vs.Ag/AgCl)电压条件下电催化CO2还原120min。通过GC在线检测,甲烷法拉第效率为68.84%。
实施例9
将催化剂A3放入盛有经CO2预饱和40min的1mol/L KHCO3的H型电解池中,持续通入CO2并采用恒电位电解的方法,在-1.9V(vs.Ag/AgCl)电压条件下电催化CO2还原240min。通过GC在线检测,甲烷法拉第效率为55.05%。
实施例10
将催化剂A4放入盛有经CO2预饱和10min的0.1mol/L KCl的H型电解池中,持续通入CO2并采用恒电位电解的方法,在-1.5V(vs.Ag/AgCl)电压条件下电催化CO2还原60min。通过GC在线检测,甲烷法拉第效率为17.08%。
实施例11
将催化剂A5放入盛有经CO2预饱和20min的0.5mol/L KCl的H型电解池中,持续通入CO2并采用恒电位电解的方法,在-1.7V(vs.Ag/AgCl)电压条件下电催化CO2还原120min。通过GC在线检测,甲烷法拉第效率为55.20%。
实施例12
将催化剂A6放入盛有经CO2预饱和40min的1mol/L KCl的H型电解池中,持续通入CO2并采用恒电位电解的方法,在-1.9(V vs.Ag/AgCl)电压条件下电催化CO2还原240min。通过GC在线检测,甲烷法拉第效率为49.28%。
表2为实施例7~12及对比例1~3的参数及结果。
表2实施例7~12及对比例1~3的参数及结果
由表2可知,商业铜箔经过电刻蚀后甲烷的法拉第效率显著提升,最大产率由6.59%上升到68.84%,说明电刻蚀铜箔催化剂对CO2电还原制甲烷展现出了较高的催化活性和选择性。
本领域普通技术人员可以理解:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种CO2电还原制甲烷的刻蚀铜催化剂,其特征在于,所述催化剂以商业铜箔为主体,通过电刻蚀得到催化活性位点,所述催化活性位点为Cu(111)晶面。
  2. 根据权利要求1所述的CO2电还原制甲烷的刻蚀铜催化剂,其特征在于,所述催化活性位点呈具有不饱和配位的山谷状,其纵向高度和数量能够可控调节,且纵向高度为10~300nm。
  3. 一种如权利要求1所述的CO2电还原制甲烷的刻蚀铜催化剂的制备方法,其特征在于,包括如下步骤:
    对商业铜箔酸洗,去除表面杂质和氧化层;
    将酸洗后的铜箔放入酸性电解液中进行恒电位刻蚀;
    清洗刻蚀后的铜箔,而后在惰性气氛下真空干燥,即得到所述催化剂。
  4. 根据权利要求3所述的CO2电还原制甲烷的刻蚀铜催化剂的制备方法,其特征在于,恒电位刻蚀的电压为1~4V,刻蚀时间为20~200s。
  5. 根据权利要求3所述的CO2电还原制甲烷的刻蚀铜催化剂的制备方法,其特征在于,所述酸性电解液为磷酸或硝酸,浓度为15%~75%。
  6. 根据权利要求3所述的CO2电还原制甲烷的刻蚀铜催化剂的制备方法,其特征在于,酸洗溶液为醋酸或硼酸,酸洗时间为5-30min。
  7. 一种如权利要求1所述的CO2电还原制甲烷的刻蚀铜催化剂的应用,其特征在于,以所述催化剂作为工作电极,催化CO2电还原制备甲烷,具体步骤如下:
    向阴极电解池中通入CO2,对电解液预饱和,并对工作电极进行活化处理;
    在持续通入CO2的情况下,采用恒电位电解,将CO2电还原为甲烷。
  8. 根据权利要求7所述的CO2电还原制甲烷的刻蚀铜催化剂的应用,其特征在于,所述恒电位为-1.9~-1.5V(vs.Ag/AgCl),电解时间为60~240min。
  9. 根据权利要求7所述的CO2电还原制甲烷的刻蚀铜催化剂的应用,其特征在于,所述阴极电解液为KHCO3溶液或KCl溶液,浓度为0.1~1mol/L。
  10. 根据权利要求7所述的CO2电还原制甲烷的刻蚀铜催化剂的应用,其特征在于,对阴极电解液进行CO2预饱和的时间为10~40min。
PCT/CN2023/105676 2022-07-15 2023-07-04 Co2电还原制甲烷的刻蚀铜催化剂及其制备与应用 WO2024012313A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210835625.4A CN115216792A (zh) 2022-07-15 2022-07-15 Co2电还原制甲烷的刻蚀铜催化剂及其制备与应用
CN202210835625.4 2022-07-15

Publications (1)

Publication Number Publication Date
WO2024012313A1 true WO2024012313A1 (zh) 2024-01-18

Family

ID=83611129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/105676 WO2024012313A1 (zh) 2022-07-15 2023-07-04 Co2电还原制甲烷的刻蚀铜催化剂及其制备与应用

Country Status (2)

Country Link
CN (1) CN115216792A (zh)
WO (1) WO2024012313A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115216792A (zh) * 2022-07-15 2022-10-21 东南大学 Co2电还原制甲烷的刻蚀铜催化剂及其制备与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4767661A (en) * 1986-09-15 1988-08-30 Psi Star Copper etching process and product
CN110586953A (zh) * 2018-06-12 2019-12-20 本田技研工业株式会社 二维铜纳米片的高产率制备
CN110651070A (zh) * 2017-05-19 2020-01-03 西门子股份公司 用于还原co2和/或co的枝晶状电催化剂的制造
CN112941553A (zh) * 2021-01-27 2021-06-11 天津理工大学 一种三维纳米尖端铜电极的制备方法及其应用
CN115216792A (zh) * 2022-07-15 2022-10-21 东南大学 Co2电还原制甲烷的刻蚀铜催化剂及其制备与应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4767661A (en) * 1986-09-15 1988-08-30 Psi Star Copper etching process and product
CN110651070A (zh) * 2017-05-19 2020-01-03 西门子股份公司 用于还原co2和/或co的枝晶状电催化剂的制造
CN110586953A (zh) * 2018-06-12 2019-12-20 本田技研工业株式会社 二维铜纳米片的高产率制备
CN112941553A (zh) * 2021-01-27 2021-06-11 天津理工大学 一种三维纳米尖端铜电极的制备方法及其应用
CN115216792A (zh) * 2022-07-15 2022-10-21 东南大学 Co2电还原制甲烷的刻蚀铜催化剂及其制备与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LING, PEIQUAN ET AL.: "Surface Engineering on Commercial Cu Foil for Steering C2H4/ CH 4 Ratio in CO2 Electroreduction", NANO LETTERS, vol. 22, no. 7, 24 March 2022 (2022-03-24), pages 2988 - 2994, XP093127319, ISSN: 1530-6984, DOI: 10.1021/acs.nanolett.2c00189 *
Y. HORI ET AL.: "Adsorption of CO Accompanied with Simultaneous Charge Transfer on Copper Single Crystal Electrodes Related with Electrochemical Reduction of CO2 to Hydrocarbons", SURFACE SCIENCE, vol. 335, no. 1-3, 28 November 1994 (1994-11-28), pages 258 - 263, XP005877754, ISSN: 0039-6028, DOI: 10.1016/0039-6028(95)00441-6 *

Also Published As

Publication number Publication date
CN115216792A (zh) 2022-10-21

Similar Documents

Publication Publication Date Title
CN111229232B (zh) 泡沫镍基多孔NiFe水滑石纳米片及其制备和应用
WO2024012313A1 (zh) Co2电还原制甲烷的刻蚀铜催化剂及其制备与应用
Liu et al. Amorphous-crystalline heterostructure for simulated practical water splitting at high-current–density
CN113828300B (zh) 金属掺杂铋层状氧化物的制备方法及其在电催化还原co2中的应用
CN113818040B (zh) 一种用于co2电还原制乙醇的铜催化剂及其制备方法与应用
CN114277398A (zh) 一种纳米铜催化剂的制备方法与应用
CN113235125B (zh) 镍基NiCo2O4电催化剂及其在电催化甘油氧化中的应用
CN110670089A (zh) 一种c-n共掺杂二氧化钛电极的制备方法、在酸性溶液中电解水产双氧水的应用
WO2024012312A1 (zh) 表面重构的铜催化剂及制备和在co2电还原中的应用
CN113118451A (zh) 一种应用于高效二氧化碳还原反应生成一氧化碳的镁单原子催化剂的制备方法
US20230203675A1 (en) Hydrogen evolution electrode and preparation method thereof
CN108411349B (zh) 一种石墨烯掺杂多孔RuO2阳极的制备方法
CN114892197B (zh) 一种电催化合成h2o2用催化剂及其制备方法和应用
CN113249743B (zh) 一种电催化甘油氧化的催化剂及其制备方法
Wen et al. Restructuring of copper catalysts by potential cycling and enhanced two-carbon production for electroreduction of carbon dioxide
CN113463131B (zh) 一种铜单原子催化剂及其制备方法与应用
CN113774425B (zh) 一种Ru修饰FeCo@NF电催化剂的制备方法及应用
CN115491696A (zh) 一种用于电催化二氧化碳还原的单原子催化剂及制备方法
CN112877728B (zh) 一种含铂碳层负载泡沫镍电解水电极及其制备方法
CN115341221A (zh) 一种在碱性条件下电氧化苯甲醇耦合制氢方法
CN115491699A (zh) 一种纳米铜基催化剂及其制备方法以及在二氧化碳和一氧化碳电催化还原中的应用
CN115652341A (zh) Co2电还原制乙烯的自支撑纳米催化剂及其制备与应用
CN117144410B (zh) Ni5FeCuCrS3/MXene/NF电催化复合电极及其制备方法和应用
CN114045521B (zh) 一种纳米级电催化剂的制备方法
CN112760678B (zh) 一种铼基硫氧化物复合纳米材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23838805

Country of ref document: EP

Kind code of ref document: A1