CN107154486A - 一种含铜多元金属硫化物为负极材料的钠离子电池 - Google Patents

一种含铜多元金属硫化物为负极材料的钠离子电池 Download PDF

Info

Publication number
CN107154486A
CN107154486A CN201710349485.9A CN201710349485A CN107154486A CN 107154486 A CN107154486 A CN 107154486A CN 201710349485 A CN201710349485 A CN 201710349485A CN 107154486 A CN107154486 A CN 107154486A
Authority
CN
China
Prior art keywords
sodium
cupric
metal sulfide
electrolyte
element metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710349485.9A
Other languages
English (en)
Inventor
赵金保
李�赫
蒋嘉丽
王昀晖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN201710349485.9A priority Critical patent/CN107154486A/zh
Publication of CN107154486A publication Critical patent/CN107154486A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种含铜多元金属硫化物为负极材料的钠离子电池,涉及钠离子电池。包括电池正极、电池负极、含钠电解质、分隔正极和负极的隔膜;电池负极材料为含铜多元金属硫化物,包括CuCo2S4及CuFeS2,电池正极材料为嵌钠化合物,含钠电解质作为电池的电解质,隔膜分隔所述正负极以防止正负极直接接触短路。含铜多元金属硫化物具有高安全性、高比容量、价格相对低廉及合成制备方法简便等优点。含铜多元金属硫化物负极具有更高的嵌脱钠电位,表面不易析出钠枝晶,安全性好;含铜多元金属嵌脱钠离子的反应是多电子氧化还原反应,CuCo2S4和CuFeS2的理论比容量分别为660mAh/g及556mAh/g。

Description

一种含铜多元金属硫化物为负极材料的钠离子电池
技术领域
本发明涉及钠离子电池,尤其是涉及含铜多元金属硫化物为负极材料的钠离子电池及制备方法。
背景技术
随着能源问题日益严峻,新能源如太阳能、风能、地热能等成为热点研究方向,世界范围内很多国家都对新能源开发、利用投入大量的精力。而在新能源的利用过程中,由于时间或地域的限制,大型储能设施至关重要,化学电源作为一种储能设备,具有能量转化效率高、便于储存运输等优势,特别是二次电池,可以起到循环储能的作用。现阶段使用最为广泛、性能最为优异的的化学电源是锂离子电池,但由于锂的自然丰度相对较低(~20ppm),资源分布不均(多集中在南美洲),价格相对较高,在大规模储能电站的应用上受到一定的限制。而钠在地壳中的丰度高(>20000ppm),是地壳中含量最高的元素之一,分布均匀,价格相对较低。钠是碱金属中次轻的元素,且电位(-2.71V vs.SHE)与锂(-3.04Vvs.SHE)相近,因此近年来钠离子电池得到越来越广泛的关注,成为二次电池领域中一个新的研究热点。
电极材料的开发在钠离子电池技术发展中至关重要,优秀负极材料的开发是钠离子电池中最具有挑战性的工作之一。金属硫化物由于具有较高的理论比容量、出色的循环稳定性,有望成为钠离子电池负极材料,一些有关过渡金属硫化物在钠离子电池负极材料中应用的报道,如FeS2(Z.Hu et al.(2015).“Pyrite FeS2for high-rate and long-liferechargeable sodium batteries”.Energy Environ.Sci.,8,1309-1316.)、MoS2(T.S.Sahu et al.(2015).“Exfoliated MoS2Sheets and Reduced Graphene Oxide-AnExcellent and Fast Anode for Sodium-ion Battery”.Sci Rep,5 12571.)、SnS2(B.Quet al.(2014).“Layered SnS2-Reduced Graphene Oxide Composit-A High-Capacity,High-Rate,and Long-Cycle Life Sodium-Ion Battery Anode Material”.Adv Mater,26,3854-3859.)等。多元金属硫化物具有理论比容量较高、电子电导率高、价格相对低廉等优点,且多元金属硫化物不同金属之间具有一定协同作用,可以在一定程度上减少活性物质的体积效应,往往具有更好的电化学稳定性。然而迄今为止的专利尚未报道关于含铜多元金属硫化物作为钠离子电池负极材料及用这种材料作为负极的钠离子电池。
发明内容
本发明的目的是提供一种含铜多元金属硫化物为负极材料的钠离子电池。
本发明包括电池正极、电池负极、含钠电解质、分隔正极和负极的隔膜;所述电池负极材料为含铜多元金属硫化物,包括CuCo2S4及CuFeS2,电池正极材料为嵌钠化合物,含钠电解质作为电池的电解质,隔膜分隔所述正负极以防止正负极直接接触短路。
所述含铜多元金属硫化物的制备方法为:
1)CuCo2S4粉末的制备:将硝酸铜、硝酸钴和硫脲在磁力搅拌条件下溶于去离子水中,搅拌混合,加入乙二胺,将溶液转移至水热釜中,反应后,冷却至室温,抽滤,用去离子水和无水乙醇清洗,干燥后即得CuCo2S4粉末;
在步骤1)中,所述硝酸铜、硝酸钴、硫脲、去离子水和乙二胺的配比可为2mmol︰4mmol︰10mmol︰100mL︰1mL,其中硝酸铜、硝酸钴、硫脲按摩尔计算,去离子水按体积计算;所述反应可在150℃下反应24h;所述干燥可在50~80℃真空干燥箱干燥6~12h。
2)CuFeS2的制备:将硫酸铜、硫酸亚铁、硫代硫酸钠和S粉溶解分散于去离子水中,搅拌分散,将溶液转移至水热釜中,反应后,冷却至室温,抽滤,用去离子水和无水乙醇清洗,干燥后即得CuFeS2粉末。
在步骤2)中,所述硝酸铜、硫酸亚铁、硫代硫酸钠、S粉和去离子水的配比可为10mmol︰20mmol︰20mmol︰5mmol︰50mL,其中硝酸铜、硫酸亚铁、硫代硫酸钠、S粉按摩尔计算,去离子水按体积计算;所述反应可在210℃下反应24h;所述干燥可在50~80℃真空干燥箱干燥6~12h。
所述含铜多元金属硫化物与导电剂、粘结剂混合,制成浆料,再涂覆于集流体上,经过电化学循环活化后得到负极电极。
所述导电剂可选自碳材料,所述碳材料可选自碳黑导电剂、石墨导电剂、Super-P、科琴黑、碳纳米管、碳纳米棒、石墨烯等中的至少一种;所述粘结剂没有特殊要求,只要满足电池体系的化学稳定性和电化学稳定性、保证适当的粘结力即可,所述粘结剂最好选自聚偏二氟乙烯(PVDF)、聚乙烯醇(PVA)、聚四氟乙烯(PTFE)、羟甲基纤维素钠(CMC)、聚烯烃类(PP,PE等)、丁腈橡胶(NBR)、丁苯橡胶(SBR)、聚丙烯腈(PAN)等聚合物中的至少一种。
所述电池正极材料为嵌钠化合物,所述嵌钠化合物可选自钴酸钠、镍酸钠、镍锰酸钠、镍钴锰酸钠、镍钴铝酸钠、磷酸钠、磷酸亚铁钠、磷酸锰钠、磷酸钒钠、铁酸钠等中的至少一种。将正极材料与导电剂、粘结剂混合,制成浆料,再涂覆于集流体上,经过电化学循环活化后得到正极电极。
所述含钠电解质包括液体电解质和固体电解质。
所述液体电解质为基于质子型有机溶剂和离子液体的电解质,所述基于质子型有机溶剂的电解质选自醚电解液和碳酸酯电解液:醚电解液的溶剂选自1,3-二氧戊环(DOL)、乙二醇二甲醚(DME)、二乙二醇二甲醚(DEGDME)和三乙二醇二甲醚(TEGDME)等中的至少一种,溶质选自六氟磷酸钠、高氯酸钠和二(三氟甲基磺酰)亚胺钠(NaTFSI)等中的至少一种;碳酸酯电解液的溶剂选自碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、碳酸甲乙酯(EMC)、碳酸乙烯酯(EC)和碳酸丙烯酯(PC)等中的至少一种,溶质选自六氟磷酸钠、高氯酸钠和二(三氟甲基磺酰)亚胺钠(NaTFSI)等中的至少一种;离子液体电解质的阳离子包括但不限于季铵盐离子、季鏻盐离子、咪唑盐离子和吡咯盐离子,阴离子包括但不限于卤素离子、四氟硼酸根离子、六氟磷酸根离子和二(三氟甲基磺酰)亚胺根离子。
所述固体电解质包括无机固态电解质和聚合物电解质,所述无机固态电解质选自至少一种固态陶瓷电解质;所述聚合物电解质包括但不限于以聚环氧乙烷(PEO)、聚丙烯腈(PAN)、聚氯乙烯(PVC)、聚甲基丙烯酸甲酯(PMMA),聚偏二氟乙烯(PVDF)、聚乙二醇二甲醚(PEGDME)、偏二氟乙烯与六氟丙烯的共聚物(PVDF-HFP)等为基的钠盐聚合物电解质及其接枝、交联或共混产物。
所述分隔正极和负极的隔膜材料包括但不限于:聚烯烃类如聚乙烯(PE)和聚丙烯(PP)、聚偏二氟乙烯(PVDF)、聚酰亚胺(PI)、玻璃纤维滤纸和陶瓷材料及其复合结构;其中,若新型钠离子电池使用固体电解质,电池结构中隔膜部分可省略。
与现有技术相比,本发明提供的含铜多元金属硫化物负极材料的优势在于:含铜多元金属硫化物具有高安全性、高比容量、价格相对低廉及合成制备方法简便等优点。相比于现有的硬碳等碳基负极材料,含铜多元金属硫化物负极具有更高的嵌脱钠电位,表面不易析出钠枝晶,安全性好;含铜多元金属嵌脱钠离子的反应是多电子氧化还原反应,CuCo2S4和CuFeS2的理论比容量分别为660mAh/g及556mAh/g;铜硒化合物的价格相对低廉,且本发明提供的合成制备方法较为简便。
附图说明
图1为本发明实施例1制备的CuCo2S4材料的XRD图谱;
图2为本发明实施例1所制备CuCo2S4电极的循环性能图;
图3为本发明实施例3所制备CuFeS2材料的XRD图谱;
图4为本发明实施例3所制备CuFeS2电极的循环性能图。
具体实施方式
本发明下面将通过具体实施例进行更详细的描述,但本发明的保护范围并不受限于这些实施例。
实施例1
(1)钠离子电池负极制备:将2mmol硝酸铜、4mmol硝酸钴以及10mmol硫脲在磁力搅拌条件下溶于100mL去离子水中,搅拌混合均匀,加入1mL乙二胺,将上述溶液转移至水热釜中,在150℃下反应24h。冷却至室温,抽滤,随后用去离子水和无水乙醇清洗数次,在50~80℃真空干燥箱干燥6~12h,即得CuCo2S4粉末。所制备的样品经过XRD分析,结果如图1所示,所有的衍射峰与CuCo2S4(XRD卡片号JCPDS,No.42-1450)对应,表明成功制备了CuCo2S4物质。将CuCo2S4粉末与导电剂乙炔黑、粘结剂聚偏二氟乙烯(PVDF)按照质量比8︰1︰1混合研磨均匀,用N-甲基吡咯烷酮(NMP)调浆,充分搅拌均匀,涂覆于大小合适的铜箔上(厚度0.01mm),在真空烘箱80℃下烘干过夜,制作成极片。
(2)半电池制备:以金属钠片为对电极,Celgard聚乙烯(PE)薄膜为隔膜,溶解有高氯酸钠(1mol/L)的三乙二醇二甲醚(TEGDME)溶液为电解液,在氩气保护的手套箱中组装CR2032型电池。电池组装完成后静置12h,用新威CT-3008W电池测试系统进行恒电流充放电测试,测试电压为1.0~3.0V,充放电流密度为100mA/g。图2展示了该电池充放电循环80圈的充放电比容量,循环80圈之后,放电比容量保持在139mAh/g,循环性能出色。
实施例2
(1)钠离子电池负极制备:采用实施例1步骤(1)的方法制备负极极片。
(2)钠离子电池制备:以步骤(1)中制备的电极为负极,以镍锰酸钠为正极,Celgard聚乙烯(PE)薄膜为隔膜,溶解有高氯酸钠(1mol/L)的三乙二醇二甲醚(TEGDME)溶液为电解液,在氩气保护的手套箱中组装CR2032型电池。电池组装完成后静置12h后进行电化学性能测试。
实施例3
(1)钠离子电池负极制备:将10mmol硫酸铜、20mmol硫酸亚铁、20mmol硫代硫酸钠以及5mmolS粉溶解分散于50mL去离子水中,搅拌分散均匀,将上述溶液转移至水热釜中,在210℃下反应24h。冷却至室温,抽滤,用去离子水和无水乙醇清洗数次,在50~80℃真空干燥箱干燥6~12h,即得CuFeS2粉末。所制备的样品经过XRD分析,结果如图3所示,主要衍射峰与CuFeS2(XRD卡片号JCPDS,No.65-1573)对应,存在少量CuS杂质,表明成功制备了CuFeS2物质。将CuFeS2粉末与导电剂乙炔黑、粘结剂聚偏二氟乙烯(PVDF)按照质量比8︰1︰1混合研磨均匀,用N-甲基吡咯烷酮(NMP)调浆,充分搅拌均匀,涂覆于大小合适的铜箔上(厚度0.01mm),在真空烘箱80℃下烘干过夜,制作成极片。
(2)半电池制备:以金属钠片为对电极,Celgard聚乙烯(PE)薄膜为隔膜,溶解有高氯酸钠(1mol/L)的三乙二醇二甲醚(TEGDME)溶液为电解液,在氩气保护的手套箱中组装CR2032型电池,静置12h后以100mA/g电流密度在1.0~3.0V电压范围进行充放电测试。图4展示了该电池充放电循环80圈的充放电比容量,循环80圈之后,放电比容量保持在178mAh/g,循环性能出色。
实施例4
(1)钠离子电池负极制备:采用实施例3步骤(1)的方法制备负极极片。
(2)钠离子电池制备:以步骤(1)中制备的电极为负极,以镍锰酸钠为正极,Celgard聚乙烯(PE)薄膜为隔膜,溶解有高氯酸钠(1mol/L)的三乙二醇二甲醚(TEGDME)溶液为电解液,在氩气保护的手套箱中组装CR2032型电池。电池组装完成后静置12h后进行电化学性能测试。
本发明提供了一种使用含铜多元金属硫化物为负极材料的可充放电钠离子电池及其制备工艺,其中,负极材料为含铜多元金属硫化物,该材料包括CuCo2S4和CuFeS2。采用本发明工艺制备的钠离子电池,具有较高的充放电比容量和优秀的循环稳定性。含铜多元金属硫化物循环比容量较高、循环稳定性出色、价格较为低廉,适用于钠离子电池。

Claims (10)

1.一种含铜多元金属硫化物为负极材料的钠离子电池,其特征在于包括电池正极、电池负极、含钠电解质、分隔正极和负极的隔膜;所述电池负极材料为含铜多元金属硫化物,包括CuCo2S4及CuFeS2,电池正极材料为嵌钠化合物,含钠电解质作为电池的电解质,隔膜分隔所述正负极以防止正负极直接接触短路。
2.如权利要求1所述一种含铜多元金属硫化物为负极材料的钠离子电池,其特征在于所述含铜多元金属硫化物的制备方法为:
1)CuCo2S4粉末的制备:将硝酸铜、硝酸钴和硫脲在磁力搅拌条件下溶于去离子水中,搅拌混合,加入乙二胺,将溶液转移至水热釜中,反应后,冷却至室温,抽滤,用去离子水和无水乙醇清洗,干燥后即得CuCo2S4粉末;
2)CuFeS2的制备:将硫酸铜、硫酸亚铁、硫代硫酸钠和S粉溶解分散于去离子水中,搅拌分散,将溶液转移至水热釜中,反应后,冷却至室温,抽滤,用去离子水和无水乙醇清洗,干燥后即得CuFeS2粉末。
3.如权利要求2所述一种含铜多元金属硫化物为负极材料的钠离子电池,其特征在于在步骤1)中,所述硝酸铜、硝酸钴、硫脲、去离子水和乙二胺的配比为2mmol︰4mmol︰10mmol︰100mL︰1mL,其中硝酸铜、硝酸钴、硫脲按摩尔计算,去离子水按体积计算;所述反正是在150℃下反应24h;所述干燥是在50~80℃真空干燥箱干燥6~12h。
4.如权利要求2所述一种含铜多元金属硫化物为负极材料的钠离子电池,其特征在于在步骤2)中,所述硝酸铜、硫酸亚铁、硫代硫酸钠、S粉和去离子水的配比为10mmol︰20mmol︰20mmol︰5mmol︰50mL,其中硝酸铜、硫酸亚铁、硫代硫酸钠、S粉按摩尔计算,去离子水按体积计算;所述反应是在210℃下反应24h;所述干燥是在50~80℃真空干燥箱干燥6~12h。
5.如权利要求1所述一种含铜多元金属硫化物为负极材料的钠离子电池,其特征在于所述含铜多元金属硫化物与导电剂、粘结剂混合,制成浆料,再涂覆于集流体上,经过电化学循环活化后得到负极电极。
6.如权利要求5所述一种含铜多元金属硫化物为负极材料的钠离子电池,其特征在于所述导电剂可选自碳材料,所述碳材料选自碳黑导电剂、石墨导电剂、Super-P、科琴黑、碳纳米管、碳纳米棒、石墨烯中的至少一种;所述粘结剂选自聚偏二氟乙烯、聚乙烯醇(PVA)、聚四氟乙烯、羟甲基纤维素钠、聚烯烃类、丁腈橡胶、丁苯橡胶、聚丙烯腈聚合物中的至少一种。
7.如权利要求1所述一种含铜多元金属硫化物为负极材料的钠离子电池,其特征在于所述电池正极材料为嵌钠化合物,所述嵌钠化合物选自钴酸钠、镍酸钠、镍锰酸钠、镍钴锰酸钠、镍钴铝酸钠、磷酸钠、磷酸亚铁钠、磷酸锰钠、磷酸钒钠、铁酸钠中的至少一种;将正极材料与导电剂、粘结剂混合,制成浆料,再涂覆于集流体上,经过电化学循环活化后得到正极电极。
8.如权利要求1所述一种含铜多元金属硫化物为负极材料的钠离子电池,其特征在于所述含钠电解质包括液体电解质和固体电解质。
9.如权利要求8所述一种含铜多元金属硫化物为负极材料的钠离子电池,其特征在于所述液体电解质为基于质子型有机溶剂和离子液体的电解质,所述基于质子型有机溶剂的电解质选自醚电解液和碳酸酯电解液:醚电解液的溶剂选自1,3-二氧戊环、乙二醇二甲醚、二乙二醇二甲醚和三乙二醇二甲醚中的至少一种,溶质选自六氟磷酸钠、高氯酸钠和二(三氟甲基磺酰)亚胺钠中的至少一种;碳酸酯电解液的溶剂选自碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯、碳酸乙烯酯和碳酸丙烯酯中的至少一种,溶质选自六氟磷酸钠、高氯酸钠和二(三氟甲基磺酰)亚胺钠中的至少一种;离子液体电解质的阳离子包括但不限于季铵盐离子、季鏻盐离子、咪唑盐离子和吡咯盐离子,阴离子包括卤素离子、四氟硼酸根离子、六氟磷酸根离子和二(三氟甲基磺酰)亚胺根离子。
10.如权利要求8所述一种含铜多元金属硫化物为负极材料的钠离子电池,其特征在于所述固体电解质包括无机固态电解质和聚合物电解质,所述无机固态电解质选自至少一种固态陶瓷电解质;所述聚合物电解质包括以聚环氧乙烷、聚丙烯腈、聚氯乙烯、聚甲基丙烯酸甲酯,聚偏二氟乙烯、聚乙二醇二甲醚、偏二氟乙烯与六氟丙烯的共聚物为基的钠盐聚合物电解质及其接枝、交联或共混产物;
所述分隔正极和负极的隔膜材料包括:聚烯烃类如聚乙烯和聚丙烯、聚偏二氟乙烯、聚酰亚胺、玻璃纤维滤纸和陶瓷材料及其复合结构。
CN201710349485.9A 2017-05-17 2017-05-17 一种含铜多元金属硫化物为负极材料的钠离子电池 Pending CN107154486A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710349485.9A CN107154486A (zh) 2017-05-17 2017-05-17 一种含铜多元金属硫化物为负极材料的钠离子电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710349485.9A CN107154486A (zh) 2017-05-17 2017-05-17 一种含铜多元金属硫化物为负极材料的钠离子电池

Publications (1)

Publication Number Publication Date
CN107154486A true CN107154486A (zh) 2017-09-12

Family

ID=59792900

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710349485.9A Pending CN107154486A (zh) 2017-05-17 2017-05-17 一种含铜多元金属硫化物为负极材料的钠离子电池

Country Status (1)

Country Link
CN (1) CN107154486A (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107868466A (zh) * 2017-12-15 2018-04-03 深圳市红叶杰科技有限公司 一种双组分缩合型耐高温硅橡胶及制备方法
CN108281652A (zh) * 2018-01-23 2018-07-13 哈尔滨工业大学 一种转换型金属基硫化物锂离子电池负极活性材料的制备方法
CN108298595A (zh) * 2018-04-26 2018-07-20 浙江美都墨烯科技有限公司 一种制备硫化铜钴微米球的方法
CN108447698A (zh) * 2018-03-12 2018-08-24 中国科学院长春应用化学研究所 一种电极及其制备方法、高能可再生储电器件
CN109921016A (zh) * 2019-03-11 2019-06-21 安徽师范大学 一种卤素离子协助的硫化铜微米花材料及其制备方法和应用
CN110357166A (zh) * 2019-08-30 2019-10-22 中国地质科学院地球物理地球化学勘查研究所 水热条件下制备纳米黄铜矿四面体晶体的方法
CN110776014A (zh) * 2019-10-10 2020-02-11 北京理工大学 钠离子电池负极复合材料及其制备方法
CN111092222A (zh) * 2019-12-11 2020-05-01 中南大学 一种钠离子电池钴铁铜硫化物负极材料及其制备方法
CN111223670A (zh) * 2019-12-11 2020-06-02 中国科学院大连化学物理研究所 一种平面钠离子电容器及其制备方法和应用
CN111453759A (zh) * 2020-03-25 2020-07-28 陕西科技大学 一种钠离子电池用铜箔原位生长三维硫化铜负极材料、制备方法及应用
CN112409028A (zh) * 2020-10-28 2021-02-26 桂林电子科技大学 一种CC-NiO-CuCoS复合材料及其制备方法和应用
CN114400304A (zh) * 2021-11-25 2022-04-26 四川英能基科技有限公司 用于钠离子电池的负极浆料、应用及制备工艺
US20220158239A1 (en) * 2020-11-19 2022-05-19 Prime Planet Energy & Solutions, Inc. Non-aqueous electrolyte secondary battery
CN117673331A (zh) * 2024-01-31 2024-03-08 帕瓦(长沙)新能源科技有限公司 正极材料包覆料及其制备方法、改性正极材料及其制备方法、钠离子电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102130358A (zh) * 2011-01-25 2011-07-20 河北工业大学 一种锂电池及其制备方法
CN102701160A (zh) * 2012-05-18 2012-10-03 华东理工大学 一种锂离子电池用负极活性物质,含该活性物质的负极材料和锂离子电池
CN104362343A (zh) * 2014-11-21 2015-02-18 厦门大学 一维棒状CuFeS2化合物的制备方法与应用
CN105185958A (zh) * 2015-11-02 2015-12-23 中国科学院化学研究所 一种新型钠离子电池电极材料及其应用
CN105355919A (zh) * 2015-11-12 2016-02-24 西南大学 一种铜钴硫超细粉的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102130358A (zh) * 2011-01-25 2011-07-20 河北工业大学 一种锂电池及其制备方法
CN102701160A (zh) * 2012-05-18 2012-10-03 华东理工大学 一种锂离子电池用负极活性物质,含该活性物质的负极材料和锂离子电池
CN104362343A (zh) * 2014-11-21 2015-02-18 厦门大学 一维棒状CuFeS2化合物的制备方法与应用
CN105185958A (zh) * 2015-11-02 2015-12-23 中国科学院化学研究所 一种新型钠离子电池电极材料及其应用
CN105355919A (zh) * 2015-11-12 2016-02-24 西南大学 一种铜钴硫超细粉的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JIANHUA TANG 等: "Facile synthesis of CuCo2S4 as a novel electrode material for ultrahigh supercapacitor performance", 《CHEM. COMMUN.》 *
王松岑: "电化学电池储能", 《大规模储能技术及其在电力系统中的应用》 *
瞿佰华: "硫化物复合材料的合成及其储锂(钠)性能研究", 《中国博士学位论文全文数据库 工程科技II辑》 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107868466A (zh) * 2017-12-15 2018-04-03 深圳市红叶杰科技有限公司 一种双组分缩合型耐高温硅橡胶及制备方法
CN108281652B (zh) * 2018-01-23 2020-06-16 哈尔滨工业大学 一种转换型金属基硫化物锂离子电池负极活性材料的制备方法
CN108281652A (zh) * 2018-01-23 2018-07-13 哈尔滨工业大学 一种转换型金属基硫化物锂离子电池负极活性材料的制备方法
CN108447698A (zh) * 2018-03-12 2018-08-24 中国科学院长春应用化学研究所 一种电极及其制备方法、高能可再生储电器件
CN108298595A (zh) * 2018-04-26 2018-07-20 浙江美都墨烯科技有限公司 一种制备硫化铜钴微米球的方法
CN109921016A (zh) * 2019-03-11 2019-06-21 安徽师范大学 一种卤素离子协助的硫化铜微米花材料及其制备方法和应用
CN110357166A (zh) * 2019-08-30 2019-10-22 中国地质科学院地球物理地球化学勘查研究所 水热条件下制备纳米黄铜矿四面体晶体的方法
CN110357166B (zh) * 2019-08-30 2021-11-30 中国地质科学院地球物理地球化学勘查研究所 水热条件下制备纳米黄铜矿四面体晶体的方法
CN110776014A (zh) * 2019-10-10 2020-02-11 北京理工大学 钠离子电池负极复合材料及其制备方法
CN110776014B (zh) * 2019-10-10 2020-10-27 北京理工大学 钠离子电池负极复合材料及其制备方法
CN111092222A (zh) * 2019-12-11 2020-05-01 中南大学 一种钠离子电池钴铁铜硫化物负极材料及其制备方法
CN111223670A (zh) * 2019-12-11 2020-06-02 中国科学院大连化学物理研究所 一种平面钠离子电容器及其制备方法和应用
CN111092222B (zh) * 2019-12-11 2022-01-18 中南大学 一种钠离子电池钴铁铜硫化物负极材料及其制备方法
CN111453759A (zh) * 2020-03-25 2020-07-28 陕西科技大学 一种钠离子电池用铜箔原位生长三维硫化铜负极材料、制备方法及应用
CN112409028A (zh) * 2020-10-28 2021-02-26 桂林电子科技大学 一种CC-NiO-CuCoS复合材料及其制备方法和应用
CN112409028B (zh) * 2020-10-28 2022-10-11 桂林电子科技大学 一种CC-NiO-CuCoS复合材料及其制备方法和应用
US20220158239A1 (en) * 2020-11-19 2022-05-19 Prime Planet Energy & Solutions, Inc. Non-aqueous electrolyte secondary battery
US11973228B2 (en) * 2020-11-19 2024-04-30 Prime Planet Energy & Solutions, Inc. Non-aqueous electrolyte secondary battery
CN114400304A (zh) * 2021-11-25 2022-04-26 四川英能基科技有限公司 用于钠离子电池的负极浆料、应用及制备工艺
CN114400304B (zh) * 2021-11-25 2023-12-05 成都新英能基科技有限公司 用于钠离子电池的负极浆料、应用及制备工艺
CN117673331A (zh) * 2024-01-31 2024-03-08 帕瓦(长沙)新能源科技有限公司 正极材料包覆料及其制备方法、改性正极材料及其制备方法、钠离子电池
CN117673331B (zh) * 2024-01-31 2024-05-10 帕瓦(长沙)新能源科技有限公司 正极材料包覆料及其制备方法、改性正极材料及其制备方法、钠离子电池

Similar Documents

Publication Publication Date Title
CN107154486A (zh) 一种含铜多元金属硫化物为负极材料的钠离子电池
CN106920989B (zh) 一种铜硒化合物为负极材料的钠离子电池
CN103700820B (zh) 一种长寿命锂离子硒电池
CN105185987B (zh) 正极材料及锂离子二次电池
CN107331853B (zh) 一种石墨烯复合多层带孔类球形锰酸锂电极材料及其制备的锂离子电池
CN104300123A (zh) 一种混合正极材料、使用该正极材料的正极片及锂离子电池
CN102522563A (zh) 导电聚合物浸渍包覆的锂离子电池复合电极材料及其制备方法
CN101478039B (zh) 一种聚吡硌包覆磷酸铁锂的制备方法
CN103219493B (zh) 一种硫导电氧化物复合材料及其作为锂硫电池正极材料的应用
CN102916195B (zh) 一种石墨烯包覆氧化铜复合负极材料及其制备方法
CN102082259A (zh) 一种锂二次电池电极及其制造方法
CN105024071B (zh) 一种Cu2S/Cu锂离子电池负极材料及制备方法
CN102082290A (zh) 一种高电压高比能量锂离子电池及其制备方法
CN103515595A (zh) 硫/聚吡咯-石墨烯复合材料、其制备方法、电池正极以及锂硫电池
CN104183832A (zh) 一种基于碳纳米管-石墨烯复合三维网络的FeF3柔性电极的制备方法与应用
CN103050732B (zh) 一种钛酸锂基化学电源
CN105047898B (zh) 一种双生球形锂离子二次电池富锂正极材料及其制备方法
CN104183836B (zh) 一种锂硫电池用正极复合材料
CN102769134B (zh) 一种锂离子电池正极复合材料LiFePO4/C的制备方法
CN110474051A (zh) 一种常见染料罗丹明b作为锂离子电池有机正极材料的应用
CN112467233B (zh) 一种用于可充放锌锰电池高性能水系电解液
CN104409711B (zh) 无添加剂原位制备锂离子电池负极材料的方法
CN111370687B (zh) 一种锂离子电池的制备方法
CN105070891B (zh) 锂离子电池用Ge/GeO2‑介孔碳复合电极材料制备及其应用
CN107658449A (zh) 一种锂电池电极材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170912