CN108292677A - 一种具有体内场板的折叠型终端 - Google Patents

一种具有体内场板的折叠型终端 Download PDF

Info

Publication number
CN108292677A
CN108292677A CN201680057871.4A CN201680057871A CN108292677A CN 108292677 A CN108292677 A CN 108292677A CN 201680057871 A CN201680057871 A CN 201680057871A CN 108292677 A CN108292677 A CN 108292677A
Authority
CN
China
Prior art keywords
conductive type
type semiconductor
field plate
semiconductor
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201680057871.4A
Other languages
English (en)
Other versions
CN108292677B (zh
Inventor
任敏
张玉蒙
底聪
熊景枝
李泽宏
张金平
高巍
张波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Publication of CN108292677A publication Critical patent/CN108292677A/zh
Application granted granted Critical
Publication of CN108292677B publication Critical patent/CN108292677B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0638Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for preventing surface leakage due to surface inversion layer, e.g. with channel stopper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • H01L29/7823Lateral DMOS transistors, i.e. LDMOS transistors with an edge termination structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

一种具有体内场板的折叠型终端,将场板结构和结终端扩展区向器件内部折叠,充分利用体内漂移区厚度,从而缩小终端的横向面积,缓解了PN结终止端的电场集中,击穿点的位置从原来的PN结的终止端转移到了体内,终端的耐压能达到平行平面结的击穿电压。采用该结构能够在相同耐压的情况下获得比常规结构更小的面积。

Description

一种具有体内场板的折叠型终端 技术领域
本发明属于半导体技术领域,涉及一种具有体内场板的折叠型终端结构。
背景技术
功率器件阻断高压的能力主要取决于器件结构中特定PN结的反偏击穿电压。所有半导体器件的尺寸都是有限的,将晶圆切割成芯片进行封装制成器件。切割过程中会对硅片的晶格造成很大的损伤。对于功率器件而言,如果切割穿过了承受高压的器件结构区,晶格损伤会引起很大的漏电流,这会降低器件的击穿电压和长期稳定性。在功率器件中,受PN结弯曲或PN结终止处表面非理想因素的影响,反偏PN结击穿电压又受限于发生在表面附近或结弯曲处局部区域相对于体内平行平面结提前出现的击穿现象。结终端就是为了减小局部电场、提高表面击穿电压及可靠性、使器件实际击穿电压更接近平行平面结理想值而专门设计的特殊结构。在纵向导电器件中它通常分布在器件有源区的周边,是有源区内用于承受外高压的PN结的附属结构。
目前,采用平面工艺制作的功率半导体器件,其结终端结构主要是在主结边缘处(常是弯曲的)设置一些延伸结构,这些延伸结构实际上起到将主结耗尽区向外展宽的作用,从而降低其内的电场强度最终提高击穿电压,如场板(FP)、场限环(FLR)、结终端扩展(JTE)、横向变掺杂(VLD)、阻性场板(如掺氧多晶硅(SIPOS))、RESURF等。要实现高的耐压,延伸结构必须足够长,以保证耗尽区充分扩散。因此,在高压器件中,现有的延伸型终端结构所占用面积都太大,造成器件成本的上升。
发明内容
本发明所要解决的,就是针对上述问题,提出一种在相同耐压的情况下获得比常规结构更小的面积的具有体内场板的终端结构。
本发明的技术方案是:一种具有体内场板的折叠型终端结构,包括第一导电类型半导体重掺杂衬底2、位于第一导电类型半导体重掺杂衬底2上表面的第一导电类型半导体轻掺杂漂移区3和位于第一导电类型半导体重掺杂衬底2下表面的金属漏电极1;其特征在于,所述第一导电类型半导体轻掺杂漂移区3中具有沟槽4,所述沟槽4位于第一导电类型半导体轻掺杂漂移区3中部,并沿第一导电类型半导体轻掺杂漂移区3上表面垂直向下延伸入第一导电类型半导体轻掺杂漂移区3中,所述沟槽4中填充有绝缘介质;所述第一导电类型半导 体轻掺杂漂移区3上表面具有场氧化层10;所述沟槽4靠近器件有源区的一侧具有第一半导体注入区6,所述第一半导体注入区6分别与有源区的第二导电类型半导体主结7和沟槽4接触,第一半导体注入区6的上表面与场氧化层10接触;所述第一半导体注入区6的下表面连接有第二半导体注入区5,所述第二半导体注入区5的侧面与沟槽4接触;所述第一半导体注入区6与第二半导体注入区5为第二导电类型半导体,且第一半导体注入区6的掺杂浓度大于第二半导体注入区5;所述第一导电类型半导体轻掺杂漂移区3上层远离器件有源区的一端具有第一导电类型半导体的重掺杂区13,所述第一导电类型半导体的重掺杂区13的上表面与场氧化层10接触;所述场氧化层10的上表面具有多晶硅层9;所述沟槽4中具有多晶硅场板8,所述多晶硅场板8的上表面与多晶硅层9接触。
进一步的,多晶硅场板8在器件的剖面图中呈倒梯形,且多晶硅场板8下底边的深度大于第二半导体注入区5的结深,多晶硅场板8的侧边与水平线的夹角θ的取值在60°到70°之间。
进一步的,所述沟槽4的正下方具有第二导电类型半导体埋层14。
进一步的,所述沟槽4的下表面延伸至第一导电类型半导体重掺杂衬底2中。
进一步的,所述第二半导体注入区5下方沿沟槽4的侧壁还设置有多个掺杂浓度依次降低的半导体掺杂区。
进一步的,所述器件有源区中,在第一导电类型半导体轻掺杂漂移区3上层具有与第一半导体注入区6接触的第二导电类型半导体的主结7,所述第二导电类型半导体的主结7上表面远离终端区的一端具有源极金属11,所述源极金属11与场氧化层10接触。
进一步的,所述第二导电类型半导体的主结7通过接触孔与多晶硅层9连接。
进一步的,所述源极金属11沿场氧化层10上表面延伸至与多晶硅层9连接,将源极的电位接到多晶硅场板8上。
进一步的,所述沟槽4的正下方具有第二导电类型半导体埋层14。
本发明的有益效果为,相对于传统结构,本发明将场板结构和结终端扩展区向器件内部折叠,可以充分利用体内漂移区厚度,从而缩小终端的横向面积,缓解了PN结终止端的电场集中,击穿点的位置从原来的PN结的终止端转移到了体内,终端的耐压能达到平行平面结的击穿电压;因此,本发明提出的具有体内场板的折叠式终端结构的终端效率要远高于常规的结终端扩展结构。
附图说明
图1为实施例1的结构示意图;
图2为常规平面型结终端扩展结构在漏端加高电压时,耗尽线示意图;
图3为实施例1制造流程中高能离子注入后形成第二导电类型半导体材料轻掺杂区5的剖视图;
图4为实施例1制造流程中离子注入后形成第二导电类型半导体材料轻掺杂区6的剖视图;
图5为实施例1制造流程中在有源区进行离子注入形成第二导电类型半导体材料掺杂区7的剖视图;
图6为实施例1制造流程中终端区经过离子注入后形成第一导电类型半导体材料重掺杂区13的剖视图;
图7为实施例1制造流程中在器件表面生长一层场氧化层后的剖视图;
图8为实施例1制造流程中在终端区刻蚀出沟槽,并在槽中填充绝缘介质后的剖视图;
图9为实施例1制造流程中在终端区刻蚀出倒梯形的槽,同时将有源区第二导电类型半导体材料掺杂区7上表面的氧化层刻蚀掉,并在槽中及器件表面淀积多晶硅后的剖视图;
图10是实施例2的结构示意图;
图11是实施例3的结构示意图;
图12是实施例4的结构示意图;
图13是实施例5的结构示意图;
图14是实施例6的结构示意图;
图15是实施例7的结构示意图。
具体实施方式
下面结合附图和实施例,详细描述本发明的技术方案:
实施例1
如图1所示,本例的具有体内场板的终端结构,包括第一导电类型半导体重掺杂衬底2、 位于第一导电类型半导体重掺杂衬底2上表面的第一导电类型半导体轻掺杂漂移区3和位于第一导电类型半导体重掺杂衬底2下表面的金属漏电极1;其特征在于,所述第一导电类型半导体轻掺杂漂移区3中具有沟槽4,所述沟槽4位于第一导电类型半导体轻掺杂漂移区3中部,并沿第一导电类型半导体轻掺杂漂移区3上表面垂直向下延伸入第一导电类型半导体轻掺杂漂移区3中,所述沟槽4中填充有绝缘介质;所述第一导电类型半导体轻掺杂漂移区3上表面具有场氧化层10;所述沟槽4靠近器件有源区的一侧具有第一半导体注入区6,所述第一半导体注入区6分别与有源区的第二导电类型半导体器件主结7和沟槽4接触,第一半导体注入区6的上表面与场氧化层10接触;所述第一半导体注入区6的下表面连接有第二半导体注入区5,所述第二半导体注入区5的侧面与沟槽4接触;所述第一半导体注入区6与第二半导体注入区5为第二导电类型半导体,且第一半导体注入区6的掺杂浓度大于第二半导体注入区5;所述第一导电类型半导体轻掺杂漂移区3上层远离器件有源区的一端具有第一导电类型半导体的重掺杂区13,所述第一导电类型半导体的重掺杂区13的上表面与场氧化层10接触;所述场氧化层10的上表面具有多晶硅层9;所述沟槽4中具有多晶硅场板8,所述多晶硅场板8的上表面与多晶硅层9接触;多晶硅场板8在器件的剖面图中呈倒梯形,且多晶硅场板8下底边的结深大于第二半导体注入区5的结深,多晶硅场板8的侧边与水平线的夹角θ的取值在60°到70°之间。
以第一导电类型半导体为P型半导体为例,说明本例的工作原理和制造方法。
图2为常规平面型结终端扩展结构,当功率器件处于反向阻断状态时,在漏极金属1上接正偏压,源极金属8上接零电位,电场由第一导电类型半导体轻掺杂区3指向第二导电类型半导体材料的主结5、第二导电类型半导体材料轻掺杂区6以及第二导电类型半导体材料更轻掺杂区7。该结构能极大的改善主结5边缘处的电场集中,提高击穿电压。但是,由于第二导电类型半导体材料轻掺杂区6以及第二导电类型半导体材料更轻掺杂区7均在半导体表面展开,需要较大的面积。
本例相比与传统结构,在第二导电类型半导体材料的主结5的侧面挖一沟槽,在沟槽侧面形成掺杂浓度依次降低的第二导电类型注入区6和第二导电类型注入区5,将结终端扩展区从表面引向体内,利用第一导电类型半导体轻掺杂漂移区3的厚度来扩展终端电场,有效节省了表面积。第二导电类型注入区6和第二导电类型注入区5构成结终端扩展(JTE)区。必须精确控制JTE区电荷来最大化击穿电压,如果电荷量过小,对电场的影响有限,如果JTE区的电荷量过大,耗尽区边缘曲率半径过小,击穿电压也会降低。因此,JTE区的电荷应正好被反向偏压完全耗尽。
同时,本例在沟槽区4的内部挖槽并填充多晶硅作为场板,场板的下边缘超过第二导电类型半导体材料更轻掺杂区5的下表面,场板与第二导电类型半导体材料的主结7通过多晶硅相连。因此,场板与主结7等电位,可以进一步将耗尽区边界向第一导电类型半导体轻掺杂区3的体内延伸。场板的另一个优点是可以屏蔽氧化层中电荷对终端电场的影响。沟槽刻蚀和场氧生长工艺中极易带来附加电荷,由于有场板的存在,本发明提出的终端结构的可靠性也得到了提高。
常规的场板结构中电场在场板的末端会出现一个较大的值,这是由于在场氧厚度一定的情况下场板末端的氧化层两端的电势差是最大的。为了减小该处的电场,本例中在刻蚀多晶硅场板8的时候将槽刻成倒梯形,这就使得在纵向上二氧化硅层的厚度从第一导电类型半导体轻掺杂漂移区3的表面向体内是逐渐增加的,保证了不会因为场板的末端电场过大而导致器件提前击穿。多晶硅场板8的侧壁与水平方向的夹角角度θ是一个关键参数。一方面,过大的角度使得二氧化硅层厚度增加得不明显,即减缓场板末端电场的作用不明显。另一方面,过小的角度会使终端的面积过大,容易造成不必要的浪费。综上,θ的取值在60°到70°之间较为合适。
本例的工艺制造流程为:
(1)在N+衬底上外延生长N—掺杂浓度的漂移区,然后在硅片表面生长一层薄的预氧化层;
(2)通过高能离子注入在终端区内部形成第二导电类型半导体轻掺杂区5,如图3所示;
(3)在终端区进行光刻,并进行离子注入,在终端区形成第二导电类型半导体材料轻掺杂区6,之后通过高温推进过程使得轻掺杂区6与轻掺杂区5刚好接触。紧接着进行高温激活,使得杂质原子与晶格中的硅原子键合,如图4所示;
(4)光刻有源区,并进行离子注入,形成第二导电类型半导体材料掺杂区7。并通过热推进过程使得p型半导体材料掺杂区7达到一定的结深,并进行高温激活,如图5所示;
(5)在终端区进行光刻,并进行离子注入,形成第一导电类型半导体材料重掺杂区8,如图6所示;
(6)在硅片表面生长场氧化层10,如图7所示;
(7)在终端区刻蚀出一个的矩形槽4,并在槽中填充绝缘介质,如图8所示;
(8)在终端区刻蚀出倒梯形的槽,同时将有源区第二导电类型半导体材料掺杂区7表面 的氧化层刻蚀掉,并在槽中及器件表面淀积多晶硅,如图9所示;
(9)刻蚀形成接触孔,进行低能量高剂量的硼离子注入,在接触孔内形成P+接触区;淀积金属,并反刻金属,形成源电极。对硅片背面减薄,金属化形成漏极金属,如图1所示。
实施例2
如图10所示,本例的结构为在实施例1的基础上,在沟槽4的正下方增加第二导电类型半导体材料的埋层14,可以减缓沟槽拐角处的电场集中,进一步提升耐压能力。
实施例3
如图11所示,本例的结构为在实施例1的基础上,在第二导电类型注入区5正下方沿着侧壁再形成一个掺杂浓度更低的第二导电类型轻掺杂区14,可以增强JTE的效果。
实施例4
如图12所示,本例的结构为在实施例1的基础上,将沟槽4一直挖到第一导电类型半导体重掺杂区2的体内,通过增加绝缘介质层的厚度来提高耐压。
实施例5
如图13所示,本例的结构为在实施例1的基础上,取消多晶硅场板和主结7的连接,即多晶硅作为浮空场板。
实施例6
如图14所示,本例的结构为在实施例1的基础上,源极金属11通过接触孔和多晶硅互连9相连,将源极的电位接到多晶硅场板上。
实施例7
如图15所示,本例的结构为在实施例1的基础上,在多晶硅场板8上面淀积一层氧化层,多晶硅场板浮空。
以上实施例中,制作器件时还可用碳化硅、砷化镓、磷化铟或锗硅等半导体材料代替体硅。

Claims (9)

  1. 一种具有体内场板的折叠型终端,包括第一导电类型半导体重掺杂衬底(2)、位于第一导电类型半导体重掺杂衬底(2)上表面的第一导电类型半导体轻掺杂漂移区(3)和位于第一导电类型半导体重掺杂衬底(2)下表面的金属漏电极(1);其特征在于,所述第一导电类型半导体轻掺杂漂移区(3)中具有沟槽(4),所述沟槽(4)位于第一导电类型半导体轻掺杂漂移区(3)中部,并沿第一导电类型半导体轻掺杂漂移区(3)上表面垂直向下延伸入第一导电类型半导体轻掺杂漂移区(3)中,所述沟槽(4)中填充有绝缘介质;所述第一导电类型半导体轻掺杂漂移区(3)上表面具有场氧化层(10);所述沟槽(4)靠近器件有源区的一侧具有第一半导体注入区(6),所述第一半导体注入区(6)分别与有源区的第二导电类型半导体主结(7)和沟槽(4)接触,第一半导体注入区(6)的上表面与场氧化层(10)接触;所述第一半导体注入区(6)的下表面连接有第二半导体注入区(5),所述第二半导体注入区(5)的侧面与沟槽(4)接触;所述第一半导体注入区(6)与第二半导体注入区(5)为第二导电类型半导体,且第一半导体注入区(6)的掺杂浓度大于第二半导体注入区(5);所述第一导电类型半导体轻掺杂漂移区(3)上层远离器件有源区的一端具有第一导电类型半导体的重掺杂区(13),所述第一导电类型半导体的重掺杂区(13)的上表面与场氧化层(10)接触;所述场氧化层(10)的上表面具有多晶硅层(9);所述沟槽(4)中具有多晶硅场板(8),所述多晶硅场板(8)的上表面与多晶硅层(9)接触。
  2. 根据权利要求1所述的一种具有体内场板的折叠型终端,其特征在于,多晶硅场板(8)在器件的剖面图中呈倒梯形,且多晶硅场板(8)下底边的结深大于第二半导体注入区(5)的结深,多晶硅场板(8)的侧边与水平线的夹角θ的取值在60°到70°之间。
  3. 根据权利要求2所述的一种具有体内场板的折叠型终端,其特征在于,所述沟槽(4)的正下方具有第二导电类型半导体埋层(14)。
  4. 根据权利要求2所述的一种具有体内场板的折叠型终端,其特征在于,所述沟槽(4)的下表面延伸至第一导电类型半导体重掺杂衬底(2)中。
  5. 根据权利要求4所述的一种具有体内场板的折叠型终端,其特征在于,所述第二半导体注入区(5)下方沿沟槽(4)的侧壁还设置有多个掺杂浓度依次降低的半导体掺杂区。
  6. 根据权利要求2-5任意一项所述的一种具有体内场板的折叠型终端,其特征在于,所述器件有源区中,在第一导电类型半导体轻掺杂漂移区(3)上层具有与第一半导体注入区(6)接触的第二导电类型半导体的主结(7),所述第二导电类型半导体的主结(7)上表面远离终端区的一端具有源极金属(11),所述源极金属(11)与场氧化层(10)接触。
  7. 根据权利要求6所述的一种具有体内场板的折叠型终端,其特征在于,所述第二导电类型半导体的主结(7)通过接触孔与多晶硅层(9)连接。
  8. 根据权利要求7所述的一种具有体内场板的折叠型终端,其特征在于,所述源极金属(11)沿场氧化层(10)上表面延伸至与多晶硅层(9)连接,将源极的电位接到多晶硅场板(8)上。
  9. 根据权利要求5-7任意一项所述的一种具有体内场板的折叠型终端,其特征在于,所述沟槽(4)的正下方具有第二导电类型半导体埋层(14)。
CN201680057871.4A 2016-09-17 2016-09-17 一种具有体内场板的折叠型终端 Expired - Fee Related CN108292677B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/099163 WO2018049640A1 (zh) 2016-09-17 2016-09-17 一种具有体内场板的折叠型终端

Publications (2)

Publication Number Publication Date
CN108292677A true CN108292677A (zh) 2018-07-17
CN108292677B CN108292677B (zh) 2020-09-29

Family

ID=61618613

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680057871.4A Expired - Fee Related CN108292677B (zh) 2016-09-17 2016-09-17 一种具有体内场板的折叠型终端

Country Status (3)

Country Link
US (1) US10340332B2 (zh)
CN (1) CN108292677B (zh)
WO (1) WO2018049640A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109103260A (zh) * 2018-08-23 2018-12-28 深圳市南硕明泰科技有限公司 功率器件
CN113299745A (zh) * 2021-06-10 2021-08-24 珠海市浩辰半导体有限公司 一种终端结构、半导体器件及制作方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108598151B (zh) * 2018-05-28 2024-02-02 江苏捷捷微电子股份有限公司 能提高耐压能力的半导体器件终端结构及其制造方法
CN109103248A (zh) * 2018-08-23 2018-12-28 深圳市南硕明泰科技有限公司 一种功率器件终端结构及其制备方法
US11158703B2 (en) * 2019-06-05 2021-10-26 Microchip Technology Inc. Space efficient high-voltage termination and process for fabricating same
CN110931548A (zh) * 2019-12-16 2020-03-27 安建科技(深圳)有限公司 一种半导体器件结构及其制造方法
CN111755504B (zh) * 2020-07-13 2024-02-23 电子科技大学 一种横向变掺杂终端结构及设计方法和制备方法
CN112382653B (zh) * 2020-07-13 2024-02-23 电子科技大学 横向变掺杂终端结构及设计方法和制备方法
CN113299744B (zh) * 2021-06-10 2022-04-15 珠海市浩辰半导体有限公司 一种终端结构、半导体器件及制作方法
CN113823679A (zh) * 2021-11-23 2021-12-21 成都蓉矽半导体有限公司 栅控二极管整流器
CN114335164A (zh) * 2022-01-17 2022-04-12 中国电子科技集团公司第二十四研究所 功率半导体器件及其制造方法
CN114496802B (zh) * 2022-04-14 2022-06-24 北京智芯微电子科技有限公司 Ldmosfet器件的制作方法及ldmosfet器件
CN117116974A (zh) * 2023-08-31 2023-11-24 海信家电集团股份有限公司 半导体装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030080355A1 (en) * 2001-10-26 2003-05-01 Hitachi, Ltd. Semiconductor device
US20090152624A1 (en) * 2007-12-17 2009-06-18 Infineon Technologies Austria Ag Integrated circuit device with a semiconductor body and method for the production of an integrated circuit device
CN102254931A (zh) * 2011-07-14 2011-11-23 西安理工大学 一种浅槽负斜角终端结构及其制备方法
CN102969358A (zh) * 2012-12-06 2013-03-13 电子科技大学 一种横向高压功率半导体器件
CN103022134A (zh) * 2012-12-06 2013-04-03 电子科技大学 一种超低比导通电阻的soi横向高压功率器件
CN105932051A (zh) * 2016-07-04 2016-09-07 电子科技大学 一种槽栅mosfet器件

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010008617A1 (en) * 2008-07-15 2010-01-21 Maxpower Semiconductor Inc. Mosfet switch with embedded electrostatic charge
CN101894865B (zh) 2009-05-21 2012-09-12 中芯国际集成电路制造(北京)有限公司 碰撞电离金属氧化物半导体晶体管及制造方法
CN103094324B (zh) 2011-11-08 2016-03-23 无锡华润上华半导体有限公司 沟槽型绝缘栅双极型晶体管及其制备方法
GB2530284A (en) 2014-09-17 2016-03-23 Anvil Semiconductors Ltd High voltage semiconductor devices
CN104992976B (zh) 2015-05-21 2018-03-02 电子科技大学 一种vdmos器件及其制造方法
CN105047721A (zh) * 2015-08-26 2015-11-11 国网智能电网研究院 一种碳化硅沟槽栅功率MOSFETs器件及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030080355A1 (en) * 2001-10-26 2003-05-01 Hitachi, Ltd. Semiconductor device
US20090152624A1 (en) * 2007-12-17 2009-06-18 Infineon Technologies Austria Ag Integrated circuit device with a semiconductor body and method for the production of an integrated circuit device
CN102254931A (zh) * 2011-07-14 2011-11-23 西安理工大学 一种浅槽负斜角终端结构及其制备方法
CN102969358A (zh) * 2012-12-06 2013-03-13 电子科技大学 一种横向高压功率半导体器件
CN103022134A (zh) * 2012-12-06 2013-04-03 电子科技大学 一种超低比导通电阻的soi横向高压功率器件
CN105932051A (zh) * 2016-07-04 2016-09-07 电子科技大学 一种槽栅mosfet器件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李巍: "高压IGBT关断状态失效的机理研究", 《中国优秀硕士学位论文全文数据库信息科技辑》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109103260A (zh) * 2018-08-23 2018-12-28 深圳市南硕明泰科技有限公司 功率器件
CN113299745A (zh) * 2021-06-10 2021-08-24 珠海市浩辰半导体有限公司 一种终端结构、半导体器件及制作方法
CN113299745B (zh) * 2021-06-10 2022-04-15 珠海市浩辰半导体有限公司 一种终端结构、半导体器件及制作方法

Also Published As

Publication number Publication date
US20190067415A1 (en) 2019-02-28
WO2018049640A1 (zh) 2018-03-22
CN108292677B (zh) 2020-09-29
US10340332B2 (en) 2019-07-02

Similar Documents

Publication Publication Date Title
CN108292677A (zh) 一种具有体内场板的折叠型终端
US10886396B2 (en) Transistor structures having a deep recessed P+ junction and methods for making same
CN103887173B (zh) 利用耗尽p-屏蔽的低输出电容的高频开关mosfet
JP4011848B2 (ja) 高耐電圧半導体装置
CN106024866B (zh) 一种功率半导体器件的沟槽型终端结构
CN106098751B (zh) 一种功率半导体器件终端结构
CN104701178A (zh) 使用电化学蚀刻制造半导体器件方法以及半导体器件
JP2007258742A (ja) 高耐電圧半導体装置
US9520463B2 (en) Super junction semiconductor device including edge termination
CN106024863A (zh) 一种高压功率器件终端结构
CN105810754B (zh) 一种具有积累层的金属氧化物半导体二极管
CN105474402A (zh) 碳化硅半导体器件及其制造方法
CN106024915B (zh) 一种超级结肖特基二极管
CN106098777A (zh) 一种分裂栅积累型dmos器件
CN106057798A (zh) 一种集成沟槽肖特基的mosfet
CN106356401A (zh) 一种功率半导体器件的场限环终端结构
TW201327819A (zh) 溝槽式金氧半導體電晶體元件及其製造方法
US20150357450A1 (en) Charge reservoir igbt top structure
CN105957865A (zh) 一种集成沟槽肖特基的mosfet
CN103545346A (zh) 隔离型n型ldmos器件及其制造方法
CN106057906B (zh) 一种具有p型埋层的积累型dmos
CN106298976A (zh) 一种沟槽型肖特基二极管
CN103779416B (zh) 一种低vf的功率mosfet器件及其制造方法
CN207409500U (zh) 一种半导体器件
CN107170837A (zh) 一种半导体器件及制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200929

Termination date: 20210917