CN107170836A - 元胞版图、元胞结构及碳化硅结势垒肖特基二极管的制作方法 - Google Patents

元胞版图、元胞结构及碳化硅结势垒肖特基二极管的制作方法 Download PDF

Info

Publication number
CN107170836A
CN107170836A CN201710347957.7A CN201710347957A CN107170836A CN 107170836 A CN107170836 A CN 107170836A CN 201710347957 A CN201710347957 A CN 201710347957A CN 107170836 A CN107170836 A CN 107170836A
Authority
CN
China
Prior art keywords
cellular
region
silicon carbide
junction barrier
structure cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710347957.7A
Other languages
English (en)
Inventor
唐亚超
何钧
赵群
徐俊
王陆委
王毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhou Yangjie Electronic Co Ltd
Original Assignee
Yangzhou Yangjie Electronic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhou Yangjie Electronic Co Ltd filed Critical Yangzhou Yangjie Electronic Co Ltd
Priority to CN201710347957.7A priority Critical patent/CN107170836A/zh
Publication of CN107170836A publication Critical patent/CN107170836A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/6606Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0661Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body specially adapted for altering the breakdown voltage by removing semiconductor material at, or in the neighbourhood of, a reverse biased junction, e.g. by bevelling, moat etching, depletion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明涉及一种元胞版图、元胞结构及碳化硅结势垒肖特基二极管的制作方法,包括碳化硅衬底、衬底上外延层以及外延层上注入形成的P掺杂区域,所述P掺杂区域为圆形/多边形元胞和条形元胞混合形成。圆形/多边形元胞增加肖特基接触面积占比,提高器件正向电流密度。条形元胞消除拐角处元胞和环形过渡区形成的尖角,提高器件的反向耐压能力,使器件不易烧毁。本发明提高器件安全性能的同时增加器件正向电流密度,节约了成本。

Description

元胞版图、元胞结构及碳化硅结势垒肖特基二极管的制作 方法
技术领域
本发明涉及一种元胞版图、元胞结构及碳化硅结势垒肖特基二极管的制作方法,属于半导体技术领域。
背景技术
碳化硅材料具有禁带宽度大、临界击穿电场高、热导率高等独特优势,是制作高耐压、大功率、耐高温器件的理想半导体材料。使用碳化硅材料制作的结势垒肖特基二极管具有高耐压、大电流、快恢复等优势,在军事和民事方面具有广阔的应用前景。
传统技术中,在碳化硅结势垒肖特基二极管的版图结构设计中,元胞结构有条形、方形以及多边形结构。条形元胞结构通过增加P注入面积,牺牲正向电流密度以提高器件的反向耐压能力。方形或多边形元胞通过增加肖特基接触面积,提高器件的正向电流密度,然而,方形或多边形的元胞的P掺杂区域与过渡区拐角形成大小不等的角度,如图1,为传统六边形元胞的碳化硅结势垒肖特基二极管版图结构的拐角部分,S101为P掺杂区域,S102为肖特基接触区域,S103为元胞的P掺杂区域与过渡区的拐角、S104为终端区;如图2所示,元胞的P掺杂区域与过渡区形成的锐角。当结势垒肖特基二极管承受方向能量时,小角度P掺杂区域的电场更加集中(如图3-2所示,图3-1为正常状态下的电场示意图),反向承受能力有限,容易烧毁而导致整个器件损坏,从而影响器件稳定工作,造成浪费和安全隐患。
发明内容
本发明的目的是克服现有技术中存在的结势垒肖特基二极管承受反向能量时容易烧毁的不足,提供一种元胞结构及碳化硅结势垒肖特基二极管的制作方法,在保证较高电流密度的条件下,保证碳化硅结势垒肖特基二极管承受反向能量时不易损坏。
本发明还提供一种元胞版图,用于制作元胞结构,以避免元胞的P掺杂区域与过渡区之间形成各种角度。
按照本发明提供的技术方案,所述元胞版图,包括元胞区、围绕元胞区的过渡区、过渡区外围的终端区、以及位于元胞区之间的肖特基接触区域;其特征是:所述元胞区包括第一元胞区和第二元胞区,第一元胞区包括若干圆形和/或多边形元胞区,第二元胞区设置在过渡区的拐角处,第二元胞区包括多条与过渡区拐角相平行的条形元胞区。
进一步的,所述多边形元胞区采用方形元胞区或六角形元胞区。
本发明还提供一种元胞结构,包括设置于器件上的元胞区,在元胞区设置元胞,元胞之间为肖特基接触区域;其特征是:所述元胞包括第一元胞和第二元胞,第一元胞为若干圆形和/或多边形元胞,第二元胞设置在器件过渡区的拐角处,第二元胞为条形元胞、与器件过渡区的拐角平行设置。
进一步的,所述多边形元胞采用方形元胞或六边形元胞。
进一步的,所述第一元胞相互平行或垂直布满器件的元胞区。
进一步的,所述器件为圆形器件或方形器件。
本发明还提供一种碳化硅结势垒肖特基二极管的制作方法,其特征是,包括以下步骤:
步骤S301:碳化硅衬底上生长外延层,外延层材制为碳化硅;
步骤S302:在外延层上沉积二氧化硅掩膜层;
步骤S303:采用元胞版图光刻后对该二氧化硅掩膜层进行刻蚀图形化,形成P注入区域图形;
步骤S304:对P注入区域进行高能离子注入,以形成元胞区、过渡区和终端区。
进一步的,还包括后续工艺:去除二氧化硅掩膜层后进行高温激活退火;背面溅射欧姆合金并退火形成欧姆接触;正面溅射肖特基金属并退火形成肖特基接触,该正面金属与P型掺杂区形成欧姆接触,与非P型掺杂区形成肖特基接触;正面和背面进行金属加厚;正面形成钝化层以及在钝化层上开孔形成电极;背电极短接至衬底形成负电极。
进一步的,所述二氧化硅掩膜层的厚度为1.8-2.3微米。
进一步的,所述步骤S303中,刻蚀后的二氧化硅掩膜层的侧壁倾斜角度大于85°。
本发明能够所述元胞结构及碳化硅结势垒肖特基二极管的制作方法,能够在保证较高电流密度的条件下,保证碳化硅结势垒肖特基二极管承受反向能量时不易损坏。
附图说明
图1为传统六边形元胞的碳化硅结势垒肖特基二极管版图结构的拐角部分。
图2为传统六边形元胞的碳化硅结势垒肖特基二极管版图中P注入形成的锐角示意图。
图3-1为正常状态下结势垒肖特基二极管P掺杂区域的电场示意图。
图3-2为传统六边形元胞的碳化硅结势垒肖特基二极管版图中锐角形成的电场集中现象示意图。
图4为本发明六边形元胞和条形元胞混合形成的碳化硅结势垒肖特基二极管版图结构的拐角部分。
图5为本发明实施例中碳化硅结势垒肖特基二极管版图结构制作方法的流程图。
具体实施方式
下面结合具体附图对本发明作进一步说明。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图4所示,为本发明所述元胞版图,该元胞版图用于制作碳化硅结势垒肖特基二极管的元胞结构。在本实施例中,本发明所述元胞版图包括元胞区101、围绕元胞区101的过渡区103、过渡区103外围的终端区104,以及位于元胞区101之间的肖特基接触区域102;所述元胞区101布置六边形元胞区和条形元胞区,条形元胞区设置在过渡区103的拐角处,元胞区101除条形元胞区以外的区域为六角形元胞区;所述条形元胞区与过渡区103的拐角处平行设置,以避免六角形元胞区与过渡区之间形成锐角。上述六角形元胞区还可以采用圆形元胞区或其他多边形元胞区(如方形),在过渡区的拐角处仍然采用条形元胞区。所述元胞版图中,元胞区101和过渡区103的最小线条宽度小于1.5微米。
采用上述元胞结构制作得到的碳化硅结势垒肖特基二极管的元胞结构设置于器件的元胞区,包括条形元胞和六角形元胞,条形元胞设置于器件过渡区的拐角处、与过渡区的拐角相平行设置,除过渡区拐角处以外的元胞区采用六角形元胞(或者圆形元胞或其他多边形元胞),从而避免P掺杂元胞与P掺杂过渡区接触部分形成不同大小的角度;所述元胞区中各个元胞相互平行或垂直分布以布满整个器件的元胞区。本发明所述的元胞结构适用于方形或圆形器件。
此外,如图5所示,本发明还提供一种碳化硅结势垒肖特基二极管的制作方法,包括以下步骤:
步骤S301:碳化硅衬底上生长外延层,外延层材制为碳化硅;
步骤S302:在外延层上沉积厚度为1.8-2.3微米(优选2微米)的二氧化硅掩膜层;
步骤S303:采用如图4所示的元胞版图光刻后对该二氧化硅掩膜层进行刻蚀图形化,形成P注入区域图形;该二氧化硅掩膜层作为离子注入阻挡层,刻蚀后的二氧化硅掩膜层的侧壁倾斜角度大于85°;
步骤S304:对P注入区域进行高能离子注入,以形成元胞区、过渡区和终端区。
步骤S305:进行后续工艺,后续工艺主要包括:去除二氧化硅掩膜层后进行高温激活退火;背面溅射欧姆合金并退火形成欧姆接触;正面溅射肖特基金属并退火形成肖特基接触,该正面金属与P型掺杂区形成欧姆接触,与非P型掺杂区形成肖特基接触;正面和背面进行金属加厚;正面形成钝化层以及在钝化层上开孔形成电极;背电极短接至衬底形成负电极;上述后续工艺采用常规工艺,不再赘述。
本发明所述碳元胞结构及化硅结势垒肖特基二极管的制作方法,在器件拐角处使用条形元胞,避免了六边形元胞P掺杂与过渡区P掺杂形成各种角度的尖刺状图形,提高器件反向耐压能力,使器件不易烧毁,减少器件的损坏率,同时器件中间采用六边形元胞,提高器件电流密度,避免浪费,节约了成本。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (10)

1.一种元胞版图,包括元胞区(101)、围绕元胞区(101)的过渡区(103)、过渡区(103)外围的终端区(104)、以及位于元胞区(101)之间的肖特基接触区域(102);其特征是:所述元胞区(101)包括第一元胞区和第二元胞区,第一元胞区包括若干圆形和/或多边形元胞区,第二元胞区设置在过渡区(103)的拐角处,第二元胞区包括多条与过渡区(103)拐角相平行的条形元胞区。
2.如权利要求1所述的元胞版图,其特征是:所述多边形元胞区采用方形元胞区或六角形元胞区。
3.一种元胞结构,包括设置于器件上的元胞区,在元胞区设置元胞,元胞之间为肖特基接触区域;其特征是:所述元胞包括第一元胞和第二元胞,第一元胞为若干圆形和/或多边形元胞,第二元胞设置在器件过渡区的拐角处,第二元胞为条形元胞、与器件过渡区的拐角平行设置。
4.如权利要求3所述的元胞结构,其特征是:所述多边形元胞采用方形元胞或六边形元胞。
5.如权利要求3所述的元胞结构,其特征是:所述第一元胞相互平行或垂直布满器件的元胞区。
6.如权利要求3所述的元胞结构,其特征是:所述器件为圆形器件或方形器件。
7.一种碳化硅结势垒肖特基二极管的制作方法,其特征是,包括以下步骤:
步骤S301:碳化硅衬底上生长外延层,外延层材制为碳化硅;
步骤S302:在外延层上沉积二氧化硅掩膜层;
步骤S303:采用元胞版图光刻后对该二氧化硅掩膜层进行刻蚀图形化,形成P注入区域图形;
步骤S304:对P注入区域进行高能离子注入,以形成元胞区、过渡区和终端区。
8.如权利要求7所述的碳化硅结势垒肖特基二极管的制作方法,其特征是:还包括后续工艺:去除二氧化硅掩膜层后进行高温激活退火;背面溅射欧姆合金并退火形成欧姆接触;正面溅射肖特基金属并退火形成肖特基接触,该正面金属与P型掺杂区形成欧姆接触,与非P型掺杂区形成肖特基接触;正面和背面进行金属加厚;正面形成钝化层以及在钝化层上开孔形成电极;背电极短接至衬底形成负电极。
9.如权利要求7所述的碳化硅结势垒肖特基二极管的制作方法,其特征是:所述二氧化硅掩膜层的厚度为1.8-2.3微米。
10.如权利要求7所述的碳化硅结势垒肖特基二极管的制作方法,其特征是:所述步骤S303中,刻蚀后的二氧化硅掩膜层的侧壁倾斜角度大于85°。
CN201710347957.7A 2017-05-17 2017-05-17 元胞版图、元胞结构及碳化硅结势垒肖特基二极管的制作方法 Pending CN107170836A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710347957.7A CN107170836A (zh) 2017-05-17 2017-05-17 元胞版图、元胞结构及碳化硅结势垒肖特基二极管的制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710347957.7A CN107170836A (zh) 2017-05-17 2017-05-17 元胞版图、元胞结构及碳化硅结势垒肖特基二极管的制作方法

Publications (1)

Publication Number Publication Date
CN107170836A true CN107170836A (zh) 2017-09-15

Family

ID=59815305

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710347957.7A Pending CN107170836A (zh) 2017-05-17 2017-05-17 元胞版图、元胞结构及碳化硅结势垒肖特基二极管的制作方法

Country Status (1)

Country Link
CN (1) CN107170836A (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110571281A (zh) * 2019-08-01 2019-12-13 山东天岳电子科技有限公司 一种混合PiN结肖特基二极管及制造方法
CN111384147A (zh) * 2018-12-28 2020-07-07 比亚迪股份有限公司 Pin二极管及其制备方法
CN111640782A (zh) * 2020-04-20 2020-09-08 北京天岳京成电子科技有限公司 多种元胞设计的复合PiN肖特基二极管
CN112289867A (zh) * 2020-10-29 2021-01-29 扬州国宇电子有限公司 一种大功率高压肖特基势垒二极管
CN113299644A (zh) * 2021-05-21 2021-08-24 江苏东海半导体科技有限公司 一种自带肖特基二极管结构的沟槽mos器件及制造方法
CN113745319A (zh) * 2021-09-06 2021-12-03 扬州扬杰电子科技股份有限公司 一种碳化硅半导体器件及加工方法
CN114284343A (zh) * 2021-12-23 2022-04-05 电子科技大学 一种适用于高温环境的碳化硅结势垒肖特基二极管
CN114284344A (zh) * 2021-12-23 2022-04-05 电子科技大学 一种优化电流分布的碳化硅结势垒肖特基二极管
CN117096178A (zh) * 2023-10-17 2023-11-21 富芯微电子有限公司 一种耐高压的平面型半导体装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080296587A1 (en) * 2007-05-30 2008-12-04 Denso Corporation Silicon carbide semiconductor device having junction barrier schottky diode
CN103177958A (zh) * 2011-12-22 2013-06-26 北大方正集团有限公司 一种集成式肖特基二极管及其制造方法
CN104009099A (zh) * 2014-05-13 2014-08-27 株洲南车时代电气股份有限公司 结势垒肖特基二极管及其制造方法
JP2015070185A (ja) * 2013-09-30 2015-04-13 サンケン電気株式会社 半導体装置及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080296587A1 (en) * 2007-05-30 2008-12-04 Denso Corporation Silicon carbide semiconductor device having junction barrier schottky diode
CN103177958A (zh) * 2011-12-22 2013-06-26 北大方正集团有限公司 一种集成式肖特基二极管及其制造方法
JP2015070185A (ja) * 2013-09-30 2015-04-13 サンケン電気株式会社 半導体装置及びその製造方法
CN104009099A (zh) * 2014-05-13 2014-08-27 株洲南车时代电气股份有限公司 结势垒肖特基二极管及其制造方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111384147B (zh) * 2018-12-28 2021-05-14 比亚迪半导体股份有限公司 Pin二极管及其制备方法
CN111384147A (zh) * 2018-12-28 2020-07-07 比亚迪股份有限公司 Pin二极管及其制备方法
CN110571281B (zh) * 2019-08-01 2023-04-28 山东天岳电子科技有限公司 一种混合PiN结肖特基二极管及制造方法
CN110571281A (zh) * 2019-08-01 2019-12-13 山东天岳电子科技有限公司 一种混合PiN结肖特基二极管及制造方法
CN111640782B (zh) * 2020-04-20 2022-07-12 元山(济南)电子科技有限公司 多种元胞设计的复合PiN肖特基二极管
CN111640782A (zh) * 2020-04-20 2020-09-08 北京天岳京成电子科技有限公司 多种元胞设计的复合PiN肖特基二极管
CN112289867B (zh) * 2020-10-29 2021-07-23 扬州国宇电子有限公司 一种大功率高压肖特基势垒二极管
CN112289867A (zh) * 2020-10-29 2021-01-29 扬州国宇电子有限公司 一种大功率高压肖特基势垒二极管
CN113299644A (zh) * 2021-05-21 2021-08-24 江苏东海半导体科技有限公司 一种自带肖特基二极管结构的沟槽mos器件及制造方法
CN113745319A (zh) * 2021-09-06 2021-12-03 扬州扬杰电子科技股份有限公司 一种碳化硅半导体器件及加工方法
CN113745319B (zh) * 2021-09-06 2024-07-23 扬州扬杰电子科技股份有限公司 一种碳化硅半导体器件及加工方法
CN114284344A (zh) * 2021-12-23 2022-04-05 电子科技大学 一种优化电流分布的碳化硅结势垒肖特基二极管
CN114284343A (zh) * 2021-12-23 2022-04-05 电子科技大学 一种适用于高温环境的碳化硅结势垒肖特基二极管
CN114284343B (zh) * 2021-12-23 2023-04-07 电子科技大学 一种适用于高温环境的碳化硅结势垒肖特基二极管
CN114284344B (zh) * 2021-12-23 2023-04-28 电子科技大学 一种优化电流分布的碳化硅结势垒肖特基二极管
CN117096178A (zh) * 2023-10-17 2023-11-21 富芯微电子有限公司 一种耐高压的平面型半导体装置
CN117096178B (zh) * 2023-10-17 2024-01-16 富芯微电子有限公司 一种耐高压的平面型半导体装置

Similar Documents

Publication Publication Date Title
CN107170836A (zh) 元胞版图、元胞结构及碳化硅结势垒肖特基二极管的制作方法
KR101794182B1 (ko) 반도체 장치 및 반도체 장치의 제조 방법
CN106601826B (zh) 一种快恢复二极管及其制作方法
CN105210187A (zh) 半导体装置
JP2024517203A (ja) 選択性パッシベーションコンタクト電池およびその製造方法
CN109560142A (zh) 新型碳化硅结势垒肖特基二极管及其制作方法
CN105826399A (zh) 一种多混合结构的软快恢复二极管及其制备方法
CN102789979A (zh) 肖特基二极管及其形成方法
CN103208529B (zh) 半导体二极管以及用于形成半导体二极管的方法
US8698285B2 (en) Reverse recovery using oxygen-vacancy defects
CN106711190A (zh) 一种具有高性能的半导体器件及制造方法
CN102254828A (zh) 具有反向快速恢复特性的超结结构半导体器件制造方法
US7868352B2 (en) Silicon break over diode
CN114497233A (zh) 一种低压台面tvs半导体芯片及其制造方法
CN104167436A (zh) 一种半导体功率器件的结构
CN104617094A (zh) 宽范围大电流高维持电压的双端esd集成保护器件及其制备方法
CN102456748A (zh) 一种肖特基二极管及其制造方法
CN101937941A (zh) 一种晶体硅太阳电池选择性发射结的制作方法
CN107887450B (zh) 一种提高峰值电流的肖特基二极管的结构及制备方法
CN205177857U (zh) 一种快恢复二极管
CN108550652A (zh) 雪崩光电二极管的制备方法
CN203871338U (zh) 一种超高速脉冲晶闸管
JP2018056163A (ja) 半導体装置
CN103165443A (zh) 一种绝缘栅晶体管器件及其制造工艺方法
CN106816463A (zh) 一种终端结构、半导体器件及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170915

RJ01 Rejection of invention patent application after publication