CN110024058B - 方向性电磁钢板及方向性电磁钢板的制造方法 - Google Patents

方向性电磁钢板及方向性电磁钢板的制造方法 Download PDF

Info

Publication number
CN110024058B
CN110024058B CN201780073544.2A CN201780073544A CN110024058B CN 110024058 B CN110024058 B CN 110024058B CN 201780073544 A CN201780073544 A CN 201780073544A CN 110024058 B CN110024058 B CN 110024058B
Authority
CN
China
Prior art keywords
steel sheet
coating
grain
oriented electrical
electrical steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780073544.2A
Other languages
English (en)
Other versions
CN110024058A (zh
Inventor
马田拓实
高城重宏
寺岛敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of CN110024058A publication Critical patent/CN110024058A/zh
Application granted granted Critical
Publication of CN110024058B publication Critical patent/CN110024058B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1288Application of a tension-inducing coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0664Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/221Ion beam deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/74Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • C23C26/02Coating not provided for in groups C23C2/00 - C23C24/00 applying molten material to the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/341Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one carbide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12542More than one such component
    • Y10T428/12549Adjacent to each other

Abstract

本发明提供去应变退火后的被膜密合性及磁特性优异的方向性电磁钢板及其制造方法。上述方向性电磁钢板具有:钢板;配置于上述钢板上的、含有金属元素的金属被膜;被膜层A,其为配置于上述金属被膜上的、氧化物含量小于30质量%的陶瓷被膜;和被膜层B,其为配置于上述被膜层A上的、含有氧化物的绝缘张力被膜,上述金属被膜的厚度为1.0~10.0nm,当将铁的原子半径设为RFe、将上述金属元素的原子半径设为RA时,上述金属元素为下式(1)所示的原子半径比为10%以上的元素。(|RFe‑RA|/RFe)×100…(1)。

Description

方向性电磁钢板及方向性电磁钢板的制造方法
技术领域
本发明涉及方向性电磁钢板及方向性电磁钢板的制造方法。
背景技术
方向性电磁钢板是可以用作变压器及发电机等的铁芯材料的软磁性材料。方向性电磁钢板的特征在于,具有作为铁的易磁化轴的〈001〉取向在钢板的轧制方向上高度一致的晶体组织。这样的织构通过方向性电磁钢板的制造工序中的最终退火而形成,所述最终退火中,优先使被称为所谓高斯取向的{110}〈001〉取向的晶粒巨大生长。作为方向性电磁钢板的制品的磁特性,要求其磁通密度高、铁损低。
方向性电磁钢板的磁特性通过向钢板表面施加拉伸应力(张力)而变得良好。作为向钢板施加拉伸应力的现有技术,通常采用下述技术:在钢板表面上形成厚度为2μm左右的镁橄榄石被膜、在其上形成厚度2μm左右的以硅磷酸盐作为主体的被膜。
即,于高温形成具有低于钢板的热膨胀系数的硅磷酸盐被膜,使其降低至室温,利用钢板与硅磷酸盐被膜的热膨胀系数之差来向钢板施加拉伸应力。
该硅磷酸盐被膜还作为对于方向性电磁钢板而言必需的绝缘被膜而发挥功能。即,通过绝缘可防止在钢板中产生局部性涡电流。
利用化学研磨或电解研磨将最终退火后的方向性电磁钢板的表面平滑化,然后,利用钢板上的被膜施加拉伸应力,由此能够大幅度地降低铁损。
但是,处于钢板与硅磷酸盐被膜之间的镁橄榄石被膜通过锚固效应与钢板密合。因此,钢板表面的平滑度必然会劣化。另外,硅磷酸盐与金属的密合性低,无法在将表面镜面化后的钢板上直接形成硅磷酸盐被膜。像这样,以往的方向性电磁钢板的被膜结构(钢板/镁橄榄石被膜/硅磷酸盐被膜)中,无法将钢板的表面平滑化。
因此,专利文献1中,为了维持钢板表面的平滑度、进而向钢板施加较大的拉伸应力,利用CVD法或PVD法在钢板上形成由TiN等形成的陶瓷被膜。此时,施加至钢板的拉伸应力与陶瓷被膜的厚度成比例,因此将陶瓷被膜形成至少1μm。
但是,对于CVD法及PVD法而言,由于制造成本高,因此期望尽可能地薄膜化,在这种情况下,施加至钢板的拉伸应力降低。
专利文献2中,为了弥补由这样的薄膜化导致的张力降低,或为了向钢板施加更大的张力,在1μm以下厚度的陶瓷被膜上形成由硅磷酸盐形成的绝缘张力被膜。
现有技术文献
专利文献
专利文献1:日本特开平01-176034号公报
专利文献2:日本特开昭64-068425号公报
发明内容
发明所要解决的课题
本申请的发明人对在陶瓷被膜上形成有绝缘张力被膜的方向性电磁钢板进行了研究。其结果,根据需求方等,在对方向性电磁钢板实施去应变退火的情况下,有时陶瓷被膜从钢板剥离、或者方向性电磁钢板的磁特性劣化。
本发明是鉴于以上情况而做出的,其目的在于,提供去应变退火后的被膜密合性及磁特性优异的方向性电磁钢板、及其制造方法。
用于解决课题的手段
为了实现上述目的,本申请的发明人进行了深入研究,结果发现通过采用特定的被膜构成作为陶瓷被膜及绝缘张力被膜,即使在去应变退火后,被膜密合性及磁特性也均优异,从而完成了本发明。
即,本发明提供以下[1]~[12]。
[1]方向性电磁钢板,其具有:
钢板;配置于上述钢板上的、含有金属元素的金属被膜;被膜层A,上述被膜层A为配置于上述金属被膜上的、氧化物含量小于30质量%的陶瓷被膜;和被膜层B,上述被膜层B为配置于上述被膜层A上的、含有氧化物的绝缘张力被膜,其中,上述金属被膜的厚度为1.0~10.0nm,当将铁的原子半径设为RFe、将上述金属元素的原子半径设为RA时,上述金属元素为下式(1)所示的原子半径比为10%以上的元素,
(|RFe-RA|/RFe)×100…(1)。
[2]如上述[1]所述的方向性电磁钢板,其中,上述金属元素为选自由Ti、Y、Zr、Nb、Mo、Hf、Ta、W及C组成的组中的至少1种。
[3]如上述[1]或[2]所述的方向性电磁钢板,其中,上述金属元素为Ta或W。
[4]如上述[1]~[3]中任一项所述的方向性电磁钢板,其中,上述被膜层A的厚度为0.01μm以上。
[5]如上述[1]~[4]中任一项所述的方向性电磁钢板,其中,上述被膜层A的厚度为0.40μm以下。
[6]如上述[1]~[5]中任一项所述的方向性电磁钢板,其中,上述被膜层B的厚度为1.0μm以上。
[7]如上述[1]~[6]中任一项所述的方向性电磁钢板,其中,上述被膜层B的厚度为10.0μm以下。
[8]如上述[1]~[7]中任一项所述的方向性电磁钢板,其中,上述被膜层A含有氮化物或碳氮化物。
[9]方向性电磁钢板的制造方法,其为制造上述[1]~[8]中任一项所述的方向性电磁钢板的方向性电磁钢板的制造方法,其中,通过对上述钢板照射金属离子从而使上述金属离子附着来形成上述金属被膜,或通过在对上述钢板进行的非活性气体离子的照射中,使从灯丝释放的金属元素附着于上述钢板来形成上述金属被膜。
[10]如上述[9]所述的方向性电磁钢板的制造方法,其中,上述灯丝的材料为W或Ta。
[11]如上述[9]或[10]所述的方向性电磁钢板的制造方法,其中,利用CVD法或PVD法形成上述被膜层A。
[12]如上述[9]~[11]中任一项所述的方向性电磁钢板的制造方法,其中,使用涂布型辊在上述被膜层A上涂布涂覆药液,并在氮气氛中实施烘烤,由此形成上述被膜层B。
[发明的效果]
根据本发明,能够提供去应变退火后的被膜密合性及磁特性优异的方向性电磁钢板、及其制造方法。
附图说明
[图1]为示意性示出本发明的方向性电磁钢板的一个优选方式的剖视图。
[图2]为示意性示出以往的方向性电磁钢板的剖视图。
[图3]为表示绝缘张力被膜的厚度、与该厚度的绝缘张力被膜施加至钢板的张力之间的关系的图。
具体实施方式
[本申请的发明人得到的见解]
在钢板上形成厚度为1.00μm以下(例如0.30μm)的陶瓷被膜、在其上形成由硅磷酸盐形成的绝缘张力被膜,在进行去应变退火的情况下,存在陶瓷被膜与钢板剥离(被膜密合性劣化)的情况。针对其原因,本申请的发明人反复进行了大量实验,结果认为原因如下。
对于使绝缘张力被膜施加至钢板的拉伸应力增大从而使磁特性变得良好而言,使用低热膨胀系数的硅磷酸盐作为绝缘张力被膜的材料是有利的,但另一方面,在高温环境下,绝缘张力被膜中的成分将陶瓷被膜氧化,生成反应产物。
接着,在800℃进行3小时的去应变退火中,上述反应产物从绝缘张力被膜与陶瓷被膜的界面向钢板的方向而在陶瓷被膜中扩散,当上述反应产物扩散至陶瓷被膜与钢板的界面时,与钢板的Fe反应,形成析出物。
其结果,去应变退火的冷却时,即,当利用热膨胀系数差而向钢板与陶瓷被膜的界面施加的应力开始施加时,析出物无法耐受上述应力而从钢板剥离。由此,陶瓷被膜与钢板剥离。即,被膜密合性劣化。
因此,本申请的发明人研究了通过在钢板表面形成金属被膜来抑制对被膜密合性产生不良影响的析出物的生成。
为此,认为形成反应性低的金属被膜是有效的。然而,当该金属被膜固溶于钢板时,将不能充分抑制析出物的生成。为了避免高成本化,当然需要该金属被膜为极薄,也要避免使用电镀等追加工序。
本申请的发明人发现,利用离子照射使下式(1)所示的原子半径比为10%以上的金属元素附着于钢板表面,能够在抑制金属被膜向钢板固溶的同时,在不增加成本的情况下在钢板上形成金属被膜。
(|RFe-RA|/RFe)×100…(1)
式(1)中,RFe表示铁的原子半径,RA表示附着于钢板表面的金属元素的原子半径。
本申请的发明人发现,作为金属被膜含有的金属元素,通过选择晶格间隔大的元素,在钢板上形成的陶瓷被膜的张力增大。
此外,发现了通过在非活性气体离子照射中使由灯丝释放的元素附着于钢板表面,与金属离子照射相比,能够使铁损更低。
图1为示意性示出本发明的方向性电磁钢板的一个优选方式的剖视图。图2为示意性示出以往的方向性电磁钢板的剖视图。
首先,如图2所示,通常,以往的方向性电磁钢板在钢板1上具备镁橄榄石被膜2,并在其上形成有绝缘张力被膜3。图2中,镁橄榄石被膜2的厚度T2为2μm左右,绝缘张力被膜3的厚度T3为2μm左右。
与此相对,在图1中,以往的镁橄榄石被膜2(参见图2)的部分被替换为陶瓷被膜4。更详细而言,在利用化学研磨或电解研磨等进行了平滑化的钢板1的表面上形成有金属被膜5,在该金属被膜5的表面上,使用CVD法或PVD法形成有陶瓷被膜4。图1中,陶瓷被膜4的厚度T4例如为1.00μm以下,因此,即使使绝缘张力被膜3的厚度T3增厚至2.0μm以上,仍然不会减少将方向性电磁钢板用作变压器时的有效钢板体积(叠片系数)。
由于利用被膜施加至钢板的张力通常与被膜的厚度成比例,因此,认为绝缘张力被膜的增厚对于磁特性的提高是有用的。
本申请的发明人发现,通过调节涂布型辊的旋转速度及涂覆药液的比重等来增加所形成的绝缘张力被膜的厚度,从而施加至钢板的张力增大,能够使方向性电磁钢板的磁特性变得良好。
[方向性电磁钢板及其制造方法]
以下,再次对本发明的方向性电磁钢板进行说明。
本发明的方向性电磁钢板具有:钢板;配置于上述钢板上的、含有金属元素的金属被膜;被膜层A,其为配置于上述金属被膜上的、氧化物含量小于30质量%的陶瓷被膜;和被膜层B,其为配置于上述被膜层A上的、含有氧化物的绝缘张力被膜,其中,上述金属被膜的厚度为1.0~10.0nm,上述金属元素为当将铁的原子半径设为RFe、将上述金属元素的原子半径设为RA时,下式(1)所示的原子半径比为10%以上的元素。
(|RFe-RA|/RFe)×100…(1)
本发明的方向性电磁钢板的去应变退火后的被膜密合性(以下也简称为“被膜密合性”)优异,且去应变退火后的磁特性(以下也简称为“磁特性”)优异。
以下,对本发明的方向性电磁钢板进行更详细的说明。以下的说明也兼作本发明的方向性电磁钢板的制造方法的说明。
〈钢板〉
作为钢板,没有特别限定,可举出例如以下所说明的钢板。
首先,作为形成钢板的钢锭,从磁特性的观点考虑,优选使用下述钢锭,作为钢中成分,所述钢锭以质量%计含有C:0.002~0.10%、Si:2.5~4.0%、及Mn:0.005~0.50%,并且,含有Al:0.010~0.050%、及N:0.003~0.020%、或含有Al:0.010~0.050%、N:0.003~0.020%、Se:0.003~0.030%、及/或S:0.002~0.03%,余量为不可避免的杂质和Fe。当然,不限于上述钢锭。
对这样的钢锭进行热轧,然后,在间隔着数次退火的情况下经数次冷轧而制成最终冷轧板,然后,实施脱碳退火及最终退火,由此使具有高斯取向的二次再结晶晶粒生长。由此,能够得到钢板。此时,为了取得磁特性与成本的均衡性,冷轧的次数优选为2次以下。
上述钢中成分中,C通过脱碳退火而被除去,Al、N、Se及S通过最终退火而被纯化,由此,在最终退火后的钢板中,其含量均成为不可避免的杂质水平。
然后,利用酸洗等除去钢板表面的镁橄榄石被膜。
像这样,如以往那样,在钢板表面形成镁橄榄石被膜,然后利用酸洗除去镁橄榄石被膜,这在制造方面是优选的。镁橄榄石被膜的成膜对钢板的脱碳是有用的,在使用其他脱碳手段的情况下,也可不形成镁橄榄石被膜。
除去钢板表面的镁橄榄石被膜后,利用化学研磨或电解研磨等方法将钢板表面平滑化。
一般而言,钢板的表面状态越粗糙,则被膜密合性由于锚定效果而变得越良好。反之,钢板的表面状态越平滑,则磁畴越变得容易移动,施加拉伸应力时磁特性优化的量变得越大。
本发明中,即使使用化学研磨(其最能够使钢板表面变得平滑)后的钢板,也仍然能够在去应变退火后、在不使被膜层A(陶瓷被膜)剥离的情况下维持高被膜密合性。因此,优选的是,利用化学研磨或电解研磨,尽可能地将钢板表面平滑化,使算术平均粗糙度Ra为0.4μm以下。
〈金属被膜〉
本发明的方向性电磁钢板具有配置于上述钢板的表面上的、含有金属元素的金属被膜。
《金属元素》
金属被膜所含有的金属元素(以下,也表述为“金属元素A”)为下述元素:根据休谟-罗瑟里定则,将铁的原子半径设为RFe、将金属元素A的原子半径设为RA时,下式(1)所示的原子半径比(以下,也简称为“原子半径比”)为10%以上。
(|RFe-RA|/RFe)×100…(1)
将这样的金属被膜配置于钢板和被膜层A(陶瓷被膜)之间,由此可避免向钢板的固溶并且能够使被膜密合性良好。磁特性也优异。
金属元素A的原子半径比优选为20%以上。另一方面,上限没有特别限定,例如为40%以下。
作为金属元素A,可优选举出晶格间隔大的元素。由此,在金属被膜上所形成的陶瓷被膜的晶格间隔变大,由与钢板的晶格失配所引起的张力变大。
作为这样的金属元素A,可举出例如选自由Ti、Y、Zr、Nb、Mo、Hf、Ta、W及C组成的组中的至少1种,其中,从被膜密合性及磁特性更优异这样的理由考虑,优选为Ta或W。
作为金属元素A的C(碳)通常不是金属元素,但在包含在金属被膜中的情况下,则将其视为金属元素。
金属被膜中的金属元素A的含量优选为95质量%以上、更优选为98质量%以上,进一步优选金属被膜实质上由金属元素A形成。
本发明中,通过后述的方法1或方法2形成金属被膜的情况下,所形成的金属被膜中的金属元素A的含量在上述范围内。
《厚度》
金属被膜的厚度为1.0~10.0nm。
若金属被膜过厚,则有时被膜密合性及磁特性变得不充分,过薄时,则有时磁特性变得不充分,当金属被膜的厚度在上述范围内时,被膜密合性及磁特性均优异。
金属被膜的厚度为如下值:将使用FIB(聚焦离子束)切下的剥片(截面)利用TEM(透射型电子显微镜)进行观察,并取任意10处的测定值的平均值。
《成膜方法》
作为在钢板上形成金属被膜的方法,可举出例如照射金属离子的方法(方法1);照射非活性气体离子的方法(方法2);等等。
更详细而言,方法1为如下方法:利用电弧放电使金属靶升华而离子化,对钢板照射经离子化的金属(金属离子)并使其附着。
在方法1中,使用上述金属元素A的金属靶,对钢板照射金属元素A的离子。由此,在钢板上形成含有金属元素A的金属被膜。
更详细而言,在方法2中,首先,将非活性气体(Ar气、Kr气、Xe气等)导入真空室内,从外部电源对设置于真空室内的灯丝供给电流。由此,灯丝炽热(glow)、释放热电子。非活性气体与热电子碰撞而离子化。对钢板施加负电压的情况下,离子化后的非活性气体(非活性气体离子)被吸引至钢板、对钢板的表面进行照射。在该照射中,从灯丝释放的金属元素附着于钢板表面。
方法2中,作为灯丝材料的元素,通过使用上述的金属元素A,从而在钢板上形成含有金属元素A的金属被膜。
作为灯丝材料的元素,优选为W或Ta。它们的熔点高、适合作为灯丝材料,除此以外,还不固溶于铁,晶格间隔也大,因此被膜密合性及磁特性更加优异。
将方法1与方法2进行对比的情况下,方法2易于抑制金属被膜地过量附着、能够使钢板表面的平滑度更加良好,从这样的理由考虑优选。
在任意方法中,照射于钢板的离子(照射离子)因施加于钢板的电压而被加速。该电压以绝对值计优选为300V以上。若电压过低,则照射离子的动能降低,从而有时对钢板的附着量会变得过多,当电压在上述范围时,则对钢板的附着量成为适量。
电压更优选以绝对值计为500V以上且1000V以下。当电压在该范围时,由于照射离子具有适当的动能,因此能够防止钢板表面粗糙度的过度增加,被膜密合性及磁特性变得更加良好。
从低成本化及使金属被膜的附着量为适量的观点考虑,离子照射时间优选为10分钟以下。
〈被膜层A:陶瓷被膜〉
本发明的方向性电磁钢板具有配置于上述金属被膜的表面上的、作为陶瓷被膜的被膜层A。
《组成》
(氧化物)
被膜层A(陶瓷被膜)中的氧化物的含量小于30质量%、优选为15质量%以下、更优选为5质量%以下、进一步优选为2质量%以下。
陶瓷被膜中的氧化物的含量能够使用已知组成的标准板、利用荧光X射线进行测定。
作为氧化物中的氧(O)以外的元素,可举出例如后述的作为非氧化物中的C及N以外的元素所例示的元素。
(非氧化物)
作为被膜层A(陶瓷被膜)所含有的成分(氧化物以外的成分),可举出例如选自由碳化物、氮化物及碳氮化物组成的组中的至少1种。
由于陶瓷被膜含有氮化物或碳氮化物,由此被膜密合性变得更加良好。
非氧化物为选自由碳化物、氮化物及碳氮化物组成的组中的至少1种的情况下,作为非氧化物中的C及N以外的元素,可举出例如选自由Cr、Ti、Al、Si、Zr、Mo、Y、Nb、W、Fe、Mn、Ta、Ge及Hf组成的组中的至少1种,其中,优选选自由Cr、Ti、Al、Si、Zr、Mo、Y、Nb及W组成的组中的至少1种。
作为非氧化物,优选具有岩盐型结构(rock salt structure)的氮化物或碳氮化物。
作为非氧化物,优选能够尽可能地提高陶瓷被膜中的氮化物等的耐氧化性的成分。根据由P.Panjan等制作的阿累尼乌斯图(P.Panjan et al.,Thin Solid Films 281-282(1996)298.),通过向含有Cr的氮化物中添加Ti等,能够增加耐氧化性。因此,也能够优选使用例如TiCrN及AlCrN等含有3种以上元素的氮化物等非氧化物。
陶瓷被膜中的非氧化物的含量优选为70质量%以上。陶瓷被膜更优选实质上由非氧化物形成。
本发明中,能够将从陶瓷被膜的总质量减去氧化物的含量而得的值视为陶瓷被膜中的非氧化物的含量。
《厚度》
就被膜层A(陶瓷被膜)的厚度而言,从抑制高成本化的观点考虑,优选为1.00μm以下、更优选为0.40μm以下、进一步优选为0.30μm以下。
另一方面,就陶瓷被膜的厚度而言,从被膜密合性更优异这样的理由考虑,优选为0.01μm以上。
陶瓷被膜的厚度为如下值:将使用FIB(聚焦离子束)切下的剥片(截面)利用TEM(透射型电子显微镜)进行观察,并取任意10处的测定值的平均值。
《成膜方法》
作为被膜层A(陶瓷被膜)的成膜方法,优选CVD(化学气相沉积)法或PVD(物理气相沉积)法。
作为CVD法,优选热CVD法。成膜温度优选为900~1100℃。对于成膜时的压力而言,虽然在大气压下也能够成膜,但为了均匀地成膜,优选为进行减压,从制造上的理由考虑,更优选为10~1000Pa。
PVD法优选离子镀法。从制造方面考虑,成膜温度优选为300~600℃。成膜时的压力优选为减压,更优选为0.1~100Pa。成膜时,优选以钢板作为阴极施加-10~-100V的偏压。从能够提高成膜速度的理由考虑,优选将等离子体用于原料的离子化。
作为陶瓷被膜,形成例如TiAlN或TiCrN等含有3种以上元素的陶瓷被膜的情况下,作为成膜方法,优选PVD法,更优选离子镀法。就利用热力学反应进行成膜的CVD法而言,存在难以得到与期望一致的组成的情况,而PVD法可将合金材料离子化并使其共格析出(coherent precipitation),因此,能够容易地得到与期望一致的组成。
〈被膜层B:绝缘张力被膜〉
本发明的方向性电磁钢板具有配置于被膜层A(陶瓷被膜)上的、含有氧化物的绝缘张力被膜即被膜层B。
《组成》
绝缘张力被膜所含有的氧化物可根据使用的涂覆药液的组成来适当确定,没有特别限定,可举出例如磷的氧化物(P2O5);硅的氧化物(SiO2);MgO、CaO、SrO、BaO、Al2O3、Y2O3、Cr2O3、TiO2、ZrO2、MnO2、Nb2O5、V2O5、WO3等、P及Si以外的其他元素的氧化物;等等。
本说明书中,有时将绝缘张力被膜中的上述氧化物统称为“磷酸硅玻璃”或“硅磷酸盐”。
绝缘张力被膜中的氧化物(磷酸硅玻璃)的含量优选为85质量%以上,更优选为95质量%以上。绝缘张力被膜进一步优选实质上由磷酸硅玻璃形成。
就绝缘张力被膜中的上述氧化物的含量而言,能够使用绝缘张力被膜的已知组成的标准板,利用荧光X射线分析来求得。
《厚度》
图3为表示绝缘张力被膜的厚度与该厚度的绝缘张力被膜施加至钢板的张力之间的关系的图。如图3所示,认为随着绝缘张力被膜厚度的增加,施加至钢板的张力(拉伸应力)增大,由此方向性电磁钢板的磁特性优异(铁损降低)。
就绝缘张力被膜的厚度而言,从方向性电磁钢板的磁特性更优异这样的理由出发,优选为1.0μm以上。
另一方面,认为使绝缘张力被膜过厚时,导致将方向性电磁钢板用作变压器时的有效钢板体积减少,由拉伸应力带来的铁损降低效果也变得饱和,因此也存在变压器特性反而劣化的情况。因此,绝缘张力被膜的厚度优选为10.0μm以下、更优选为5.0μm以下。
绝缘张力被膜的厚度通过使用SEM(扫描型电子显微镜)的截面观察进行测定,取任意10处的测定值的平均值。
《成膜方法》
绝缘张力被膜的成膜方法没有特别限定,可优选举出例如在陶瓷被膜上涂布涂覆药液,任选地进行干燥后,在氮氛中进行烘烤的方法。以下,以该方法为例进行说明。
(涂覆药液)
涂覆药液优选含有磷酸盐、和胶体二氧化硅。
作为磷酸盐的金属种类,可优选举出例如Mg、Ca、Sr、Ba、Al或Mn等。
作为磷酸盐,从易于生成结晶相的理由考虑,优选磷酸镁或磷酸铝等热膨胀系数低的磷酸盐。
作为磷酸盐,从获得容易度的观点考虑,可优选使用一代磷酸盐(磷酸二氢盐)。
就涂覆药液中的磷酸盐的含量而言,优选相对于涂覆药液中的总固态成分量而言为20mol%以上。
涂覆药液中含有的胶体二氧化硅的平均粒径优选为5~200nm,更优选为10~100nm。相对于磷酸盐100质量份而言,胶体二氧化硅的含量以固态成分换算计优选为50~150质量份。
在涂覆药液中,还可含有铬酸酐及/或重铬酸盐,相对于磷酸盐100质量份而言,其含量以固态成分换算(干燥固态成分比率)计优选为10~50质量份。
在涂覆药液中,可进一步添加二氧化硅粉末及氧化铝粉末等无机矿物粒子,相对于磷酸盐100质量份而言,其含量以固态成分换算计优选为0.1~10质量份。
涂覆药液能够含有磷酸来代替磷酸盐(或同时含有磷酸和磷酸盐),在这种情况下能够进一步含有金属氧化物等金属化合物。
(成膜条件)
作为将这样的涂覆药液涂布于被膜层A(陶瓷被膜)上的方法,没有特别限定,从制造成本的需要的观点考虑,优选使用涂布型辊来实施。
基于以下的理由,烘烤温度及烘烤时间分别优选为700~900℃及10~30秒。
通过使烘烤温度为900℃以下、及/或烘烤时间为30秒以下,能够进一步抑制析出物生成的反应(其与陶瓷被膜与绝缘张力被膜的被膜密合性的劣化相关联),从而被膜密合性更加优异。
作为绝缘张力被膜的形成的初始阶段,包括涂覆药液的干燥。通过使烘烤温度为700℃以上、及/或烘烤时间为10秒以上,可充分地进行涂覆药液的干燥,能够充分地除去涂覆药液中含有的水分,能够进一步提高绝缘张力被膜施加至钢板的拉伸应力。此外,能够抑制在去应变退火中由水分导致的陶瓷被膜的氧化。
烘烤气氛优选为氮气氛。
烘烤气氛为大气气氛时,有时因大气中含有的水分及氧等而变得容易发生陶瓷被膜的氧化,但为氮气氛时,陶瓷被膜的氧化被抑制,被膜密合性更优异。
〈去应变退火〉
本发明的方向性电磁钢板存在根据例如需求方等而实施去应变退火的情况。去应变退火的条件没有特别限定,例如,在氮气氛等气氛中,于700~900℃实施2~4小时的退火。
〈其他事项〉
为了使本发明的方向性电磁钢板的磁特性更加良好,还可利用下述技术:以将方向性电磁钢板的轧制方向横切的方式在钢板表面附近形成槽,或者通过激光照射或电子束照射等而导入应变(strain),从而将方向性电磁钢板的磁畴进行细分化。
由槽形成带来的磁畴细分化效果在退火后仍然残留,但由激光照射或电子束照射带来的应变会由于需求方等实施的去应变退火而松弛,例如,有时会难以用于卷绕铁芯(wound core)的用途。
但是,本发明的方向性电磁钢板即使在不实施去应变退火的情况下(例如,叠片铁芯专用的情况下),被膜密合性及磁特性也仍然优异。因此,本发明中,在不实施去应变退火的情况下,能够使用基于应变导入的磁畴细分化技术来使磁特性更加良好。
实施例
以下,举出实施例具体地说明本发明。然而,本发明并不限定于此。
[试验例1]
〈方向性电磁钢板的制造〉
以下述方式进行操作,在钢板上依次形成金属被膜、被膜层A(陶瓷被膜)及被膜层B(绝缘张力被膜),得到方向性电磁钢板。
《钢板》
使用了作为钢中成分以质量%计含有C:0.05%、Si:3.2%、Mn:0.05%、Al:0.03%、N:0.005%、及Se:0.01%、且余量为不可避免的杂质和Fe的钢锭。
对该钢锭实施热轧,实施热轧板退火,利用间隔着中间退火的2次冷轧而制成厚度为0.23mm的最终冷轧板,然后通过脱碳退火及最终退火使高斯取向二次再结晶晶粒生长。由此,得到带镁橄榄石被膜的钢板。
然后,针对所得到的带镁橄榄石被膜的钢板,利用酸洗除去表面的镁橄榄石被膜,然后通过使用氢氟酸的化学研磨将表面平滑化。由此得到钢板。化学研磨后的钢板的板厚为0.22mm。
《金属被膜》
接下来,在钢板上以下表1所示的厚度形成Ti(原子半径比:13%)的金属被膜。作为成膜方法,使用上述方法1对钢板照射Ti的金属离子,此时,设为下表1所示的电压(绝对值)及照射时间(下表1中,表述为“时间”)。
《被膜层A:陶瓷被膜》
接下来,利用PVD法在金属被膜上以厚度0.20μm形成TiN的陶瓷被膜。陶瓷被膜中的氧化物含量均为2质量%以下。对于PVD法,使用离子镀法在450℃、3Pa及偏压-20V的条件下进行成膜。
《被膜层B:绝缘张力被膜》
接下来,使用涂布型辊将涂覆药液涂布于陶瓷被膜上,使其干燥后,在氮气氛中于850℃烘烤15秒。由此,形成厚度为2.0μm的绝缘张力被膜。
作为涂覆药液,使用了含有磷酸镁(一代磷酸镁)100质量份、胶体二氧化硅(ADEKA公司制AT-30,平均粒径:10nm)80质量份、及铬酸酐20质量份的涂覆药液(后述的试验例2~4中也是同样)。
〈评价〉
对得到的方向性电磁钢板在氮气氛中于800℃实施3小时的去应变退火。然后,实施以下的评价。
《被膜密合性》
将去应变退火后的方向性电磁钢板卷绕于直径像5mm、10mm…这样以5mm的间隔而相异的圆棒(其中,包含φ3mm的圆棒),求出陶瓷被膜不剥离的最小直径(单位:φmm)。结果示于下表1。被膜不剥离的最小直径(非剥离直径)越小,则可评价为去应变退火后的被膜密合性越优异,非剥离直径优选为小于φ30mm。
《铁损W17/50
针对去应变退火后的方向性电磁钢板测定铁损W17/50。结果示于下表1。铁损W17/50的值(单位:W/kg)小于0.80时,能够评价为去应变退火后的磁特性优异。
[表1]
表1
Figure BDA0002075092460000171
如上表1所示,就Ti(原子半径比:13%)的金属被膜的厚度为1.0~10.0nm范围内的发明例的方向性电磁钢板而言,非剥离直径小、为φ20mm以下,被膜密合性良好,且铁损W17/50小于0.80,磁特性良好。
[试验例2]
〈方向性电磁钢板的制造〉
以下述方式进行操作,在钢板上依次形成金属被膜、被膜层A(陶瓷被膜)及被膜层B(绝缘张力被膜),得到方向性电磁钢板。
《钢板》
使用了作为钢中成分以质量%计含有C:0.05%、Si:3.2%、Mn:0.05%、Al:0.03%、N:0.005%、及Se:0.01%、且余量为不可避免的杂质和Fe的钢锭。
对该钢锭实施热轧,实施热轧板退火,利用间隔着中间退火的2次冷轧而制成厚度为0.23mm的最终冷轧板,然后通过脱碳退火及最终退火使高斯取向二次再结晶晶粒生长。由此,得到带镁橄榄石被膜的钢板。
然后,针对所得到的带镁橄榄石被膜的钢板,利用酸洗除去表面的镁橄榄石被膜,然后通过使用氢氟酸的化学研磨将表面平滑化。由此得到钢板。化学研磨后的钢板的板厚为0.22mm。
《金属被膜》
然后,在钢板上形成下表2所示的金属元素的金属被膜。金属被膜的厚度均为3.0nm。
No.1~17中,作为成膜方法使用上述的方法1,对钢板照射下表2所示的照射离子种类的金属离子。
No.18~23中,作为成膜方法使用上述的方法2,使用下表2所示的灯丝材料,并且,对钢板照射下表2所示的照射离子种类的非活性气体离子。
在任意方法中,电压以绝对值计设为750V,离子照射时间设为5分钟。
《被膜层A:陶瓷被膜》
接下来,利用PVD法在金属被膜上以厚度0.20μm形成TiN的陶瓷被膜。陶瓷被膜中的氧化物含量均为2质量%以下。对于PVD法,使用离子镀法在450℃、3Pa及偏压-20V的条件下进行成膜。
《被膜层B:绝缘张力被膜》
接下来,使用涂布型辊在陶瓷被膜上涂布涂覆药液并使其干燥后,在氮气氛中于850℃烘烤15秒。由此,形成厚度为2.0μm的绝缘张力被膜。
〈评价〉
对得到的方向性电磁钢板在氮气氛中于800℃实施3小时的去应变退火,然后,与试验例1同样地操作,进行去应变退火后的被膜密合性及磁特性的评价。结果示于下表2。
[表2]
表2
Figure BDA0002075092460000201
如上表2所示,就具有原子半径比为10%以上的金属被膜的发明例的方向性电磁钢板而言,非剥离直径小、为φ20mm以下,被膜密合性良好,且铁损W17/50小于0.80,磁特性良好。
将发明例彼此进行对比时,金属被膜的金属元素为Ta或W的发明例的被膜密合性更加良好。
[试验例3]
〈方向性电磁钢板的制造〉
以下述方式进行操作,在钢板上依次形成金属被膜、被膜层A(陶瓷被膜)及被膜层B(绝缘张力被膜),得到方向性电磁钢板。
《钢板》
使用了作为钢中成分以质量%计含有C:0.05%、Si:3.2%、Mn:0.05%、Al:0.03%、N:0.005%、及Se:0.01%、余量为不可避免的杂质和Fe的钢锭。
对该钢锭实施热轧,实施热轧板退火,利用间隔着中间退火的2次冷轧而制成厚度为0.23mm的最终冷轧板,然后通过脱碳退火及最终退火,使高斯取向二次再结晶晶粒生长。由此,得到带镁橄榄石被膜的钢板。
然后,针对所得到的带镁橄榄石被膜的钢板,利用酸洗除去表面的镁橄榄石被膜,然后通过使用氢氟酸的化学研磨将表面平滑化。由此得到钢板。化学研磨后的钢板的板厚为0.22mm。
《金属被膜》
接下来,在钢板上形成W(原子半径比:11%)的金属被膜。金属被膜的厚度均为3.0nm。
作为成膜方法,使用上述方法2,以W作为灯丝材料,对钢板照射Ar气。电压以绝对值计设为750V,离子照射时间设为5分钟。
《被膜层A:陶瓷被膜》
接下来,利用CVD法或PVD法,在钢板上以下表3所示的厚度形成下表3所示的组成的陶瓷被膜。陶瓷被膜中的氧化物的含量均为2质量%以下。
对于CVD法而言,使用热CVD法,在1050℃及1000Pa的条件下进行成膜。对于PVD法而言,使用离子镀法,在450℃、3Pa及偏压-20V的条件下进行成膜。
《被膜层B:绝缘张力被膜》
接下来,使用涂布型辊将涂覆药液涂布于陶瓷被膜上,使其干燥后,在氮气氛中于850℃烘烤15秒。由此,形成厚度2.0μm的绝缘张力被膜。
〈评价〉
对得到的方向性电磁钢板在氮气氛中于800℃实施3小时的去应变退火,然后,与试验例1同样地操作,进行去应变退火后的被膜密合性及磁特性的评价。结果示于下表3。
[表3]
表3
Figure BDA0002075092460000231
如上表3所示,本发明例的方向性电磁钢板的非剥离直径小于φ30mm,被膜密合性良好,且铁损W17/50小于0.80,磁特性良好。
上表2中,将陶瓷被膜的厚度为0.10μm的发明例彼此进行对比时,陶瓷被膜的组成为TiCrN或AlCrN的发明例的被膜密合性及磁特性更加良好。
[试验例4]
〈方向性电磁钢板的制造〉
以下述方式进行操作,在钢板上依次形成金属被膜、被膜层A(陶瓷被膜)及被膜层B(绝缘张力被膜),得到方向性电磁钢板。
《钢板》
使用了作为钢中成分以质量%计含有C:0.05%、Si:3.2%、Mn:0.05%、Al:0.03%、N:0.005%、及Se:0.01%、且余量为不可避免的杂质和Fe的钢锭。
对该钢锭实施热轧,实施热轧板退火,利用间隔着中间退火的2次冷轧而制成厚度为0.23mm的最终冷轧板,然后通过脱碳退火及最终退火,使高斯取向二次再结晶晶粒生长。由此,得到带镁橄榄石被膜的钢板。
然后,针对所得到的带镁橄榄石被膜的钢板,利用酸洗除去表面的镁橄榄石被膜,然后通过使用氢氟酸的化学研磨将表面平滑化。由此得到钢板。化学研磨后的钢板的板厚为0.22mm。
《金属被膜》
接下来,在钢板上形成W(原子半径比:11%)的金属被膜。金属被膜的厚度均为3.0nm。
作为成膜方法,使用上述方法2,以W作为灯丝材料,对钢板照射Ar气。电压以绝对值计设为750V,离子照射时间设为5分钟。
《被膜层A:陶瓷被膜》
接下来,利用PVD法在金属被膜上以厚度0.10μm形成TiN的陶瓷被膜。陶瓷被膜中的氧化物含量均为2质量%以下。对于PVD法而言,使用离子镀法,在450℃、3Pa及偏压-20V的条件下进行成膜。
《被膜层B:绝缘张力被膜》
接下来,使用涂布型辊将涂覆药液涂布于陶瓷被膜,使其干燥后,在氮气氛中于850℃烘烤15秒。由此,形成下表4所示厚度的绝缘张力被膜。
〈评价〉
对得到的方向性电磁钢板在氮气氛中于800℃实施3小时的去应变退火,然后,与试验例1同样地操作,进行去应变退火后的被膜密合性及磁特性的评价。结果示于下表4。
[表4]
表4
Figure BDA0002075092460000261
如上表4所示,就本发明例的方向性电磁钢板而言,非剥离直径小于φ30mm,被膜密合性良好,且铁损W17/50小于0.80,磁特性良好。
上表4中,将本发明例彼此进行对比时,发现了随着绝缘张力被膜的增厚而磁特性变得更加良好的倾向。
附图标记说明
1:钢板
2:镁橄榄石被膜
3:绝缘张力被膜
4:陶瓷被膜
5:金属被膜
T2:镁橄榄石被膜的厚度
T3:绝缘张力被膜的厚度
T4:陶瓷被膜的厚度

Claims (19)

1.方向性电磁钢板,其具有:
钢板;
配置于所述钢板上的、金属元素或金属元素的离子附着于所述钢板的表面而成的金属被膜;
被膜层A,所述被膜层A为配置于所述金属被膜上的、氧化物含量小于30质量%的陶瓷被膜;和
被膜层B,所述被膜层B为配置于所述被膜层A上的、含有氧化物的绝缘张力被膜,
其中,所述被膜层B的厚度为2.0μm以上,所述金属被膜的厚度为2.0~10.0nm,所述金属被膜中的所述金属元素的含量为95质量%以上,其中,C在包含在金属被膜中的情况下,则将其视为金属元素,
当将铁的原子半径设为RFe、将所述金属元素的原子半径设为RA时,所述金属元素为下式(1)所示的原子半径比为10%以上的元素,
(|RFe-RA|/RFe)×100・・・(1)。
2.如权利要求1所述的方向性电磁钢板,其中,所述金属元素为选自由Ti、Y、Zr、Nb、Mo、Hf、Ta、W及C组成的组中的至少1种。
3.如权利要求1所述的方向性电磁钢板,其中,所述金属元素为Ta或W。
4.如权利要求2所述的方向性电磁钢板,其中,所述金属元素为Ta或W。
5.如权利要求1所述的方向性电磁钢板,其中,所述被膜层A的厚度为0.01μm以上。
6.如权利要求1所述的方向性电磁钢板,其中,所述被膜层A的厚度为0.40μm以下。
7.如权利要求1所述的方向性电磁钢板,其中,所述被膜层B的厚度为10.0μm以下。
8.如权利要求1所述的方向性电磁钢板,其中,所述被膜层A含有氮化物或碳氮化物。
9.如权利要求2所述的方向性电磁钢板,其中,所述被膜层A含有氮化物或碳氮化物。
10.如权利要求3所述的方向性电磁钢板,其中,所述被膜层A含有氮化物或碳氮化物。
11.如权利要求4所述的方向性电磁钢板,其中,所述被膜层A含有氮化物或碳氮化物。
12.如权利要求5所述的方向性电磁钢板,其中,所述被膜层A含有氮化物或碳氮化物。
13.如权利要求6所述的方向性电磁钢板,其中,所述被膜层A含有氮化物或碳氮化物。
14.如权利要求7所述的方向性电磁钢板,其中,所述被膜层A含有氮化物或碳氮化物。
15.方向性电磁钢板的制造方法,其为制造权利要求1~14中任一项所述的方向性电磁钢板的方向性电磁钢板的制造方法,
其中,通过对所述钢板照射金属离子从而使所述金属离子附着来形成所述金属被膜,或通过在对所述钢板进行的非活性气体离子的照射中,使从灯丝释放的金属元素附着于所述钢板来形成所述金属被膜。
16.如权利要求15所述的方向性电磁钢板的制造方法,其中,所述灯丝的材料为W或Ta。
17.如权利要求15所述的方向性电磁钢板的制造方法,其中,利用CVD法或PVD法来形成所述被膜层A。
18.如权利要求16所述的方向性电磁钢板的制造方法,其中,利用CVD法或PVD法来形成所述被膜层A。
19.如权利要求15~18中任一项所述的方向性电磁钢板的制造方法,其中,使用涂布型辊在所述被膜层A上涂布涂覆药液,并在氮气氛中实施烘烤,由此形成所述被膜层B。
CN201780073544.2A 2016-12-21 2017-12-06 方向性电磁钢板及方向性电磁钢板的制造方法 Active CN110024058B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016-248070 2016-12-21
JP2016248070 2016-12-21
PCT/JP2017/043788 WO2018116829A1 (ja) 2016-12-21 2017-12-06 方向性電磁鋼板および方向性電磁鋼板の製造方法

Publications (2)

Publication Number Publication Date
CN110024058A CN110024058A (zh) 2019-07-16
CN110024058B true CN110024058B (zh) 2022-09-02

Family

ID=62626355

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780073544.2A Active CN110024058B (zh) 2016-12-21 2017-12-06 方向性电磁钢板及方向性电磁钢板的制造方法

Country Status (7)

Country Link
US (1) US11180834B2 (zh)
EP (1) EP3534383B1 (zh)
JP (1) JP6410002B1 (zh)
KR (2) KR102411857B1 (zh)
CN (1) CN110024058B (zh)
RU (1) RU2716271C1 (zh)
WO (1) WO2018116829A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020064632A1 (de) * 2018-09-26 2020-04-02 Thyssenkrupp Electrical Steel Gmbh Verfahren zur herstellung eines mit einer isolationsschicht versehenen kornorientierten elektrobandes und kornorientiertes elektroband
EP3913088A4 (en) * 2019-01-16 2022-09-21 Nippon Steel Corporation PROCESS FOR MANUFACTURING ORIENTED ELECTROMAGNETIC STEEL SHEET

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002080959A (ja) * 2000-06-21 2002-03-22 Kawasaki Steel Corp 歪取り焼鈍後の特性劣化が無くかつ被膜密着性に優れた超低鉄損一方向性けい素鋼板の製造方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5224499B2 (zh) * 1973-01-22 1977-07-01
JPS5844152B2 (ja) * 1978-12-27 1983-10-01 川崎製鉄株式会社 下地被膜をほとんど有しない方向性珪素鋼板の製造方法
JPH067527B2 (ja) * 1985-09-21 1994-01-26 川崎製鉄株式会社 超低鉄損方向性けい素鋼板およびその製造方法
JPS6358805A (ja) * 1986-08-29 1988-03-14 Kawasaki Steel Corp 鉄損の低い方向性けい素鋼板
JPH0619113B2 (ja) * 1987-04-07 1994-03-16 川崎製鉄株式会社 鉄損の極めて低い方向性電磁鋼板の製造方法
JPS6468425A (en) 1987-09-10 1989-03-14 Kawasaki Steel Co Manufacture of grain-oriented silicon steel sheet with superlow iron loss
JPH01176034A (ja) 1987-12-28 1989-07-12 Kawasaki Steel Corp 磁気特性の優れた一方向性電磁鋼板の製造方法
JPH046264A (ja) * 1990-04-23 1992-01-10 Kawasaki Steel Corp 超低鉄損方向性珪素鋼板の製造方法
JP2827861B2 (ja) * 1993-12-20 1998-11-25 住友金属工業株式会社 方向性電磁鋼板
JPH11181557A (ja) * 1997-12-22 1999-07-06 Kawasaki Steel Corp 鉄損の極めて低い方向性電磁鋼板およびその製造方法
JPH11222654A (ja) * 1998-01-30 1999-08-17 Kawasaki Steel Corp 鉄損が極めて低い方向性電磁鋼板
KR19990088437A (ko) 1998-05-21 1999-12-27 에모또 간지 철손이매우낮은고자속밀도방향성전자강판및그제조방법
JP2002194564A (ja) * 2000-12-22 2002-07-10 Kawasaki Steel Corp 低鉄損電磁鋼板およびその製造方法
DE10130308B4 (de) * 2001-06-22 2005-05-12 Thyssenkrupp Electrical Steel Ebg Gmbh Kornorientiertes Elektroblech mit einer elektrisch isolierenden Beschichtung
JP4232407B2 (ja) * 2002-07-31 2009-03-04 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP2004099998A (ja) * 2002-09-11 2004-04-02 Jfe Steel Kk 電動機固定子用の電磁鋼板および分割型電動機固定子
JP2005089810A (ja) * 2003-09-17 2005-04-07 Jfe Steel Kk 一方向性電磁鋼板、その製造方法及びpvd処理装置
JP4192818B2 (ja) * 2004-03-18 2008-12-10 Jfeスチール株式会社 方向性電磁鋼板
JP5047466B2 (ja) 2005-03-14 2012-10-10 Jfeスチール株式会社 被膜密着性に優れた超低鉄損方向性電磁鋼板
JP2006265685A (ja) * 2005-03-25 2006-10-05 Jfe Steel Kk 方向性電磁鋼板およびその製造方法
BRPI0719586B1 (pt) 2006-11-22 2017-04-25 Nippon Steel Corp folha de aço elétrica de grão orientado excelente na adesão de revestimento e método de produção da mesma
JP5224499B2 (ja) 2007-03-05 2013-07-03 株式会社タオ 教材学習用記憶媒体
DE102011001140A1 (de) 2011-03-08 2012-09-13 Thyssenkrupp Steel Europe Ag Stahlflachprodukt, Verfahren zum Herstellen eines Stahlflachprodukts und Verfahren zum Herstellen eines Bauteils
JP6156646B2 (ja) 2013-10-30 2017-07-05 Jfeスチール株式会社 磁気特性および被膜密着性に優れる方向性電磁鋼板

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002080959A (ja) * 2000-06-21 2002-03-22 Kawasaki Steel Corp 歪取り焼鈍後の特性劣化が無くかつ被膜密着性に優れた超低鉄損一方向性けい素鋼板の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Structure at Near-Surface of TiN-Coated Grain Oriented Silicon Steel Sheet Charaterized by Ultra-Low Rron Loss;YuKio Inokuti;《Materials Transactions》;19970301;experimental procedure,272页最后一段至273页第1段 *

Also Published As

Publication number Publication date
EP3534383A4 (en) 2019-10-23
WO2018116829A1 (ja) 2018-06-28
US11180834B2 (en) 2021-11-23
CN110024058A (zh) 2019-07-16
RU2716271C1 (ru) 2020-03-12
EP3534383A1 (en) 2019-09-04
KR20210130277A (ko) 2021-10-29
JP6410002B1 (ja) 2018-10-24
KR20190083352A (ko) 2019-07-11
JPWO2018116829A1 (ja) 2018-12-20
KR102411857B1 (ko) 2022-06-22
US20190390309A1 (en) 2019-12-26
EP3534383B1 (en) 2024-01-24

Similar Documents

Publication Publication Date Title
CN110023538B (zh) 方向性电磁钢板及方向性电磁钢板的制造方法
CN109804105B (zh) 方向性电磁钢板及方向性电磁钢板的制造方法
CN110024058B (zh) 方向性电磁钢板及方向性电磁钢板的制造方法
CN109844179B (zh) 方向性电磁钢板及方向性电磁钢板的制造方法
JP6624246B2 (ja) 方向性電磁鋼板およびその製造方法
JP2017110292A (ja) 方向性電磁鋼板およびその製造方法
JP2003171773A (ja) 張力皮膜を有する一方向性珪素鋼板
JP6856080B2 (ja) 方向性電磁鋼板の製造方法
JP6579260B2 (ja) 方向性電磁鋼板および方向性電磁鋼板の製造方法
JP4206942B2 (ja) 鉄損が極めて低くかつ被膜密着性に優れた方向性電磁鋼板およびその製造方法
JP6819654B2 (ja) 方向性電磁鋼板およびその製造方法
JP2003342699A (ja) 被膜密着性に優れ、歪取り焼鈍後に特性劣化のない超低鉄損一方向性珪素鋼板の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant