CN1097298C - 制造结晶硅半导体和薄膜晶体管的方法 - Google Patents

制造结晶硅半导体和薄膜晶体管的方法 Download PDF

Info

Publication number
CN1097298C
CN1097298C CN95121675A CN95121675A CN1097298C CN 1097298 C CN1097298 C CN 1097298C CN 95121675 A CN95121675 A CN 95121675A CN 95121675 A CN95121675 A CN 95121675A CN 1097298 C CN1097298 C CN 1097298C
Authority
CN
China
Prior art keywords
amorphous silicon
silicon film
film
crystallization
dielectric film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN95121675A
Other languages
English (en)
Other versions
CN1131342A (zh
Inventor
山崎舜平
坂间光范
竹村保彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of CN1131342A publication Critical patent/CN1131342A/zh
Application granted granted Critical
Publication of CN1097298C publication Critical patent/CN1097298C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02686Pulsed laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02672Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using crystallisation enhancing elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • H01L27/1277Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor using a crystallisation promoting species, e.g. local introduction of Ni catalyst
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66757Lateral single gate single channel transistors with non-inverted structure, i.e. the channel layer is formed before the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • H01L29/78621Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure with LDD structure or an extension or an offset region or characterised by the doping profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78672Polycrystalline or microcrystalline silicon transistor
    • H01L29/78675Polycrystalline or microcrystalline silicon transistor with normal-type structure, e.g. with top gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Recrystallisation Techniques (AREA)
  • Thin Film Transistor (AREA)

Abstract

为了提供呈现适合于半导体器件如薄膜晶体管(TFT)等的性能的结晶硅膜,采用CVD工艺在玻璃衬底上沉积氧化硅膜,并在不使氧化硅膜与空气接触的条件下,在其上连续淀积非日硅膜。通过添加催化元素如镍,在500-600℃对非晶性的结晶硅膜。通过使用此结晶硅膜,可实现性能改进的(尤其是小的截止电流)半导体器件如TFT等。

Description

制造结晶硅半导体和薄膜 晶体管的方法
本发明涉及其主要成分是具有结晶硅的半导体的制造方法,特别是涉及用于半导体元件例如薄膜晶体管的结晶硅半导体的制造方法。
通常,采用薄膜半导体的薄膜晶体管(以下称为TFT)是已知的。TFT是由形成在衬底上的薄膜半导体来构成的。TFT用于各种集成电路,尤其是电光器件例如液晶显示,特别是有源矩阵型液晶显示器件各个象素的开关元件或者形成在外围电路部分的驱动元件。
采用非晶硅膜作为TFT的薄膜半导体虽然简单方便,但其电特性较差。为了改善TFT的性能,最好采用具有结晶性的硅薄膜。为了提供具有结晶性的硅膜,首先形成非晶硅,之后通过对其加热或者在其上辐照高能电磁波例如激光束来进行晶化。
但是,经加热而晶化需要在600℃以上的加热温度花费10小时以上的时间周期,因此难以使用玻璃衬底。例如,有源型液晶显示器常用的Corning 7059玻璃的形变点是593℃,因此,考虑衬底的膨胀时,在600℃以上加热就成为问题。而且,所获得的结晶硅膜的性能劣于通过如下的激光辐照射而提供的膜。
已经揭示出,采用具有加速非晶硅的晶化催化作用的元素,以解决上述问题,这公开在日本未审查专利公开244103/1994、244104/1994、244105/1994、244205/1994和296023/1994。亦即,业己揭示,通过使极少量的镍、钯、铅等元素附着于非晶硅膜并随后加热,可以在约4小时的处理时间内,于600°以下典型地为550℃进行晶化。
但是,在这种工艺中,以如此短的时间周期在如此低的温度获得的硅膜中仍留有催化元素,使用此硅膜的TFT的特性是不好的。特别是,TFT中最严重的问题是,当在栅极上施加反向偏压(在N沟道TFT是负电压,在P沟道TFT是正电压)时,漏极电流(截止电流或泄漏电流)的绝对值较大,而且在各个元件中此值相当分散。
特别地,当此硅膜用于有源矩阵型液晶显示器件中的象素的开关晶体管时,大的截止电流会导致严重问题。如果布置在象素电极的薄膜晶体管的截止电流较大,则象素电极不能在预定的时间周期内保持电荷,从而引起屏幕闪烁和模糊显示。
从现状来看,本发明之目的是提供一种结晶硅半导体膜的制造方法,通过使用促进硅晶化的催化元素使硅膜晶化的步骤,实现降低TFT的截止电流、降低每个元件的截止电流值以及离散度,特别是提供一种能在低温处理并适于批量生产的结晶硅半导体的制造方法。
为在到上述目的,本发明通过使用下列步骤来提供具有结晶性的硅膜。
首先,通过各种化学汽相淀积(CVD)工艺、例如等离子CVD工艺或热CVD工艺,在绝缘表面上淀积氧化硅膜。此步骤中的膜形成温度是450℃以下,300~350℃更好。可以通过等离子CVD工艺,采用例如四乙氧基硅烷(TEOS)和氧或者甲硅烷(SiH4)和一氧化二氮(N2O),或者通过热CVD工艺,采用单硅烷和氧进行淀积。
通过各种CVD工艺,在如上述己淀积的氧化硅膜上,淀积非晶硅膜。例如,通过采用甲硅烷作为原材料的等离子CVD工艺,在非晶硅膜的制备中,膜形成温度最好在295~305℃。但是,必须在不使氧化硅膜与空气接触的条件下来形成非晶硅膜。亦即,必须连续进行氧化硅膜的形成和非晶硅膜的形成。为此目的,最好采用公知的多室系统的膜形成装置(组合加工设备)。
之后,在非晶硅膜上,以层、膜或者簇的形式,形成催化元素的单一物质或含有促进非晶硅膜晶化的催化元素的化合物。以下,称催化元素单一物质的层或者含有催化元素的化合物的层为催化剂层。以下将说明催化剂层的形成方法。
而且,本发明人发现,当采用镍作为催化元素时,可达到最显著的效果。其它可使用的催化元素是Pt、Cu、Ag、Au、In、Sn、Pd、P、As和Sb。
随后,对非晶硅膜进行热处理,由此使非晶硅膜部分或全部晶化。在晶化工艺中,当催化剂层未覆盖非晶硅膜的整个面时,不仅催化剂层覆盖的区域发生晶化,而且结晶从该区域向周围部位推进。
在晶化步骤,在400℃以上的温度对非晶硅膜加热,以推进其中己引入了催化元素的非晶硅膜的结晶化。对于普通的玻璃衬底,加热温度是400℃~750℃。但是,耐热温度随玻璃衬底的种类而不同,因此,加热温度的上限可以是玻璃的变形点。例如,对于Corning7059玻璃,其玻璃变形点是593℃,对于Corning 1737玻璃,是667℃。
具体地,从玻璃衬底的耐热性和生产率来看,把加热温度确定为约550℃是适宜的。
已经清楚,加热温度越高,硅膜结晶性改进越好。因此,在最大限度地改进硅膜的结晶性时,在尽可能高的温度加热硅膜,只要衬底能承受此温度。在此情况下,最好使用能承受约1000℃的温度的石英衬底。例如,石英衬底可在约800℃~1000℃的温度加热。
在加热步骤之后,通过辐照激光束或等效强光束,可以进一步促进结晶化。通过增加此步骤,可使在前面步骤未能晶化的部位晶化,其中在前述步骤己晶化的部位被用作晶核。
通过本发明方法的晶化与通过辐照激光来而进行的传统晶化之间的基本差异在于,由于在传统方法中非晶硅膜从无晶核的状态熔融随后结晶,所以确定结晶性的条件非常严格。亦即,当不存在晶核时,晶化工艺中冷却速率是决定结晶性的主要因素。但是,冷却速率随激光束的能量密度和环境温度而明显不同,因而激光能量密度的最佳范围必然变窄。如果能量过高,则从熔融态的冷却速率过大,导致非晶态。而且,如果能量过低,膜整体不能熔融,仍保持非晶部分。
此时,当存在晶核时,有利于晶化而且对冷却速率的依赖性不明显。而且,大部分膜己结晶化,即使激光束的能量密度较低,也能保证适宜的性能。按此方式,可以稳定地提供结晶性有极大改善的结晶硅膜。
可以在较短时间周期内辐照非相干强光束、特别是红外线,来代替激光束辐照。红外线很难被玻璃吸收,但易于被硅薄膜吸收,因此形成在玻璃衬底上的硅薄膜可以被选择地加热,这是所期望的。这种在短时间内照射红外线的工艺称为快速热退火(RTA)或者快速热处理(RTP)。
作为形成催化剂层的方法有淀积工艺,其中采用真空装置,用于溅射催化元素的单一物质或其化合物,还有一种淀积工艺,是将含有催化元素的溶液在空气中涂覆在非晶硅膜表面。尤其是在后者的工艺中,元需基本投资即可重现地进行淀积。以下将对后-工艺做详细说明。
在后-工艺中可以使用水溶液、有机溶液等作为溶液。在此说明书中,"含有催化剂"表示作为化合物含有催化剂,或者以分散形式含有催化剂。
作为含催化元素的溶剂,可以选择极化的水溶剂、醇、酸或者氨。此时可以在非晶硅膜表面形成薄氧化膜,因为当溶液直接涂覆在硅膜上时,溶液会被排斥。在氧化膜的形成中可以采用热氧化、通过氧化剂如过氧化氢的氧化、通过紫外线照射的氧化等。
向含催化元素的溶液添加表面活性剂来代替形成氧化膜也是有用的。此添加是用于对待涂覆面的粘着增强和吸附控制。表面活性剂可以预先涂覆在待涂覆表面。可以使用基本上含有作为疏水基团的约10~20个碳原子的烃链作为表面活性剂。
例如,作为表面活性剂,有氢氟酸混合溶液、氟化铵和水的溶液,其中含有选自以下表面活性剂组成的集合中至少一种材料,这些表面活性剂包括脂肪酸和羧酸的盐、脂肪酸铵和脂族醇。脂肪酸可表示为CnH2n+1COOH(n是5-11的整数)。脂肪酸的盐可表示为CnH2n+1CONH3R(n是5~11的整数,R代表氢原子或者具有5~10个碳数的烷基)。脂肪酸铵可表示为通式CmH2m+1NH2(m是7-14的整数)。脂族醇可表示为通式CnH2n+1OH(n是6~12的整数)。
表面活性剂的具体实例如以下表1~表3所示。  以下表面活性剂当其粘附于非晶硅膜表面时具有分散金属元素的作用。
               表1
Figure C9512167500111
             表2
    烷基二苯醚二磺酸盐乙酸十八烷基胺乙酸椰子胺二烃基磺基琥珀酸铵二甲基烷基(椰子)三甲铵乙内酯乙酸硬脂酰胺软烷基苯磺酸铵十二烷基苯磺酸铵十二烷基三甲基氯化铵三辛胺聚-硬脂酸乙二醇聚氧乙烯烷基醚聚氧乙烯烷基苯基醚聚氧乙烯烷基苯基硫酸铵聚氧乙烯油酸酯聚氧乙烯高碳醇聚氧乙烯壬苯醚聚氧乙烯羊毛脂醇醚氧氧乙烯羊毛脂酸醚聚氧乙烯羊毛脂肪酸醚聚羧酸铵单甘油酯月桂基三乙醇硫酸胺羊毛脂醇
     表3
    C3H7COOHC4H9COOHC5H11NH2C6H13NH2C7H15COOHC8H17COOHC8H17NH2C8H17OHC9H17NH2C9H17COOHC10H21NH2C10H21OHC10H21COOHC12H25NH2C13H27COOHC14H29NH2C14H29NH4C14H27NH2C14H29COOHC18H37NH2C18H37OHC18H37NH2C20H41NH2(C10H21)2NHRCOO(CH2CH2O)nHC11H23CO(CH2CH2)nH
当使用镍作为催化剂而且镍包含在极化溶剂中时,镍是以镍化合物的形式被引入的。有代表性的镍化合物选自溴化镍、乙酸镍、草酸镍、碳酸镍、氯化镍、碘化镍、硝酸镍、硫酸镍、甲酸镍、乙酰丙酮镍,4-环己基丁酸镍,氧化镍和氢氧化镍。
而且,当使用镍的单一物质作为催化元素时,必须把镍溶于酸中形成溶液。
包含催化元素的溶剂可以选自非极化溶剂,如苯、甲苯、二甲苯、四氯化碳、三氯甲烷和醚。此时以镍化合物的形式引入镍。有代表性的镍化合物可以包括乙酰丙酮镍和2-乙基己烷镍。
虽然上述实例使用的溶液中,镍作为催化元素完全溶解,但也可使用乳剂,其中包括镍的单一物质或镍化合物在内的粉末均匀地分散于悬浮媒质中,即使镍未完全溶解。或者,也可使用形成氧化膜的溶液。这种溶液包括东京应化工业(株)Tokyo Ohka Kogyo K.K.)制造的OCD(应化扩散源)。使用OCD溶液时,涂覆在待处理的面上,并在约200℃烘焙,由此简便地形成氧化硅膜。另外,本发明中可以采用溶液,因为能向其中自由地添加杂质。
上述条件同样适用于采用镍之外的材料作为催化元素的情况。
溶液中的镍含量尽管取决于溶液种类,但按惯例以相对于溶液的镍含量,最好在0.1ppm~200ppm,1ppm~50ppm(重量)更好。此值的是根据己完成晶化的膜中镍浓度或者耐化举性(例如耐氢氟酸性)而确定。
已经揭示,采用结晶硅膜制备的TFT的大截止电流是由晶体晶化中所用的催化元素的过量存在引起的,而且截止电流的大的离散性是由于催化元素的分凝。因此,如果在晶化步骤之后使催化元素被阻止在硅晶粒之外,而且催化元素浓度低得能避免分凝,则可降低截止电流。
原本上催化元素不能稳定地存在于硅晶粒中,而且以自然形态被排斥在外。但是,在硅膜的顶部和底部实际地形成有稳固的阻挡层(势垒层),所以催化元素被含于其内而且在晶界上分凝。
本发明的特征之一是连续形成氧化硅膜的底层和非晶硅膜。亦即,在氧化硅膜与非晶硅膜之间没有因空气中的湿气、二氧化碳等而形成的杂质层。在本发明中,氧化硅膜的底层和非晶硅膜,是在450℃以下的低温淀积的,所以氧化硅膜非常软,而且被非晶硅膜所排斥的催化元素迅速地渗入氧化硅膜。
相反,如果底层由具有稳固的阻挡作用的氮化硅制做,则催化元素几乎不被膜吸收。而且,即使对于氧化硅膜,如果在超过450℃的温度对其处理,则氧化硅被硬化,催化元素的吸收受到阻碍。
在晶化初期,氧化硅与硅之间的界面处于不确定状态(一种在由理想配比组分构成的不同物质之间的界面无法识别的状态)。但是,随着晶化的进展,界面变得确定。多数的催化元素存在于晶化的前端,并随晶化的推进而移动。所以,在所有的硅膜均已最终晶化的状态下,多数的催化元素被吸收于氧化硅膜中。
通过退火步骤,初始的软氧化硅膜被充分硬化,而且已被氧化硅膜吸收的催化元素几乎没有不返回结晶硅膜。而且,可以充分地减少陷阱能级。因此,在连续元件形成的可靠性上不会产生问题。
图1(A)、1(B)、1(C)、1(D)、1(E)和1(F)展示了实施例1的制造步骤(剖面图)。
图2(A)、2(B)和2(C)展示了实施例1的制造步骤(顶视图)。
图3(A)、3(B)、3(C)、3(D)、3(E)和3(F)展示了实施例2的制造步骤(剖面图)。
图4(A)、4(B)、4(C)、4(D)、4(E)和4(F)展示了实施例3的制造步骤(剖面图)。
实施例1
图1(A)、1(B)、1(C)、1(D)、1(E)和1(F)展示了实施例1。在衬底(Corning 7059玻璃)101上,形成氧化硅膜的底层102,厚度为1000~5000,例如1000。以TEOS和氧作为原材料气体的采用等离子CVD来形成氧化硅膜102。膜形成时的衬底温度为250℃。在TEOS中混入1~50%的三氯乙烯(TCE),典型地为20%。由TCE在氧化硅膜的底层102中引入氯,从而增强排出含在硅膜中的催化元素的效果。
连续地,以甲硅烷作为原材料通过等离子CVD,形成非晶硅膜103,厚度为100~1500,例如800。非晶硅膜103的膜形成温度是300℃。采用具有两个膜形成室的组合加工设备,并使氧化硅膜102的表面不与空气接触,如此连续地进行氧化硅膜102和非晶硅103的形成。
之后,通过等离子CVD工艺,形成构成掩模的氧化硅膜104,厚度为500~3000,例如1000。氧化硅膜104的形成也由上述组合加工设备在与氧化硅膜的底层102相同的条件下进行。
而且,通过公知的光刻法在氧化硅膜104上构成图形,通过开孔,选择地露出非晶硅膜103。
再者,把非晶硅膜103置于过氧化氢的水溶液中,由此在非晶硅膜103的暴露部位形成厚度为10~100的极薄氧化硅膜(图中未示出)。由于氧化硅膜太薄,所以无法知道其确切厚度。作为形成这种氧化硅膜的另一种工艺,可以采用在氧气氛中辐照紫外线的氧化反应。作为此例的条件,可以在氧气氛中辐照射1~15分钟的紫外线。而且,可采用热氧化工艺。
涂覆氧化硅膜是为了在涂覆含镍乙酸溶液的后续步骤中,使乙酸溶液能遍布于非晶硅膜103的整个表面,即改善浸润性。当把乙酸溶液直接涂覆在非晶硅膜103的表面时,非晶硅膜排斥乙酸溶液,因此无法在非晶硅膜103的整个表面引入镍,并不能进行均匀晶化。在此步骤形成这种薄氧化硅膜的目的是减轻非晶硅膜103的水排斥性。
接着,制备添加有镍的乙酸溶液。镍浓度为100ppm。在整个表面上滴落2ml的乙酸溶液并保持此状态达5分钟。采用旋涂机进行旋转干燥(2000rpm,60秒)。
涂完溶液后,将此状态保持1~10分钟。虽然非晶硅膜103中最终含有的镍浓度可以由保持时间来控制,但最大的控制因素仍是溶液浓度。
通过一次或多次涂覆镍溶液的步骤,在旋转干燥之后,在非晶硅膜103的暴露表面上,可以形成平均膜厚为几A至几百A的含镍层(催化剂层)105。此例中,在后续的加热步骤中层中的镍在非晶硅膜103中扩散,并起促进晶化的催化剂作用。顺便提及,催化剂层105不必是完整的膜(图1(A))。
而且,在加热炉中,在500~580℃的氮气氛下进行1~12小时的加热,本例中在550℃加热8小时,结果,从氧化硅膜104的开孔部位开始推进结晶化,从而提供结晶的硅区106和107。其它区108和109仍是非晶硅状态(图1(B))。
图2(A)是展示过程状态的顶视图。如图2(A)所见,结晶硅区从打孔部位扩展成为椭圆形状(图2(A))。
之后,除去氧化硅膜104,对硅膜蚀刻构图,由此形成岛形硅膜区110和111。通过在垂直方向具有各向异性的RIE工艺,进行硅膜的蚀刻。由此形成TFT的有源层。随后,在氧气氛中550℃进行热处理,由此在岛形硅膜区110和111的表面上形成极薄的(最多为100)氧化硅膜112。
在氮气氛或者空气中,在其上辐照几次KrF准分子激光(波长:248nm,脉宽:30nsec),能量密度为200~400mJ/cm2,例如300mJ/cm2,由此进一步促进岛形硅膜区110和111的结晶性。除了KrF准分子激光,也可使用其它准分子激光,例如XeCl激光(波长:308nm)、ArF激光(波长:193nm)、XeF激光(波长:353nm)等。而且,也可使用RTA方法。(图1(C))。
随后,通过溅射法或等离子CVD法,形成厚1000的氧化硅膜113作为栅绝缘膜。在使用溅射法时,以氧化硅为靶,溅射时衬底温度为200~400℃,例如350℃,溅射气氛由氧气和氩气构成,氩/氧=0~0.5,例如0.1以下。(图1(D))。
连续地,采用低压CVD工艺,形成厚度为3000~8000、例如6000的硅膜(含0.1~2%的磷)。顺便提及,最好连续地进行氧化硅膜113的形成步骤和硅膜的形成步骤。对硅膜构图,形成栅电极114~116。图2(B)是展示此过程状态的顶视图。图2(B)中的虚线椭圆图形对应于图2(A)中的区106和107。(图2(B))。
接着,采用离子掺杂工艺,以栅电极114~116为掩模,把杂质(磷和硼)注入有源层。使用磷化氢(PH3)和乙硼烷(B2H6)作为掺杂气体。前者的加速电压为60~90KV,例如80KV,而后者加速电压为40~80KV,例如65KV。剂量为1×1014~8×1015cm-2,例如对于磷是1×1015cm-2,对于硼是2×1015cm-2。掺杂中,通过用光致抗蚀剂区覆盖无需掺杂的部位,来选择地掺入各种元素。结果,形成N型杂质区118和119和P型杂质区117。
之后,在550~600℃进行退火,从而使注入了离子的杂质区117~119激活。结果,使掺有提供P型杂质(硼)的杂质区117和掺有提供N型杂质(磷)的杂质区118和119被激活(图1(E))。
连续地,采用等离子CVD工艺,形成厚6000的氧化硅膜120作为层间绝缘体。在层间绝缘体120中形成接触孔(接触孔开孔位置如图2(C)所示),其中由铝膜形成TFT的电极/引线121~125。最后,在1个大气压的氢气氛中于310℃进行30分钟退火。退火也可以在把氢离子注入有源层之后再进行,亦即在图1(C)或图1(D)的步骤中以10~100KeV对氢离子加速,由此代替氢退火(图1(F))。
按此方式可形成具有TFT的电路。本实施例中,通过采用N沟道TFT和P沟道TFT的互补电路,可以在同一衬底上,形成具有有源矩阵电路和用于驱动有源矩阵电路的逻辑电路的集成电路(通称为单片或有源矩阵电路),形成在图2(B)左侧岛形区110上的TFT主要用作逻辑电路,右侧岛形区111的TFT用作有源矩阵电路的开关晶体管,不过这是用于衡量TFT的基本特性所需的最小电路。
实施例2
图3(A)、3(B)、3(C)、3(E)和3(F)表示实施例2中制造步骤的过程简图。采用等离子CVD工艺,以甲硅烷和一氧化二氮作为原材料,在玻璃衬底(Corning 1737)201上首先形成氧化硅膜的底覆盖层202,厚度为1000~5000,例如2000。膜形成温度是350℃。而且,采用等离子CVD工艺,以甲硅烷为原材料,在其上淀积厚1000的非晶硅膜203。膜形成温度是250℃。使用具有两个膜形成室的组合加工设备,连续地形成氧化硅膜202和非晶硅膜203。
接着,在非晶硅膜203上,采用过氧化氢水溶液,形成极薄氧化硅膜。如同实施例1,在衬底上滴落5ml的含1~30ppm、例如10ppm镍的乙酸溶液(10cm2衬底的情形),并用旋涂机以50rpm进行10秒的旋涂,由此在衬底整个表面上形成均匀的水膜。保持此状态5分钟,使用旋涂机以2000rpm进行60秒的旋转干燥。保持步骤可通过以0~150rpm旋转旋涂机来进行。按此方式形成含镍催化剂层204(图3(A))。
随后,在氮气氛中于550℃进行4小时退火,由此使非晶硅膜203结晶。此时,镍从非晶硅膜203向氧化硅膜的底层202移动,结晶从顶部向底部推进。按此方式,获得结晶硅膜205,其中观察到有尺寸大约为几个μm的非晶成分。(图3(B))。
晶化步骤之后,通过退火工艺辐照XeCe激光(波长:308nm),进一步提高了硅膜205的结晶性。如果在激光束辐照步骤对衬底201或者待用激光束辐照的面加热,则可使均匀性更为提高并能降低所需的激光能量密度。加热温度最好在200℃~450℃。通过此步骤,硅膜205中的非晶成分完全结晶,从而提高了结晶性。按此步骤提供了结晶硅膜206(图3(C))。
而且,可以通过快速热退火(RTA)来完成此步骤。具体地,辐照30~180秒的红外线,其峰值波长为0.6~4μm,这里是0.8~1.4μm。气氛中可混合0.1~10%的HCl。
采用卤素灯作为红外线光源。调整红外线强度,使单晶硅晶片上的监视器温度在900~1200℃的范围。具体地,对埋置在硅晶片中的热电偶的温度进行监测并反馈至红外线光源。此例中,温度上升速率恒定地在50~200℃/秒,降温速率在自然冷却的20~100℃/秒。可以在衬底保持室温的状态进行红外线照射。但是,为了提高效果,可以在衬底预先加热至200~450℃如400℃的状态进行红外线照射。
接着,对结晶硅膜206蚀刻,由此形成岛形硅膜区207和208。采用在垂直方向具有各向异性的RIE工艺,对结晶硅膜206进行蚀刻。
之后,采用等离子CVD工艺,以甲硅烷和一氧化二氮为原材料,形成厚1000的氧化硅膜209作为栅绝缘膜。形成膜时衬底温度为200~400℃,例如350℃,此步骤之后,在氮气或一氧化二氮气氛中,于550~650℃进行热退火(图3(D))。
连续地,采用溅射法形成铝膜(含0.1~2%的钪),厚度为3000~8000,例如4000。而且,对铝膜蚀刻,由此形成栅电极210~212。通过在电解液中通电,在栅电极210~212上进行阳极氧化,由此在栅电极210~212的顶面和侧面上形成氧化铝膜,厚度为1000~3000,这里是2000。在含1~5%酒石酸的1,2-亚乙基二醇溶液中进行阳极氧化。顺便提及,此氧化铝层为在后续的离子掺杂步骤形成偏移栅区提供了一个厚度,由上述阳极氧化步骤可以确定偏移栅区的长度。(参见日本未审查专利公开114724/1993、267667/1993和291315/1994)
接着,采用离子掺杂工艺,以栅电极部位(栅电极210~212和周围的氧化层)为掩模,按自对准方式向有源层区添加提供P或N导电类型的杂质。使用磷化氢(PH3)和乙硼烷(B2H6)作为掺杂气体。前者,加速电压为80KV,剂量为5×1014cm-2,后者,加速电压为65KV,剂量为1×1015cm-2。掺杂中,通过用光致抗蚀剂覆盖不必要的部位,使各种元素选择地掺入。结果,形成N型杂质区214和215和P型杂质区213。
之后,通过辐照激光来进行退火,使注入离子后的杂质区激活。虽然激光来束用KrF准分子激光(波长:248nm,脉宽:20nses),但也可用其它激光束来替换。作为辐照激光束的条件,能最密度是200~400mJ/cm2,例如250mJ/cm2,辐照次数是2~10,例如每一位置2次。在辐照激光束时使衬底加热至大约200~450℃,可以促进电阻的均匀性。按此方式,使杂质区213~215激活。可以用RTA工艺代替激光退火进行杂质的激活(图3(E))。
连续地,采用等离子CVD工艺,形成厚6000的氧化硅膜216作为层间绝缘。而且,在层间绝缘216中形成接触孔,用金属材料如铬膜形成TFT的电极引线217~221(图3(F))。
实施例3
图4(A)、4(B)、4(C)、4(E)和4(F)展示了实施例3。采用热CVD工艺以甲硅烷和氧气为原材料,在石英衬底上形成厚2000A的氧化硅的底覆盖层302。膜形成温度是420℃。而且,采用等离子CVD工艺在其上形成厚500的非晶硅膜303。使用具有两个膜形成室的多室膜形成装置,连续地形成氧化硅膜的底层302和非晶硅膜303。
而且,采用实施例2中的旋涂工艺,形成厚20~50的乙酸镍层304。但是,在此实施例中,向乙酸镍水溶液添加1%(体积)的表面活性剂(高醇基非离子表面活性剂)。因此,与实施例2不同,这里无需在非晶硅膜303的表面上形成氧化硅膜。(图4(A))。
之后,在氮气氛中于550℃进行4小时退火,由此使非晶硅膜303结晶。如实施例2一样,以镍与非晶硅膜303接触的区域为起点,在纵向推进结晶。按此方式获得结晶硅膜305。在此实施例中,残余的非晶区小于实施例2的情形,这是因为表面活性剂的作用。退火完成后,通过辐照KrF准分子激光进一步改善结晶硅膜305的结晶性(图4(B))。
接着,对结晶硅膜305蚀刻,形成岛形有源层区306和307。采用垂直方向具有各向异性的RIE工艺对结晶硅膜305蚀刻。
之后,通过在1个大气压的含10%水蒸汽的氧气氛中、于650~850℃典型地为750℃放置3~5小时,使有源层区306和307的表面氧化,厚度为200~800,典型地为500,由此形成氧化硅膜308和309。从膜厚控制性来看,热解氧化工艺(氢∶氧=1.8~1.0(体积比))在形成氧化硅膜308和309中是有效的。氧化硅膜308和309的厚度为400~1600,在本例中为1000。形成氧化硅膜308和309后,在一个大气压的一氧化二氮气氛中,于800℃进行一小时退火,由此除去氧化硅膜308和309中的氢(图4(C))。
连续地,采用溅射法形成铝膜(含0.1~2%钪),厚度为3000~8000,例如5000。而且,对铝膜构图,形成栅电极310~312。如实施例2那样,通过在电解液中通电,在栅电极310~312上进行阳极氧化,由此在栅电极310和312的顶面和侧面上形成氧化铝膜,厚度为1000~3000,这里是2000。
接着,采用离子掺杂工艺,以栅电极部位、即栅电极310~312及周围氧化层为掩模,把提供P或N导电类型的杂质按自调整方式添加至有源层区(构成源/漏、沟道)。采用磷化氢(PH3)和乙硼烷(B2H6)作为掺杂气体。前者,加速电压为80KV,剂量是5×1014cm-2,后者,加速电压为65KV,剂量是1×1015cm-2。结果,形成N型杂质区314和315和P型杂质区313。
之后,通过辐照激光束进行退火,使离子注入的杂质激活。作为激光束,采用KrF准分子激光(波长:248nm,脉宽:20nsec)。
接着,采用等离子CVD工艺,形成氧化硅膜316。重要的是,对于栅电极的侧面,氧化硅膜316在涂覆性能上是优异的。氧化硅膜316的厚度是0.5~1μm,例如0.7μm(图4(D))。
而且,采用干式腐蚀等方式,对绝缘氧化硅膜316进行各向异性腐蚀。亦即,只在垂直方向上选择地腐蚀。结果,使构成源或漏的区313~315的表面暴露出来,并使具有大致为三角形的绝缘体317、318和319仍留在各个栅电极310~312(包括周围的阳极氧化层)的侧面。
具有大致为三角形的绝缘体317~319的尺寸、尤其是宽度,是由预先形成的氧化硅膜316的厚度、腐蚀条件和栅电极310~312(包括周围的阳极氧化层)的高度所决定的。而且,所得的绝缘体317~319的形状不限于三角形,但该形状是随氧化硅膜316的台阶覆盖范围和膜厚而变化的。例如,当膜厚较小时该形状变成方形。
而且,通过溅射法形成厚50~500的钛膜320。也可以用钼、钨、铂、钯等来替代钛(图4(E))。
而且,在膜形成之后,在200~650℃,最好是400~500℃进行退火,由此钛膜320与构成源或漏的杂质区313~315中的硅反应,从而在源/漏区形成硅化物层321、322和323。
之后,用过氧化氢水溶液和铵的水溶液对钛膜320的未反应部位(主要是淀积在绝缘体317~319或阳极氧化层上)进行腐蚀。而且,采用热CVD工艺,在整个表面形成厚6000的氧化硅膜作为层间绝缘324。在TFT的源/漏形成接触孔,淀积钛和铝的复合层并蚀刻,从而形成引线/电极325~329。钛层和铝层的厚度分别是800和5000。最后,在一个大气压的氢气氛中,于350℃进行30分钟退火,由此制成TFT电路。(图4(F))。
根据本发明,可以稳定地提供具有优异的结晶性的硅膜。由本发明提供的结晶硅膜尤为适用于制造TFT,如实施例所述,因此本发明在工业上极为有用。

Claims (37)

1.一种半导体器件的制造方法,包括以下步骤:
在衬底上形成由氧化硅组成的绝缘膜;
在所述绝缘膜上形成包含非晶硅膜;
为所述非晶硅膜提供促进结晶的材料以促进所述非晶硅膜的结晶;
加热所述非晶硅膜和所述促进结晶的材料以使所述非晶硅膜结晶;
其特征在于所述非晶硅膜连续地形成在所述绝缘膜上不使所述绝缘膜暴露于空气。
2.根据权利要求1的方法,其中采用选自下列元素集合中一种或多种元素作为所述促进结晶的材料:Ni、Pd、Cu、Ag、Au、In、Sn、P、As和Sb。
3.根据权利要求1的方法,其特征在于:用一种溶液将所述促进结晶的材料涂覆在所述非晶硅膜的基本全部表面,在该溶液中含有所述促进结晶的材料的化合物溶解或分散于极化溶剂中。
4.根据权利要求3的方法,其中在所述极化溶剂中混有表面活性剂。
5.根据权利要求1的方法,其中在450℃以下形成所述非晶硅膜。
6.根据权利要求1的方法,还包括对通过所述非晶硅膜的结晶已经吸收了所述促进结晶的材料的所述绝缘膜进行退火的步骤。
7.根据权利要求1的方法,其中绝缘膜的形成厚度达1000~5000。
8.根据权利要求1的方法,其中采用等离子体CVD,以四乙氧基硅烷和氧气为材料气体,进行所述绝缘膜的形成。
9.根据权利要求8的方法,其中在所述四乙氧基硅烷中混有三氯乙烯。
10.根据权利要求1的方法,其中采用等离子体化学汽相淀积,以甲硅烷为材料气体,进行所述非晶硅膜的形成。
11.根据权利要求1的方法,其中在氮气氛中、500~580℃的温度下进行所述非晶硅膜的加热。
12.根据权利要求1的的方法,其特征在于:在450℃以下,采用等离子体化学汽相淀积,四乙氧基硅烷和氧气为材料气体,进行所述氧化硅绝缘膜的形成。
13.一种半导体器件的制造方法,包括以下步骤:
在衬底上形成由氧化硅组成的绝缘膜;
在所述绝缘膜上形成包含非晶硅膜;
为所述非晶硅膜提供促进结晶的材料以促进所述非晶硅膜的结晶;
加热所述非晶硅膜和所述促进结晶的材料以使所述非晶硅膜结晶;
用激光束改善所述结晶硅膜的结晶度;
其特征在于:所述非晶硅膜连续地形成在所述绝缘膜上不使所述绝缘膜暴露于空气。
14.根据权利要求13的方法,其中采用选自由Ni、Pd、Pt、Cu、Ag、Au、In、Sn、P、As和Sb所组成的集合中之一种或多种元素作为所述促进结晶的材料。
15.根据权利要求13的方法,其特征在于:用一种溶液将所述促进结晶的材料涂覆在所述非晶硅膜的基本全部表面,在该溶液中含有所述促进结晶的材料的化合物溶解或分散于极化溶剂。
16.根据权利要求15的方法,其中在所述极化溶剂中混有表面活性剂。
17.根据权利要求13的方法,其中在450℃以下的温度进行所述非晶硅膜的形成。
18.根据权利要求13的方法,其特征在于通过化学气相淀积在450℃以下的温度形成所述绝缘膜。
19.根据权利要求13的方法,其特征在于通过化学气相淀积在450℃以下的温度形成所述绝缘膜。
20.根据权利要求13的方法,特征在于还包括对通过所述非晶硅膜的结晶已经吸收了所述促进结晶的材料的所述绝缘膜进行退火的步骤。
21.根据权利要求13的方法,其中绝缘膜的形成厚度达1000~5000。
22.根据权利要求13的方法,其中采用等离子体CVD,以四乙氧基硅烷和氧气为材料气体,进行所述绝缘膜的形成。
23.根据权利要求22的方法,其中在所述四乙氧基硅烷中混有三氯乙烯。
23.根据权利要求13的方法,其中采用等离子体CVD,以甲硅烷为材料气体,进行所述绝缘膜的形成。
24.根据权利要求13的方法,其中在氮气氛中、500~580℃的温度下进行所述半导体膜的加热。
25.一种非晶硅器件的制造方法,包括以下步骤:
在衬底上形成由氧化硅组成的绝缘膜;
在所述绝缘膜上形成包含非晶硅膜;
为所述非晶硅膜提供促进结晶的材料以促进所述非晶硅膜的结晶;
加热所述非晶硅膜和所述促进结晶的材料以使所述非晶硅膜结晶;
用快速热退火工艺改善所述结晶硅膜的结晶度;
其特征在于:所述非晶硅膜连续地形成在所述绝缘膜上不使所述绝缘膜暴露于空气。
26.根据权利要求25的方法,其特征在于通过化学气相淀积在450℃以下的温度形成所述绝缘膜。
27.根据权利要求25的方法,其中采用选自由Ni、Pd、Pt、Cu、Ag、Au、In、Sn、P、As和Sb所组成的集合中之一种或多种元素作为所述促进结晶的材料。
28.根据权利要求25的方法,特征在于用一种溶液将所述促进结晶的材料涂覆在所述非晶硅膜的基本全部表面,在该溶液中含有所述促进结晶的材料的化合物溶解或分散于极化溶剂。
29.根据权利要求25的方法,其中在所述极化溶剂中混有表面活性剂。
30.根据权利要求25的方法,其中在450℃以下的温度进行所述非晶硅膜的形成。
31.根据权利要求25的方法,还包括对通过所述非晶硅膜的结晶已经吸收了所述促进结晶的材料的所述绝缘膜进行退火的步骤。
32.根据权利要求25的方法,其中绝缘膜的形成厚度达1000~5000。
33.根据权利要求25的方法,其中采用等离子体CVD,以四乙氧基硅烷和氧气为材料气体,进行所述绝缘膜的形成。
34.根据权利要求33的方法,其中在所述四乙氧基硅烷中混有三氯乙烯。
35.根据权利要求25的方法,其中采用等离子体CVD,以甲硅烷为材料气体,进行所述非晶硅膜的形成。
36.根据权利要求25的方法,其中在氮气氛中、500~580℃的温度下进行所述非晶硅膜的加热。
CN95121675A 1994-12-16 1995-12-16 制造结晶硅半导体和薄膜晶体管的方法 Expired - Fee Related CN1097298C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP333877/94 1994-12-16
JP33387794 1994-12-16

Publications (2)

Publication Number Publication Date
CN1131342A CN1131342A (zh) 1996-09-18
CN1097298C true CN1097298C (zh) 2002-12-25

Family

ID=18270957

Family Applications (1)

Application Number Title Priority Date Filing Date
CN95121675A Expired - Fee Related CN1097298C (zh) 1994-12-16 1995-12-16 制造结晶硅半导体和薄膜晶体管的方法

Country Status (4)

Country Link
US (1) US6337229B1 (zh)
KR (1) KR100322655B1 (zh)
CN (1) CN1097298C (zh)
TW (1) TW297950B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103081063A (zh) * 2010-09-06 2013-05-01 株式会社Eugene科技 半导体元件的制造方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3645380B2 (ja) 1996-01-19 2005-05-11 株式会社半導体エネルギー研究所 半導体装置の作製方法、情報端末、ヘッドマウントディスプレイ、ナビゲーションシステム、携帯電話、ビデオカメラ、投射型表示装置
JP3729955B2 (ja) * 1996-01-19 2005-12-21 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP3645379B2 (ja) * 1996-01-19 2005-05-11 株式会社半導体エネルギー研究所 半導体装置の作製方法
US7056381B1 (en) * 1996-01-26 2006-06-06 Semiconductor Energy Laboratory Co., Ltd. Fabrication method of semiconductor device
JP3516424B2 (ja) * 1996-03-10 2004-04-05 株式会社半導体エネルギー研究所 薄膜半導体装置
JPH10135137A (ja) * 1996-10-31 1998-05-22 Semiconductor Energy Lab Co Ltd 結晶性半導体作製方法
JP4401448B2 (ja) * 1997-02-24 2010-01-20 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP2000058839A (ja) 1998-08-05 2000-02-25 Semiconductor Energy Lab Co Ltd 半導体素子からなる半導体回路を備えた半導体装置およびその作製方法
US6656779B1 (en) * 1998-10-06 2003-12-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor apparatus having semiconductor circuits made of semiconductor devices, and method of manufacture thereof
JP3715848B2 (ja) 1999-09-22 2005-11-16 シャープ株式会社 半導体装置の製造方法
KR100473997B1 (ko) 2000-10-06 2005-03-07 엘지.필립스 엘시디 주식회사 박막 트랜지스터 제조방법
US6830994B2 (en) * 2001-03-09 2004-12-14 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device having a crystallized semiconductor film
US6855584B2 (en) * 2001-03-29 2005-02-15 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US6809023B2 (en) * 2001-04-06 2004-10-26 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device having uniform crystal grains in a crystalline semiconductor film
JP4854866B2 (ja) * 2001-04-27 2012-01-18 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP2003273016A (ja) * 2002-01-11 2003-09-26 Sharp Corp 半導体膜およびその形成方法、並びに、その半導体膜を用いた半導体装置、ディスプレイ装置。
US7276402B2 (en) * 2003-12-25 2007-10-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US7507617B2 (en) * 2003-12-25 2009-03-24 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
TWI277214B (en) * 2004-12-10 2007-03-21 Innolux Display Corp The method for manufacturing thin film transister
JP2011077322A (ja) * 2009-09-30 2011-04-14 Tokyo Electron Ltd 結晶性珪素膜の成膜方法およびプラズマcvd装置
US10898618B2 (en) * 2014-09-08 2021-01-26 The Texas A&M University System Amorphous silicon oxide, amorphous silicon oxynitride, and amorphous silicon nitride thin films and uses thereof
CN114447144A (zh) * 2021-12-27 2022-05-06 张家港博佑光电科技有限公司 一种perc+se电池碱抛前后保护工艺

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0612102A2 (en) * 1993-02-15 1994-08-24 Semiconductor Energy Laboratory Co., Ltd. Crystallized semiconductor layer, semiconductor device using the same and process for their fabrication

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3783049A (en) * 1971-03-31 1974-01-01 Trw Inc Method of platinum diffusion
GB2054264B (en) * 1979-06-22 1983-11-02 France Etat Service Postale Deposition and etching process for making semi-conductor components
US4379020A (en) * 1980-06-16 1983-04-05 Massachusetts Institute Of Technology Polycrystalline semiconductor processing
US4335161A (en) * 1980-11-03 1982-06-15 Xerox Corporation Thin film transistors, thin film transistor arrays, and a process for preparing the same
JPS58102560A (ja) * 1981-12-14 1983-06-18 Fujitsu Ltd 薄膜トランジスタの製造方法
US5365079A (en) * 1982-04-30 1994-11-15 Seiko Epson Corporation Thin film transistor and display device including same
JPH0682839B2 (ja) * 1984-08-21 1994-10-19 セイコー電子工業株式会社 表示用パネルの製造方法
JPH0760807B2 (ja) 1990-03-29 1995-06-28 株式会社ジーティシー 半導体薄膜の製造方法
DE69115118T2 (de) * 1990-05-17 1996-05-30 Sharp Kk Verfahren zum Herstellen eines Dünnfilm-Transistors.
DE69125886T2 (de) * 1990-05-29 1997-11-20 Semiconductor Energy Lab Dünnfilmtransistoren
US5147826A (en) 1990-08-06 1992-09-15 The Pennsylvania Research Corporation Low temperature crystallization and pattering of amorphous silicon films
JPH05152311A (ja) * 1991-12-02 1993-06-18 Matsushita Electric Ind Co Ltd 半導体装置の製造方法及び半導体製造装置
US5604360A (en) 1992-12-04 1997-02-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including a plurality of thin film transistors at least some of which have a crystalline silicon film crystal-grown substantially in parallel to the surface of a substrate for the transistor
TW226478B (en) 1992-12-04 1994-07-11 Semiconductor Energy Res Co Ltd Semiconductor device and method for manufacturing the same
JPH06296023A (ja) 1993-02-10 1994-10-21 Semiconductor Energy Lab Co Ltd 薄膜状半導体装置およびその作製方法
JPH06244103A (ja) * 1993-02-15 1994-09-02 Semiconductor Energy Lab Co Ltd 半導体の製造方法
KR0143873B1 (ko) 1993-02-19 1998-08-17 순페이 야마자끼 절연막 및 반도체장치 및 반도체 장치 제조방법
US5275851A (en) 1993-03-03 1994-01-04 The Penn State Research Foundation Low temperature crystallization and patterning of amorphous silicon films on electrically insulating substrates
TW241377B (zh) 1993-03-12 1995-02-21 Semiconductor Energy Res Co Ltd
US5569936A (en) 1993-03-12 1996-10-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device employing crystallization catalyst
US5624851A (en) 1993-03-12 1997-04-29 Semiconductor Energy Laboratory Co., Ltd. Process of fabricating a semiconductor device in which one portion of an amorphous silicon film is thermally crystallized and another portion is laser crystallized
JP3193803B2 (ja) * 1993-03-12 2001-07-30 株式会社半導体エネルギー研究所 半導体素子の作製方法
CN1542929B (zh) 1993-03-12 2012-05-30 株式会社半导体能源研究所 半导体器件的制造方法
US5501989A (en) 1993-03-22 1996-03-26 Semiconductor Energy Laboratory Co., Ltd. Method of making semiconductor device/circuit having at least partially crystallized semiconductor layer
US5481121A (en) 1993-05-26 1996-01-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having improved crystal orientation
US5488000A (en) 1993-06-22 1996-01-30 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a thin film transistor using a nickel silicide layer to promote crystallization of the amorphous silicon layer
US5529937A (en) * 1993-07-27 1996-06-25 Semiconductor Energy Laboratory Co., Ltd. Process for fabricating thin film transistor
US5663077A (en) 1993-07-27 1997-09-02 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a thin film transistor in which the gate insulator comprises two oxide films
US5492843A (en) 1993-07-31 1996-02-20 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating semiconductor device and method of processing substrate
JP2975973B2 (ja) 1993-08-10 1999-11-10 株式会社半導体エネルギー研究所 半導体装置およびその作製方法
JP2762215B2 (ja) 1993-08-12 1998-06-04 株式会社半導体エネルギー研究所 薄膜トランジスタおよび半導体装置の作製方法
JP2814049B2 (ja) 1993-08-27 1998-10-22 株式会社半導体エネルギー研究所 半導体装置およびその作製方法
TW264575B (zh) 1993-10-29 1995-12-01 Handotai Energy Kenkyusho Kk
US5612250A (en) 1993-12-01 1997-03-18 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device using a catalyst
JP3562590B2 (ja) * 1993-12-01 2004-09-08 株式会社半導体エネルギー研究所 半導体装置作製方法
JP2860869B2 (ja) 1993-12-02 1999-02-24 株式会社半導体エネルギー研究所 半導体装置およびその作製方法
US5654203A (en) 1993-12-02 1997-08-05 Semiconductor Energy Laboratory, Co., Ltd. Method for manufacturing a thin film transistor using catalyst elements to promote crystallization
KR100319332B1 (ko) 1993-12-22 2002-04-22 야마자끼 순페이 반도체장치및전자광학장치
TW279275B (zh) * 1993-12-27 1996-06-21 Sharp Kk
JP3378078B2 (ja) 1994-02-23 2003-02-17 株式会社半導体エネルギー研究所 半導体装置の作製方法
JPH07335906A (ja) 1994-06-14 1995-12-22 Semiconductor Energy Lab Co Ltd 薄膜状半導体装置およびその作製方法
JP3072000B2 (ja) 1994-06-23 2000-07-31 株式会社半導体エネルギー研究所 半導体装置の作製方法
US5712191A (en) 1994-09-16 1998-01-27 Semiconductor Energy Laboratory Co., Ltd. Method for producing semiconductor device
JP3942651B2 (ja) 1994-10-07 2007-07-11 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP3486240B2 (ja) 1994-10-20 2004-01-13 株式会社半導体エネルギー研究所 半導体装置
US5756364A (en) 1994-11-29 1998-05-26 Semiconductor Energy Laboratory Co., Ltd. Laser processing method of semiconductor device using a catalyst
TW447144B (en) 1995-03-27 2001-07-21 Semiconductor Energy Lab Semiconductor device and a method of manufacturing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0612102A2 (en) * 1993-02-15 1994-08-24 Semiconductor Energy Laboratory Co., Ltd. Crystallized semiconductor layer, semiconductor device using the same and process for their fabrication

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103081063A (zh) * 2010-09-06 2013-05-01 株式会社Eugene科技 半导体元件的制造方法
CN103081063B (zh) * 2010-09-06 2016-08-03 株式会社Eugene科技 半导体元件的制造方法

Also Published As

Publication number Publication date
CN1131342A (zh) 1996-09-18
KR960023273A (ko) 1996-07-18
US6337229B1 (en) 2002-01-08
KR100322655B1 (ko) 2002-06-20
TW297950B (zh) 1997-02-11

Similar Documents

Publication Publication Date Title
CN1097298C (zh) 制造结晶硅半导体和薄膜晶体管的方法
US7413966B2 (en) Method of fabricating polysilicon thin film transistor with catalyst
CN1052565C (zh) 一种制造半导体器件的方法
US5849043A (en) Apparatus for laser ion doping
US7470575B2 (en) Process for fabricating semiconductor device
CN1052569C (zh) 制造半导体器件的方法
US6184068B1 (en) Process for fabricating semiconductor device
EP0651431B1 (en) Method of crystallizing a silicon layer
KR100303898B1 (ko) 반도체디바이스제조방법
CN1197164C (zh) 具有薄膜晶体管的器件
TWI294649B (en) Method for annealing silicon thin films using conductive layer and polycrystalline silicon thin films prepared therefrom
KR100836744B1 (ko) 비정질 실리콘의 주울 가열 결정화 방법
JPH07235492A (ja) 半導体装置作製方法
US6348367B1 (en) Method for manufacturing a semiconductor device
JPH1140501A (ja) 半導体装置の製造方法及び半導体装置
JP2700277B2 (ja) 薄膜トランジスタの作製方法
KR100685396B1 (ko) 반도체 장치의 제조 방법 및 이 방법에 의하여 제조되는반도체 장치
US8034671B2 (en) Polysilicon film, thin film transistor using the same, and method for forming the same
JP2006332172A (ja) 半導体装置及び半導体装置の製造方法
US6798023B1 (en) Semiconductor device comprising first insulating film, second insulating film comprising organic resin on the first insulating film, and pixel electrode over the second insulating film
JP2001223208A (ja) 半導体素子製造装置および半導体素子の製造方法
JP3950307B2 (ja) 半導体装置の作製方法
JP2007317841A (ja) 結晶質半導体膜の製造方法
JP2002373860A (ja) 半導体装置の作製方法
JP2003124119A (ja) 薄膜トランジスタ

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20021225

Termination date: 20121216