CN107083421A - 使用经修饰的核苷酸和纳米孔检测的dna边合成边测序 - Google Patents

使用经修饰的核苷酸和纳米孔检测的dna边合成边测序 Download PDF

Info

Publication number
CN107083421A
CN107083421A CN201610894651.9A CN201610894651A CN107083421A CN 107083421 A CN107083421 A CN 107083421A CN 201610894651 A CN201610894651 A CN 201610894651A CN 107083421 A CN107083421 A CN 107083421A
Authority
CN
China
Prior art keywords
label
dna
nano
pore
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610894651.9A
Other languages
English (en)
Inventor
静月·居
希尔·库玛尔
增敏·李
传娟·陶
民辰·钱
詹姆斯·J·拉索
谢尔盖·卡拉奇科夫
肯·谢帕德
雅各布·卡尔·罗森斯坦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Columbia University of New York
Original Assignee
Columbia University of New York
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Columbia University of New York filed Critical Columbia University of New York
Publication of CN107083421A publication Critical patent/CN107083421A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • C07H19/10Pyrimidine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/16Purine radicals
    • C07H19/20Purine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/02Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with ribosyl as saccharide radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/04Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with deoxyribosyl as saccharide radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/335Polymers modified by chemical after-treatment with organic compounds containing phosphorus
    • C08G65/3356Polymers modified by chemical after-treatment with organic compounds containing phosphorus having nitrogen in addition to phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/337Polymers modified by chemical after-treatment with organic compounds containing other elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/48707Physical analysis of biological material of liquid biological material by electrical means
    • G01N33/48721Investigating individual macromolecules, e.g. by translocation through nanopores

Abstract

本发明涉及一种使用多磷酸脱氧核苷酸类似物和来自并入的多磷酸脱氧核苷酸类似物的标签通过纳米孔的易位来对单链DNA进行测序的方法。

Description

使用经修饰的核苷酸和纳米孔检测的DNA边合成边测序
本申请案主张2010年12月17日提交的美国临时申请案第61/424,480号和2011年11月9日提交的美国临时申请案第61/557,558号的优先权,所述申请案中的每一者的内容特此以全文引用的方式并入。
在本申请案中,参考了某些专利和出版物,后者按作者和出版年份作参考。紧邻权利要求书之前可以发现这些出版物的完整引用。这些专利和出版物的全部公开内容特此以引用的方式并入本申请案中,以便更充分地描述本发明所涉及的现有技术。
技术领域
背景技术
DNA测序是一种基本的生物学技术。已经开发了数种分析方法以在单分子水平上使用化学或物理微观技术检测DNA或RNA[珀金斯(Perkins)等人1994,里夫(Rief)等人1999,史密斯(Smith)等人1996,以及韦库特(Vercoutere)等人2001]。
在过去的几年中,已经探索了离子传感技术,如离子通道,其依赖于在核苷酸通过聚合酶并入DNA的链中时所释放的氢离子(H+)的检测[罗思伯格(Rothberg)等人2011],从而检测个别DNA或RNA链[卡西亚诺维奇(Kasianowicz)2003和2004,钱德勒(Chandler)等人2004,迪默(Deamer)等人2002,博尔苏科夫(Berzukov)等人2001,以及亨里克森(Henrickson)等人2000]。
已经展示了α-溶血素通道(一种由细菌分泌的外毒素)可以用于在单分子水平上检测核酸[卡西亚诺维奇等人1996]。α-溶血素蛋白是一种单体多肽,其在脂质双层膜中自组装形成七聚孔,所述孔具有2.6nm直径的孔腔和1.5nm直径的限制孔(孔的最窄点)[麦勒(Meller)等人2000,阿克松(Akeson)等人1999,以及迪默等人2002]。纳米孔的限制孔允许线性单链而非双链的核酸分子(直径约2.0nm)穿过。在离子盐水溶液(KCl)中,当将适当电压施加在膜两端时,由α-溶血素通道形成的孔传导足够强大并且稳定的离子电流。聚阴离子核酸由所施加的电场驱动通过所述孔,由此阻隔或减小离子电流,否则所述离子电流将不受阻碍。此通过的过程产生了电子信号(图1)[韦库特等人2001和迪默等人2002]。特定核酸分子在进入和穿过纳米孔时产生特征信号,所述特征信号将其与其它核酸分子区分开来。所述阻隔的持续时间与核酸的长度成正比,并且信号强度与核苷酸的空间和电子性质有关,即,与四种碱基(A、C、G和T)的身份有关。由此,获得特定事件图(其为易位时间相对于阻隔电流的曲线),并且其用于通过单通道记录技术基于图中的特征参数(如易位电流、易位持续时间和其相应的离差)来区分聚核苷酸的长度和组成[麦勒等人2000]。
还展示了具有以共价方式连接的接头的蛋白纳米孔可以在高精确度下精确地鉴别未经标记的5'-单磷酸核苷(dAMP、dGMP、dCMP和dTMP)[克拉克(Clarke)等人2009]。举例来说,氨基环糊精接头已经以共价方式成功地连接在α-溶血素孔内。当dNMP被捕获并且被驱动通过脂质双层膜中的孔时,通过所述孔的离子电流减少到四种水平中的一种,每一种代表了四种dNMP中的一种(A、G、C或T)。此外,罗伯特森(Robertson)等人[2007]近来已展示了当聚(乙二醇)(PEG)分子进入单个α溶血素孔时,其引起独特的质量依赖性导电率状态与特有的平均滞留时间。基于导电率的质谱明确地解析了乙二醇的重复单元,并且滞留时间随PEG的质量增加。
尽管当前的纳米孔方法展示了作为DNA检测方法的前景,但精确的碱基到碱基测序的更高要求目标尚未被实现。
发明内容
一种测定单链DNA的核苷酸序列的方法,其包含:
(a)使所述单链DNA,其中所述单链DNA在电解质溶液中与膜中的纳米孔接触并且其中所述单链DNA具有与其一部分杂交的引物,与DNA聚合酶和四种多磷酸脱氧核糖核苷酸(dNPP)类似物(其中至少一者可以与所测序的DNA中的A、T、G或C核苷酸中的每一者杂交)在允许所述DNA聚合酶催化所述dNPP类似物中的一者在其与所述单链DNA的核苷酸残基互补时并入所述引物中的条件下接触,所述单链DNA的所述核苷酸残基紧邻与所述引物的3'末端核苷酸残基杂交的所述单链DNA的核苷酸残基的5',由此形成DNA延伸产物,其中所述四种dNPP类似物中的每一者具有以下结构:
其中所述碱基为腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶或尿嘧啶或这些碱基中的一者或一者以上的衍生物,其中R1为OH,其中R2为H,其中X为O、NH、S或CH2,其中n为1、2、3或4,其中Z为O、S或BH3,并且其限制条件为(i)每种dNPP类似物上的碱基类型与其它三种dNPP类似物中的每一者上的碱基类型不同,并且(ii)每种dNPP类似物的n值与其它三种dNPP类似物中的每一者的n值不同,或者所述四种dNPP类似物中的每一者的n值是相同的并且每种dNPP类似物上的标签类型与其它三种dNPP类似物中的每一者上的标签类型不同,其中所述dNPP类似物的并入促成具有与其连接的所述标签的多磷酸酯的释放;以及
(b)通过以下方式鉴别在步骤(a)中何种dNPP类似物已并入所述引物中从而形成DNA延伸产物:将电压施加到所述膜的两端,并且测量在所述纳米孔的两端由步骤(a)中产生的具有与其连接的所述标签的所述多磷酸酯通过所述纳米孔易位而引起的电子变化,其中所述电子变化对于n的每个值或对于标签的每种不同类型(以适用的为准)是不同的,从而允许鉴别所述单链DNA中与所述并入的dNPP类似物互补的所述核苷酸残基;以及
(c)针对所测序的所述单链DNA的每个核苷酸残基重复地进行步骤(b),其中在步骤(b)的每次重复操作中,所述dNPP类似物在其与所述单链DNA的所述核苷酸残基互补时被并入所述DNA延伸产物中,所述单链DNA的所述核苷酸残基紧邻与所述DNA延伸产物的3'末端核苷酸残基杂交的所述单链DNA的核苷酸残基的5',
从而测定所述单链DNA的所述核苷酸序列。
一种测定单链DNA的核苷酸序列的方法,其包含:
(a)使所述单链DNA,其中所述单链DNA在电解质溶液中与膜中的纳米孔接触并且其中所述单链DNA具有与其一部分杂交的引物,与DNA聚合酶和多磷酸脱氧核糖核苷酸(dNPP)类似物在允许所述DNA聚合酶催化所述dNPP类似物在其与所述单链DNA的核苷酸残基互补时并入所述引物中的条件下接触,所述单链DNA的所述核苷酸残基紧邻与所述引物的3'末端核苷酸残基杂交的所述单链DNA的核苷酸残基的5',由此形成DNA延伸产物,其中所述dNPP类似物具有以下结构:
其中所述碱基为腺嘌呤、鸟嘌呤、胞嘧啶、尿嘧啶或胸腺嘧啶或其中每一者的衍生物,其中R1为-OH、-O-CH2N3或-O-2-硝基苯甲基,其中R2为H,其中X为O、NH、S或CH2,其中n为1、2、3或4,其中Z为O、S或BH3,并且
其中如果所述dNPP类似物没有被并入的话,那么反复地重复与不同dNPP类似物的所述接触直到dNPP类似物被并入为止,其限制条件为(1)每种dNPP类似物上的碱基类型与其它dNPP类似物中的每一者上的碱基类型不同,并且(2)每种dNPP类似物的n值与其它三种dNPP类似物中的每一者的n值不同,或者所述四种dNPP类似物中的每一者的n值是相同的并且每种dNPP类似物上的标签类型与其它三种dNPP类似物中的每一者上的标签类型不同,
其中dNPP类似物的并入促成具有与其连接的所述标签的多磷酸酯的释放;
(b)通过以下方式测定在步骤(a)中何种dNPP类似物已并入所述引物中从而形成DNA延伸产物:将电压施加到所述膜的两端,并且测量在所述纳米孔的两端由步骤(a)中产生的具有与其连接的所述标签的所述多磷酸酯通过所述纳米孔易位而引起的电子变化,其中所述电子变化视情况而定对于n的每个值或对于标签的每种不同类型是不同的,从而鉴别所述单链DNA中与所述并入的dNPP类似物互补的所述核苷酸残基;
(c)针对所测序的所述单链DNA的每个核苷酸残基重复地进行步骤(a)和(b),其中在步骤(a)的每次重复操作中,所述dNPP类似物在其与所述单链DNA的所述核苷酸残基互补时被并入所述DNA延伸产物中,所述单链DNA的所述核苷酸残基紧邻与所述DNA延伸产物的3'末端核苷酸残基杂交的所述单链DNA的核苷酸残基的5',
从而测定所述单链DNA的所述核苷酸序列。
一种测定单链DNA的核苷酸序列的方法,其包含:
(a)使所述单链DNA,其中所述单链DNA在电解质溶液中与膜中的纳米孔接触并且其中所述单链DNA具有与其一部分杂交的引物,与DNA聚合酶和至少四种多磷酸脱氧核糖核苷酸(dNPP)类似物在允许所述DNA聚合酶催化所述dNPP类似物中的一种在其与所述单链DNA的核苷酸残基互补时并入所述引物中的条件下接触,所述单链DNA的所述核苷酸残基紧邻与所述引物的3'末端核苷酸残基杂交的所述单链DNA的核苷酸残基的5',由此形成DNA延伸产物,其中所述四种dNPP类似物中的每一者具有选自以下的结构:
其中所述碱基为腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶或尿嘧啶或其中每一者的衍生物,其中Y为标签,其中R1在存在时为OH,其中R2在存在时为H,其中X为可裂解的连接基团,其中Z为O、S或BH3,其中n为1、2、3或4,其中A为O、S、CH2、CHF、CFF或NH,并且其限制条件为(i)每种dNPP类似物上的碱基类型与其它三种dNPP类似物中的每一者上的碱基类型不同,并且(ii)每种dNPP类似物上的标签类型与其它三种dNPP类似物中的每一者上的标签类型不同;
(b)使来自在步骤(a)中并入的所述dNPP类似物的所述标签裂解;以及
(c)通过以下方式测定在步骤(a)中何种dNPP类似物被并入:将电压施加到所述膜的两端,并且测量在所述纳米孔的两端由步骤(b)中裂解掉的标签通过所述纳米孔易位而引起的电子变化,其中所述电子变化对于标签的每种不同类型是不同的,从而鉴别所述单链DNA中与所述并入的dNPP类似物互补的所述核苷酸残基;以及
(d)针对所测序的所述单链DNA的每个核苷酸残基重复地进行步骤(a)、(b)和(c),其中在步骤(a)的每次重复操作中,所述dNPP类似物在其与所述单链DNA的所述核苷酸残基互补时被并入由步骤(a)的先前反复操作而产生的所述DNA延伸产物中,所述单链DNA的所述核苷酸残基紧邻与所述DNA延伸产物的3'末端核苷酸残基杂交的所述单链DNA的核苷酸残基的5',
从而测定所述单链DNA的所述核苷酸序列。
一种测定单链DNA的核苷酸序列的方法,其包含:
(a)使所述单链DNA,其中所述单链DNA在电解质溶液中与膜中的纳米孔接触,其中所述单链DNA具有与其一部分杂交的引物,与DNA聚合酶和多磷酸脱氧核糖核苷酸(dNPP)类似物在允许所述DNA聚合酶催化所述dNPP类似物在其与所述单链DNA的核苷酸残基互补时并入所述引物中的条件下接触,所述单链DNA的所述核苷酸残基紧邻与所述引物的3'末端核苷酸残基杂交的所述单链DNA的核苷酸残基的5',由此形成DNA延伸产物,其中所述dNPP类似物具有以下结构:
其中所述碱基为腺嘌呤、鸟嘌呤、胞嘧啶、尿嘧啶或胸腺嘧啶或其中每一者的衍生物,其中Y为标签,并且其中R1在存在时为OH、-OCH2N3或-O-2-硝基苯甲基,R2在存在时为H,其中X为可裂解的连接基团,其中Z为O、S或BH3,其中n为1、2、3或4,其中A为O、S、CH2、CHF、CFF或NH,
并且如果所述dNPP类似物没有被并入的话,那么反复地重复与不同dNPP类似物的所述接触直到dNPP类似物被并入为止,其限制条件为(1)每种dNPP类似物上的碱基类型与每种其它dNPP类似物上的碱基类型不同,并且(2)每种dNPP类似物上的标签类型与每种其它dNPP类似物上的标签类型不同,
其中dNPP类似物的并入促成具有与其连接的所述标签的多磷酸酯的释放;
(b)使来自在步骤(a)中并入的所述dNPP类似物的所述标签裂解;以及
(c)通过以下方式测定在步骤(a)中何种dNPP类似物被并入从而形成DNA延伸产物:将电压施加到所述膜的两端,并且测量在所述纳米孔的两端由步骤(b)中裂解掉的所述标签通过所述纳米孔易位而引起的电子变化,其中所述电子变化对于标签的每种类型是不同的,从而鉴别所述单链DNA中与所述并入的dNPP类似物互补的所述核苷酸残基;
(d)针对所测序的所述单链DNA的每个核苷酸残基反复地进行步骤(a)到(c),其中在步骤(a)的每次反复操作中,所述dNPP类似物在其与所述单链DNA的所述核苷酸残基互补时被并入由步骤(a)的先前反复操作而产生的所述DNA延伸产物中,所述单链DNA的所述核苷酸残基紧邻与所述DNA延伸产物的3'末端核苷酸残基杂交的所述单链DNA的核苷酸残基的5',
从而测定所述单链DNA的所述核苷酸序列。
一种产生三磷酸核苷酸类似物的方法,其中所述三磷酸核苷酸类似物因具有与其末端磷酸酯连接的标签而与三磷酸核苷酸不同,所述方法包含:
a)使三磷酸核苷酸与二环己基碳化二亚胺/二甲基甲酰胺在允许产生环状三偏磷酸酯的条件下接触;
b)使由步骤a)产生的所述产物与具有与其连接的羟基或氨基的标签在允许所述环状三偏磷酸酯亲核开环的条件下接触,由此使所述标签键结到末端磷酸酯上,从而形成所述三磷酸核苷酸类似物。
一种产生三磷酸核苷酸类似物的方法,其中所述三磷酸核苷酸类似物因具有与其末端磷酸酯连接的标签而与三磷酸核苷酸不同,所述方法包含:
a)使三磷酸核苷酸与二环己基碳化二亚胺/二甲基甲酰胺在允许产生环状三偏磷酸酯的条件下接触;
b)使由步骤a)产生的所述产物与亲核试剂接触,由此形成-OH或-NH2官能化的化合物;
c)使步骤b)的所述产物与具有与其连接的-COR基团的标签在允许所述标签间接键结到末端磷酸酯上的条件下反应,从而形成所述三磷酸核苷酸类似物。
一种产生四磷酸核苷酸类似物的方法,其中所述四磷酸核苷酸类似物因具有与其末端磷酸酯连接的标签而与四磷酸核苷酸不同,所述方法包含:
a)使三磷酸核苷酸与1,1'-羰基二咪唑/二甲基甲酰胺在允许形成以下结构的条件下接触:
其中R1为OH,其中R2为H或OH,其中所述碱基为腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶、尿嘧啶、7-脱氮嘌呤或5-甲基嘧啶;
b)使由步骤a)产生的所述产物与具有与其连接的单磷酸酯基的标签在允许形成所述四磷酸核苷酸类似物的条件下接触。
一种产生四磷酸核苷酸类似物的方法,其中所述四磷酸核苷酸类似物因具有与其末端磷酸酯连接的标签而与四磷酸核苷酸不同,所述方法包含:
a)使三磷酸核苷酸与1,1'-羰基二咪唑/二甲基甲酰胺在允许形成以下结构的条件下接触:
其中R1为OH,其中R2为H或OH,其中所述碱基为腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶、尿嘧啶、7-脱氮嘌呤或5-甲基嘧啶;
b)使由步骤a)产生的所述产物与磷酸在允许形成四磷酸核苷酸的条件下接触;
c)使所述四磷酸核苷酸依次与1)羰基二咪唑/二甲基甲酰胺、2)亲核试剂以及3)NH4OH接触,由此形成-OH或-NH2官能化的化合物;
d)使步骤c)的所述产物与具有与其连接的-COR基团的标签在允许所述标签间接键结到末端磷酸酯上的条件下接触,从而形成所述四磷酸核苷酸类似物。
一种产生四磷酸核苷酸类似物的方法,其中所述四磷酸核苷酸类似物因具有与其末端磷酸酯连接的标签而与四磷酸核苷酸不同,所述方法包含:
a)使三磷酸核苷酸与1,1'-羰基二咪唑/二甲基甲酰胺在允许形成以下结构的条件下接触:
b)使由步骤a)产生的所述产物与磷酸在允许形成四磷酸核苷酸的条件下接触;
c)使所述四磷酸核苷酸与羰基二咪唑/二甲基甲酰胺和具有与其连接的羟基或氨基的标签接触,由此形成具有以下结构的化合物:
其中R1为OH,其中R2为H或OH,其中所述碱基为腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶、尿嘧啶、7-脱氮嘌呤或5-甲基嘧啶。
一种产生五磷酸核苷酸类似物的方法,其中所述五磷酸核苷酸类似物因具有与其末端磷酸酯连接的标签而与五磷酸核苷酸不同,所述方法包含:
a)使三磷酸核苷酸与1,1'-羰基二咪唑/二甲基甲酰胺在允许形成以下结构的条件下接触:
其中R1为OH,其中R2为H或OH,其中所述碱基为腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶、尿嘧啶、7-脱氮嘌呤或5-甲基嘧啶;
b)使由步骤a)产生的所述产物与具有与其连接的焦磷酸酯基的标签在允许形成所述五磷酸核苷酸类似物的条件下接触。
一种产生五磷酸核苷酸类似物的方法,其中所述五磷酸核苷酸类似物因具有与其末端磷酸酯连接的标签而与五磷酸核苷酸不同,所述方法包含:
a)使三磷酸核苷酸与1,1'-羰基二咪唑/二甲基甲酰胺在允许形成以下结构的条件下接触:
其中R1为OH,其中R2为H或OH,其中所述碱基为腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶、尿嘧啶、7-脱氮嘌呤或5-甲基嘧啶;
b)使由步骤a)产生的所述产物与焦磷酸酯基在允许形成五磷酸核苷酸的条件下接触;
c)使所述五磷酸核苷酸与羰基二咪唑/二甲基甲酰胺和具有与其连接的羟基或氨基的标签接触,由此形成所述五磷酸核苷酸类似物。
一种产生六磷酸核苷酸类似物的方法,其中所述六磷酸核苷酸类似物因具有与其末端磷酸酯连接的标签而与六磷酸核苷酸不同,所述方法包含:
a)使三磷酸核苷酸与1,1'-羰基二咪唑/二甲基甲酰胺在允许形成以下结构的条件下接触:
其中R1为OH,其中R2为H或OH,其中所述碱基为腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶、尿嘧啶、7-脱氮嘌呤或5-甲基嘧啶;
b)使由步骤a)产生的所述产物与具有与其连接的三磷酸酯基的标签在允许形成所述六磷酸核苷酸类似物的条件下接触。
一种产生六磷酸核苷酸类似物的方法,其中所述六磷酸核苷酸类似物因具有与其末端磷酸酯连接的标签而与六磷酸核苷酸不同,所述方法包含:
a)使三磷酸核苷酸与1,1'-羰基二咪唑/二甲基甲酰胺在允许形成以下结构的条件下接触:
其中R1为OH,其中R2为H或OH,其中所述碱基为腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶、尿嘧啶、7-脱氮嘌呤或5-甲基嘧啶;
b)使由步骤a)产生的所述产物与三磷酸酯基在允许形成六磷酸核苷酸的条件下接触;
c)使所述六磷酸核苷酸与羰基二咪唑/二甲基甲酰胺和具有与其连接的羟基或氨基的标签接触,由此形成所述六磷酸核苷酸类似物。
一种化合物,其具有以下结构:
其中所述标签为乙二醇、氨基酸、碳水化合物、染料、单核苷酸、二核苷酸、三核苷酸、四核苷酸、五核苷酸或六核苷酸,其中R1为OH,其中R2为H或OH,其中X为O、NH、S或CH2,其中Z为O、S或BH3,其中所述碱基为腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶、尿嘧啶、7-脱氮嘌呤或5-甲基嘧啶,并且其中n为1、2、3或4。
一种化合物,其具有以下结构:
其中在每个结构中,n独立地为1、2、3或4,并且m独立地为0到100的整数,并且其中当m为0时,dNPP的末端磷酸酯直接键结到所述结构的左手边所示的核苷的3'O原子上,其中R1为-OH或-O-CH2N3,并且R2为H或OH。
一种组合物,其包含至少四种多磷酸脱氧核苷酸(dNPP)类似物,所述类似物各自具有选自根据权利要求74和75所述的结构的结构,其中所述四种dNPP类似物中的每一者包含与其它三种dNPP类似物的碱基类型不同的碱基类型。
一种化合物,其具有以下结构:
其中m为0到100的整数,并且其中所述化合物包含单一类型的碱基,并且其中所述碱基为腺嘌呤、鸟嘌呤、胞嘧啶、尿嘧啶或胸腺嘧啶或其中每一者的衍生物。
一种化合物,其具有以下结构:
其中所述碱基为腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶、尿嘧啶、7-脱氮嘌呤或5-甲基嘧啶。
一种化合物,其具有以下结构:
其中所述碱基为腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶、尿嘧啶、7-脱氮嘌呤或5-甲基嘧啶,并且R为经取代或未经取代的烃基,至多3000道尔顿(dalton)。
一种化合物,其具有以下结构:
一种化合物,其具有以下结构:
其中所述碱基为腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶、尿嘧啶、7-脱氮嘌呤或5-甲基嘧啶,并且m为1到50的整数。
一种化合物,其具有以下结构:
其中n为1或2,并且所述碱基为腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶、尿嘧啶、7-脱氮嘌呤或5-甲基嘧啶。
一种化合物,其具有以下结构:
其中R1为-OH或-O-CH2N3,并且R2为H或OH。
一种测定单链RNA的核苷酸序列的方法,其包含:
(a)使所述单链RNA,其中所述单链RNA在电解质溶液中与膜中的纳米孔接触,其中所述单链RNA具有与其一部分杂交的引物,与RNA聚合酶和至少四种多磷酸核糖核苷酸(rNPP)类似物在允许所述RNA聚合酶催化所述rNPP类似物中的一者在其与所述单链RNA的核苷酸残基互补时并入所述引物中的条件下接触,所述单链RNA的所述核苷酸残基紧邻与所述引物的3'末端核苷酸残基杂交的所述单链RNA的核苷酸残基的5',由此形成RNA延伸产物,其中所述四种rNPP类似物中的每一种具有以下结构:
其中所述碱基为腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶或尿嘧啶或其中每一者的衍生物,其中R1为OH,其中R2为OH,其中X为O、NH、S或CH2,其中n为1、2、3或4,其中Z为O、S或BH3,并且其限制条件为(i)每种rNPP类似物上的碱基类型与其它三种rNPP类似物中的每一者上的碱基类型不同,并且(ii)每种rNPP类似物的n值与其它三种rNPP类似物中的每一者的n值不同,或者所述四种rNPP类似物中的每一者的n值是相同的并且每种rNPP类似物上的标签类型与其它三种rNPP类似物中的每一者上的标签类型不同,
其中所述rNPP类似物的并入促成具有与其连接的所述标签的多磷酸酯的释放;以及
(b)通过以下方式测定在步骤(a)中何种rNPP类似物已并入所述引物中从而形成RNA延伸产物:将电压施加到所述膜的两端,并且测量在所述纳米孔的两端由步骤(a)中产生的具有与其连接的所述标签的所述多磷酸酯通过所述纳米孔易位而引起的电子变化,其中所述电子变化视情况而定对于n的每个值或对于标签的每种不同类型是不同的,从而鉴别所述单链RNA中与所述并入的rNPP类似物互补的所述核苷酸残基;以及
(c)针对所测序的所述单链RNA的每个核苷酸残基反复地进行步骤(a)和(b),其中在步骤(a)的每次反复操作中,所述rNPP类似物在其与所述单链RNA的所述核苷酸残基互补时被并入由步骤(a)的先前反复操作而产生的所述RNA延伸产物中,所述单链RNA的所述核苷酸残基紧邻与所述RNA延伸产物的3'末端核苷酸残基杂交的所述单链RNA的核苷酸残基的5',
从而测定所述单链RNA的所述核苷酸序列。
一种测定单链RNA的核苷酸序列的方法,其包含:
(a)使所述单链RNA,其中所述单链RNA在电解质溶液中与膜中的纳米孔接触并且其中所述单链RNA具有与其一部分杂交的引物,与RNA聚合酶和多磷酸核糖核苷酸(rNPP)类似物在允许所述RNA聚合酶催化所述rNPP类似物在其与所述单链RNA的核苷酸残基互补时并入所述引物中的条件下接触,所述单链RNA的所述核苷酸残基紧邻与所述引物的3'末端核苷酸残基杂交的所述单链RNA的核苷酸残基的5',由此形成RNA延伸产物,其中所述rNPP类似物具有以下结构:
其中所述碱基为腺嘌呤、鸟嘌呤、胞嘧啶、尿嘧啶或胸腺嘧啶,其中R1为OH、-O-CH2N3或-O-2-硝基苯甲基,其中R2为-OH,其中X为O、NH、S或CH2,其中n为1、2、3或4,其中Z为O、S或BH3
并且其中如果所述rNPP类似物没有被并入的话,那么反复地重复与不同rNPP类似物的所述接触直到rNPP类似物被并入为止,其限制条件为(1)每种rNPP类似物上的碱基类型与其它rNPP类似物中的每一者上的碱基类型不同,并且(2)每种rNPP类似物的n值与其它三种rNPP类似物中的每一者的n值不同,或者所述四种rNPP类似物中的每一者的n值是相同的并且每种rNPP类似物上的标签类型与其它三种rNPP类似物中的每一者上的标签类型不同,
其中rNPP类似物的并入促成具有与其连接的所述标签的多磷酸酯的释放;
(b)通过以下方式测定在步骤(a)中何种rNPP类似物已并入所述引物中从而形成RNA延伸产物:将电压施加到所述膜的两端,并且测量在所述纳米孔的两端由步骤(a)中产生的具有与其连接的所述标签的所述多磷酸酯通过所述纳米孔易位而引起的电子变化,其中所述电子变化视情况而定对于n的每个值是不同的或对于标签的每种类型是不同的,从而鉴别所述单链RNA中与所述并入的rNPP类似物互补的所述核苷酸残基;
(c)针对所测序的所述单链RNA的每个核苷酸残基反复地进行步骤(a)和(b),其中在步骤(a)的每次反复操作中,所述rNPP类似物在其与所述单链RNA的所述核苷酸残基互补时被并入由步骤(a)的先前反复操作而产生的所述RNA延伸产物中,所述单链RNA的所述核苷酸残基紧邻与所述RNA延伸产物的3'末端核苷酸残基杂交的所述单链RNA的核苷酸残基的5',
从而测定所述单链RNA的所述核苷酸序列。
附图说明
图1.α-溶血素蛋白在脂质双层中自组装形成离子通道并且核酸链段穿过其(上图),产生相应的电子信号(下图)[韦库特等人2001和迪默等人2002]。
图2.核苷酸三磷酸腺苷脱氧核糖核苷酸、三磷酸鸟苷脱氧核糖核苷酸、三磷酸胞苷脱氧核糖核苷酸以及三磷酸胸苷脱氧核糖核苷酸的结构。
图3.引物延伸和用于检测的加标签的多磷酸酯的释放的机制。
图4.四种磷酸酯加标签的核苷-5'-多磷酸酯的结构。
图5.磷酸酯加标签的核苷-5'-三磷酸酯的合成。
图6.磷酸酯加标签的核苷-5'-四磷酸酯的合成。
图7.末端磷酸酯加标签的核苷-5'-五磷酸酯的合成。
图8.a)寡聚物-3'到5'-磷酸酯连接,b)寡聚物-5'到5'-磷酸酯连接,c)聚合酶反应之后的可检测部分。
图9(A).碱基修饰的核苷-5'-三磷酸酯的合成。图9(B).碱基修饰的核苷-5'-三磷酸酯的裂解和使用TCEP的裂解。
图10.3'-O-修饰的核苷-5'-三磷酸酯的合成。A.3'-O-2-硝基苯甲基连接的dNTP;B.3'-O-叠氮基甲基连接的dNTP;C.聚合酶延伸和TCEP裂解之后的可检测部分;以及D.聚合酶延伸和UV裂解之后的可检测部分。
图11.使用磷酸酯修饰的核苷酸类似物的DNA延伸反应。
图12.使用碱基加标签的核苷酸类似物的DNA延伸反应。
图13.使用2'-OH或3'-OH标记的核苷酸类似物的DNA延伸反应。
图14.使用经修饰的核苷酸通过纳米孔的DNA测序的示意图,其尤其适用于涉及同时加入所有4种核苷酸和聚合酶以接触单模板分子的单分子实时测序。
图15.具有可能的连接基团和标签的磷酸酯、碱基、2'和3'修饰的磷酸核苷
碱基=腺嘌呤、鸟嘌呤、胸腺嘧啶、胞嘧啶、尿嘧啶、5-甲基C、7-脱氮-A、7-脱氮-G或其衍生物;
R1和R2=H、OH、F、NH2、N3或OR';
n=1到5;
A=O、S、CH2、CHF、CFF、NH;
Z=O、S、BH3
X=连接基团,其将磷酸酯或2'-O或3'-O或碱基连接到可检测部分上并且可以含有O、N或S、P原子。(连接基团也可以是可检测部分(直接或间接地),如氨基酸、肽、蛋白、碳水化合物、不同长度和分子量的PEG、有机或无机染料、荧光和荧光发生染料、药物、寡核苷酸、质量标签、化学发光标签并且可以含有正或负电荷。);
Y=标签或可检测部分,如具有一个或一个以上环的脂肪族或有机芳香族化合物、染料、蛋白、碳水化合物、不同长度和分子量的PEG、药物、寡核苷酸、质量标签、荧光标签、化学发光标签并且可以含有正或负电荷。
图16.PEG-磷酸酯标记的核苷酸的结构以及具有与官能团反应的不同反应性基团的可能的PEG的实例。
图17.末端磷酸酯上的反应性基团(其也可以在适当变化的情况下连接到核苷碱基部分上)以及与所述基团可以反应形成标签的基团的非限制性的特定实例。
图18.用于大规模平行DNA边合成边测序的纳米孔阵列的示意图。
图19.PEG-磷酸酯标记的核苷酸的合成。
图20.通过并入PEG-磷酸酯标记的核苷酸类似物(dG4P-PEG)而产生的DNA延伸产物的MALDI-TOF质谱。光谱中所示出的单一产物指示dG4P-PEG24和dG4P-PEG37以接近100%的效率并入。
图21.在+40mV外加电势下在含有49、37、24或16个环氧乙烷单体的PEG存在下α-溶血素纳米孔的相对阻隔深度分布。所述四种物质容易被鉴别。
图22.(A)混合的聚(乙二醇)(PEG)单元通过单个纳米孔的分离和质量分布;和(B)在基线分离的情况下选择4种独特的PEG单元作为用于4种碱基A、C、G和T的标签。还示出了线性和分支PEG的结构。
图23.带电荷的PEG-三磷酸酯的合成(电荷可以按要求作调整)。
图24.磷酸酯加标签的核苷-5'-三磷酸酯的合成。
图25.磷酸酯加标签的核苷-5'-四磷酸酯的合成。
图26.末端磷酸酯加标签的核苷-5'-五磷酸酯的合成。
图27.集成CMOS的纳米孔测量平台:(A)八通道CMOS前置放大器芯片的显微图与具有集成的顺式侧电极的一个放大器通道的图像;(B)示出具有固态纳米孔的双芯片集成的图;(C)示出在单芯片实施中芯片的横截面以及纳米孔如何直接蚀刻到芯片中的图;包装在顺式侧上的独立阱的情况下发生;以及3.5nm直径的纳米孔的TEM图像。
图28.集成CMOS的纳米孔电子器件的电气性能(A)针对CF=0.15pF、1MHz 4极贝塞耳滤波器(Bessel filter)、fs=4MS/s的输入参考基线电流噪声谱。还示出了在β=1,100kHz 4极贝塞耳滤波器,fs=250kS/s的情况下全细胞模式中Axopatch 200B的测量的开放头场。(B)由Axopatch 200B测量的与相同纳米孔相比的连接有纳米孔的新放大器的噪底。
图29.纳米孔附近的聚合酶的栓系。阱有助于限制扩散。L表示因扩散和电泳所引起的分子运动同等的情况下距孔开口的临界距离。
图30.标签标记的核苷-5'-多磷酸酯的合成。
图31.3'-O-阻隔的PEG-核苷酸的合成。
图32.使用PEG-核苷酸和纳米孔检测进行边合成边测序(相同DNA分子的许多拷贝被固定在珠粒上并且一次加入一个PEG-核苷酸)。使用相同PEG连接到所有四种核苷酸上。一次加入一个PEG-核苷酸,如果并入正确的核苷酸的话,那么每个循环读取至少一个碱基。
图33.使用3'-O-阻隔的PEG-核苷酸和纳米孔检测进行边合成边测序(相同DNA分子的许多拷贝被固定在珠粒上并且加入所有四种3'-O-阻隔的PEG-核苷酸)。一起加入所有四种3'-阻隔的不同大小的PEG连接的核苷酸(3'-阻隔的dNTP-PEG)。基于释放的PEG的阻隔信号检测并入的核苷酸。通过TECP处理去除3'-阻隔基团,并且继续循环以正确测序包括均聚区的模板。
图34.进行生化过程的微米阱的大规模平行方式高密度阵列的示意图。每个阱可以容纳不同DNA模板和纳米孔装置。
具体实施方式
一种测定单链DNA的核苷酸序列的方法,其包含:
(a)使所述单链DNA,其中所述单链DNA在电解质溶液中与膜中的纳米孔接触并且其中所述单链DNA具有与其一部分杂交的引物,与DNA聚合酶和至少四种多磷酸脱氧核糖核苷酸(dNPP)类似物在允许所述DNA聚合酶催化所述dNPP类似物中的一者在其与所述单链DNA的核苷酸残基互补时并入所述引物中的条件下接触,所述单链DNA的所述核苷酸残基紧邻与所述引物的3'末端核苷酸残基杂交的所述单链DNA的核苷酸残基的5',由此形成DNA延伸产物,其中所述四种dNPP类似物中的每一者具有以下结构:
其中所述碱基为腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶或尿嘧啶或其中每一者的衍生物,其中R1为OH,其中R2为H,其中X为O、NH、S或CH2,其中n为1、2、3或4,其中Z为O、S或BH3,并且其限制条件为(i)每种dNPP类似物上的碱基类型与其它三种dNPP类似物中的每一者上的碱基类型不同,并且(ii)每种dNPP类似物的n值与其它三种dNPP类似物中的每一者的n值不同,或者所述四种dNPP类似物中的每一者的n值是相同的并且每种dNPP类似物上的标签类型与其它三种dNPP类似物中的每一者上的标签类型不同,
其中所述dNPP类似物的并入促成具有与其连接的所述标签的多磷酸酯的释放;以及
(b)通过以下方式测定在步骤(a)中何种dNPP类似物已并入所述引物中从而形成DNA延伸产物:将电压施加到所述膜的两端,并且测量在所述纳米孔的两端由步骤(a)中产生的具有与其连接的所述标签的所述多磷酸酯通过所述纳米孔易位而引起的电子变化,其中所述电子变化视情况而定对于n的每个值或对于标签的每种不同类型是不同的,从而鉴别所述单链DNA中与所述并入的dNPP类似物互补的所述核苷酸残基;以及
(c)针对所测序的所述单链DNA的每个核苷酸残基反复地进行步骤(a)和(b),其中在步骤(a)的每次反复操作中,所述dNPP类似物在其与所述单链DNA的所述核苷酸残基互补时被并入由步骤(a)的先前反复操作而产生的所述DNA延伸产物中,所述单链DNA的所述核苷酸残基紧邻与所述DNA延伸产物的3'末端核苷酸残基杂交的所述单链DNA的核苷酸残基的5',
从而测定所述单链DNA的所述核苷酸序列。
一种测定单链DNA的核苷酸序列的方法,其包含:
(a)使所述单链DNA,其中所述单链DNA在电解质溶液中与膜中的纳米孔接触并且其中所述单链DNA具有与其一部分杂交的引物,与DNA聚合酶和多磷酸脱氧核糖核苷酸(dNPP)类似物在允许所述DNA聚合酶催化所述dNPP类似物在其与所述单链DNA的核苷酸残基互补时并入所述引物中的条件下接触,所述单链DNA的所述核苷酸残基紧邻与所述引物的3'末端核苷酸残基杂交的所述单链DNA的核苷酸残基的5',由此形成DNA延伸产物,其中所述dNPP类似物具有以下结构:
其中所述碱基为腺嘌呤、鸟嘌呤、胞嘧啶、尿嘧啶或胸腺嘧啶或其中每一者的衍生物,其中R1为-OH、-O-CH2N3或-O-2-硝基苯甲基,其中R2为H,其中X为O、NH、S或CH2,其中n为1、2、3或4,其中Z为O、S或BH3
并且其中如果所述dNPP类似物没有被并入的话,那么反复地重复与不同dNPP类似物的所述接触直到dNPP类似物被并入为止,其限制条件为(1)每种dNPP类似物上的碱基类型与其它dNPP类似物中的每一者上的碱基类型不同,并且(2)每种dNPP类似物的n值与其它三种dNPP类似物中的每一者的n值不同,或者所述四种dNPP类似物中的每一者的n值是相同的并且每种dNPP类似物上的标签类型与其它三种dNPP类似物中的每一者上的标签类型不同,
其中dNPP类似物的并入促成具有与其连接的所述标签的多磷酸酯的释放;
(b)通过以下方式测定在步骤(a)中何种dNPP类似物已并入所述引物中从而形成DNA延伸产物:将电压施加到所述膜的两端,并且测量在所述纳米孔的两端由步骤(a)中产生的具有与其连接的所述标签的所述多磷酸酯通过所述纳米孔易位而引起的电子变化,其中所述电子变化视情况而定对于n的每个值或对于标签的每种不同类型是不同的,从而鉴别所述单链DNA中与所述并入的dNPP类似物互补的所述核苷酸残基;
(c)针对所测序的所述单链DNA的每个核苷酸残基反复地进行步骤(a)和(b),其中在步骤(a)的每次反复操作中,所述dNPP类似物在其与所述单链DNA的所述核苷酸残基互补时被并入由步骤(a)的先前反复操作而产生的所述DNA延伸产物中,所述单链DNA的所述核苷酸残基紧邻与所述DNA延伸产物的3'末端核苷酸残基杂交的所述单链DNA的核苷酸残基的5',
从而测定所述单链DNA的所述核苷酸序列。
一种测定单链DNA的核苷酸序列的方法,其包含:
(a)使所述单链DNA,其中所述单链DNA在电解质溶液中与膜中的纳米孔接触并且其中所述单链DNA具有与其一部分杂交的引物,与DNA聚合酶和至少四种多磷酸脱氧核糖核苷酸(dNPP)类似物在允许所述DNA聚合酶催化所述dNPP类似物中的一者在其与所述单链DNA的核苷酸残基互补时并入所述引物中的条件下接触,所述单链DNA的所述核苷酸残基紧邻与所述引物的3'末端核苷酸残基杂交的所述单链DNA的核苷酸残基的5',由此形成DNA延伸产物,其中所述四种dNPP类似物中的每一者具有选自以下的结构:
其中所述碱基为腺嘌呤、鸟嘌呤、胞嘧啶、尿嘧啶或胸腺嘧啶或其中每一者的衍生物,其中Y为标签,其中R1在存在时为OH,其中R2在存在时为H,其中X为可裂解的连接基团,其中Z为O、S或BH3,其中n为1、2、3或4,其中A为O、S、CH2、CHF、CFF或NH,并且其限制条件为(i)每种dNPP类似物上的碱基类型与其它三种dNPP类似物中的每一者上的碱基类型不同,并且(ii)每种dNPP类似物上的标签类型与其它三种dNPP类似物中的每一者上的标签类型不同;
(b)使来自在步骤(a)中并入的所述dNPP类似物的所述标签裂解;以及
(c)通过以下方式测定在步骤(a)中何种dNPP类似物被并入:将电压施加到所述膜的两端,并且测量在所述纳米孔的两端由步骤(b)中裂解掉的标签通过所述纳米孔易位而引起的电子变化,其中所述电子变化对于标签的每种不同类型是不同的,从而鉴别所述单链DNA中与所述并入的dNPP类似物互补的所述核苷酸残基;以及
(d)针对所测序的所述单链DNA的每个核苷酸残基反复地进行步骤(a)、(b)和(c),其中在步骤(a)的每次反复操作中,所述dNPP类似物在其与所述单链DNA的所述核苷酸残基互补时被并入由步骤(a)的先前反复操作而产生的所述DNA延伸产物中,所述单链DNA的所述核苷酸残基紧邻与所述DNA延伸产物的3'末端核苷酸残基杂交的所述单链DNA的核苷酸残基的5',
从而测定所述单链DNA的所述核苷酸序列。
一种测定单链DNA的核苷酸序列的方法,其包含:
(a)使所述单链DNA,其中所述单链DNA在电解质溶液中与膜中的纳米孔接触,其中所述单链DNA具有与其一部分杂交的引物,与DNA聚合酶和多磷酸脱氧核糖核苷酸(dNPP)类似物在允许所述DNA聚合酶催化所述dNPP类似物在其与所述单链DNA的核苷酸残基互补时并入所述引物中的条件下接触,所述单链DNA的所述核苷酸残基紧邻与所述引物的3'末端核苷酸残基杂交的所述单链DNA的核苷酸残基的5',由此形成DNA延伸产物,其中所述dNPP类似物具有以下结构:
其中所述碱基为腺嘌呤、鸟嘌呤、胞嘧啶、尿嘧啶或胸腺嘧啶或其中每一者的衍生物,其中Y为标签,并且其中R1在存在时为OH、-OCH2N3或-O-2-硝基苯甲基,R2在存在时为H,其中X为可裂解的连接基团,其中Z为O、S或BH3,其中n为1、2、3或4,其中A为O、S、CH2、CHF、CFF或NH,
并且如果所述dNPP类似物没有被并入的话,那么反复地重复与不同dNPP类似物的所述接触直到dNPP类似物被并入为止,其限制条件为(1)每种dNPP类似物上的碱基类型与每种其它dNPP类似物上的碱基类型不同,并且(2)每种dNPP类似物上的标签类型与每种其它dNPP类似物上的标签类型不同,
其中dNPP类似物的并入促成具有与其连接的所述标签的多磷酸酯的释放;
(b)使来自在步骤(a)中并入的所述dNPP类似物的所述标签裂解;以及
(c)通过以下方式测定在步骤(a)中何种dNPP类似物被并入从而形成DNA延伸产物:将电压施加到所述膜的两端,并且测量在所述纳米孔的两端由步骤(b)中裂解掉的所述标签通过所述纳米孔易位而引起的电子变化,其中所述电子变化对于标签的每种类型是不同的,从而鉴别所述单链DNA中与所述并入的dNPP类似物互补的所述核苷酸残基;
(d)针对所测序的所述单链DNA的每个核苷酸残基反复地进行步骤(a)到(c),其中在步骤(a)的每次反复操作中,所述dNPP类似物在其与所述单链DNA的所述核苷酸残基互补时被并入由步骤(a)的先前反复操作而产生的所述DNA延伸产物中,所述单链DNA的所述核苷酸残基紧邻与所述DNA延伸产物的3'末端核苷酸残基杂交的所述单链DNA的核苷酸残基的5',
从而测定所述单链DNA的所述核苷酸序列。
在所述方法的一个实施例中,标签为乙二醇;氨基酸;碳水化合物;染料;单核苷酸;二核苷酸;三核苷酸;四核苷酸;五核苷酸或六核苷酸;荧光染料;化学发光化合物;氨基酸;肽;碳水化合物;单磷酸核苷酸;二磷酸核苷酸;未经取代或经一个或一个以上卤素、氰基、硝基、烷基、烯基、炔基、叠氮基取代的脂肪族酸或芳香族酸或醇或硫醇。
在所述方法的一个实施例中,碱基是选自由以下组成的群组:腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶、7-脱氮鸟嘌呤、7-脱氮腺嘌呤或5-甲基胞嘧啶。
在一个实施例中,所述方法进一步包含在步骤(b)的每次反复操作之后的洗涤步骤以去除未并入的dNPP类似物避免与单链DNA接触。
在一个实施例中,所述方法进一步包含在步骤(c)的每次反复操作之后的洗涤步骤以去除未并入的dNPP类似物避免与单链DNA接触。
在一个实施例中,所述方法进一步包含其中单链DNA、电解质溶液以及膜中的纳米孔定位于单个容器内。
在所述方法的一个实施例中,其中R1为-O-CH2N3,所述方法任选地进一步包含处理并入的dNPP类似物以去除-CH2N3并且使得OH基团连接到3'位置上,从而允许另一种dNPP类似物的并入。
在所述方法的一个实施例中,其中R1为-O-2-硝基苯甲基,所述方法任选地进一步包含处理并入的核苷酸类似物以去除-2-硝基苯甲基并且使得OH基团连接到3'位置上,从而允许另一种dNPP类似物的并入。
在所述方法的一个实施例中,dNPP类似物具有以下结构:
其中R1为OH,其中R2为H或OH,其中Z为O、S或BH3,并且其中碱基为腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶、尿嘧啶、7-脱氮嘌呤或5-甲基嘧啶。
在所述方法的一个实施例中,标签为单核苷酸、二核苷酸、三核苷酸、四核苷酸、五核苷酸或六核苷酸,并且其中所述单核苷酸、所述二核苷酸、所述三核苷酸、所述四核苷酸、所述五核苷酸或所述六核苷酸的碱基是与dNPP类似物的碱基相同类型的碱基。
在所述方法的一个实施例中,标签选自以下:
其中在每个结构中,n独立地为1、2、3或4,并且m独立地为0到100的整数,并且其中当m为0时,dNPP的末端磷酸酯直接键结到所述结构的左手边所示的核苷的3'O原子上,并且其中n值对于每种类型的碱基是不同的。
在所述方法的一个实施例中,m为0到50的整数。在所述方法的一个实施例中,m为0到10的整数。
在所述方法的一个实施例中,所述dNPP类似物具有以下结构:
其中R为经取代或未经取代的烃基,至多3000道尔顿,并且其中所述碱基为腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶、尿嘧啶、7-脱氮嘌呤或5-甲基嘧啶。
在所述方法的一个实施例中,dNPP类似物具有以下结构:
其中所述碱基为腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶、尿嘧啶、7-脱氮嘌呤或5-甲基嘧啶。
在所述方法的一个实施例中,dNPP类似物具有以下结构:
在所述方法的一个实施例中,dNPP类似物具有以下结构:
其中m为1到50的整数,并且其中所述碱基为腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶、尿嘧啶、7-脱氮嘌呤或5-甲基嘧啶。
在所述方法的一个实施例中,电子变化是电流幅度的变化。
在所述方法的一个实施例中,电子变化是纳米孔的导电率的变化。
在所述方法的一个实施例中,纳米孔是生物的。在所述方法的一个实施例中,纳米孔是蛋白质的。在所述方法的一个实施例中,纳米孔包含α溶血素。在所述方法的一个实施例中,纳米孔是石墨烯。在所述方法的一个实施例中,纳米孔是固态纳米孔。在所述方法的一个实施例中,纳米孔是在固态膜中。
在所述方法的一个实施例中,单链DNA、引物或DNA聚合酶连接到固体表面上。
在所述方法的另一个实施例中,纳米孔是纳米孔阵列的一部分。
一种产生三磷酸核苷酸类似物的方法,其中所述三磷酸核苷酸类似物因具有与其末端磷酸酯连接的标签而与三磷酸核苷酸不同,所述方法包含:
a)使三磷酸核苷酸与二环己基碳化二亚胺/二甲基甲酰胺在允许产生环状三偏磷酸酯的条件下接触;
b)使由步骤a)产生的所述产物与具有与其连接的羟基或氨基的标签在允许所述环状三偏磷酸酯亲核开环的条件下接触,由此使所述标签键结到末端磷酸酯上,从而形成所述三磷酸核苷酸类似物。
一种产生三磷酸核苷酸类似物的方法,其中所述三磷酸核苷酸类似物因具有与其末端磷酸酯连接的标签而与三磷酸核苷酸不同,所述方法包含:
a)使三磷酸核苷酸与二环己基碳化二亚胺/二甲基甲酰胺在允许产生环状三偏磷酸酯的条件下接触;
b)使由步骤a)产生的所述产物与亲核试剂接触,由此形成-OH或-NH2官能化的化合物;
c)使步骤b)的所述产物与具有与其连接的-COR基团的标签在允许所述标签间接键结到末端磷酸酯上的条件下反应,从而形成所述三磷酸核苷酸类似物。
在本发明方法的一个实施例中,亲核试剂是H2N-R-OH、H2N-R-NH2、R'S-R-OH、R'S-R-NH2
在一个实施例中,本发明方法包含在步骤b)中,使由步骤a)产生的所述产物依次与具有结构:
的化合物和NH4OH接触,由此形成具有以下结构的化合物:
并且使步骤b)的所述产物与具有与其连接的-COR基团的标签在允许所述标签间接键结到末端磷酸酯上的条件下反应,从而形成具有以下结构的三磷酸核苷酸类似物:
其中R1为OH,其中R2为H或OH,其中所述碱基为腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶、尿嘧啶、7-脱氮嘌呤或5-甲基嘧啶。
一种产生四磷酸核苷酸类似物的方法,其中所述四磷酸核苷酸类似物因具有与其末端磷酸酯连接的标签而与四磷酸核苷酸不同,所述方法包含:
a)使三磷酸核苷酸与1,1'-羰基二咪唑/二甲基甲酰胺在允许形成以下结构的条件下接触:
其中R1为OH,其中R2为H或OH,其中所述碱基为腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶、尿嘧啶、7-脱氮嘌呤或5-甲基嘧啶;
b)使由步骤a)产生的所述产物与具有与其连接的单磷酸酯基的标签在允许形成所述四磷酸核苷酸类似物的条件下接触。
一种产生四磷酸核苷酸类似物的方法,其中所述四磷酸核苷酸类似物因具有与其末端磷酸酯连接的标签而与四磷酸核苷酸不同,所述方法包含:
a)使三磷酸核苷酸与1,1'-羰基二咪唑/二甲基甲酰胺在允许形成以下结构的条件下接触:
其中R1为OH,其中R2为H或OH,其中所述碱基为腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶、尿嘧啶、7-脱氮嘌呤或5-甲基嘧啶;
b)使由步骤a)产生的所述产物与磷酸在允许形成四磷酸核苷酸的条件下接触;
c)使所述四磷酸核苷酸依次与1)羰基二咪唑/二甲基甲酰胺、2)亲核试剂以及3)NH4OH接触,由此形成-OH或-NH2官能化的化合物;
d)使步骤c)的所述产物与具有与其连接的-COR基团的标签在允许所述标签间接键结到末端磷酸酯上的条件下接触,从而形成所述四磷酸核苷酸类似物。
在本发明方法的一个实施例中,亲核试剂是H2N-R-OH、H2N-R-NH2、R'S-R-OH、R'S-R-NH2
在一个实施例中,本发明方法包含在步骤b)中,使四磷酸核苷酸依次与1)羰基二咪唑/二甲基甲酰胺;2)具有结构:的化合物以及3)NH4OH接触,由此形成具有以下结构的化合物:
并且使步骤b)的所述产物与具有与其连接的-COR基团的标签在允许所述标签间接键结到末端磷酸酯上的条件下接触,从而形成具有以下结构的三磷酸核苷酸类似物:
其中R1为OH,其中R2为H或OH,其中所述碱基为腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶、尿嘧啶、7-脱氮嘌呤或5-甲基嘧啶。
一种产生四磷酸核苷酸类似物的方法,其中所述四磷酸核苷酸类似物因具有与其末端磷酸酯连接的标签而与四磷酸核苷酸不同,所述方法包含:
a)使三磷酸核苷酸与1,1'-羰基二咪唑/二甲基甲酰胺在允许形成以下结构的条件下接触:
b)使由步骤a)产生的所述产物与磷酸在允许形成四磷酸核苷酸的条件下接触;
c)使所述四磷酸核苷酸与羰基二咪唑/二甲基甲酰胺和具有与其连接的羟基或氨基的标签接触,由此形成具有以下结构的化合物:
其中R1为OH,其中R2为H或OH,其中所述碱基为腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶、尿嘧啶、7-脱氮嘌呤或5-甲基嘧啶。
一种产生五磷酸核苷酸类似物的方法,其中所述五磷酸核苷酸类似物因具有与其末端磷酸酯连接的标签而与五磷酸核苷酸不同,所述方法包含:
a)使三磷酸核苷酸与1,1'-羰基二咪唑/二甲基甲酰胺在允许形成以下结构的条件下接触:
其中R1为OH,其中R2为H或OH,其中所述碱基为腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶、尿嘧啶、7-脱氮嘌呤或5-甲基嘧啶;
b)使由步骤a)产生的所述产物与具有与其连接的焦磷酸酯基的标签在允许形成所述五磷酸核苷酸类似物的条件下接触。
一种产生五磷酸核苷酸类似物的方法,其中所述五磷酸核苷酸类似物因具有与其末端磷酸酯连接的标签而与五磷酸核苷酸不同,所述方法包含:
a)使三磷酸核苷酸与1,1'-羰基二咪唑/二甲基甲酰胺在允许形成以下结构的条件下接触:
其中R1为OH,其中R2为H或OH,其中所述碱基为腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶、尿嘧啶、7-脱氮嘌呤或5-甲基嘧啶;
b)使由步骤a)产生的所述产物与焦磷酸酯基在允许形成五磷酸核苷酸的条件下接触;
c)使所述五磷酸核苷酸与羰基二咪唑/二甲基甲酰胺和具有与其连接的羟基或氨基的标签接触,由此形成所述五磷酸核苷酸类似物。
一种产生六磷酸核苷酸类似物的方法,其中所述六磷酸核苷酸类似物因具有与其末端磷酸酯连接的标签而与六磷酸核苷酸不同,所述方法包含:
a)使三磷酸核苷酸与1,1'-羰基二咪唑/二甲基甲酰胺在允许形成以下结构的条件下接触:
其中R1为OH,其中R2为H或OH,其中所述碱基为腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶、尿嘧啶、7-脱氮嘌呤或5-甲基嘧啶;
b)使由步骤a)产生的所述产物与具有与其连接的三磷酸酯基的标签在允许形成所述六磷酸核苷酸类似物的条件下接触。
一种产生六磷酸核苷酸类似物的方法,其中所述六磷酸核苷酸类似物因具有与其末端磷酸酯连接的标签而与六磷酸核苷酸不同,所述方法包含:
a)使三磷酸核苷酸与1,1'-羰基二咪唑/二甲基甲酰胺在允许形成以下结构的条件下接触:
其中R1为OH,其中R2为H或OH,其中所述碱基为腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶、尿嘧啶、7-脱氮嘌呤或5-甲基嘧啶;
b)使由步骤a)产生的所述产物与三磷酸酯基在允许形成六磷酸核苷酸的条件下接触;
c)使所述六磷酸核苷酸与羰基二咪唑/二甲基甲酰胺和具有与其连接的羟基或氨基的标签接触,由此形成所述六磷酸核苷酸类似物。
一种化合物,其具有以下结构:
其中所述标签为乙二醇、氨基酸、碳水化合物、染料、单核苷酸、二核苷酸、三核苷酸、四核苷酸、五核苷酸或六核苷酸,其中R1为OH,其中R2为H或OH,其中X为O、NH、S或CH2,其中Z为O、S或BH3,其中所述碱基为腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶、尿嘧啶、7-脱氮嘌呤或5-甲基嘧啶,并且其中n为1、2、3或4。
在一个实施例中,R2为H。在一个实施例中,R2为OH。
一种化合物,其具有以下结构:
其中在每个结构中,n独立地为1、2、3或4,并且m独立地为0到100的整数,并且其中当m为0时,dNTP的末端磷酸酯直接键结到所述结构的左手边所示的核苷的3'O原子上,其中R1为-OH或-O-CH2N3,并且R2为H或OH。
在一个实施例中,m为0到50。在一个实施例中,m为0到10。在一个实施例中,R1为-OH。在一个实施例中,R2为-H。在一个实施例中,R2为-OH。
一种化合物,其具有以下结构:
其中m为0到100的整数,并且其中所述化合物包含单一类型的碱基,并且其中所述碱基为腺嘌呤、鸟嘌呤、胞嘧啶、尿嘧啶或胸腺嘧啶或其中每一者的衍生物。
在一个实施例中,m为0到50。在一个实施例中,m为0到10。
在一个实施例中,所述化合物具有以下结构:
其中m为0到100的整数。
一种化合物,其具有以下结构:
其中所述碱基为腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶、尿嘧啶、7-脱氮嘌呤或5-甲基嘧啶。
一种化合物,其具有以下结构:
其中所述碱基为腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶、尿嘧啶、7-脱氮嘌呤或5-甲基嘧啶,并且R为经取代或未经取代的烃基,至多3000道尔顿。
一种化合物,其具有以下结构:
一种化合物,其具有以下结构:
其中所述碱基为腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶、尿嘧啶、7-脱氮嘌呤或5-甲基嘧啶,并且m为1到50的整数。
一种化合物,其具有以下结构:
其中n为1或2,并且所述碱基为腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶、尿嘧啶、7-脱氮嘌呤或5-甲基嘧啶。
一种化合物,其具有以下结构:
其中R1为-OH或-O-CH2N3,并且R2为H或OH。
一种测定单链RNA的核苷酸序列的方法,其包含:
(a)使所述单链RNA,其中所述单链RNA在电解质溶液中与膜中的纳米孔接触,其中所述单链RNA具有与其一部分杂交的引物,与RNA聚合酶和至少四种多磷酸核糖核苷酸(rNPP)类似物在允许所述RNA聚合酶催化所述rNPP类似物中的一者在其与所述单链RNA的核苷酸残基互补时并入所述引物中的条件下接触,所述单链RNA的所述核苷酸残基紧邻与所述引物的3'末端核苷酸残基杂交的所述单链RNA的核苷酸残基的5',由此形成RNA延伸产物,其中所述四种rNPP类似物中的每一者具有以下结构:
其中所述碱基为腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶或尿嘧啶或其中每一者的衍生物,其中R1为OH,其中R2为OH,其中X为O、NH、S或CH2,其中n为1、2、3或4,其中Z为O、S或BH3,并且其限制条件为(i)每种rNPP类似物上的碱基类型与其它三种rNPP类似物中的每一者上的碱基类型不同,并且(ii)每种rNPP类似物的n值与其它三种rNPP类似物中的每一者的n值不同,或者所述四种rNPP类似物中的每一者的n值是相同的并且每种rNPP类似物上的标签类型与其它三种rNPP类似物中的每一者上的标签类型不同,
其中所述rNPP类似物的并入促成具有与其连接的所述标签的多磷酸酯的释放;以及
(b)通过以下方式测定在步骤(a)中何种rNPP类似物已并入所述引物中从而形成RNA延伸产物:将电压施加到所述膜的两端,并且测量在所述纳米孔的两端由步骤(a)中产生的具有与其连接的所述标签的所述多磷酸酯通过所述纳米孔易位而引起的电子变化,其中所述电子变化视情况而定对于n的每个值或对于标签的每种不同类型是不同的,从而鉴别所述单链RNA中与所述并入的rNPP类似物互补的所述核苷酸残基;以及
(c)针对所测序的所述单链RNA的每个核苷酸残基反复地进行步骤(a)和(b),其中在步骤(a)的每次反复操作中,所述rNPP类似物在其与所述单链RNA的所述核苷酸残基互补时被并入由步骤(a)的先前反复操作而产生的所述RNA延伸产物中,所述单链RNA的所述核苷酸残基紧邻与所述RNA延伸产物的3'末端核苷酸残基杂交的所述单链RNA的核苷酸残基的5',
从而测定所述单链RNA的所述核苷酸序列。
一种测定单链RNA的核苷酸序列的方法,其包含:
(a)使所述单链RNA,其中所述单链RNA在电解质溶液中与膜中的纳米孔接触并且其中所述单链RNA具有与其一部分杂交的引物,与RNA聚合酶和多磷酸核糖核苷酸(rNPP)类似物在允许所述RNA聚合酶催化所述rNPP类似物在其与所述单链RNA的核苷酸残基互补时并入所述引物中的条件下接触,所述单链RNA的所述核苷酸残基紧邻与所述引物的3'末端核苷酸残基杂交的所述单链RNA的核苷酸残基的5',由此形成RNA延伸产物,其中所述rNPP类似物具有以下结构:
其中所述碱基为腺嘌呤、鸟嘌呤、胞嘧啶、尿嘧啶或胸腺嘧啶,其中R1为-OH、-O-CH2N3或-O-2-硝基苯甲基,其中R2为-OH,其中X为O、NH、S或CH2,其中n为1、2、3或4,其中Z为O、S或BH3
并且其中如果所述rNPP类似物没有被并入的话,那么反复地重复与不同rNPP类似物的所述接触直到rNPP类似物被并入为止,其限制条件为(1)每种rNPP类似物上的碱基类型与其它rNPP类似物中的每一者上的碱基类型不同,并且(2)每种rNPP类似物的n值与其它三种rNPP类似物中的每一者的n值不同,或者所述四种rNPP类似物中的每一者的n值是相同的并且每种rNPP类似物上的标签类型与其它三种rNPP类似物中的每一者上的标签类型不同,
其中rNPP类似物的并入促成具有与其连接的所述标签的多磷酸酯的释放;
(b)通过以下方式测定在步骤(a)中何种rNPP类似物已并入所述引物中从而形成RNA延伸产物:将电压施加到所述膜的两端,并且测量在所述纳米孔的两端由步骤(a)中产生的具有与其连接的所述标签的所述多磷酸酯通过所述纳米孔易位而引起的电子变化,其中所述电子变化视情况而定对于n的每个值是不同的或对于标签的每种类型是不同的,从而鉴别所述单链RNA中与所述并入的rNPP类似物互补的所述核苷酸残基;
(c)针对所测序的所述单链RNA的每个核苷酸残基反复地进行步骤(a)和(b),其中在步骤(a)的每次反复操作中,所述rNPP类似物在其与所述单链RNA的所述核苷酸残基互补时被并入由步骤(a)的先前反复操作而产生的所述RNA延伸产物中,所述单链RNA的所述核苷酸残基紧邻与所述RNA延伸产物的3'末端核苷酸残基杂交的所述单链RNA的核苷酸残基的5',
从而测定所述单链RNA的所述核苷酸序列。
在一个实施例中,dNPP类似物具有以下结构:
其中n为1或2,并且所述碱基为腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶、尿嘧啶、7-脱氮嘌呤或5-甲基嘧啶。
在一个实施例中,生物纳米孔与CMOS电子器件集成。在另一个实施例中,固态纳米孔与CMOS电子器件集成。
在一个实施例中,与固体表面的连接是通过生物素-抗生蛋白链菌素键联。在另一个实施例中,DNA聚合酶通过用经氨基官能化的烷硫醇自组装单层修饰的金表面连接到固体表面上,其中所述氨基被修饰成NHS酯以用于连接到DNA聚合酶上的氨基上。
在一个实施例中,dNPP类似物是末端磷酸酯加标签的多磷酸核苷。在另一个实施例中,每种类型的dNPP类似物具有聚乙二醇标签,所述聚乙二醇标签与其它三种类型的dNPP类似物中的每一者的聚乙二醇标签的大小不同。
在一个实施例中,标签具有如下结构:
其中W为0与100之间的整数。
在另一个实施例中,标签具有如下结构:
其中R为NH2、OH、COOH、CHO、SH或N3,并且W为0到100的整数。
一种组合物,其包含至少四种多磷酸脱氧核苷酸(dNPP)类似物,所述类似物各自具有选自根据权利要求74和75所述的结构的结构,其中所述四种dNPP类似物中的每一者包含与其它三种dNPP类似物的碱基类型不同的碱基类型。
在一个实施例中,四种dNPP类似物中的每一者具有聚乙二醇标签,所述聚乙二醇标签与其它三种dNPP类似物中的每一者的聚乙二醇标签的大小不同。
在一个实施例中,加标签的多磷酸核苷上的净电荷为中性的。在另一个实施例中,释放的标签具有正电荷。
在一个实施例中,所述方法进一步包含在步骤b)之后用碱性磷酸酶处理的步骤,其中所述碱性磷酸酶使释放的标签-焦磷酸酯上的游离磷酸酯基水解。
在一个实施例中,单链DNA的多个拷贝被固定在珠粒上。
腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶或尿嘧啶的“衍生物”包括7-脱氮-嘌呤和5-甲基嘧啶。实例包括7-脱氮腺嘌呤、7-脱氮-鸟嘌呤和5-甲基-胞嘧啶。
本发明还提供了一种化合物,其具有本申请案的图式和/或流程中所阐述的任何化合物的结构。
本发明还提供了一种dNPP类似物,其包含具有本申请案的图式和/或流程中所阐述的任何标签的结构的标签。
在一个实施例中,标签为经取代或未经取代的烃基,如烷基、烯基、炔基,并且具有3000道尔顿或更小的质量。
如本文所用,“烷基”包括支链和直链饱和脂肪族烃基,其具有指定数目的碳原子并且可以未经取代或经取代。因此,如“C1-Cn烷基”中的C1-Cn被定义为包括在直链或支链排列中具有1、2、……、n-1或n个碳的基团。举例来说,“C1-C5烷基”被定义为包括在直链或支链排列中具有1、2、3、4或5个碳的基团,并且具体地包括甲基、乙基、正丙基、异丙基、正丁基、叔丁基和戊基。
如本文所用,“烯基”是指直链或支链非芳香族烃基,其含有至少1个碳-碳双键并且可以存在至多最大可能数目的非芳香族碳-碳双键,并且可以是未经取代或经取代的。举例来说,“C2-C5”烯基意指具有2、3、4或5个碳原子并且分别具有至多1、2、3或4个碳-碳双键的烯基。烯基包括乙烯基、丙烯基和丁烯基。
术语“炔基”是指直链或支链烃基,其含有至少1个碳-碳三键并且可以存在至多最大可能数目的非芳香族碳-碳三键,并且可以是未经取代或经取代的。因此,“C2-C5炔基”意指具有2或3个碳原子和1个碳-碳三键、或具有4或5个碳原子和至多2个碳-碳三键的炔基。炔基包括乙炔基、丙炔基和丁炔基。
术语“经取代”是指如上文所描述的官能团(如烷基或烃基),在所述官能团中,连接其中所含氢原子的至少一个键经连接非氢或非碳原子的键置换,其限制条件为维持正常价数并且所述取代产生稳定化合物。经取代的基团还包括其中连接碳或氢原子的一个或一个以上键经连接杂原子的一个或一个以上键(包括双键或三键)置换的基团。取代基的非限制性实例包括上文所描述的官能团,并且例如为N,例如由此形成-CN。
应了解,本发明化合物上的取代基和取代模式可以由所属领域的技术人员选择,从而提供化学上稳定并且可以通过所属领域中已知的技术以及下文所阐述的那些方法从可易获得的起始物质容易地合成的化合物。如果取代基自身经一个以上基团取代的话,那么应了解,这多个基团可以在同一碳上或不同碳上,只要产生稳定结构即可。
在选择本发明的化合物时,所属领域的技术人员将认识到多种取代基(即,R1、R2等)应依照化学结构连接性的众所周知的原理来选择。
在本文所描述的化合物结构中,一般未示出氢原子,核糖和脱氧核糖上的氢原子除外。然而,应了解,足够的氢原子存在于所显示的碳原子上以满足八隅规则。
如本文所用并且除非另有说明,否则以下术语中的每一者应具有以下所阐述的定义。
A-腺嘌呤;
C-胞嘧啶;
DNA-脱氧核糖核酸;
G-鸟嘌呤;
RNA-核糖核酸;
T-胸腺嘧啶;和
U-尿嘧啶。
dNPP-多磷酸脱氧核糖核苷酸
rNPP-多磷酸核糖核苷酸
除非另有说明,否则“核酸”应意指任何核酸分子,包括(但不限于)DNA、RNA和其杂合体。在一个实施例中,形成核酸分子的核酸碱基可以是碱基A、C、G、T和U,以及其衍生物。这些碱基的衍生物在所属领域中是众所周知的,并且例示于PCR系统、试剂和消耗品(PCRSystems,Reagents and Consumables)(珀金埃尔默目录1996-1997(Perkin ElmerCatalogue 1996-1997),美国新泽西州布兰奇伯格的罗氏分子系统公司(Roche MolecularSystems,Inc.,Branchburg,New Jersey,USA))中。
多磷酸核苷酸(如多磷酸脱氧核糖核苷酸(“dNPP”)或多磷酸核糖核苷酸(“rNPP”))是包含以线性方式键结到其5'糖碳原子上的多个(即,三个、四个、五个、六个或更多个)磷酸酯的核苷酸。多磷酸核苷酸类似物是如本文所定义的这类多磷酸脱氧核糖核苷酸或这类多磷酸核糖核苷酸的类似物,所述类似物因在指定位置处具有与其连接的标签而与所述核糖核苷酸不同。所述类似物可以通过在所属领域的技术人员已知的适当核酸聚合条件下与适当核酸聚合酶接触而并入引物或核酸延伸链(如DNA延伸链)中。
在一个实施例中,dNPP是三磷酸脱氧核苷酸。
如本文所用,四核苷酸、五核苷酸或六核苷酸分别包涵通过磷酸二酯键连接的4、5或6个核酸单体残基,其中游离末端残基可以是核苷酸或核苷。在一个实施例中,游离末端残基是核苷并且其它残基是核苷酸。
“固体衬底”应意指核酸可以附着的以固相形式存在的任何适合的介质。非限制性实例包括芯片、阱、珠粒、纳米孔结构和柱。在一个非限制性实施例中,固体衬底可以存在于溶液(包括电解质水溶液)中。
“杂交”应意指基于充分了解的序列互补原理,一个单链核酸粘结到另一个核酸(如引物)上。在一个实施例中,另一个核酸是单链核酸。核酸之间杂交的倾向视其环境的温度和离子强度、核酸的长度以及互补程度而定。这些参数对杂交的影响在所属领域中是众所周知的(参见萨姆布鲁克J(Sambrook J),弗里奇EF(Fritsch EF),马尼亚提斯T(Maniatis T).1989.分子克隆:实验手册(Molecular cloning:a laboratory manual).纽约的冷泉港实验室出版社(Cold Spring Harbor Laboratory Press,New York))。如本文所用,引物序列或DNA延伸产物与另一个核酸的杂交应意指粘结充分以使得所述引物或DNA延伸产物分别可以通过与能够与其形成磷酸二酯键的可获得的核苷酸或核苷酸类似物产生磷酸二酯键来延伸。
如本文所用,除非另有说明,否则“不同于”另一个碱基或所述碱基清单的碱基应意指具有与其它碱基不同的结构的碱基。举例来说,“不同于”腺嘌呤、胸腺嘧啶和胞嘧啶的碱基将包括鸟嘌呤碱基或尿嘧啶碱基。
如本文所用的“引物”(引物序列)是具有适当长度(例如约18到24个碱基)的短的通常以化学方式合成的寡核苷酸,其足以与标靶DNA(例如单链DNA)杂交并且允许在所属领域中众所周知的适合条件下向其中加入核苷酸残基或由其合成寡核苷酸或聚核苷酸。在一个实施例中,引物是DNA引物,即由脱氧核糖核苷酸残基组成或主要由脱氧核糖核苷酸残基组成的引物。引物被设计成具有作为与所述引物杂交的模板/标靶DNA的区域的反向互补序列的序列。核苷酸残基通过形成磷酸二酯键而加入到引物的3'末端产生了DNA延伸产物。核苷酸残基通过形成磷酸二酯键而加入到DNA延伸产物的3'末端产生了另一种DNA延伸产物。
在一个实施例中,单链DNA、RNA、引物或探针通过1,3-偶极叠氮化物-炔烃环加成化学过程结合到固体衬底上。在一个实施例中,DNA、RNA、引物或探针通过聚乙二醇分子结合到固体衬底上。在一个实施例中,DNA、RNA、引物或探针是炔烃标记的。在一个实施例中,DNA、RNA、引物或探针通过聚乙二醇分子结合到固体衬底上,并且固体衬底是经叠氮化物官能化的。在一个实施例中,DNA、RNA、引物或探针通过叠氮基键联、炔基键联或生物素-抗生蛋白链菌素相互作用固定在固体衬底上。核酸的固定描述于芯片上DNA的固定II(Immobilization of DNA on Chips II),克里斯廷威特曼(Christine Wittmann)编(2005),柏林的施普林格出版社(Springer Verlag,Berlin)中,其特此以引用的方式并入。在一个实施例中,DNA是单链DNA。在一个实施例中,RNA是单链RNA。
在一个实施例中,固体衬底呈以下形式:芯片、珠粒、阱、毛细管、载玻片、晶片、过滤器、纤维、多孔介质、多孔纳米管、或柱。本发明还提供了本发明方法,其中固体衬底是金属、金、银、石英、二氧化硅、塑料、聚丙烯、玻璃或钻石。本发明还提供了本发明方法,其中固体衬底是连接或浸渍金属或金属组合的多孔非金属物质。固体表面可以呈不同形式,非限制性实例包括芯片、珠粒、管、基质、纳米管。固体表面可以由DNA微阵列的常用材料制成,非限制性实例包括玻璃或尼龙(nylon)。固体表面(例如珠粒/微型珠粒)又可以固定到另一个固体表面(如芯片)上。
在一个实施例中,核酸样品、DNA、RNA、引物或探针被隔离在分立的区室、阱或表面上的凹陷处或容器中。
本发明还提供了本发明方法,其中核酸样品、DNA、RNA、引物或探针的约1000个或更少的拷贝结合到固体表面上。本发明还提供了如下本发明,其中核酸样品、DNA、RNA、引物或探针的2×107、1×107、1×106或1×104个或更少的拷贝结合到固体表面上。
在一个实施例中,经固定的核酸样品、DNA、RNA、引物或探针以高密度固定。本发明还提供了如下本发明,其中核酸样品、DNA、RNA、引物或探针的超过或至多1×107、1×108、1×109个拷贝结合到固体衬底上。
在一个实施例中,DNA聚合酶是9°N聚合酶或其变异体、大肠杆菌(E.Coli)DNA聚合酶I、噬菌体T4DNA聚合酶、测序酶(Sequenase)、Taq DNA聚合酶或9°N聚合酶(没有外切酶活性(exo-))A485L/Y409V。
在本文所描述的方法或组合物的一个实施例中,DNA是单链。在本文所描述的方法或组合物的一个实施例中,RNA是单链、Phi29或其变异体。
在针对RNA测序所描述的方法的一个实施例中,聚合酶是RNA聚合酶、逆转录酶或如所属领域中已知的用于RNA聚合的适当聚合酶。
连接基团可以是光可裂解的。在一个实施例中,UV光用于以光化学方式裂解光化学可裂解的连接基团和部分。在一个实施例中,光可裂解的连接基团是2-硝基苯甲基部分。
-CH2N3基团可以用TCEP(三(2-羧基乙基)膦)处理,以将其从dNPP类似物或rNPP类似物的3'O原子中去除,从而产生3'OH基团。
产生可裂解加帽和/或可裂解连接的核苷酸类似物的方法公开于美国专利第6,664,079号中,其特此以引用的方式并入。
“核苷酸残基”是处于其并入聚核苷酸中并且从而变成聚核苷酸的单体之后存在的状态的单一核苷酸。因此,核苷酸残基是聚核苷酸(例如DNA)的核苷酸单体,其通过在其糖的3'位置处的磷酸二酯键结合到所述聚核苷酸的邻近核苷酸单体上,并且通过其磷酸酯基结合到第二邻近核苷酸单体上,其中例外的是(i)3'末端核苷酸残基通过来自其磷酸酯基的磷酸二酯键仅结合到所述聚核苷酸的一个邻近核苷酸单体上,和(ii)5'末端核苷酸残基通过来自其糖的3'位置的磷酸二酯键仅结合到所述聚核苷酸的一个邻近核苷酸单体上。
由于充分了解碱基配对规则,通过测量标签通过纳米孔易位的独特的电信号来测定并入引物或DNA延伸产物(或RNA延伸产物)中的dNPP类似物(或rNPP类似物)的(碱基的)身份,并且从而测定并入的dNPP类似物(或rNPP类似物)的身份,这允许鉴别引物或DNA延伸产物(或RNA延伸产物)所杂交的单链聚核苷酸中的互补核苷酸残基。因此,如果所并入的dNPP类似物包含腺嘌呤、胸腺嘧啶、胞嘧啶或鸟嘌呤的话,那么单链DNA中的互补核苷酸残基被分别鉴别为胸腺嘧啶、腺嘌呤、鸟嘌呤或胞嘧啶。嘌呤腺嘌呤(A)与嘧啶胸腺嘧啶(T)配对。嘧啶胞嘧啶(C)与嘌呤鸟嘌呤(G)配对。类似地,关于RNA,如果所并入的rNPP类似物包含腺嘌呤、尿嘧啶、胞嘧啶或鸟嘌呤的话,那么单链RNA中的互补核苷酸残基被分别鉴别为尿嘧啶、腺嘌呤、鸟嘌呤或胞嘧啶。
dNPP或rNPP类似物并入寡核苷酸或聚核苷酸(如引物或DNA延伸链)中意指在聚核苷酸的3'末端核苷酸残基的3'碳原子分别与dNPP类似物或rNPP类似物的5'碳原子之间形成磷酸二酯键。
如本文所用,除非另有说明,否则与参考分子(例如另一种多磷酸核苷酸类似物)的碱基类型不同的碱基(例如一种多磷酸核苷酸类似物的碱基)意指所述碱基具有与其它/参考碱基不同的化学结构。举例来说,与腺嘌呤不同的碱基将包括鸟嘌呤碱基、尿嘧啶碱基、胞嘧啶碱基和胸腺嘧啶碱基。举例来说,与腺嘌呤、胸腺嘧啶和胞嘧啶不同的碱基将包括鸟嘌呤碱基和尿嘧啶碱基。
如本文所用,除非另有说明,否则与参考分子(例如另一种多磷酸核苷酸类似物)的标签类型不同的标签(例如一种多磷酸核苷酸类似物的标签)意指所述标签具有与其它/参考标签的化学结构不同的化学结构。
“纳米孔”包括例如包含以下的结构:(a)由实体障壁隔离的第一和第二区室,所述障壁具有至少一个孔,所述孔的直径为例如约1nm到10nm,和(b)在障壁两端施加电场以使带电荷的分子(如DNA、核苷酸、核苷酸类似物或标签)可以通过所述孔从第一区室传到第二区室的构件。纳米孔理想地进一步包含用于测量穿过其障壁的分子的电子信号的构件。纳米孔障壁可以是合成的或部分天然存在的。障壁可以包括例如其中具有α-溶血素、寡聚蛋白通道(如孔蛋白)以及合成肽等的脂质双层。障壁也可以包括具有适合大小的一个或一个以上孔洞的无机板。在本文中,纳米孔障壁中的“纳米孔”、“纳米孔障壁”和“孔”有时等效地使用。
纳米孔装置在所属领域中是已知的,并且纳米孔和其使用方法公开于美国专利第7,005,264B2号、第7,846,738号、第6,617,113号、第6,746,594号、第6,673,615号、第6,627,067号、第6,464,842号、第6,362,002号、第6,267,872号、第6,015,714号、第5,795,782号以及美国公开案第2004/0121525号、第2003/0104428号和第2003/0104428号中,其中每一者特此以全文引用的方式并入。
在本文所公开的分子和方法的一个实施例中,标签通过可分裂的化学连接基团连接到分子的其余部分上。
在一个实施例中,纳米孔在固态膜中。在一个实施例中,膜是氮化硅膜。在一个实施例中,纳米孔是生物孔(biopore)。在一个实施例中,孔是蛋白质的。在一个实施例中,孔是α-溶血素孔。在一个实施例中,孔是石墨烯孔。
在一个实施例中,DNA、RNA或单链核酸定位于纳米孔所位于的膜的一侧上,并且所述膜定位于导电的电解质溶液中。
除非上下文另外清楚地指示,否则当提供值的范围时,应了解,除非上下文另外清楚地指示,否则本发明中包涵在所述范围的上下限和所述范围内的任何其它所述或居中值之间的值的每个居中整数,和值的每个居中整数的每个十等分数。这些较小范围的上下限可以独立地包括于较小范围内,并且也包涵在本发明内,服从所述范围内的任何特定排除的界限。当所述范围包括一个或两个界限时,排除(i)一个或(ii)两个所包括的界限的范围也包括在本发明中。
本文所描述的各种要素的所有组合都在本发明的范围内。本文所描述的各种要素的所有子组合也在本发明的范围内。
通过参考后续实验细节将更好地理解本发明,但所属领域的技术人员将容易了解详细描述的特定实验仅说明如更充分地描述于随附权利要求书中的发明内容。
实验细节和讨论
本文所公开的发明内容涉及用于使用纳米孔的DNA(或RNA,加以必要的变更)的单分子分析的经修饰的核苷酸。可以在核苷酸的多个位置(即,末端磷酸酯、碱基和/或2'-OH或3'-OH)处进行修饰,从而形成核苷酸类似物。在模板-引物复合物上进行聚合酶延伸反应之后,所释放的连接标签的焦磷酸酯穿过纳米孔,并且监测所产生的电流阻隔以测定所加入的核苷酸碱基。如果修饰或标签是在碱基部分、或核苷酸的糖部分的2'-OH/3'-OH处的话,那么在通过DNA/RNA聚合酶并入之后,连接基团-标签通过化学或光化学手段从碱基/糖中裂解,并且所释放的连接基团-标签穿过纳米孔,从而鉴别所加入的核苷酸。
设计并合成核苷-5'-多磷酸酯,所述核苷-5'-多磷酸酯携带不同数目的磷酸酯基作为连接基团并且经连接到核苷酸的末端磷酸酯上的标签修饰。在模板-引物延伸反应中通过DNA/RNA聚合酶并入之后,所释放的连接标签的多磷酸酯(二磷酸酯、三磷酸酯、四磷酸酯、五磷酸酯等)可以使用纳米孔检测以产生序列数据。任选地,所释放的标签-多磷酸酯也可以用碱性磷酸酶处理以提供游离标签。使用对每个核苷酸碱基来说独特的并且具有特异性的四种不同标签,可以测定模板DNA或RNA的序列。
提供了携带用于合成经修饰的核苷酸(其为聚合酶反应中的有效底物)的不同数目的磷酸酯基或标签的核苷酸。使用纳米孔检测所释放的连接标签的多磷酸酯以测定用于设计和修饰核苷酸从而获得独特的阻隔信号的条件。
还提供了携带连接在核苷酸碱基部分和/或糖部分的2'-OH/3'-OH处的连接基团-标签的核苷酸,其用于DNA聚合酶反应以产生连接基团-标签标记的单碱基DNA延伸产物。这些核苷酸是常用的DNA/RNA聚合酶的良好底物。连接在延伸的DNA产物处的连接基团-标签通过化学或光化学手段裂解,从而产生准备用于使用经修饰的核苷酸进行进一步延伸的引物。所释放的连接基团-标签穿过纳米孔,并且基于在大小、形状和标签上的电荷方面的差异加以鉴别,从而产生序列数据。
如本文所公开,这些分子工具有助于在单碱基分辨率下使用纳米孔的单分子测序。
此处公开了对纳米孔方法的数种改进:1)以实现构成核酸分子的四种碱基(A、C、G和T)的精确和明显的辨别;2)以增强并区分检测信号的强度;3)以开发辨别和处理所产生的电子阻隔信号的有效方法;4)以控制核酸通过孔的易位速率,如减慢标签的移动以提高碱基到碱基辨别的能力;以及5)以设计并制造新的并且更有效的合成纳米孔以用于区分DNA中的四种不同核苷酸。
图2中示出了四种核苷酸的结构。A和G是嘌呤,而C和T是嘧啶。A和G的总体分子大小极其相似,而C和T的大小相似。纳米孔已展示了能够将嘌呤与嘧啶区分开来[阿克松等人1999和麦勒等人2000],而不能将个别嘌呤A与G或个别嘧啶C与T区分开来。
先前研究已展示了核苷-5'-三磷酸酯的修饰,包括引入更多磷酸酯基以产生四磷酸酯、五磷酸酯或六磷酸酯,将染料直接引入末端磷酸酯,或在末端磷酸酯与染料之间连接连接基团[库马尔(Kumar)等人,2006和2008]。四磷酸酯和五磷酸酯是更好的DNA聚合酶底物,并且已经开发了染料标记的六磷酸核苷酸[库马尔等人2005;苏德(Sood)等人2005;艾德(Eid)等人2009]。
本文公开了核苷酸类似物,其被设计成通过在末端磷酸酯部分处的核苷酸修饰来增强每个核苷酸的辨别。合成了核苷-5'-多磷酸酯,并且将不同标签(如不同长度/质量的聚(乙二醇)(PEG)、氨基酸、碳水化合物、寡核苷酸、染料或有机/无机分子)连接到末端磷酸酯基上。在聚合酶延伸反应之后,产生连接标签的多磷酸酯部分(图3),并且在连接标签的多磷酸酯部分穿过纳米孔时产生了对每个碱基具有特异性的不同信号。这些修饰放大了通过纳米孔辨别碱基,这归因于在四种核苷酸(A、G、C和T)之间所释放的加标签的多磷酸酯单元的大小、质量或电荷差异的增大。
通过纳米孔的DNA易位速率因所释放的连接标签的多磷酸酯的庞大性而降低,不过通过纳米孔的标签的易位速率不需要降低,只要标签可以被区分即可。因此,碱基到碱基测序所需要的准确性和可靠性变得可实现。优化纳米孔测序中的其它分析参数,如聚核苷酸的浓度、所施加电压的量值、溶液的温度和pH值,以获得最精确和可靠的结果用于DNA链的检测和分析。
测序的单分子方法允许获得用于基因研究的单体型的可能性并且允许mRNA的直接测序。在用于对DNA或RNA分子的序列进行解码的潜在单分子方法中使用生物或合成纳米孔作为个别DNA碱基的检测器。
现有的边合成边测序(SBS)方法使用了可裂解的荧光核苷酸可逆终止子(CF-NRT)[郭(Guo)等人2010]。SBS方法是基于在聚合酶反应期间在每个核苷酸加入之后暂停的能力,并且使用了特异性荧光团以在4种碱基当中加以区分。然而,用于单分子测序的SBS的主要限制是对昂贵荧光检测器和快速成像软件的需要。本文所公开的方法和工艺利用了SBS的优势(尤其是其高精确度)与作为离子电流阻抗检测器的纳米孔的速度和灵敏性。
虽然更多的研究已探究穿引DNA通过纳米孔,希望在每个碱基穿过时因其对离子电流的可变影响而区分每个碱基,但这很难实现,都是归因于可以促使其自身对穿过孔的离子和抗衡离子造成影响的周围碱基的传递速度和影响[缇木(Timp)等人2010]。蛋白孔的管腔中的环糊精或其它环形结构的使用有助于提供一种棘轮机构以减缓传送时间[阿斯捷(Astier)等人2006],但在每个碱基通过时完全识别每个碱基以用于测序的能力仍然是一个挑战。使用核酸外切酶以允许一次一个核苷酸横穿孔的替代性策略已实现单碱基辨别[克拉克等人2009]。然而,使用这种方法,在控制核酸外切酶对不同长度的DNA和核苷酸的反应时间和所释放的离子到达孔的速度方面仍然存在困难。
聚合酶反应自身展示了碱基并入的高持续性和稳定速率。实际上,聚合酶反应已用于控制DNA链通过纳米孔的移动以达成直接碱基辨别[本纳(Benner)等人2007,科克罗夫特(Cockroft)等人2008,赫特(Hurt)等人2009]。在聚合酶反应期间,存在焦磷酸酯(PPi)部分的释放。因此,如果针对四种核苷酸中的每一者将不同标签连接到三磷酸酯上的话,那么这些核苷酸可以在其释放并且穿过适当纳米孔时被区分以达成DNA序列测定。这些相对较小的焦磷酸酯类似物、或具有额外带正电荷基团的等效分子可以极其快速地到达孔。核苷酸通过聚合酶并入的速率为约1000个核苷酸/秒,即1毫秒/碱基加入,而通过纳米孔的转运速率为1个分子/微秒。因此,在适当射流技术和工程化的情况下,对于使用我们的方法的对DNA进行测序既不存在移相问题,也不存在解码均聚物链段的困难。已展示了可以通过聚乙二醇对阻隔纳米孔中电流的作用在仅仅因一个或两个碳单元而不同的一系列聚乙二醇当中加以辩别[赖纳(Reiner)等人2010,罗伯特森等人2007],分辨率基本上等同于通过质谱仪获得的分辨率。因此,如下文所描述,将不同长度的PEG链连接到dATP、dCTP、dGTP和dTTP的末端磷酸酯上。当在聚合酶反应期间并入每个核苷酸时,加特异性标签的磷酸酯基被释放到纳米孔中,产生独特的电流阻隔信号,从而指示何种核苷酸被并入。测序的速度极其快速,仅受聚合酶反应的速率所限制。作为对核苷酸加标签的替代性方法,我们还利用了不同的磷酸酯链长(例如三磷酸酯、四磷酸酯和五磷酸酯)。
另外,我们还使用了固态纳米孔,其在对制造的较好控制和制造灵活性方面具有优势,由此确保朝向和通过纳米孔或纳米通道的加标签的多磷酸酯而非核苷酸前体或DNA的快速矢量转运。为了实现此举,结合了两个重要的设计特征。第一,前体(加标签的多磷酸核苷酸)经合成而具有总体中性电荷,而裂解的加标签的磷酸酯具有总体正电荷。通过利用吸引正离子的电流,纳米孔仅需要辩别四种替代性释放的加标签的分子。前体和产物上的有差别的电荷通过将精确平衡磷酸酯数目(带负电荷)的一定数目的赖氨酸或精氨酸(带正电荷)并入标签中来实现。将α-磷酸酯并入生长引物中之后,与所释放的产物中的磷酸酯相比存在再多一个赖氨酸。任选地,碱性磷酸酶可以用于将所有磷酸酯裂解掉以产生具有较强正电荷的PEG标签。第二,为了确保所释放的磷酸酯即刻移动通过最接近的孔,将DNA聚合酶例如通过生物素-抗生蛋白链菌素键联固定到孔的入口上。当DNA链穿引通过聚合酶时,所释放的加标签的产物仅须扩散相同的短距离以到达纳米孔。
同样重要的是认识到生物电子传导机制优于光学方法的优势。对于单分子光学传导技术,在高短噪声水平上来自单一荧光团的信号通常<2500个光子/秒(对应于约为50fA的检测电流水平),需要复杂的光学装置来试图收集所发射的每个光子,使得平台按比例扩大到较高密度很困难。合成反应必须减缓到1Hz以允许用于这些微弱的嘈杂光信号的充分集成时间。光学技术的挑战已开辟了生物电子检测方法的可能性,所述生物电子检测方法具有明显较高的信号水平(通常高过三个数量级),允许使用转换器、检测器和放大器的适当共同设计用于高带宽检测的可能性。针对纳米孔的信号水平可以高达100pA(来自α-溶血素)[卡西亚诺维奇等人1996]、300pA(针对MspA)[德林顿(Derrington)等人2010]和4nA以上(来自固态纳米孔)[瓦努努(Wanunu)等人2010]。
相当大的努力已致力于开发纳米孔技术作为生物电子传导机制[本纳等人2007,迪默等人2002,卡西亚诺维奇等人1996,布兰登(Branton)2008,布兰登等人2008,陈(Chen)2004,格肖(Gershow)等人2007,尼利(Nealy)2007,马蒂夏克(Matysiak)等人2006]。这种电子传感器的两个基本属性赋予其单分子灵敏性。第一属性是孔自身中具有电荷灵敏性的极其局限的(纳米级)几何形状。孔的直径可以是2nm到3nm,并且由于电解质电荷筛选,测量的电流对来自孔的超过几纳米的电荷来源高度不灵敏。第二,纳米孔传感器通过相当缓慢移动的带电荷的生物聚合物对较高迁移率盐离子的邻近浓度的影响提供了增益。然而,纳米孔极其受到生物分子在孔的电荷灵敏区中所耗费的相对较短时间所限制。这个问题通过标签的使用直接得到解决,所述标签可以经优化以产生高信号水平和较长易位事件。同时,这些孔的CMOS共集成用于显著改善噪声限制的带宽以用于纳米孔装置中的检测。固态和生物孔都由这个平台支持。这种固态集成以及相关的微射流技术还独特地能够实现这种设计的按比例放大到使用集成电子器件的大型阵列用于检测。
实例1
I.经修饰的核苷酸的设计和合成
使用多种磷酸酯连接的核苷酸测定加标签的多磷酸酯的庞大性对由纳米孔产生的电子阻隔信号的影响,所述磷酸酯连接的核苷酸具有连接到核苷酸的末端磷酸酯上的不同大小的标签或基团。四种磷酸酯加标签的核苷-5'-多磷酸酯的结构示于图4中。首先,合成一系列的核苷-5'-三磷酸酯、核苷-5'-四磷酸酯、核苷-5'-五磷酸酯和核苷-5'-六磷酸酯。在这些核苷酸中,末端磷酸酯连接有连接基团,通过所述连接基团连接了不同标签,例如增加所释放的多磷酸酯的庞大性或电荷的不同长度和质量的乙二醇或其它分子。这些核苷酸用纳米孔测试以测定连接到末端磷酸酯上的何种标签或庞大基团与不同碱基之间的电子阻隔信号的较显著差异相关联。
1)末端磷酸酯修饰的核苷-多磷酸酯
a.末端磷酸酯加标签的核苷-5'-三磷酸酯
如图5中所示,末端磷酸酯加标签的核苷-5'-三磷酸酯可以通过以下方式合成:使相应的dNTP与DCC/DMF反应得到环状三偏磷酸酯,所述环状三偏磷酸酯可以用适当亲核试剂开环以得到标签或连接基团连接的核苷-5'-三磷酸酯。这种核苷-5'-三磷酸酯可以用于模板-引物延伸反应中,并且所释放的连接标签的焦磷酸酯可以使用纳米孔读取。或者,连接到磷酸酯上的连接基团可以与标签-NHS酯反应,得到替代性的连接标签的核苷-5'-三磷酸酯。
b.末端磷酸酯加标签的核苷-5'-四磷酸酯
为了合成末端磷酸酯加标签的核苷-5'-四磷酸酯,使相应的三磷酸酯首先与含CDI的DMF反应以激活末端磷酸酯基,所述末端磷酸酯基接着与磷酸或标签-单磷酸酯反应,得到四磷酸酯(图6)。四磷酸酯上的末端磷酸酯可以用CDI进一步激活,随后与适当亲核试剂反应,得到连接基团连接的四磷酸酯,其可以进一步用于连接不同质量、长度或体积的标签(如m-dPEG-NHS酯),同样示于图6中。
c.末端磷酸酯加标签的核苷-5'-五磷酸酯和核苷-5'-六磷酸酯
末端磷酸酯加标签的核苷-5'-五磷酸酯和核苷-5'-六磷酸酯的合成遵循如图7中所示的相同原理。其可以从激活的三磷酸酯或四磷酸酯通过与磷酸、焦磷酸酯或连接标签的磷酸酯反应而制备。或者,连接基团可以连接到五磷酸酯或六磷酸酯上,随后与激活的NHS酯反应。
d.寡聚物-标签连接的核苷-多磷酸酯
纳米孔测序的当前方法存在许多问题,如碱基在其穿过纳米孔时的识别以及允许登记核碱基识别的速度或转运速率。DNA以1μs到5μs的速率穿过α-溶血素纳米孔,所述速率过快以致无法记录以用于单分子测序实验。通过多种蛋白工程化策略,包括分子制动器(短的以共价方式连接的寡核苷酸)的使用,已取得了克服这些问题的一些进展[贝利H.(Bayley,H.)2006]。
如本文所公开,短的寡核苷酸可以通过激活的末端磷酸酯与寡核苷酸的3'-OH或5'-OH反应而连接到多磷酸核苷的末端磷酸酯上。或者,寡核苷酸的3'-磷酸酯或5'-磷酸酯可以用CDI或咪唑/DCC激活并且与核苷-5'-多磷酸酯反应。寡聚物连接的磷酸核苷(寡聚物-3'到5'-磷酸酯;寡聚物-5'到5'-磷酸酯)的结构分别示于图8(a)和图8(b)中。
通过穿过纳米孔而监测的聚合酶反应副产物示于图8(c)中。
聚合酶反应副产物通过纳米孔的迁移速率可以通过将不同长度的寡核苷酸连接到不同核苷-5'-多磷酸酯上来控制。举例来说,如果核苷dA连接有1或2个寡聚物-dA单元的话,那么dT可以具有3个寡聚物-dT单元,dC可以具有4个寡聚物-dC单元,并且dG可以具有5个寡聚物-dG单元。用于每个核苷酸的寡聚物的数目的不同组合可以用于控制纳米孔中的转运和滞留时间。
纳米孔中的转运和滞留时间也可以通过向核苷酸中加入不同数目的磷酸酯基来控制。由此,对于每个多磷酸核苷酸,电荷和质量可能不同。
连接基团标签结构的实例
末端磷酸酯或核苷碱基部分上的反应性基团以及可以与所述基团反应的基团的特定实例提供于表1中。可以与其反应的反应性基团可以存在于连接基团上或标签上。
表1
可以通过纳米孔检测的标签随同包括在内,但其决不限于化合物的这些基团。所属领域的技术人员可以改变官能团以找到适合的标签。
标签包括具有一个或一个以上4到8员环的脂肪族、芳香族、芳基、杂芳基化合物,并且可以任选地经以下取代:卤基、羟基、氨基、硝基、烷氧基、氰基、烷基、芳基、杂芳基、酸、醛、叠氮基、烯基、炔基或其它基团。这些标签包括聚乙二醇(PEG)、碳水化合物、氨基酸、肽、荧光染料、荧光发生染料(非荧光的,但在去除保护基之后变成荧光的)、生色染料(无色的,但在去除保护基之后变成有色的)、化学发光化合物、核苷、核苷-单磷酸酯、核苷-二磷酸酯或核苷-多磷酸酯、寡核苷酸、芳基、杂芳基或脂肪族化合物。一些实例在图16中给出。
PEG-磷酸酯标记的核苷酸的结构以及具有不同反应性基团以与官能团反应的可能的PEG的一些实例例示于图17中。
此处提供了可以用于连接到核苷酸的末端磷酸酯或碱基部分上的染料或化合物的一些其它实例。这些化合物决不是可以使用的唯一化合物。这些化合物作为实例列于此处,并且所属领域的技术人员可以容易地找到可以连接到核苷酸上并且通过纳米孔检测的适合的连接基团-标签。
适合的标签的其它实例有:
荧光染料:黄嘌呤染料、氟硼荧染料(Bodipy dye)、花青染料。化学发光化合物:1,2-二氧杂丁烷化合物(马萨诸塞州贝德福德的特洛皮克斯公司(Tropix Inc.,Bedford,MA))。氨基酸和肽:天然存在的或经修饰的氨基酸和其聚合物。碳水化合物:葡萄糖、果糖、半乳糖、甘露糖等。NMP和NDP:核苷-单磷酸酯、核苷-二磷酸酯。经卤素、氰基、硝基、烷基、烯基、炔基、叠氮基或其它这类基团取代的脂肪族或芳香族酸、醇、硫醇。
2)碱基修饰的核苷-5'-三磷酸酯
合成用于DNA边合成边测序(SBS)的多种核苷酸可逆终止子(NRT),其中可裂解的连接基团将荧光染料连接到核苷酸碱基上,并且核苷酸的3'-OH用小型可逆终止基团阻隔[居(Ju)等人2006,郭等人2008和2010]。使用这些NRT,在每个位置处可逆地停止DNA合成。在记录来自并入的碱基的荧光信号之后,将并入的核苷酸的可裂解部分去除并且重复所述循环。
相同类型的核苷酸也可以用于纳米孔DNA测序。如图9(A)中所示,可以合成通过可裂解的连接基团连接的3'-OH处的小型阻隔基和碱基处连接的标签。在聚合酶延伸反应之后,3'-O-阻隔基和来自碱基的标签都被裂解,并且所释放的标签可以用于穿过纳米孔,并且监测阻隔信号。可以使用四种不同标签(例如不同长度和分子量的聚乙二醇(PEG),如图9(A)中所示),四种碱基中的每一者使用一种,由此区分阻隔信号。
或者,不使用3'-O-阻隔基,因为已展示庞大基团或核苷酸碱基可以防止DNA聚合酶一次加入一个以上核苷酸[哈里斯(Harris)等人2008]。如图9(B)中所示,庞大dNMP通过可裂解的连接基团引入。由此,不同dNMP根据原始dNTP通过连接基团引入。举例来说,在dTTP核苷酸的情况下,引入dTMP(针对dATP,引入dAMP;针对dGTP,引入dGMP;以及针对dCTP,引入dCMP)。在聚合酶并入并且用TCEP裂解之后,产生经修饰的dNMP,其穿过纳米孔通道并且通过适当方法检测。
3)2'-OH或3'-OH修饰的核苷-5'-三磷酸酯
可以进行所有四种3'-修饰的核苷-5'-三磷酸酯的合成[郭等人2008,李(Li)等人2003,塞欧(Seo)等人2004]。3'-O-2-硝基苯甲基和3'-O-叠氮基甲基连接的dNTP(分别为图10A和图10B)是DNA聚合酶的良好底物。在测序反应中通过DNA/RNA聚合酶并入之后,这些3'-O-加标签的核苷酸在单碱基延伸之后由于3'-OH处的阻隔基而使合成终止。进一步延伸只有在来自3'-O位置的阻隔基裂解之后才有可能。3'-O-2-硝基苯甲基可以通过用TCEP处理由UV光以及2'-O-叠氮基甲基有效地裂解,从而产生游离的OH基团以用于进一步延伸。从反应裂解的产物(图10C或图10D)通过穿过纳米孔并且记录信号而针对电子阻隔进行监测。合成四种不同的经取代的被硝基苯甲基保护的dNTP和四种不同的经叠氮基甲基取代的dNTP(DNA的四种碱基中的每一者使用一种)。
II.使用经修饰的核苷酸的DNA延伸
1)磷酸酯加标签的核苷酸
在聚合酶反应中使用以上描述的末端磷酸酯加标签的多磷酸核苷以产生延伸产物。如图11中所示,在聚合酶反应之后,获得磷酸酯加标签的核苷酸的释放的副产物标签-多磷酸酯,并且延伸的DNA不含任何修饰。接着,所释放的标签-多磷酸酯通过单通道记录技术用于工程化的纳米孔中以供测序分析。所释放的标签-多磷酸酯也可以用碱性磷酸酶处理,得到也可以被检测的游离标签。使用针对四种核苷酸(A、T、G和C)的四种不同标签以产生因质量、电荷或体积而不同的四种不同的加标签的多磷酸酯,可以测定DNA的序列。
2)具有可裂解的连接基团的碱基加标签的核苷酸
合成用于DNA边合成边测序(SBS)和单分子测序的碱基加标签的三磷酸核苷酸[郭等人2008和2010]。嘧啶(C和T)的5位以及7-脱氮嘌呤(G和A)的7位处的大型庞大基团的加入可以在DNA聚合酶反应中阻断一个以上核苷酸的加入。合成可裂解的连接基团、庞大基团和不同电荷连接到核苷酸碱基上的经修饰的核苷酸。经修饰的核苷酸还可以在核苷酸的3'-OH处具有小型阻隔基。这些经修饰的核苷酸用于聚合酶延伸反应。如图12中所示,在用适当核苷酸延伸之后,来自核苷酸碱基和来自糖3'-O的连接基团和标签如果被阻隔的话,那么就通过化学或光化学手段裂解,并且所释放的连接基团-标签通过单通道记录技术用于工程化的纳米孔中以供测序分析。
3)具有可裂解的连接基团的2'-或3'-加标签的核苷酸
连接基团和标签也可以连接到核苷酸的2'-OH或3'-OH上。在聚合酶延伸反应之后,连接基团-标签通过化学、光化学或酶促反应从延伸的产物裂解,从而释放游离的3'-OH以用于进一步延伸。如图13中所示,所释放的连接基团-标签接着通过单通道记录技术用于工程化的纳米孔中以供测序分析。
III.使用纳米孔的DNA测序研究
遵循图11到图13中所示的策略,评估使用纳米孔的DNA测序中的不同核苷酸的辨别。为了验证纳米孔区分DNA中四种不同连接基团-标签的能力,进行如图14中所示的一系列实验。可以使DNA/RNA聚合酶结合到纳米孔上,并且将待测序的模板与引物一起加入。DNA模板或引物也可以固定在纳米孔的顶部上,然后在加入DNA聚合酶之后形成模板-引物复合物。向此模板-引物复合物中同时或依序加入四种不同加标签的核苷酸。在聚合酶催化正确核苷酸并入之后,所加入的核苷酸释放连接标签的多磷酸酯(在末端磷酸酯标记的核苷酸的情况下),所述连接标签的多磷酸酯接着穿过纳米孔以产生待记录的电信号并且用于鉴别所加入的碱基。任选地,所释放的标签-多磷酸酯也可以用碱性磷酸酶处理,得到也可以通过穿过纳米孔来检测的游离标签。每个标签因在大小、质量或电荷方面的差异而产生不同的电子阻隔信号。在碱基修饰的或2'/3'修饰的核苷酸的情况下,在DNA/RNA聚合酶延伸之后,来自延伸的引物的标签通过化学、光化学或酶促手段裂解,并且监测所释放的标签的电子信号。标签的形状、大小、质量、电荷或其它性质可以根据要求作调整。
如本文所公开,区分并表征来自每个核苷酸的信号(图15)和不同身份的核苷酸之间的转变。分析事件图上的阻隔信号的幅度和持续时间并且与已知图作比较。由此,在DNA的构筑嵌段的这些合理的化学设计和修饰的情况下,优化纳米孔的使用以在单分子水平上以单碱基分辨率解译DNA序列。
为了实施这种新颖的策略以用于DNA测序,可以在平坦表面上构筑纳米孔阵列以进行如图18中所示的大规模平行DNA测序。纳米孔的阵列也可以构筑在硅芯片或其它这类表面上。纳米孔可以用脂质双层或其它这类层从蛋白来构筑(α-溶血素孔、耻垢分枝杆菌孔蛋白A(Mycobacterium smegnatis porin A,MspA))[德林顿等人2010],或其可以是在氮化硅、氧化硅或金属氧化物中制造的合成固态纳米孔[斯托姆(Storm)等人2005;瓦努努等人2008]或固态孔与α-溶血素之间的杂合体[霍尔(Hall)等人2010]。
图18示出了用于大规模平行DNA边合成边测序的纳米孔阵列的示意图。纳米孔可以在每一DNA/RNA聚合酶催化的核苷酸加入副产物(连接到磷酸酯或碱基和/或糖部分的2'-OH、3'-OH上的标签)穿过纳米孔时感测到所述副产物。不同标签的电性质将基于其在纳米孔中的阻隔性质来区分碱基。图18中所示的纳米孔的阵列可以各自读取相同序列或不同序列。增加每个序列的读取次数将使得所得序列数据的质量较好。
实例2
I.合成PEG标记的脱氧鸟苷-5'-四磷酸酯(dG4P-PEG):
根据图19合成PEG标记的脱氧鸟苷-5'-四磷酸酯(dG4P-PEG)。首先,使2'-三磷酸脱氧鸟苷(dGTP)与含CDI的DMF反应以激活末端磷酸酯基,所述末端磷酸酯基接着与磷酸二丁基铵反应,得到四磷酸酯。这种四磷酸酯上的末端磷酸酯用含EDAC的0.1M咪唑缓冲液进一步激活,随后与二氨基庚烷反应,得到氨基连接的四磷酸酯,其进一步与mPEG-NHS酯反应,得到所需的四种PEG-dG4P。在聚合酶并入之后,所释放的PEG上的净电荷是-3(PEG-NH-三磷酸酯)。
II.单碱基延伸反应中经修饰的核苷酸的测试
dG4P-PEG通过MALDI-TOF质谱法表征,如表II中所示。
dG4P-PEG是引物延伸中DNA聚合酶的极佳底物。DNA延伸产物的MALDI-TOF质谱示于图20中。
实例3-用于标记核苷酸的Peg的通过纳米孔的单分子检测
聚(乙二醇)是一种非电解质聚合物,其微弱地结合阳离子(例如其在Kd为约2M下结合K+离子)。因此,聚合物上的净电荷视可移动的阳离子浓度和以化学方式与其连接的其它部分的存在而定。已展示单一α-溶血素纳米孔可以容易地以优于单体分辨率(即,优于44g/mol)区分不同大小的PEG聚合物[赖纳等人2010;罗伯特森等人2007]。可以作出所述水平的辨别,因为聚合物因体积排斥(孔导电率随聚合物大小增加而降低)以及通过结合可移动的阳离子(其否则将自由流动通过孔)而降低孔的导电率[赖纳等人2010]。此外,聚合物在孔中的滞留时间对聚合物的电荷高度灵敏,其对于PEG来说,与聚合物长度成比例增大。纳米孔应能够区分以化学方式连接到其它部分上的不同大小的PEG。用于标记核苷酸的PEG(PEG 16、24、37和49)在纳米孔上测试,并且在单分子水平上产生独特的电子阻隔信号,如图21中所示。
为了研究不同加标签的多磷酸酯的庞大性对纳米孔中产生的电子阻隔信号的影响,合成具有连接到核苷酸的末端磷酸酯上的不同大小的聚乙二醇(PEG)标签的多种磷酸酯连接的核苷酸。首先,如图4中所示,我们合成了具有通过连接基团连接的末端磷酸酯的一系列的核苷-5'-三磷酸酯、核苷-5'-四磷酸酯和核苷-5'-五磷酸酯,不同标签(例如增加所释放的多磷酸酯的分子大小或改变其电荷的不同长度和质量的PEG或其它分子)可以连接到所述连接基团上。我们接着在与通过纳米孔检测相结合的聚合酶反应中测试这些核苷酸,从而查看何种连接到末端磷酸酯上的标签或庞大基团在不同碱基中在电子阻隔信号方面产生较明显的差异。
I.筛选并选择具有独特纳米孔阻隔信号的4种PEG标签
近来,已展示当聚乙二醇(PEG)分子进入单一α-溶血素孔时,其引发独特的质量依赖性导电率状态与特有的平均滞留时间[罗伯特森等人2007]。图22A示出了基于导电率的质谱明确地解析了乙二醇的重复单元,并且滞留时间随PEG的质量增加。
I.a针对纳米孔阻隔信号测试PEG
选择不同长度和分子量的PEG(可购自量子生物设计有限公司(Quanta BiodesignLtd)或其它供应商),并且监测纳米孔阻隔信号,如实例2中所描述。如图22A中所示,通过纳米孔明确地区分28到48个乙二醇单元的PEG。因此,将展示极其独特的纳米孔阻隔信号的具有广泛范围的乙二醇单元的PEG选为用来标记核苷酸A、C、G和T的标签。实例示于图22B中。也评估作为标签的分支PEG,因为这些PEG可以按较直接的方式用正电荷修饰。一些线性和分支PEG的结构展示在图22的下图。
I.b在I.a中选择的磷酸酯标记的PEG的设计和合成
在纳米孔测序中,纳米孔中的电流阻隔信号由在聚合酶反应期间所释放PEG-磷酸酯产生。因此,我们设计并合成了具有带正电荷的连接基团的磷酸酯标记的PEG,并且用有机(例如α-溶血素)和合成(固相)纳米孔测试这些分子以评估其电流阻隔信号。将所选择的PEG转化成其三磷酸酯,如图23中所示。举例来说,经Fmoc保护的氨基-丁醇可以通过在一锅式反应中首先与氯化氧磷反应,随后与焦磷酸三丁基铵反应而转化成相应的三磷酸酯。在纯化后,三磷酸酯用DCC/DMF或CDI/DMF激活,得到激活的三磷酸酯,所述激活的三磷酸酯与PEG的OH基团反应,产生PEG-三磷酸酯。相同的流程适用于线性PEG以及分支PEG。在纳米孔中测试这些PEG磷酸酯以优化用于产生独特的电流阻隔信号的条件。
聚氨基酸(聚赖氨酸、聚精氨酸、间杂的聚赖氨酸)连接基团通过标准肽合成策略合成;如果嵌有连接多磷酸酯链的酯鍵的话,那么使用碱性磷酸酶将其裂解应该是可能的,从而产生较强正性标签以用于纳米孔询问。正电荷还可以并入PEG链中。
I.c末端磷酸酯加标签的核苷-5'-三磷酸酯的文库的设计和合成
设计并合成末端磷酸酯加标签的核苷-5'-三磷酸酯、核苷-5'-四磷酸酯和核苷-5'-五磷酸酯。在聚合酶反应中测试这些分子,并且选择最佳的一种用于纳米孔检测。具有多种标签(包括小型或大型聚赖氨酸、氨基酸、多种带负电荷或带正电荷的染料(如能量转移染料)和乙二醇单元)的末端磷酸酯加标签的核苷-5'-三磷酸酯、核苷-5'-四磷酸酯和核苷-5'-五磷酸酯已展示被DNA聚合酶接受作为用于引物延伸的极佳底物[库马尔等人2006和2008;苏德等人2005;和艾德等人2009]。
I.c.1末端磷酸酯加标签的核苷-5'-三磷酸酯的设计和合成
如图24中所示,末端磷酸酯加标签的核苷-5'-三磷酸酯通过以下方式合成:使相应的dNTP与DCC/DMF反应,得到环状三偏磷酸酯,所述环状三偏磷酸酯可以用亲核试剂开环以产生标签或连接基团连接的核苷-5'-三磷酸酯。此外,连接到磷酸酯上的连接基团可以与PEG-NHS酯反应,得到替代性的PEG连接的核苷-5'-三磷酸酯。所得末端磷酸酯加标签的核苷-5'-三磷酸酯用于模板-引物延伸反应中,并且检测所释放的连接标签的焦磷酸酯,并且通过其特定纳米孔电流阻隔参数加以区分。
I.c.2末端磷酸酯加标签的核苷-5'-四磷酸酯的设计和合成
为了合成末端磷酸酯加标签的核苷-5'-四磷酸酯,使相应的三磷酸酯首先与含CDI的DMF反应以激活末端磷酸酯基,所述末端磷酸酯基接着与磷酸或标签-单磷酸酯反应,得到四磷酸酯,如图25中所示。四磷酸酯上的末端磷酸酯可以用含EDAC的0.1M咪唑缓冲液进一步激活,随后与适当亲核试剂反应,得到连接基团连接的四磷酸酯,所述连接基团连接的四磷酸酯可以用于连接不同质量、长度或电荷的标签(如m-PEG-NHS酯)。在这种情况下,使用四种三甲基赖氨酸来中和四种磷酸酯的电荷。在聚合酶并入之后,所释放的PEG上的净电荷是+1或(如果用碱性磷酸酶处理的话)+4,其可以通过纳米孔检测。
I.c.3末端磷酸酯加标签的核苷-5'-五磷酸酯的设计和合成
末端磷酸酯加标签的核苷-5'-五磷酸酯的合成遵循如图26中所示的相同原理。其可以通过与磷酸、焦磷酸酯或连接标签的磷酸酯反应而从激活的三磷酸酯或四磷酸酯制备。或者,连接基团可以连接到五磷酸酯上,随后与激活的NHS酯反应。
以上描述的末端磷酸酯加标签的多磷酸核苷用于聚合酶反应中以产生延伸产物。遵循图11中所示的流程,评估末端磷酸酯加标签的多磷酸核苷在聚合酶延伸中的表现。我们首先进行单碱基延伸反应,并且通过MALDI-TOF质谱法表征DNA延伸产物以评估并入效率。在确立优化的反应条件之后,我们将模板固定在磁性珠粒上并且重复单碱基延伸反应,此后,从溶液中分离所释放的多磷酸酯-标签以用于使用单一纳米孔检测。连续进行这种反应以评估所有4种核苷酸(A、C、G和T),并且通过纳米孔检测其相应所释放的标签。与多磷酸酯-标签核苷酸的连续聚合酶反应以及所释放的多磷酸酯-标签通过纳米孔的明确区分确立了所述方法的可行性。
如图11中所示,在聚合酶反应之后,获得磷酸酯加标签的核苷酸(标签-多磷酸酯)的释放的副产物,并且延伸的DNA链不含任何修饰。这是有利的,因为生长的DNA链上残留的任何疤(scar)可能都会影响其在增加核苷酸加入的情况下由聚合酶识别的能力,最终终止进一步DNA合成。在纳米孔中分析所释放的连接标签的多磷酸酯以评估测序灵敏性和准确性。在最初的实验中,我们针对标签的阻隔信号测试标签,随后运作SBS反应。如果针对四种核苷酸使用不同标签以产生因质量、电荷或体积而不同的四种不同的加标签的多磷酸酯并且产生4种独特的阻隔信号的话,那么就可以测定DNA序列。
II.通过蛋白纳米孔检测所释放的加标签的磷酸酯
在核苷酸/核糖部分已通过DNA聚合酶反应裂解之后,我们使用单一α-溶血素纳米孔来检测连接到通过多重磷酸酯连接基团连接的核苷酸上的PEG和相同聚合物。四种不同DNA碱基中的每一者连接到具有独特长度的PEG聚合物上。由此,鉴别通过聚合酶从PEG中去除的每个碱基。因为未反应的核苷酸无法与所释放的加标签的多磷酸酯分离,尤其在实时情形下,所以我们运用所述方法对分子电荷的极端灵敏性来区分所释放的反应产物与起始物质。我们使用圆锥形玻璃支撑物测量单一α-溶血素导电率[怀特(White)等人,2006和2007],所述圆锥形玻璃支撑物允许在100kHZ和约4pA RMS噪声下收集数据。我们测量了加标签的核苷酸和加标签的产物在广泛范围的跨膜电位内的阻隔深度和滞留时间分布,从而测定用于核苷酸辨别的最佳条件,并且将我们对PEG-纳米孔相互作用的当前理论理解[罗伯特森等人2007]扩展到具有固定电荷的分子。表征和理论理解允许清楚鉴别通过聚合酶并入聚核苷酸中的核苷酸。由此,在DNA的构筑嵌段的这些合理的化学设计和修饰的情况下,我们优化了纳米孔的使用以在单分子水平上以单碱基分辨率在蛋白或合成纳米孔中解译DNA。
实例4-用于单分子测序的单一固态纳米孔的制造
从蛋白纳米孔到固态纳米孔的转变使得高密度纳米孔阵列的制造(获得高通量单分子电子DNA测序仪的一个关键步骤)成为可能。此处,开发了集成的单一固态纳米孔平台以基于从蛋白纳米孔得到的知识来表征聚合酶反应中加标签的核苷酸。
集成的纳米孔平台
我们开发了专用的集成的低噪声CMOS电子器件,所述电子器件在与固态纳米孔集成时,传达出优于采用外部电生理学放大器(如Axopatch 200B)的“标准”测量技术的明显性能优势。这些优势来自在定制集成放大器设计中利用电容性(而非电阻性)反馈。在DC伺服回路中用低噪声电流源操作来去除DC电流(其为这种生物电子介面和其它生物电子介面的特征)。与共集成相关的降低的放大器输入电容和降低的寄生电容改进了在高频率下的噪声性能,对于固态孔来说能够实现接近1MHz的带宽。所述高时间分辨率在与所开发的标签组合时将提供用于调整这个平台的高灵活性以达成高灵敏性和实时性能。
这种集成CMOS的纳米孔(CNP)的使用在双芯片或单芯片配置中集成了电路,如图27中所示。在前一种情况下,孔与CNP包装在一起,如图27B中所示。在后一种情况下,孔用射流技术在芯片的任一侧上直接制造于CNP中,如图27C中所示。在两种情况下,连接放大器的输入电路的顺式电极直接集成在CNP的表面上。单芯片配置具有可易于规模放大到多路平台的优势,以额外的制造复杂性为代价。工艺后制造CMOS小片(其在一侧上不大于5mm)的能力是在近五年内确立的一种独特的能力[黄(Huang)等人2011,雷(Lei)等人2008和莱文(Levine)等人2009]。这种方法完全利用了现有铸造工艺流程而不需要开发新的工艺。
单芯片制造方法通过调适标准固态纳米孔制造技术来进行[罗森斯坦等人2011]。在为传感器所保留的芯片块区域,所有金属都已经被阻隔,留下交替的玻璃填充和氮化硅覆盖层的厚堆叠。大部分的电介质堆叠使用电感耦合的CHF3等离子体蚀刻。使PECVD Si3N4蚀刻掩模沉积在芯片块的背面并且图案化之后,使用各向异性的氢氧化钾蚀刻剂制造硅衬底中的局部开口。接着,使用在缓冲氢氟酸中的短暂浸渍将氮化硅的单一50nm层以悬浮膜的形式从原始电介质堆叠中分离。最后,用高分辨率透射电子显微镜通过这些氮化物膜钻出纳米孔。
这个系统的测量噪声与针对Axopatch 200B的可比的配置的基线噪声的测量值一起示于图28A中。对于由Axopatch(B=100kHz)支持的最高带宽,与Axopatch的9pARMS相比,集成放大器具有3.2pARMS的噪底。在针对集成放大器表征的最高带宽(B=1MHz)下,与通过将Axopatch反应外推超过其支持的范围而模拟的247pARMS对比,噪声水平是27pARMS(噪声降低约十倍)。作为一个比较点,对于1nA信号,在1μs中仅有约6250个离子通过孔转运。集成放大器的21pAVRMS的输入参考噪声水平允许在这种时间间隔下少到150个离子的分辨率。
同样重要的是注意到,这种优异的电气性能用集成放大器获得,所述集成放大器与安装在机架上的Axopatch放大器相比占用CMOS芯片上仅0.2mm2的面积,展示出创新电子器件的重要性。当纳米孔连接到放大器输入电路时,1/f噪声和膜电容的引入使噪声谱升高超过开放头场基线。图28b示出了在这种情况下的典型噪声谱,分别展示了对于100kHz和1MHz带宽的仅10pARMS和163pARMS的噪底。在针对相同纳米孔至多100kHz的Axopatch的情况下展示了所测量的比较结果。在100kHz下,针对CNP的输入参考噪声功率存在超过两倍的减小。如果Axopatch可以在较高带宽下测量的话,那么在1MHz下将存在六倍噪声功率差异。
这个平台也允许生物纳米孔的集成,提供了甚至更多的灵活性。生物纳米孔在脂膜(通常是1,2-二油酰基-sn-甘油基3-磷酸胆碱(DOPC))中形成,所述脂膜在两个流体单元之间的特富龙(teflon)膜中的孔洞内形成。表面必须对膜具有足够的亲水性以从单层囊泡形成。监测单元的两个腔室之间的导电率,同时将膜蛋白加入所述单元中的一者中,一旦检测到并入即将其冲洗。用于制造纳米孔的膜也可以用作脂质双层的固体支撑物,其中将较大的孔洞钻进膜中,在所述膜内形成脂质双层[克拉克等人2009;本纳等人,2007;霍(Hou)等人,2009;和王(Wang)等人2011]。平坦双层脂膜(BLM)已用具有纳米图案化孔洞(直径约100nm)的图案化的固体支撑物上的不同蛋白通道工程化,以及通过自组装单层组件将其直接栓系在金上[阿克塞尔罗德(Axelrod)等人,1976,布耳特曼(Bultmann)等人1991,杜塔(Dutta)等人2010,詹金斯(Jenkins)等人2001,纳姆(Nam)等人2006,裴尔格罗德芒热(Palegrosdemange)等人1991,沈(Shen)等人2009,斯里尼瓦桑(Srinivasan)等人2001,杨(Yang)等人2003,殷(Yin)等人2005]。此外,已展示具有4μm2/s扩散系数的连续BLM在纳米图案化衬底上形成;SAM-金组件上形成的BLM产生了0.8μm2/s的系数。两者都处于代表良好形成的BLM的0.1μm2/s到10μm2/s的理想扩散范围内[阿克塞尔罗德等人1976,布耳特曼等人1991]。这些BLM的电气表征指示了具有1.4GW-mm2电阻的高阻抗膜,使其可用于膜中形成的生物纳米孔的进一步电分析[奥利佛(Oliver)等人1994,史(Shi)等人2000,维尔曼(Wiehelman)1988]。
将聚合酶固定到纳米孔负载表面上
聚合酶的大小为约5nm×5nm。接近每个纳米孔的入口安置一个聚合酶。为了针对固态纳米孔实现此,有必要(1)表面上的独特位置在CMOS制造期间用官能团修饰以结合聚合酶;(2)位点足够小使得只可以结合一个聚合酶分子;(3)其相隔足够远,使得所释放的加标签的多磷酸酯扩散到邻近通道几乎不可能;以及(4)交联剂足够柔韧使得酶在功能上是完整的。聚合酶栓系通过在孵育期间借助于适当浓度的聚合酶溶液组合图案化的连接点来实现,使得连接至多一个酶分子。
用于聚合酶的适当栓系点的建立通过利用用于固态纳米孔的现有制造方法来实现。通常,为了使传导信号达到最大,这些孔通过使用电子束光刻法使支持的Si3N4膜变薄而形成,从而界定一个窗口,所述窗口随后用等离子体蚀刻剂(例如SF6)薄化。接着,在薄化的区域中使用电子束切除术钻出纳米孔。由这个窗口形成的阱(图29)形成了栓系聚合酶的天然场所,保证了紧密接近于纳米孔入口。在蚀刻薄化的窗口之前,原始膜可以用连接材料的包埋外延层扩大。一旦窗口被蚀刻,这个膜即可以变成用于聚合酶连接的选择性侧壁区。连接材料包括二氧化硅或金。然而,在二氧化硅的情况下可能存在有限的选择性,因为氧化物也可以在适当条件下形成于氮化硅表面上。
原则上,在二氧化硅表面的情况下,可以使用生物素-抗生蛋白链菌素键联[科尔拉奇(Korlach)等人2008和2010],利用二氧化硅贴片上的生物素标记的PEG分子并且在抗生蛋白链菌素存在下孵育生物素末端标记的聚合酶。表面的其余部分用聚乙烯基磷酸钝化。由于以上所引起的问题,优选的是代替地用经氨基官能化的烷硫醇自组装单层(SAM)修饰金表面[拉芙(Love)等人2005]。这些氨基可以容易地修饰成NHS酯以用于连接聚合酶上的氨基。所述层的厚度和均质性通过椭圆光度法或原子力显微镜来测定。
具有带正电荷的连接基团的5'经修饰的核苷酸的开发
产生一种系统,其用于使所释放的标签朝向孔快速扩散,而前体核苷酸和DNA被孔排斥。将加标签的核苷酸工程化以便在并入DNA之后,从核苷释放的标签具有累积的正电荷,而完整标签-核苷酸保持中性。如果根据已知方法[瓦努努等人2007]使通道带负电荷的话,那么这就允许积极地门控所释放的标签特异性地通过检测通道。由于除标签以外,存在于反应混合物(引物、未反应的核苷酸、模板)中的所有其它自由分子都带负电荷,故只有携带正电荷的所释放的标签被吸引到通道中,增加了检测的特异性并且减小了噪声。视特定核苷酸碱基而定,在不同标签上可以使用不同数目的带电荷的基团。因此,标签的累积电荷以及其大小可以用于碱基辨别。在标签并入和释放之后,如果多磷酸酯被认为遮蔽正电荷的话,那么其可以使用二级反应(例如,固定在孔中的第二下游位点处的碱性磷酸酶)去除。带正电荷的标签可以门控到带负电荷的通道中以用于检测和识别。
扩散和漂移
这个测序系统的一个关键方面在于邻近纳米孔对每个核苷酸的释放的标签的可靠和适时的捕获。条件必须经工程化以使得标签快速并且以正确的顺序被捕获。另外,应使未并入的标签的捕获率降到最低,并且来自邻近通道的干扰应可忽略。在孔的入口处产生阱(如图29中所示)促进此过程,这也取决于聚合酶与纳米孔开口的紧密接近程度。纳米孔捕获过程的分析一般被视为围绕孔的径向对称过程。几何形状决定在电场不存在的情况下,分子倾向于扩散离孔较远,从而对抗静电吸引。在电压梯度的情况下,存在临界距离L,在所述临界距离处,因扩散和电泳引起的分子运动是同等的[格肖等人2007]。这个临界距离是离子电流(I)和电解质导电率(σ)以及分析物分子的扩散常数(D)和迁移率(μ)的函数捕获是一个统计学过程,但在距离L处捕获约50%的分子。对于较短距离,这种可能性增加,并且对于d<L/3超过90%。在这个过程中,分子通常在约的时段内被捕获。通过将聚合酶置放在纳米孔的L/3内,几乎所有分子都被捕获。也确保了t捕获与聚合酶并入速率相比明显较快,从而以正确的顺序捕获碱基。
25个单元的PEG分子在水中的扩散系数的近似值是D=3e-10m2/s[岛田(Shimada)等人2005],其与相似长度的ssDNA片段处于相同数量级[恩科杜(Nkodo)等人2001]。假设能斯脱-爱因斯坦关系(Nernst-Einstein relation)的有效性(尽管这个关系对于聚合物并不总是保持正确),可以估算随扩散常数和净电荷(Q)而变的迁移率接着,针对这些估算值,在I=5nA下在1MKC1中--参见下表。
+1e +4e
50%捕获 2.1nm 5.8nm
90%捕获 0.7nm 1.9nm
t捕获 7.1ns 114ns
实例5-制造固态纳米孔的阵列
除了改进的性能以外,只有在集成电子器件的情况下,才有可能制造大规模平行纳米孔阵列。这涉及到图27C中所示的单芯片拓扑,其中纳米孔用射流技术在芯片的任一侧上直接集成到CMOS芯片块中。用于集成多个孔的方法也示于图27C中。在这种情况下,SU-8光刻胶的阱用于使个别纳米孔彼此分离。这是一种与罗思伯格等人2011的方法类似的方法。然而,在罗思伯格等人中,所述阱仍然可以通过芯片上方的溶液贮器保持“连接”。在本发明的情况下,由于电绝缘在顺式贮器之间是必需的,故PDMS封盖用来密封阱以用于在试剂引入之后进行测量,如图27C中所示。将64个固态纳米孔集成在相同的5mm×5mm芯片块上。当前集成放大器设计(其将必须在每个孔位点处重复)仅有250μm×150μm,但必须留下额外的空间以用于制造孔本身。由于制造技术经过进一步发展以减小芯片面积,这可以容易地规模放大到16×16个电极的阵列。
实例6-使用磷酸酯加标签的核苷酸和纳米孔检测的焦磷酸测序
焦磷酸测序是边合成边测序(SBS)方法,其依赖于检测在核苷酸在聚合酶反应中并入生长的DNA链时所释放的焦磷酸酯[罗纳吉(Ronaghi)等人1988]。在这个方法中,四种dNTP中的每一者与酶混合液、底物以及常用的聚合酶反应组分依序加入。如果所加入的核苷酸与模板上第一个可获得的碱基互补的话,那么所述核苷酸将被并入并且将释放焦磷酸酯。通过酶级联,所释放的焦磷酸酯转化成ATP,然后通过萤火虫萤光素酶转变成可见光信号。另一方面,如果所加入的核苷酸不被并入的话,那么将不产生光,并且所述核苷酸将仅仅通过腺苷三磷酸双磷酸酶(apyrase)降解。焦磷酸测序已成功地应用于单一核苷酸多态性(SNP)检测和DNA测序。开发了一种商业测序平台,其在个别微珠粒上组合了焦磷酸测序和DNA模板扩增以达成高通量DNA测序[马古利斯(Margulies)等人2005]。然而,在焦磷酸测序中,对于在模板的均聚区域(例如一串连续的数个T)中测定并入的核苷酸数目方面存在固有的困难。除此之外,焦磷酸测序的其它方面仍然需要改进。举例来说,四种核苷酸中的每一者必须被分别地加入和检测。未降解的核苷酸和其它组分的累积也可能会降低所述方法在对长DNA模板进行测序时的准确性。
这是一种经修改的焦磷酸测序方法,其依赖于检测在聚合酶反应期间所释放的标签或标签-磷酸酯。在这个方法中,磷酸酯加标签的核苷酸用于模板-引物复合物上聚合酶催化的反应中。在加标签的核苷酸并入时,磷酸酯-标签部分被释放,其可以通过穿过纳米孔而检测。每个核苷酸上可以使用相同标签,或者可以使用不同分子量和长度的标签(如PEG)。已展示不同长度和质量的聚乙二醇(PEG)可以在穿过溶血素纳米孔时以单分子灵敏性解析[罗伯特森等人2009]。
α-溶血素通道可以用于在单分子水平上检测核酸[卡西亚诺维奇等人1996]。所述单体多肽在脂质双层中自组装以形成七聚孔,其具有1.5nm直径的限制孔。在离子盐水溶液中,当将适当电压施加在膜两端时,由α-溶血素通道形成的孔传导强大并且稳定的离子电流。纳米孔的限制孔允许线性单链而非双链核酸分子(直径约2.0nm)穿过。聚阴离子核酸由所施加的电场驱动通过所述孔,这阻隔或减小了离子电流。此通过产生了独特的电子信号。由此,将获得特定事件图(其为易位时间相对于阻隔电流的曲线),并且其用于区分通过单通道记录技术基于图中的特征参数(如易位电流、易位持续时间和其相应的离差)来区分聚核苷酸的长度和组成。已展示在纳米孔中产生独特的电流阻隔信号的四种PEG标签经选择与四种核苷酸(A、C、G、T)在末端磷酸酯处偶合。这些新颖核苷酸类似物用于聚合酶反应,并且使用纳米孔检测所释放的标签以对所并入的碱基进行解码,如图14中所示。
这个方法存在几个优势:
1)避免使用许多不同的酶(节省成本并且降低复杂性)。
2)依序加入单一连接标签的多磷酸核苷或具有连接到每个核苷酸上的不同标签的所有四种核苷酸。
3)使用PEG作为标签,其可以通过纳米孔以单一单元分辨率检测。
4)当标签穿过纳米孔时进行实时单分子检测测序。
5)大规模平行测序、低成本和高通量。
如图14中所示,DNA聚合酶被固定到纳米孔上,并且将模板-引物与PEG加标签的核苷酸一起加入。在并入正确的PEG加标签的核苷酸时,所释放的PEG-磷酸酯穿过纳米孔并且测量电子阻隔信号。不同长度的PEG具有不同阻隔信号,因此,4种不同的PEG可以用于4种不同核苷酸。
核苷酸可以一次加入一个,如果加入正确核苷酸的话,那么其给出独特的阻隔信号。然而,如果核苷酸与模板核酸碱基不互补的话,那么其不会被并入并且因此检测不到信号。可以按大规模平行方式构筑进行所述生化过程的微米/纳米阱的高密度阵列。每个微米/纳米阱容纳不同DNA模板和纳米孔装置。所释放的PEG以单分子灵敏性检测。
合成标签标记的核苷-5'-多磷酸酯的一般方法示于图30中。末端磷酸酯标记的核苷-5'-三磷酸酯、核苷-5'-四磷酸酯、核苷-5'-五磷酸酯或核苷-5'-六磷酸酯可以由相应的核苷-5'-三磷酸酯(NTP)起始来合成。因此,三磷酸酯首先用DCC/DMF激活,其可以与标签-亲核试剂直接反应,得到连接标签的NTP,或者其可以与连接基团亲核试剂反应,标签-NHS或适当激活的标签可以与所述连接基团亲核试剂反应,得到标签-连接基团连接的NTP。为了合成连接标签的四磷酸核苷(N4P)或五磷酸核苷(N5P),所激活的三磷酸酯首先分别与磷酸或焦磷酸酯反应,得到四磷酸酯和五磷酸酯,所述四磷酸酯和五磷酸酯可以与连接基团亲核试剂反应,随后与适当激活的标签反应。
上文在实例2和实例3中论述了PEG标记的核苷酸的合成。PEG标记的核苷酸基于三磷酸酯、四磷酸酯、五磷酸酯或六磷酸酯的使用具有-3、-4、-5或-6电荷。在聚合酶催化的引物延伸反应之后,所释放的PEG-标签上的净电荷与起始PEG-核苷酸相比将少一个(-1),这足以通过纳米孔离子阻隔信号加以区分(未反应的PEG-核苷酸与所释放的PEG-磷酸酯相比也更庞大,因此离子阻隔信号不同)。或者,如果碱性磷酸酶存在于反应混合物中的话,那么所释放的PEG将是中性的(游离磷酸酯基通过碱性磷酸酶水解)。所释放的PEG-标签也可以带正电荷,如下文所示,以使其可以通过纳米孔容易地检测。类似地,其也可以带高度负电荷。
带正电荷的连接标签的核苷-多磷酸酯的合成:
带正电荷的连接标签的核苷-多磷酸酯如图25中所示而合成。首先,使带正电荷的三甲基-(赖氨酸)n-甘氨酸氨基酸(K[(Me)3]n-Gly)与PEG-NHS酯反应,然后被激活,形成PEG-K[(Me)3]n-Gly-NHS酯。这种激活的酯与氨基封端的核苷-多磷酸酯反应,如图19和图25中所示。核苷-四磷酸酯上的净电荷是中性的,但在聚合酶并入之后,所释放的PEG具有+1正电荷,并且如果向反应混合液中加入碱性磷酸酶的话,那么所释放的PEG上的净电荷是+4。因此,所释放的标签可以通过穿过纳米孔而容易地分离和鉴别。
用于使用纳米孔检测进行边合成边测序的3'阻隔的PEG连接的核苷-多磷酸酯的合成
除了起始核苷-5'-三磷酸酯是3'-O-阻隔的dNTP以外,3'阻隔的核苷-多磷酸酯的合成基本上遵循与针对连接标签的核苷-多磷酸酯所展示相同的途径。如图31中所示,3'-O-叠氮基甲基-dNTP(6)首先与CDI或DCC/DMF反应,随后与磷酸(四磷酸酯)或焦磷酸酯(五磷酸酯)反应。这种物质在纯化后与适当亲核试剂反应,得到氨基封端的磷酸酯,所述氨基封端的磷酸酯接着与适当PEG-NHS酯(中性、带正电荷或带负电荷)反应,得到所需的3'-O-阻隔的PEG连接的核苷-多磷酸酯。
使用PEG-核苷酸和纳米孔检测的测序流程(DNA分子的许多拷贝被固定在珠粒上并且一次依序加入一个PEG-核苷酸)
如图32中所示,DNA分子被固定在珠粒上。因此,每个珠粒具有相同DNA分子的许多拷贝。将珠粒加入连接到纳米孔上的微米/纳米阱中。DNA与DNA聚合酶形成复合物,所述DNA聚合酶连接到纳米孔上或与PEG连接的核苷酸一起加入微米/纳米阱中。核苷酸可以一次加入一个,如果加入正确核苷酸的话,那么其被并入并且释放PEG-标签,所述PEG-标签在穿过纳米孔时给出独特的阻隔信号。然而,如果核苷酸与模板核酸碱基不互补的话,那么其不会被并入并且因此检测不到信号。在这种情况下,可以在所有四种核苷酸上使用相同长度和分子量的PEG,或必要时,也可以使用四种不同PEG。因此,核酸碱基的加入可以通过纳米孔阻隔信号以单分子灵敏性容易地检测。
使用3'-O-阻隔的PEG-核苷酸和纳米孔检测进行边合成边测序(DNA分子的许多拷贝被固定在珠粒上并且同时加入所有四种3'-O-阻隔的PEG-核苷酸)
DNA的均聚区域可以使用这个方法正确测序。因此,如果核苷酸的3'-OH基团由可逆部分阻隔的话,那么在加入仅一个核苷酸之后DNA合成将停止。所述合成可以在去除阻隔基从而产生游离的3'-OH基团之后继续。如图33中所示,所有四种不同大小的PEG连接的3'-O-叠氮基甲基-核苷酸可以加入反应微米/纳米阱中,并且每当正确的核苷酸被并入时,所释放的PEG-标签通过穿过纳米孔而被读取并且检测离子信号。因为3'-OH基团被阻隔,所以一次仅加入一个核苷酸。3'-O-阻隔的基团可以通过TECP处理而裂解,并且由此游离的OH基团准备用于进一步核苷酸并入。通过重复进行核苷酸加入和裂解,均聚区域可以正确并且容易地测序。
使用纳米孔的大规模平行焦磷酸测序:
如图34中所示,可以按大规模平行方式构筑进行所述生化过程的微米阱的高密度阵列。每个微米/纳米阱容纳不同DNA模板和纳米孔装置。所释放的PEG以单分子灵敏性检测。
实验的概述:
1)在聚合酶并入之后可以通过纳米孔检测的连接到核苷酸的末端磷酸酯上的不同大小、长度、分子量、电荷的任何标签。
2)连接到三磷酸酯、四磷酸酯、五磷酸酯、六磷酸酯上的标签。
3)电子检测。
4)连接到珠粒或固体表面上的DNA分子的基团和单分子检测灵敏性(高密度和高灵敏性)。
5)通过使用连接标签的3'-O-阻隔的核苷酸而容易测序的均聚区域。
6)每个循环加入一个标签-核苷酸。
7)共同加入所有四种可逆加标签的核苷酸以对均聚区域进行测序。
8)高灵敏性、准确性和速度。
9)大规模平行测序。
参考文献:
1.阿克松M.(Akeson,M.),布兰登D.(Branton,D.),卡西亚诺维奇J.J.(Kasianowicz,J.J.),布兰丁E.(Brandin,E.)和迪默D.W.(Deamer,D.W.)单一RNA分子内的聚胞苷酸与聚腺苷酸区段之间的微秒时间级辨别(Microsecond time-scalediscrimination between polycytidylic acid and polyadenylic acid segmentswithin single RNA molecules).生物物理学杂志(Biophys.J.)1999,77,3227-3233。
2.阿克萨缅托夫A.(Aksimentiev,A.)等人,DNA通过合成纳米孔易位的微观动力学(Microscopic Kinetics of DNA Translocation through Synthetic Nanopores).生物物理学杂志(Biophysical Journal)200487,2086-2097。
3.阿斯捷Y.(Astier,Y.),布拉哈O.(Braha,O.)和贝利H.(Bayley,H.)关于单分子DNA测序:通过使用装备有分子接头的工程化蛋白纳米孔来直接鉴别5'-单磷酸核糖核苷和5'-单磷酸脱氧核糖核苷(Toward single molecule DNA sequencing:directidentification of ribonucleoside and deoxyribonucleoside 5'-monophosphates byusing an engineered protein nanopore equipped with a molecular adapter).美国化学会志(JAm Chem Soc)128,1705-10(2006)。
4.阿克塞尔罗德D.(Axelrod,D.),科佩尔D.E.(Koppel,D.E.),施莱辛格J.(Schlessinger,J.),艾尔森E.(Elson,E.)和韦布W.W.(Webb,W.W.)通过荧光漂白恢复动力学的分析的迁移率测量(Mobility measurement by analysis of fluorescencephotobleaching recovery kinetics).生物物理学杂志16,1055-1069(1976)。
5.贝利H.测序DNA单分子(Sequencing single molecules of DNA).化学生物学新见(Curr.Opinion Chem Biol.)2006,10,628-637。
6.本纳S.(Benner,S.)等人使用纳米孔实时序列特异性检测个别DNA聚合酶复合物(Sequence-specific detection of individual DNA polymerase complexes in realtime using a nanopore).自然·纳米技术(Nat Nanotechnol)2,718-24(2007)。
7.别兹鲁科夫S.M.(Bezrukov,S.M.)和卡西亚诺维奇J.J.丙甲菌素和α-溶血素的纳米孔中的中性聚合物(Neutral polymers in the nanopore of alamethicin and alphα-hemolysin).生物化学膜(Biologicheskie Membrany)2001,18,453-457。
8.博哈里S.H.(Bokhari,S.H.)和索尔J.R.(Sauer,J.R.),用于用纳米孔进行DNA测序的平行图形分解算法(A Parallel Graph Decomposition Algorithm for DNASequencing with Nanopores).生物信息学(Bioinformatics)200521(7),889-896。
9.布兰登D.纳米孔测序(Nanopore sequencing).自然·生物技术(Nat.Biotechnol.)26,1146-1153(2008)。
10.布兰登D.等人纳米孔测序的潜力和挑战(The potential and challenges ofnanopore sequencing).自然·生物技术26,1146-53(2008)。
11.布耳特曼T.(Bultmann,T.),瓦斯W.L.(Vaz,W.L.),麦罗E.C.(Melo,E.C.),西斯克R.B.(Sisk,R.B.)和汤普森T.E.(Thompson,T.E.)低共熔的两组分两相磷脂酰胆碱双层中的流体相连接性和翻译扩散(Fluid-phase connectivity and translationaldiffusion in a eutectic,two-component,two-phase phosphatidylcholine bilayer).生物化学(Biochemistry)30,5573-9(1991)。
12.钱德勒E.L.(Chandler,E.L.),史密斯A.L.(Smith,A.L.),伯登L.M.(Burden,L.M.),卡西亚诺维奇和伯登D.L.(Burden,D.L.)由同时单分子光学和同时电记录揭露的穿引DNA的纳米孔的膜表面动力学(Membrane Surface Dynamics ofDNA-ThreadedNanopores Revealed by Simultaneous Single-Molecule Optical and EnsembleElectrical Recording).兰茂尔(Langmuir)2004,20,898-905。
13.陈P.(Chen,P.)使用制造的纳米孔探查单一DNA分子转运(Probing singleDNA molecule transport using fabricated nanopores).纳米快报(Nano Lett.)4,2293-2298(2004)。
14.克拉克J.(Clarke,J.),吴H.(Wu,H.),贾亚辛哈L.(Jayasinghe,L.),帕特尔A.(Patel,A.),里德S.(Reid,S.)和贝利H.用于单分子纳米孔DNA测序的连续碱基鉴别(Continuous base identification for single-molecule nanopore DNA sequencing).自然·生物技术(Nat.Biotech.)2009,1-6。
15.科克罗夫特S.L.(Cockroft,S.L.),朱J.(Chu,J.),阿莫林M.(Amorin,M.)和加迪里M.R.(Ghadiri,M.R.)一种单分子纳米孔装置以单核苷酸分辨率检测DNA聚合酶活性(Asingle-molecule nanopore device detects DNA polymerase activity with single-nucleotide resolution).美国化学会志130,818-20(2008)。
16.迪默D.W.和布兰登D.通过纳米孔分析的核酸的表征(Characterization ofnucleic acids by nanopore analysis).化学研究述评(Acc.Chem.Res.)2002,35(10),817-825。
17.迪默D.W.结合到核酸外切酶和聚合酶的核酸的纳米孔分析(NanoporeAnalysis of Nucleic Acids Bound to Exonucleases and Polymerases),生物物理学年鉴(Annual Review ofBiophysics),第39卷:79-90(卷出版日期2010年6月)。
18.德林顿I.M.(Derrington I.M.)等人使用MspA的纳米孔DNA测序(NanoporeDNA sequencing with MspA).美国国家科学院院刊(Proc Natl Acad Sci U SA)107,16060-5(2010)。
19.杜塔D.(Dutta,D.),普尔西弗A.(Pulsipher,A.)和尤萨夫M.N.(Yousaf,M.N.)配体和蛋白对微流体图案化电活性流体脂质双层列阵的选择性栓系(SelectiveTethering of Ligands and Proteins to a Microfluidically PatternedElectroactive Fluid Lipid Bilayer Array).兰茂尔26,9835-9841(2010)。
20.艾德J.(Eid,J.),费尔A.(Fehr,A.),戈瑞J.(Gray,J.),隆K.(Luong,K.),莱尔J.(Lyle,J.),奥图G.(Otto,G.)等人从单一聚合酶分子的实时DNA测序(Real-time DNAsequencing from single polymerase molecules).科学(Science)2009,323,133-138。
21.福洛吉D.(Fologea,D.)等人,减缓固态纳米孔中的DNA易位(Slowing DNATranslocation in a Solid State Nanopore).纳米快报(Nano Letters)20055(9),1734-1737。
22.福洛吉D.等人,用固态纳米孔检测单链DNA(Detecting Single Stranded DNAwith a Solid State Nanopore).纳米快报20055(10),1905-1909。
23.高劳伊S.(Garaj,S.)等人作为亚纳米反式电极膜的石墨烯(Graphene as asubnanometre trans-electrode membrane).自然(Nature)467,190-3(2010)。
24.格肖M.(Gershow,M.)和戈洛夫琴科J.A.(Golovchenko,J.A.)用固态纳米孔重俘获和捕获单分子(Recapturing and trapping single molecules with a solid statenanopore).自然·纳米技术2,775-779(2007)。
25.郭J(Guo,J);徐N.(Xu,N.),李Z.(Li,Z.),张S.(Zhang,S.);吴J.(Wu,J.),金D.H.(Kim,D.H.),马尔玛M.S.(Marma,M.S.),孟Q.(Meng,Q.),曹H.(Cao,H.),李X.(Li,X.),史S.(Shi,S.),于L.(Yu,L.),卡拉奇科夫S.(Kalachikov,S.),拉索J.J.(Russo,J.J.),图罗N.J.(Turro,N.J.),居J.(Ju,J.).使用3'-O-修饰的核苷酸可逆终止子和可按化学方式裂解的荧光双脱氧核苷酸的四色DNA测序(Four-color DNA sequencing with 3'-O-modified nucleotide reversible terminators and chemically cleavablefluorescent dideoxynucleotides).美国国家科学院院刊2008,105(27),9145-9150。
26.郭J.,于L.,图罗N.J.和居J.用于使用新颖核苷酸类似物的DNA边合成边测序的综合系统(An integrated system for DNA sequencing by synthesis using novelnucleotide analogues).化学研究述评(Accounts of Chemical Research)2010,43(4),551-563。
27.霍尔A.R.(Hall,A.R.)等人通过α-溶血素定向插入固态纳米孔中而形成杂化孔(Hybrid pore formation by directed insertion of alpha-haemolysin intosolid-state nanopores).自然·纳米技术5,874-7(2010)。
28.哈里斯T.D.(Harris,T.D.),布兹比P.J.(Buzby,P.J.)等人一种病毒基因组的单分子DNA测序(Single-molecule DNA sequencing of a viral genome).科学2008,320,106-109。
29.希利K.(Healy,K.)基于纳米孔的单分子DNA分析(Nanopore-based single-molecule DNA analysis).纳米医学(伦敦)(Nanomedicine(Lond))2,459-81(2007)。
30.恒J.B.(Heng,J.B.)等人,在合成纳米孔中使用电场拉伸DNA(Stretching DNAUsing the Electric Field in a Synthetic Nanopore).纳米快报20055(10),1883-1888。
31.恒J.B.(Heng,J.B.)等人,合成纳米孔中DNA的电机学(The Electromechanicsof DNA in a synthetic Nanopore).生物物理学杂志2006,90,1098-1106。
32.亨里克森S.E.(Henrickson,S.E.),米萨基安M.(Misakian,M.),罗伯特森B.(Robertson,B.)和卡西亚诺维奇J.J.驱动纳米级孔中的不对称DNA转运(Drivenasymmetric DNA transport in a nanometer-scale pore).物理评论快报(PhysicalReview Letters)2000,85,3057-3060。
33.霍X.(Hou,X.)等人一种仿生钾响应性纳米通道:合成纳米孔中的G-四元DNA构象转换(biomimetic potassium responsive nanochannel:G-quadruplex DNAconformational switching in a synthetic nanopore).美国化学会志131,7800-5(2009)。
34.黄T.C.(Huang,T.C.)等人通过时间分辨荧光检测使用集成CMOS微阵列的基因表达分析(Gene expression analysis with an integrated CMOS microarray by time-resolved fluorescence detection).生物传感器与生物电子学(Biosens Bioelectron)26,2660-5(2011)。
35.赫特N.(Hurt,N.),王H.(Wang,H.),阿克松M.和利伯曼K.R.(Lieberman,K.R.)对纳米孔上捕获的个别DNA聚合酶复合物的特异性核苷酸结合和重结合(Specificnucleotide binding and rebinding to individual DNA polymerase complexescaptured on a nanopore).美国化学会志131,3772-8(2009)。
36.詹金斯A.T.A.(Jenkins,A.T.A.),诺依曼T.(Neumann,T.)和奥芬豪泽A.(Offenhausser,A.)微图案化的自组装单层上的脂质囊泡吸附的表面等离子体显微镜测量(Surface plasmon microscopy measurements of lipid vesicle adsorption on amicropatterned self-assembled monolayer).兰茂尔17,265-267(2001)。
37.居J.,金D.H.,毕L.(Bi,L.),孟Q.,毕X.(Bi,X.),李Z.,李X.,马尔玛M.S.,顺地S.(Shundi,S.),吴J.,爱德华J.R.(Edwards,J.R.),罗穆A.(Romu,A.)和图罗N.J.使用可裂解的荧光核苷酸可逆终止子的四色DNA边合成边测序(Four-color DNA sequencing bysynthesis using cleavable fluorescent nucleotide reversible terminators).美国国家科学院院刊2006,103(52),19635-19640。
38.卡西亚诺维奇J.J.,布兰丁E.,布兰登D.和迪默D.W.使用膜通道的个别聚核苷酸分子的表征(Characterization of individual polynucleotide molecules using amembrane channel).美国国家科学院院刊1996,93,13770-13773。
39.卡西亚诺维奇J.J.纳米级孔:用于DNA表征和分析物检测的潜在应用(Nanometer-scale pores:potential applications for DNA characterization andanalyte detection)疾病标志物(Disease Markers)2003,18,185-191。
40.卡西亚诺维奇J.J.纳米孔.用DNA穿丝(Nanopore.Flossing with DNA).自然·材料(Nature Materials)2004,3,355-356。
41.科尔拉奇J.(Korlach,J.)等人用于零模式波导纳米结构中的单一DNA聚合酶分子的靶向固定的选择性铝钝化(Selective aluminum passivation for targetedimmobilization of single DNA polymerase molecules in zero-mode waveguidenanostructures).美国国家科学院院刊105,1176-81(2008)。
42.科尔拉奇J.等人从单一聚合酶分子的实时DNA测序.酶学方法(MethodsEnzymol)472,431-55(2010)。
43.库马尔S(Kumar,S)和苏德A.(Sood,A.)标记的多磷酸核苷(LabeledNucleoside Polyphosphates).美国专利2006,7,041,812。
44.库马尔S.,麦克杜格尔M.(McDougall,M.),苏德A.,纳尔逊J.(Nelson,J.),福勒C.(Fuller,C.),麦克林J.(Macklin,J.)和米齐斯P.(Mitsis,P.)具有新连接基团的末端磷酸酯标记的核苷酸(Terminal-Phosphate-Labeled Nucleotides with New Linkers).美国专利2008,7,393,640。
45.库马尔S.,苏德A.,韦格纳J.(Wegener,J.),芬P.(Finn,P.),楠帕利S.(Nampalli,S.),纳尔逊J.,谢卡尔A.(Sekher,A.),米齐斯P.,麦克林J.和福勒C.W.(Fuller,C.W.)末端磷酸酯标记的核苷酸:合成、应用和连接基团对通过DNA聚合酶并入的影响(Terminal Phosphate Labeled Nucleotides:Synthesis,Applications and Linkereffect on incorporation by DNA Polymerases).核苷、核苷酸和核酸(Nucleosides,Nucleotides&Nucleic Acids)(2005)24(5-7),401-408。
46.李S.E.(Lee S.E.),西多罗夫A.(Sidorov A.),古兰T.(Gourlain T.),米涅N.(Mignet N.),索普S.J.(Thorpe S.J.),布瑞兹尔J.A.(Brazier J.A.),迪克曼M.J.(Dickman M.J.),霍恩比D.P.(Hornby D.P.),格拉斯比J.A.(Grasby,J.A.)和威廉D.M.(Williams,D.M.)增强核酸的催化性的所有组成部分:连接基团长度和刚性的系统性研究(Enhancing the catalytic repertoire of nucleic acids:a systematic study oflinker length and rigidity).核酸研究(Nucleic Acids Research)2001,29(7),1565-1573。
47.雷N.(Lei,N.),沃森B.O.(Watson,B.O.),麦克莱恩J.N.(MacLean,J.N.),尤斯特R.(Yuste,R.)和谢巴德K.L.(Shepard,K.L.)用于急性脑切片的细胞外神经刺激的256×56CMOS微电极阵列(A 256-by-56CMOS Microelectrode Array for ExtracellularNeural Stimulation ofAcute Brain Slices).固态电路会议(Solid-State CircuitsConference),2008.ISSCC 2008.技术论文文摘(Digest of Technical Papers).IEEE国际会议(IEEE International)148-603(2008)。
48.莱文P.M.(Levine,P.M.),龚P.(Gong,P.),莱维茨基R.(Levicky,R.)和谢巴德K.L.使用具有集成传感器电子器件的活性互补金属-氧化物-半导体生物传感器阵列的实时多路电化学DNA检测(Real-time,multiplexed electrochemical DNA detection usingan active complementary metal-oxide-semiconductor biosensor array withintegrated sensor electronics).生物传感器与生物电子学24,1995-2001(2009)。
49.李Z.,白X.(Bai,X.),鲁帕瑞尔H.(Ruparel,H.),金S.(Kim,S.),图罗N.J.和居J.用于DNA测序和分析的光可裂解的荧光核苷酸(A photocleavable fluorescentnucleotide for DNA sequencing and analysis).美国国家科学院院刊2003,100,414-419。
50.拉芙J.C.(Love,J.C.),叶斯特罗夫L.A.(Estroff,L.A.),克里布尔J.K.(Kriebel,J.K.),努佐R.G.(Nuzzo,R.G.)和怀特赛德G.M.(Whitesides,G.M.)作为纳米技术形式的金属上的硫醇盐的自组装单层(Self-assembled monolayers ofthiolates onmetals as a form of nanotechnology).化学评论(Chem Rev)105,1103-69(2005)。
51.马古利斯M.(Margulies,M.)等人开放微制造的高密度皮升反应器中的基因组测序(Genome Sequencing in Open Microfabricated High Density PicoliterReactors).自然437:376-380(2005)。
52.马泰J.(Mathe,J.)等人,个别发夹分子的纳米孔解链(Nanopore Unzippingof Individual Hairpin Molecules).生物物理学杂志200487,3205-3212。
53.马蒂夏克S.(Matysiak,S.),蒙泰西A.(Montesi,A.),帕斯夸利M.(Pasquali,M.),卡洛姆斯基A.B.(Kolomeisky,A.B.)和克莱门蒂C.(Clementi,C.)聚合物通过纳米孔易位的动力学:理论符合实验(Dynamics of polymer translocation throughnanopores:theory meets experiment).物理评论快报96,118103(2006)。
54.麦克纳利B.(McNally,B.)等人用于使用纳米孔阵列的单分子DNA测序的转化DNA核苷酸的光学识别(Optical recognition of converted DNA nucleotides forsingle-molecule DNA sequencing using nanopore arrays).纳米快报10,2237-44(2010)。
55.麦勒A.(Meller,A.),尼冯L.(Nivon,L.),布兰丁E.,戈洛夫琴科J.和布兰登D.单聚核苷酸分子之间的快速纳米孔辨别(Rapid nanopore discrimination betweensingle polynucleotide molecules).美国国家科学院院刊2000,97,1079-1084。
56.麦勒A.等人,通过纳米孔的DNA转运的单分子测量(Single MoleculeMeasurements ofDNA Transport Through a Nanopore).电泳(Electrophoresis)200223,2583-2591。
57.莫臣特C.A.(Merchant,C.A.)等人通过石墨烯纳米孔的DNA易位(DNAtranslocation through graphene nanopores).纳米快报10,2915-21(2010)。
58.纳姆J.M.(Nam,J.M.),奈尔P.M.(Nair,P.M.),莱伍R.M.(Neve,R.M.),戈瑞J.W.和格罗夫斯J.T.(Groves,J.T.)用于活细胞分析的基于流体膜的可溶性配体显示系统(A fluid membrane-based soluble ligand-display system for live-cell assays).化学生化(ChemBioChem)7,436-440(2006)。
59.恩科杜A.E.(Nkodo,A.E.)等人DNA分子在自由溶液电泳期间的扩散系数(Diffusion coefficient of DNA molecules during free solutionelectrophoresis).电泳22,2424-2432(2001)。
60.奥利佛A.E.(Oliver,A.E.)和迪默D.W.α-螺旋疏水性多肽形成脂质双层中的质子选择性通道(Alpha-Helical Hydrophobic Polypeptides Form Proton-SelectiveChannels in Lipid Bilayers).生物物理学杂志66,1364-1379(1994)。
61.裴尔格罗德芒热C.(Palegrosdemange,C.),西蒙E.S.(Simon,E.S.),普瑞姆K.L(Prime,K.L.)和怀特赛德G.M.通过化学吸附结构Hs(Ch2)11(Och2ch2)Meta-Oh/金的寡(乙二醇)的衍生物形成自组装单层(Formation of Self-Assembled Monolayers byChemisorption of Derivatives of Oligo(Ethylene Glycol)of Structure Hs(Ch2)11(Och2ch2)Meta-Oh on Gold).美国化学会志(Journal ofthe American ChemicalSociety)113,12-20(1991)。
62.珀金斯T.T.(Perkins,T.T.),魁克S.R.(Quake,S.R.),史密斯D.E.(Smith,D.E.)和朱S.(Chu,S.)通过光学显微术观察的单一DNA分子的弛豫(Relaxation of asingle DNA molecule observed by optical microscopy).科学1994,264,822-826。
63.赖纳J.E.(Reiner,J.E.),卡西亚诺维奇J.J.,纳布洛B.J.(Nablo,B.J.)和罗伯特森J.W.(Robertson,J.W.)使用基于纳米孔的单分子质谱法的聚合物分析的理论(Theory for polymer analysis using nanopore-based single-molecule massspectrometry).美国国家科学院院刊107,12080-5(2010)。
64.里夫M.(Rief,M.),克劳森-绍曼H.(Clausen-Schaumann,H.)和高布H.E.(Gaub,H.E.)单一DNA分子的序列依赖性力学(Sequence-dependent mechanics of singleDNA molecules).自然·结构和分子生物学(Nat.Struct.Biol.)1999,6,346-349。
65.罗伯特森J.W.F.(Robertson,J.W.F.),罗得里格斯C.W.(Rodrigues,C.W.),斯坦福V.M.(Stanford,V.M.),鲁宾松K.A.(Rubinson,K.A.),克拉西尔尼科夫O.V.(Krasilnikov,O.V.)和卡西亚诺维奇J.J.使用单一纳米孔在溶液中进行的单分子质谱法(Single-molecule mass spectrometry in solution using a solitary nanopore).美国国家科学院院刊2007,104,8207-8211。
66.罗纳吉M.(Ronaghi M.),乌伦M.(Uhlen,M.)和奈伦P.(Nyren,P.)一种基于实时焦磷酸酯的测序方法(A sequencing method based on real-time pyrophosphate).科学281,363-365(1998)。
67.罗森斯坦J.(Rosenstein,J.),V.雷(V.Ray),M.杜恩迪克(M.Drndic)和K.L.谢巴德(K.L.Shepard.)用于高带宽DNA分析的与低噪声前置放大器集成的固态纳米孔(Solid-state nanopores integrated with low-noise preamplifiers for high-bandwidth DNA analysis),生命科学系统和应用研讨会(Life Science SystemsandApplications Workshop(LiSSA))2011IEEE/NIH(2011)。
68.罗森斯坦J.,雷V.,杜恩迪克M.和谢巴德K.L.具有芯片上低噪声前置放大器的CMOS中的纳米孔DNA传感器(Nanopore DNA sensors in CMOS with on-chip low-noisepreamplifiers).固态传感器、致动器和微系统会议(转换器)(Solid-State Sensors,Actuators andMicrosystems Conference(TRANSDUCERS)),2011年第16届国际会议(201116th International)874-877(2011)。
69.罗思伯格J.M.(Rothberg,J.M.)等人一种能够实现非光学基因组测序的集成半导体装置(An integrated semiconductor device enabling non-optical genomesequencing).自然475,348-352(2011)。
70.索尔-巴知A.F.(Sauer-Budge,A.F.)等人,纳米孔中双链DNA的解链动力学(Unzipping Kinetics ofDoubel Stranded DNA in a Nanopore).物理评论快报200390(23),238101-1-238101-4。
71.施奈特G.F.(Schneider,G.F.)等人通过石墨烯纳米孔的DNA易位(DNAtranslocation through graphene nanopores).纳米快报10,3163-7(2010)。
72.塞欧T.S.(Seo,T.S.),白X.,鲁帕瑞尔H.,李Z.,图罗N.J.和居J.通过定点偶联化学构筑的芯片上用于DNA测序的光可裂解的荧光核苷酸(Photocleavable fluorescentnucleotides for DNA sequencing on a chip constructed by site-specificcoupling chemistry).美国国家科学院院刊2004,101,5488-5493。
73.萨波瓦洛夫G.(Shapovalov,G.)和莱斯特H.A.(Lester,H.A.)在3微秒分辨率下测量的细菌离子通道中获得转变(Getting transitions in bacterial ion channelsmeasured at 3microseconds resolution).普通生理学杂志(J.Gen.Physiol.)2004,124,151-161。
74.沈K.(Shen,K.),蔡J.(Tsai,J.),史P.(Shi,P.)和凯姆L.C.(Kam,L.C.)用于将细胞-底物界面图案化的自对准的支持的脂质双层(Self-aligned supported lipidbilayers for patterning the cell-substrate interface).美国化学会志131,13204-5(2009)。
75.史H.(Shi,H.)和拉特纳B.D.(Ratner,B.D.)蛋白压印的聚合物表面的模板识别(Template recognition of protein-imprinted polymer surfaces).生物医学材料研究杂志(Journal ofBiomedicalMaterials Research)49,1-11(2000)。
76.岛田K.(Shimada,K.),加藤H.(Kato,H.),西都T.(Saito,T.),松山S.(Matsuyama,S.)和衣笠S.(Kinugasa,S.)使用均一寡聚物的水溶液中的聚(乙二醇)的自扩散系数的精密测量(Precise measurement of the self-diffusion coefficient forpoly(ethylene glycol)in aqueous solution using uniform oligomers).化学物理学杂志(Journal ofChemical Physics)122(2005)。
77.史密斯S.B.(Smith,S.B.),崔Y.(Cui,Y.)和巴斯塔曼特C.(Bustamante,C.)过度拉伸B-DNA:个别双链和单链DNA分子的弹性响应(Overstretching B-DNA:the elasticresponse of individual double-stranded and single-stranded DNA molecules).科学1996,271,795-799。
78.苏德A.,库马尔S.,韦格纳J.,楠帕利S.,纳尔逊J.,麦克林J.和福勒C.W.用于核酸分析的具有改善的底物性质的末端磷酸酯标记的核苷酸(Terminal PhosphateLabeled Nucleotides with improved substrate properties for Nucleic AcidAssays).美国化学会志2005,127(8),2394-2395。
79.斯里尼瓦桑M.P.(Srinivasan,M.P.),拉托T.V.(Ratto,T.V.),斯托雷弗P.(Stroeve,P.)和隆哥M.L.(Longo,M.L.)自组装单层上的图案化的支持的双层:邻近可移动双层的限制(Patterned supported bilayers on self-assembled monolayers:Confinement of adjacent mobile bilayers).兰茂尔17,7951-7954(2001)。
80.斯托姆A.J.(Storm,A.J.)等人通过固态纳米孔的快速DNA易位(Fast DNAtranslocation through a solid-state nanopore).纳米快报5,1193-1197(2005)。
81.缇木W.(Timp,W.)等人纳米孔测序:生命代码的电气测量(NanoporeSequencing:Electrical Measurements ofthe Code ofLife).IEEE会报纳米技术(IEEETrans Nanotechnol)9,281-294(2010)。
82.王H.等人,通过单分子电泳揭露的DNA非均质性和磷酸化(DNA heterogeneityand Phosphorylation unveiled by Single-Molecule Electrophoresis).美国科学院院报(PNAS)2004 101(37),13472-13477。
83.王Y.(Wang,Y.),郑D.(Zheng,D.),谈Q.(Tan,Q.),王M.X.(Wang,M.X.)和谷L.Q.(Gu,L.Q.)肺癌患者中循环微RNA的基于纳米孔的检测(Nanopore-based detectionof circulating microRNAs in lung cancer patients).自然·纳米技术6,668-74(2011)。
84.瓦努努M.(Wanunu,M.)和麦勒A.以化学方式修饰的固态纳米孔(Chemicallymodified solid-state nanopores).纳米快报7,1580-5(2007)。
85.瓦努努M.,萨廷J.(Sutin,J.),麦克纳利B.,周A.(Chow,A.)和麦勒A.通过与固态纳米孔相互作用而控制的DNA易位(DNA translocation governed by interactionswith solid-state nanopores).生物物理学杂志95,4716-25(2008)。
86.瓦努努M.等人使用薄纳米孔传感器的探针特异性微RNA的快速电子检测(Rapid electronic detection of probe-specific microRNAs using thin nanoporesensors).自然·纳米技术5,807-14(2010)。
87.怀特R.J.(White,R.J.)等人分离脂质双层膜和玻璃支撑物的水层的离子导电性(Ionic conductivity of the aqueous layer separating a lipid bilayermembrane and a glass support).兰茂尔22,10777-83(2006)。
88.怀特R.J.(White,R.J.)等人使用玻璃纳米孔膜的单一离子通道记录(Singleion-channel recordings using glass nanopore membranes).美国化学会志129,11766-75(2007)。
89.维尔曼K.(Wiehelman,K.)二喹啉甲酸蛋白分析的研究:负责颜色形成的基团的鉴别(Investigation of the bicinchoninic acid protein assay:identificationof the groups responsible for color formation).分析生物化学(AnalyticalBiochemistry)175(1988)。
90.杨T.L.(Yang,T.L.),巴雷什尼科娃O.K.(Baryshnikova,O.K.),毛H.B.(Mao,H.B.),侯登M.A.(Holden,M.A.)和克里默P.S.(Cremer,P.S.)流体支持的磷脂膜上二价抗体结合的研究:半抗原密度的影响(Investigations of bivalent antibody binding onfluid-supported phospholipid membranes:The effect ofhapten density).美国化学会志125,4779-4784(2003)。
91.殷P.(Yin,P.)栓系的双层膜传感器与小型跨膜肽离子通道-近期发展、未来研究和潜在应用(Tethered Bilayer Membrane Sensors with Small TransmembranePeptide Ion Channels-Recent Developments,Future Research and PotentialApplications),平面脂质双层和脂质体进展(Advances in Planar LipidBilayersandLiposomes),第2卷(奥托瓦-莱曼诺瓦A.(Ottova-Leitmannova,A.)编)49-76(学术出版社(Academic Press),2005)。
92.韦库特W.(Vercoutere,W.),温特-希尔特S.(Winters-Hilt,S.),奥尔森H.(Olsen,H.),迪默D.(Deamer,D.),豪斯勒D.(Haussler,D.)和阿克松M.使用离子通道以单一核苷酸分辨率在个别DNA发夹分子中快速辨别(Rapid discrimination amongindividual DNA hairpin molecules at single-nucleotide resolution using an ionchannel).自然·生物技术2001,19,248-252。
93.韦库特W.A.(Vercoutere,W.A.)等人,在单一DNA发夹分子的末端处在个别沃森-克里克碱基对中辨别(Discrimination Among Individual Watson-Crick Base Pairsat the Terminin of Single DNA Hairpin Molecules).核酸研究(Nucleic AcidsResearch)2003 31(4),1311-1318。

Claims (24)

1.一种化合物,其具有以下结构:
其中标签为聚乙二醇、氨基酸、碳水化合物、单核苷酸、二核苷酸、三核苷酸、四核苷酸、五核苷酸或六核苷酸,其中R1为OH,其中R2为H或OH,其中X为O、NH、S或CH2,其中Z为O、S或BH3,其中碱基为鸟嘌呤、胞嘧啶、胸腺嘧啶、尿嘧啶、7-脱氮嘌呤或5-甲基嘧啶,并且其中n为1、2、3、4或5;
其中如果所述标签是聚乙二醇,所述标签具有如下结构:
其中W为0到100之间的整数,或
所述标签具有如下结构:
其中R为NH2、OH、COOH、CHO、SH或N3,并且W为0到100的整数。
2.具有以下结构的化合物:
其中标签为聚乙二醇、氨基酸、碳水化合物,其中R1为OH,其中R2为H或OH,其中X为O、NH、S或CH2,其中Z为O、S或BH3,其中碱基为腺嘌呤,并且其中n为1、2、3、4或5;
其中如果所述标签是聚乙二醇,所述标签具有如下结构:
其中W为0到100之间的整数,或
所述标签具有如下结构:
其中R为NH2、OH、COOH、CHO、SH或N3,并且W为0到100的整数。
3.根据权利要求1或2所述的化合物,其中R2为H。
4.根据权利要求1或2所述的化合物,其中R2为OH。
5.一种化合物,其具有以下结构:
其中在每个结构中,n独立地为1、2、3或4,并且m独立地为0到100的整数,并且其中当m为0时,dNTP的末端磷酸酯直接键结到所述结构的左手边所示的核苷的3'O原子上,其中R1为-OH或-O-CH2N3,并且R2为H或OH。
6.根据权利要求5所述的化合物,其中m为0到50。
7.根据权利要求5所述的化合物,其中m为0到10。
8.根据权利要求5所述的化合物,其中R1为-OH。
9.根据权利要求5或8所述的化合物,其中R2为-H。
10.根据权利要求5或8所述的化合物,其中R2为-OH。
11.一种化合物,其具有以下结构:
其中m为0到100的整数,并且其中所述化合物包含单一类型的碱基,其中R1为OH,其中R2为H或OH,其中n为1、2、3或4,并且其中碱基为鸟嘌呤、胞嘧啶、尿嘧啶或胸腺嘧啶或通过聚合酶可并入引物中的其中每一者的衍生物。
12.根据权利要求11所述的化合物,其中m为0到50。
13.根据权利要求11所述的化合物,其中m为0到10。
14.根据权利要求11所述的化合物,其具有以下结构:
其中m为0到100的整数。
15.一种化合物,其具有以下结构:
其中碱基为腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶、尿嘧啶、7-脱氮嘌呤或5-甲基嘧啶。
16.一种化合物,其具有以下结构:
其中碱基为腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶、尿嘧啶、7-脱氮嘌呤或5-甲基嘧啶,并且R为经取代或未经取代的烃基,至多3000道尔顿。
17.一种化合物,其具有以下结构:
18.一种化合物,其具有以下结构:
其中碱基为腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶、尿嘧啶、7-脱氮嘌呤或5-甲基嘧啶,并且m为1到50的整数。
19.一种化合物,其具有以下结构:
其中n为1或2,其中R1为OH,-OCH2N3或-O-2-硝基苯甲基,其中R2为H,并且碱基为腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶、尿嘧啶、7-脱氮嘌呤或5-甲基嘧啶。
20.一种化合物,其具有以下结构:
其中R1为-OH或-O-CH2N3,并且R2为H或OH。
21.一种组合物,其包含根据权利要求1或2所述的至少四种多磷酸脱氧核苷酸(dNPP)类似物,其中所述类似物各自包括具有选自以下结构的标签,
其中W为0到100的整数,以及
其中R为NH2、OH、COOH、CHO、SH或N3,并且W为0到100的整数,
其中所述四种dNPP类似物中的每一者包含与其它三种dNPP类似物的碱基类型不同的碱基类型。
22.根据权利要求21所述的组合物,其中所述四种dNPP类似物中的每一者具有聚乙二醇标签,所述聚乙二醇标签与其它三种dNPP类似物中的每一者的聚乙二醇标签的大小不同。
23.根据权利要求1和2中任一权利要求所述的化合物,其中净电荷为中性的。
24.根据权利要求1和2中任一权利要求所述的化合物,其中所述标签具有正电荷。
CN201610894651.9A 2010-12-17 2011-12-16 使用经修饰的核苷酸和纳米孔检测的dna边合成边测序 Pending CN107083421A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201061424480P 2010-12-17 2010-12-17
US61/424,480 2010-12-17
US201161557558P 2011-11-09 2011-11-09
US61/557,558 2011-11-09
CN201180063978.7A CN103282518B (zh) 2010-12-17 2011-12-16 使用经修饰的核苷酸和纳米孔检测的dna边合成边测序

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201180063978.7A Division CN103282518B (zh) 2010-12-17 2011-12-16 使用经修饰的核苷酸和纳米孔检测的dna边合成边测序

Publications (1)

Publication Number Publication Date
CN107083421A true CN107083421A (zh) 2017-08-22

Family

ID=46245403

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201180063978.7A Active CN103282518B (zh) 2010-12-17 2011-12-16 使用经修饰的核苷酸和纳米孔检测的dna边合成边测序
CN201610894651.9A Pending CN107083421A (zh) 2010-12-17 2011-12-16 使用经修饰的核苷酸和纳米孔检测的dna边合成边测序

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201180063978.7A Active CN103282518B (zh) 2010-12-17 2011-12-16 使用经修饰的核苷酸和纳米孔检测的dna边合成边测序

Country Status (5)

Country Link
US (3) US10443096B2 (zh)
EP (1) EP2652153B1 (zh)
CN (2) CN103282518B (zh)
ES (1) ES2641871T3 (zh)
WO (1) WO2012083249A2 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107082792A (zh) * 2012-04-09 2017-08-22 纽约哥伦比亚大学理事会 纳米孔的制备方法和其用途
CN109232693A (zh) * 2018-09-28 2019-01-18 上海交通大学 一种核苷四磷酸的合成方法
CN112218640A (zh) * 2018-03-15 2021-01-12 哥伦比亚大学董事会 核苷酸类似物及其在核酸测序和分析中的用途
CN114502714A (zh) * 2019-07-31 2022-05-13 安序源有限公司 评估靶分子的系统和方法

Families Citing this family (157)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9708358B2 (en) 2000-10-06 2017-07-18 The Trustees Of Columbia University In The City Of New York Massive parallel method for decoding DNA and RNA
JP2004510433A (ja) 2000-10-06 2004-04-08 ザ・トラスティーズ・オブ・コランビア・ユニバーシティー・イン・ザ・シティー・オブ・ニューヨーク Dnaおよびrnaを解読するための大量並行方法
GB0129012D0 (en) 2001-12-04 2002-01-23 Solexa Ltd Labelled nucleotides
US7414116B2 (en) 2002-08-23 2008-08-19 Illumina Cambridge Limited Labelled nucleotides
US11008359B2 (en) 2002-08-23 2021-05-18 Illumina Cambridge Limited Labelled nucleotides
EP2607369B1 (en) 2002-08-23 2015-09-23 Illumina Cambridge Limited Modified nucleotides for polynucleotide sequencing
WO2007002204A2 (en) * 2005-06-21 2007-01-04 The Trustees Of Columbia University In The City Of New York Pyrosequencing methods and related compostions
WO2007053719A2 (en) 2005-10-31 2007-05-10 The Trustees Of Columbia University In The City Of New York Chemically cleavable 3'-o-allyl-dntp-allyl-fluorophore fluorescent nucleotide analogues and related methods
US7982029B2 (en) 2005-10-31 2011-07-19 The Trustees Of Columbia University In The City Of New York Synthesis of four color 3′O-allyl, modified photocleavable fluorescent nucleotides and related methods
WO2007146158A1 (en) 2006-06-07 2007-12-21 The Trustees Of Columbia University In The City Of New York Dna sequencing by nanopore using modified nucleotides
DE112007002932B4 (de) 2006-12-01 2015-08-06 The Trustees Of Columbia University In The City Of New York Vierfarben DNA-Sequenzierung mittels Synthese unter Verwendung von abspaltbaren, reversiblen, fluoreszierenden Nucleotidterminatoren
EP2940029B1 (en) 2007-10-19 2023-11-29 The Trustees of Columbia University in the City of New York Design and synthesis of cleavable fluorescent nucleotides as reversible terminators for dna sequencing by synthesis
EP2725107B1 (en) * 2007-10-19 2018-08-29 The Trustees of Columbia University in the City of New York DNA sequencing with non-fluorescent nucleotide reversible terminators and cleavable label modified ddNTPs and nucleic acid comprising inosine with reversible terminators
US20110229877A1 (en) 2008-07-07 2011-09-22 Oxford Nanopore Technologies Limited Enzyme-pore constructs
WO2010086622A1 (en) 2009-01-30 2010-08-05 Oxford Nanopore Technologies Limited Adaptors for nucleic acid constructs in transmembrane sequencing
US9017937B1 (en) 2009-04-10 2015-04-28 Pacific Biosciences Of California, Inc. Nanopore sequencing using ratiometric impedance
US8986928B2 (en) 2009-04-10 2015-03-24 Pacific Biosciences Of California, Inc. Nanopore sequencing devices and methods
WO2011108540A1 (ja) 2010-03-03 2011-09-09 国立大学法人大阪大学 ヌクレオチドを識別する方法および装置、ならびにポリヌクレオチドのヌクレオチド配列を決定する方法および装置
US8652779B2 (en) 2010-04-09 2014-02-18 Pacific Biosciences Of California, Inc. Nanopore sequencing using charge blockade labels
CA2805247C (en) 2010-07-14 2021-08-10 The Curators Of The University Of Missouri Nanopore-facilitated single molecule detection of nucleic acids
US10443096B2 (en) 2010-12-17 2019-10-15 The Trustees Of Columbia University In The City Of New York DNA sequencing by synthesis using modified nucleotides and nanopore detection
WO2012088341A2 (en) 2010-12-22 2012-06-28 Genia Technologies, Inc. Nanopore-based single dna molecule characterization, identification and isolation using speed bumps
US9624539B2 (en) 2011-05-23 2017-04-18 The Trustees Of Columbia University In The City Of New York DNA sequencing by synthesis using Raman and infrared spectroscopy detection
IN2014DN00221A (zh) 2011-07-25 2015-06-05 Oxford Nanopore Tech Ltd
US20130040827A1 (en) * 2011-08-14 2013-02-14 Stephen C. Macevicz Method and compositions for detecting and sequencing nucleic acids
JP6333179B2 (ja) 2012-01-20 2018-05-30 ジニア テクノロジーズ, インコーポレイテッド ナノポアベースの分子検出および配列決定
EP2861768A4 (en) 2012-06-15 2016-03-02 Genia Technologies Inc CHIP SETUP AND HIGH ACCURACY NUCLEIC ACID SEQUENCING
EP2864502B1 (en) * 2012-06-20 2019-10-23 The Trustees of Columbia University in the City of New York Nucleic acid sequencing by nanopore detection of tag molecules
WO2014013259A1 (en) 2012-07-19 2014-01-23 Oxford Nanopore Technologies Limited Ssb method
EP4290228A3 (en) * 2012-08-03 2024-04-24 University Of Washington Through Its Center For Commercialization Compositions and methods for improving nanopore sequencing
US9605309B2 (en) * 2012-11-09 2017-03-28 Genia Technologies, Inc. Nucleic acid sequencing using tags
WO2014130686A2 (en) * 2013-02-20 2014-08-28 Eve Biomedical, Inc. Methods and compositions for nanostructure-based nucleic acid sequencing
GB201314695D0 (en) 2013-08-16 2013-10-02 Oxford Nanopore Tech Ltd Method
KR102168813B1 (ko) 2013-03-08 2020-10-22 옥스포드 나노포어 테크놀로지즈 리미티드 효소 정지 방법
AU2013382358B2 (en) 2013-03-15 2017-01-12 Illumina Cambridge Limited Modified nucleosides or nucleotides
EP2971118B1 (en) * 2013-03-15 2019-10-02 The Curators of the University of Missouri Encoded nanopore sensor for multiplex nucleic acids detection
US10648026B2 (en) * 2013-03-15 2020-05-12 The Trustees Of Columbia University In The City Of New York Raman cluster tagged molecules for biological imaging
EP2971051A4 (en) * 2013-03-15 2017-03-01 The Trustees of Columbia University in the City of New York Method for detecting multiple predetermined compounds in a sample
ES2896017T3 (es) 2013-08-30 2022-02-23 Univ Washington Through Its Center For Commercialization Modificación selectiva de subunidades de polímeros para mejorar un análisis basado en nanoporos
EP3578987A1 (en) 2013-09-18 2019-12-11 Quantum Biosystems Inc. Biomolecule sequencing devices, systems and methods
JP2015077652A (ja) 2013-10-16 2015-04-23 クオンタムバイオシステムズ株式会社 ナノギャップ電極およびその製造方法
US9567630B2 (en) 2013-10-23 2017-02-14 Genia Technologies, Inc. Methods for forming lipid bilayers on biochips
WO2015061509A1 (en) 2013-10-23 2015-04-30 Genia Technologies, Inc. High speed molecular sensing with nanopores
EP3074551B1 (en) * 2013-11-25 2023-11-22 Northeastern University Freestanding ultra thin membranes and transfer-free fabrication thereof
EP3107865A4 (en) 2014-02-21 2017-10-18 Northeastern University Fluorescence-based analysis of biopolymers using nanopores
GB201403096D0 (en) 2014-02-21 2014-04-09 Oxford Nanopore Tech Ltd Sample preparation method
WO2015148402A1 (en) * 2014-03-24 2015-10-01 The Trustees Of Columbia Univeristy In The City Of New York Chemical methods for producing tagged nucleotides
US10438811B1 (en) 2014-04-15 2019-10-08 Quantum Biosystems Inc. Methods for forming nano-gap electrodes for use in nanosensors
WO2015170782A1 (en) 2014-05-08 2015-11-12 Osaka University Devices, systems and methods for linearization of polymers
CN106795554A (zh) * 2014-05-19 2017-05-31 哥伦比亚大学董事会 使用核苷酸可逆终止子的离子传感器dna和rna合成测序
ES2846746T3 (es) * 2014-06-03 2021-07-29 Illumina Inc Composiciones, sistemas y métodos para detectar acontecimientos usando fijaciones ancladas o adyacentes a nanoporos
ES2912963T3 (es) * 2014-07-31 2022-05-30 Illumina Inc Sensores híbridos de nanoporo
GB201418159D0 (en) 2014-10-14 2014-11-26 Oxford Nanopore Tech Ltd Method
CN107074904B (zh) 2014-10-23 2022-12-23 深圳华大智造科技股份有限公司 信号约束测序(scs)和用于信号约束测序的核苷酸类似物
US10060903B2 (en) * 2014-11-05 2018-08-28 Genia Technologies, Inc. Exporting measurements of nanopore arrays
EP3712261A1 (en) 2015-02-02 2020-09-23 F. Hoffmann-La Roche AG Polymerase variants and uses thereof
EP3274471B1 (en) * 2015-03-23 2020-05-06 The Trustees of Columbia University in the City of New York Polymer tagged nucleotides for single molecule electronic snp assay
CN104910229B (zh) * 2015-04-30 2019-11-12 赛纳生物科技(北京)有限公司 多聚磷酸末端荧光标记核苷酸及其应用
CN104844674B (zh) * 2015-04-30 2019-11-12 赛纳生物科技(北京)有限公司 新型聚合酶底物:荧光可产生多聚磷酸末端标记核苷酸及其应用
US10526588B2 (en) 2015-05-14 2020-01-07 Roche Sequencing Solutions, Inc. Polymerase variants and uses thereof
IL255758B (en) * 2015-06-03 2022-07-01 Illumina Inc Compositions, systems and methods for sequencing polynucleotides using tethers anchored to polymerases attached to nanopores
WO2016206593A1 (zh) * 2015-06-23 2016-12-29 深圳华大基因研究院 微孔电极及分析化学物质的方法
CN105001292A (zh) * 2015-07-14 2015-10-28 深圳市瀚海基因生物科技有限公司 一种光可断裂的荧光标记可逆终端化合物及其在dna或rna测序中的用途
DK3329007T3 (da) 2015-07-30 2021-04-26 Illumina Inc Ortogonal afblokering af nukleotider
EP4303314A3 (en) 2015-09-10 2024-04-17 F. Hoffmann-La Roche AG Polypeptide tagged nucleotides and use thereof in nucleic acid sequencing by nanopore detection
EP3353194B1 (en) 2015-09-22 2023-08-30 F. Hoffmann-La Roche AG Ompg variants
WO2017050723A1 (en) 2015-09-22 2017-03-30 Genia Technologies, Inc. Pol7 polymerase variants
CN108137656A (zh) 2015-09-24 2018-06-08 豪夫迈·罗氏有限公司 α-溶血素变体
CN114989235A (zh) 2015-09-28 2022-09-02 哥伦比亚大学董事会 用作dna合成测序的可逆终止物的基于新的二硫键接头的核苷酸的设计与合成
US20180327828A1 (en) * 2015-11-18 2018-11-15 The Trustees Of Columbia University In The City Of New York Ion sensor dna and rna sequencing by synthesis using nucleotide reversible terminators
CN109071212A (zh) 2016-01-28 2018-12-21 罗斯韦尔生物技术股份有限公司 使用大规模分子电子传感器阵列测量分析物的方法和装置
CN109328301B (zh) 2016-01-28 2021-03-12 罗斯韦尔生物技术股份有限公司 大规模并行dna测序装置
WO2017139493A2 (en) 2016-02-09 2017-08-17 Roswell Biotechnologies, Inc. Electronic label-free dna and genome sequencing
JP6690005B2 (ja) 2016-02-29 2020-04-28 ジェニア・テクノロジーズ・インコーポレイテッド ナノポアシーケンシングのためのポリメラーゼ−鋳型複合体
US10640822B2 (en) 2016-02-29 2020-05-05 Iridia, Inc. Systems and methods for writing, reading, and controlling data stored in a polymer
WO2017148861A1 (en) 2016-02-29 2017-09-08 Genia Technologies, Inc. Exonuclease deficient polymerases
EP3929283A1 (en) 2016-02-29 2021-12-29 Genia Technologies, Inc. Polymerase variants
US10590480B2 (en) 2016-02-29 2020-03-17 Roche Sequencing Solutions, Inc. Polymerase variants
ES2911439T3 (es) 2016-03-24 2022-05-19 Genia Tech Inc Procedimientos y composiciones de bioconjugación específica de sitio útiles para sistemas de nanoporos
EP3436602A1 (en) 2016-03-31 2019-02-06 Genia Technologies, Inc. Nanopore protein conjugates and uses thereof
CN109562376B (zh) * 2016-04-04 2022-03-08 纽约哥伦比亚大学董事会 一种基于荧光能量转移的单分子/集群dna合成测序
EP3458082A4 (en) * 2016-04-04 2020-07-29 The Trustees of Columbia University in the City of New York SYNTHESIS DNA SEQUENCING WITH NUCLEOTID ANALOGUES AND RAMAN DETECTION
US20190100553A1 (en) * 2016-04-12 2019-04-04 The Board Of Trustees Of The Leland Stanford Junior University Direct activity assays and compositions for nucleotide pool sanitizing enzymes
EP3445775A1 (en) 2016-04-21 2019-02-27 H. Hoffnabb-La Roche Ag Alpha-hemolysin variants and uses thereof
EP3449247B1 (en) * 2016-04-27 2021-03-31 Quantum Biosystems Inc. Systems and methods for measurement and sequencing of bio-molecules
WO2017205336A1 (en) 2016-05-23 2017-11-30 The Trustees Of Columbia University In The City Of New York Nucleotide derivatives and methods of use thereof
GB201609220D0 (en) 2016-05-25 2016-07-06 Oxford Nanopore Tech Ltd Method
US10655174B2 (en) * 2016-05-27 2020-05-19 Roche Sequencing Solutions, Inc. Tagged multi-nucleotides useful for nucleic acid sequencing
EP3478706B1 (en) 2016-06-30 2022-02-09 F. Hoffmann-La Roche AG Long lifetime alpha-hemolysin nanopores
KR102526825B1 (ko) * 2016-08-01 2023-04-27 로스웰 바이오테크놀로지스 인코포레이티드 분자 전자 센서용 개질된 뉴클레오티드 트리포스페이트
US10444179B2 (en) 2016-08-10 2019-10-15 Multerra Bio, Inc. Apparatuses and methods for detecting molecules and binding energy
US9816988B1 (en) * 2016-08-10 2017-11-14 Multerra Bio, Inc. Apparatuses and methods for detecting molecules and binding energy
US10669580B2 (en) 2016-08-26 2020-06-02 Roche Sequencing Solutions, Inc. Tagged nucleotides useful for nanopore detection
JP7157048B2 (ja) 2016-09-22 2022-10-19 エフ.ホフマン-ラ ロシュ アーゲー Pol6ポリメラーゼバリアント
WO2018069484A2 (en) 2016-10-13 2018-04-19 F. Hoffmann-La Roche Ag Molecular detection and counting using nanopores
TWI658139B (zh) * 2016-11-01 2019-05-01 體學生物科技股份有限公司 用以提升核苷酸類似物併入之重組dna聚合酶
CA3052062A1 (en) 2017-01-10 2018-07-19 Roswell Biotechnologies, Inc. Methods and systems for dna data storage
CA3052140A1 (en) 2017-01-19 2018-07-26 Roswell Biotechnologies, Inc. Solid state sequencing devices comprising two dimensional layer materials
EP3596099A4 (en) 2017-03-06 2020-12-09 Singular Genomics Systems, Inc. NUCLEIC ACID SYNTHETIC SEQUENCING (SBS) METHODS COMBINING SBS CYCLE STEPS
KR102495650B1 (ko) * 2017-04-12 2023-02-02 에프. 호프만-라 로슈 아게 알데히드 함유 표적 분자의 라벨링 방법
WO2018200687A1 (en) 2017-04-25 2018-11-01 Roswell Biotechnologies, Inc. Enzymatic circuits for molecular sensors
US10508296B2 (en) 2017-04-25 2019-12-17 Roswell Biotechnologies, Inc. Enzymatic circuits for molecular sensors
CN110651182B (zh) 2017-05-09 2022-12-30 罗斯威尔生命技术公司 用于分子传感器的结合探针电路
GB201711219D0 (en) 2017-07-12 2017-08-23 Illumina Cambridge Ltd Short pendant arm linkers for nucleotides in sequencing applications
EP3676389A4 (en) 2017-08-30 2021-06-02 Roswell Biotechnologies, Inc PROCESSIVE ENZYMATIC MOLECULAR ELECTRONIC SENSORS FOR STORING DNA DATA
EP3694990A4 (en) 2017-10-10 2022-06-15 Roswell Biotechnologies, Inc. METHODS, APPARATUS AND SYSTEMS FOR NON-AMPLIFICATION DNA DATA STORAGE
CN110650968B (zh) * 2017-10-11 2022-07-05 深圳华大智造科技股份有限公司 修饰的核苷或核苷酸
TWI827559B (zh) * 2017-10-30 2024-01-01 美商艾瑞迪亞公司 用於寫入、讀出以及控制儲存在聚合物中之數據之系統及方法
JP6868541B2 (ja) * 2017-12-05 2021-05-12 イルミナ ケンブリッジ リミテッド 修飾ヌクレオシドまたは修飾ヌクレオチド
WO2019128691A1 (zh) * 2017-12-28 2019-07-04 深圳华大智造科技有限公司 核苷酸衍生物及其应用
EP3759123A1 (en) 2018-02-28 2021-01-06 F. Hoffmann-La Roche AG Alpha-hemolysin variants and uses thereof
EP3759116A1 (en) 2018-02-28 2021-01-06 F. Hoffmann-La Roche AG Tagged nucleoside compounds useful for nanopore detection
DE102018207098A1 (de) * 2018-05-08 2019-11-14 Robert Bosch Gmbh Mikrofluidische Vorrichtung und Verfahren zur Nanostruktur-Sequenzierung von Nukleotidsträngen
GB201807793D0 (en) 2018-05-14 2018-06-27 Oxford Nanopore Tech Ltd Method
JP2021525095A (ja) 2018-05-28 2021-09-24 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Dna−ポア−ポリメラーゼ複合体の酵素的濃縮
WO2020006421A1 (en) 2018-06-29 2020-01-02 Pacific Biosciences Of California, Inc. Methods and compositions for delivery of molecules and complexes to reaction sites
WO2020002621A2 (en) 2018-06-29 2020-01-02 F. Hoffmann-La Roche Ag Detection of microsatellite instability
CN112714869A (zh) 2018-08-28 2021-04-27 豪夫迈·罗氏有限公司 含钌电极
CN113039191A (zh) * 2018-10-25 2021-06-25 奇异基因组学系统公司 核苷酸类似物
US11493499B1 (en) 2018-10-30 2022-11-08 Seagate Technology Llc Event timing detection for DNA sequencing
US20220002798A1 (en) * 2018-12-07 2022-01-06 Bgi Shenzhen Nanopore sequencing method
CA3124023A1 (en) 2018-12-19 2020-06-25 F. Hoffmann-La Roche Ag 3' protected nucleotides
JP2022516684A (ja) 2019-01-08 2022-03-01 シンギュラー・ゲノミクス・システムズ・インコーポレイテッド ヌクレオチドの開裂可能なリンカーおよびその使用
EP3927720A4 (en) 2019-02-19 2022-11-30 Ultima Genomics, Inc. LINKER AND METHODS FOR OPTICAL DETECTION AND SEQUENCING
EP3940073A4 (en) * 2019-03-13 2023-03-01 Toyobo Co., Ltd. PRODUCTION AND AMPLIFICATION OF NUCLEIC ACIDS
US11655465B1 (en) 2019-05-02 2023-05-23 Iridia, Inc. Enzymes and systems for synthesizing DNA
JP7342239B2 (ja) 2019-07-22 2023-09-11 エフ. ホフマン-ラ ロシュ アーゲー バリアント呼び出しデータからの起始細胞決定のためのシステムおよび方法
EP4031679A1 (en) 2019-09-20 2022-07-27 F. Hoffmann-La Roche AG Immune repertoire profiling by primer extension target enrichment
EP4062410A1 (en) 2019-11-21 2022-09-28 F. Hoffmann-La Roche AG Systems and methods for contamination detection in next generation sequencing samples
CN115052882A (zh) 2020-02-06 2022-09-13 豪夫迈·罗氏有限公司 减少模板穿入纳米孔的组合物
US11807851B1 (en) 2020-02-18 2023-11-07 Ultima Genomics, Inc. Modified polynucleotides and uses thereof
EP4117682A4 (en) 2020-04-24 2023-09-13 Singular Genomics Systems, Inc. MODIFIED NUCLEOTIDES AND THEIR USES
WO2021239834A1 (en) 2020-05-28 2021-12-02 F. Hoffmann-La Roche Ag Sequence alignment systems and methods to identify short motifs in high-error single-molecule reads
US20230265498A1 (en) * 2020-07-02 2023-08-24 Geneus Technologies Co., Ltd. Nucleic acid sequencing method and apparatus
WO2022008641A1 (en) 2020-07-08 2022-01-13 Roche Sequencing Solutions, Inc. Split-pool synthesis apparatus and methods of performing split-pool synthesis
US11837302B1 (en) 2020-08-07 2023-12-05 Iridia, Inc. Systems and methods for writing and reading data stored in a polymer using nano-channels
EP4196608A1 (en) 2020-08-11 2023-06-21 F. Hoffmann-La Roche AG Nucleoside-5'-oligophosphates tagged with positively-charged polymers, nanopores incorporating negative charges, and methods and systems using the same
EP4228793A1 (en) 2020-10-15 2023-08-23 Kapa Biosystems, Inc. Electrophoretic devices and methods for next-generation sequencing library preparation
US20220177950A1 (en) 2020-12-03 2022-06-09 Roche Sequencing Solutions, Inc. Whole transcriptome analysis in single cells
EP4291677A2 (en) 2021-02-09 2023-12-20 F. Hoffmann-La Roche AG Methods for base-level detection of methylation in nucleic acids
JP2024509424A (ja) 2021-03-03 2024-03-01 エフ. ホフマン-ラ ロシュ アーゲー 生物学的試料からの核酸の電気泳動抽出のための装置および方法
WO2022194764A1 (en) 2021-03-15 2022-09-22 F. Hoffmann-La Roche Ag Targeted next-generation sequencing via anchored primer extension
US20220308001A1 (en) * 2021-03-25 2022-09-29 The Regents Of The University Of California Apparatus and method for single cell discrimination
JP2024511628A (ja) 2021-03-26 2024-03-14 エフ. ホフマン-ラ ロシュ アーゲー ハイブリダイゼーション緩衝調合物
EP4314337A1 (en) 2021-04-01 2024-02-07 F. Hoffmann-La Roche AG Immune cell counting of sars-cov-2 patients based on immune repertoire sequencing
CN117730155A (zh) 2021-05-24 2024-03-19 豪夫迈·罗氏有限公司 用于核酸杂交的增强子寡核苷酸
WO2022263496A1 (en) 2021-06-17 2022-12-22 F. Hoffmann-La Roche Ag Engineered nanopore with a negatively charged polymer threaded through the channel
WO2022263489A1 (en) 2021-06-17 2022-12-22 F. Hoffmann-La Roche Ag Nucleoside-5 -oligophosphates having a cationically-modified nucleobase
WO2022271852A1 (en) * 2021-06-22 2022-12-29 University Of Washington Ultrathin free-standing solid state membrane chips and methods of making
WO2023107899A2 (en) 2021-12-07 2023-06-15 Caribou Biosciences, Inc. A method of capturing crispr endonuclease cleavage products
US20230175062A1 (en) * 2021-12-08 2023-06-08 Twist Bioscience Corporation Nanoelectric devices and use thereof
WO2023107673A2 (en) 2021-12-10 2023-06-15 Singular Genomics Systems, Inc. Cleavable disulfide linkers and uses thereof
WO2023213766A1 (en) 2022-05-02 2023-11-09 F. Hoffmann-La Roche Ag Compositions and methods that reduce prussian blue formation during nanopore sequencing
WO2023242075A1 (en) 2022-06-14 2023-12-21 F. Hoffmann-La Roche Ag Detection of epigenetic cytosine modification
WO2024003332A1 (en) 2022-06-30 2024-01-04 F. Hoffmann-La Roche Ag Controlling for tagmentation sequencing library insert size using archaeal histone-like proteins
WO2024038069A1 (en) 2022-08-18 2024-02-22 F. Hoffmann-La Roche Ag Detection of epigenetic modifications
WO2024046992A1 (en) 2022-09-02 2024-03-07 F. Hoffmann-La Roche Ag Improvements to next-generation target enrichment performance

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101384729A (zh) * 2003-02-05 2009-03-11 通用电气医疗集团生物科学公司 固相测序
CN101495656A (zh) * 2006-06-07 2009-07-29 纽约哥伦比亚大学理事会 采用带修饰的核苷酸通过纳米通道进行dna序列测定
US20090269759A1 (en) * 2008-04-29 2009-10-29 Life Technologies Unnatural polymerase substrates that can sustain enzymatic synthesis of double stranded nucleic acids from a nucleic acid template and methods of use
WO2010117470A2 (en) * 2009-04-10 2010-10-14 Pacific Biosciences Of California, Inc. Nanopore sequencing devices and methods

Family Cites Families (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5756355A (en) 1992-04-22 1998-05-26 Ecole Polytechnique Federale De Lausanne Lipid membrane sensors
GB9315847D0 (en) 1993-07-30 1993-09-15 Isis Innovation Tag reagent and assay method
US5795782A (en) 1995-03-17 1998-08-18 President & Fellows Of Harvard College Characterization of individual polymer molecules based on monomer-interface interactions
US6362002B1 (en) 1995-03-17 2002-03-26 President And Fellows Of Harvard College Characterization of individual polymer molecules based on monomer-interface interactions
US20120160687A1 (en) 1995-03-17 2012-06-28 President And Fellows Of Harvard College Characterization of individual polymer molecules based on monomer-interface interactions
US5804386A (en) 1997-01-15 1998-09-08 Incyte Pharmaceuticals, Inc. Sets of labeled energy transfer fluorescent primers and their use in multi component analysis
US5876936A (en) 1997-01-15 1999-03-02 Incyte Pharmaceuticals, Inc. Nucleic acid sequencing with solid phase capturable terminators
US6046005A (en) 1997-01-15 2000-04-04 Incyte Pharmaceuticals, Inc. Nucleic acid sequencing with solid phase capturable terminators comprising a cleavable linking group
US6485703B1 (en) 1998-07-31 2002-11-26 The Texas A&M University System Compositions and methods for analyte detection
US6267872B1 (en) 1998-11-06 2001-07-31 The Regents Of The University Of California Miniature support for thin films containing single channels or nanopores and methods for using same
US20030054360A1 (en) 1999-01-19 2003-03-20 Larry Gold Method and apparatus for the automated generation of nucleic acid ligands
US6399335B1 (en) * 1999-11-16 2002-06-04 Advanced Research And Technology Institute, Inc. γ-phosphoester nucleoside triphosphates
US6383749B2 (en) 1999-12-02 2002-05-07 Clontech Laboratories, Inc. Methods of labeling nucleic acids for use in array based hybridization assays
EP2083015B1 (en) 2000-02-11 2016-04-06 The Texas A & M University System Biosensor compositions and methods of use
US6616895B2 (en) 2000-03-23 2003-09-09 Advanced Research Corporation Solid state membrane channel device for the measurement and characterization of atomic and molecular sized samples
US6413792B1 (en) 2000-04-24 2002-07-02 Eagle Research Development, Llc Ultra-fast nucleic acid sequencing device and a method for making and using the same
CA2412567A1 (en) 2000-06-07 2001-12-13 Li-Cor, Inc. Charge-switch nucleotides
US6936702B2 (en) 2000-06-07 2005-08-30 Li-Cor, Inc. Charge-switch nucleotides
AU2001278517A1 (en) 2000-08-03 2002-02-18 F. Hoffman-La Roche Ag Nucleic acid binding compounds containing pyrazolo(3,4-d)pyrimidine analogues of purin-2,6-diamine and their uses
US6627748B1 (en) 2000-09-11 2003-09-30 The Trustees Of Columbia University In The City Of New York Combinatorial fluorescence energy transfer tags and their applications for multiplex genetic analyses
EP1322785A4 (en) 2000-09-11 2005-11-09 Univ Columbia COMBINATION FLUORESCENCE ENERGY TRANSFER INDICATORS AND USES THEREOF
US20060057565A1 (en) 2000-09-11 2006-03-16 Jingyue Ju Combinatorial fluorescence energy transfer tags and uses thereof
JP2004510433A (ja) 2000-10-06 2004-04-08 ザ・トラスティーズ・オブ・コランビア・ユニバーシティー・イン・ザ・シティー・オブ・ニューヨーク Dnaおよびrnaを解読するための大量並行方法
JP2004511762A (ja) * 2000-10-10 2004-04-15 バイオフォース ナノサイエンシズ インコーポレイテッド ナノスケールセンサー
EP1354064A2 (en) * 2000-12-01 2003-10-22 Visigen Biotechnologies, Inc. Enzymatic nucleic acid synthesis: compositions and methods for altering monomer incorporation fidelity
US20030027140A1 (en) 2001-03-30 2003-02-06 Jingyue Ju High-fidelity DNA sequencing using solid phase capturable dideoxynucleotides and mass spectrometry
ATE458067T1 (de) 2001-08-29 2010-03-15 Ge Healthcare Bio Sciences Markierte nukleosidpolyphosphate
US7223541B2 (en) * 2001-08-29 2007-05-29 Ge Healthcare Bio-Sciences Corp. Terminal-phosphate-labeled nucleotides and methods of use
US20030166282A1 (en) 2002-02-01 2003-09-04 David Brown High potency siRNAS for reducing the expression of target genes
DE60333365D1 (de) 2002-05-30 2010-08-26 Sloan Kettering Inst Cancer Kinasesuppressor der ras-inaktivierung zur therapie von durch ras vermittelter tumorgenese
US7074597B2 (en) 2002-07-12 2006-07-11 The Trustees Of Columbia University In The City Of New York Multiplex genotyping using solid phase capturable dideoxynucleotides and mass spectrometry
AU2003297859A1 (en) 2002-12-13 2004-07-09 The Trustees Of Columbia University In The City Of New York Biomolecular coupling methods using 1,3-dipolar cycloaddition chemistry
US7393640B2 (en) * 2003-02-05 2008-07-01 Ge Healthcare Bio-Sciences Corp. Terminal-phosphate-labeled nucleotides with new linkers
US7745116B2 (en) 2003-04-08 2010-06-29 Pacific Biosciences Of California, Inc. Composition and method for nucleic acid sequencing
US7019346B2 (en) 2003-12-23 2006-03-28 Intel Corporation Capacitor having an anodic metal oxide substrate
WO2005084367A2 (en) 2004-03-03 2005-09-15 The Trustees Of Columbia University In The City Of New York Photocleavable fluorescent nucleotides for dna sequencing on chip constructed by site-specific coupling chemistry
US7279337B2 (en) 2004-03-10 2007-10-09 Agilent Technologies, Inc. Method and apparatus for sequencing polymers through tunneling conductance variation detection
WO2006028508A2 (en) 2004-03-23 2006-03-16 President And Fellows Of Harvard College Methods and apparatus for characterizing polynucleotides
US20050239134A1 (en) 2004-04-21 2005-10-27 Board Of Regents, The University Of Texas System Combinatorial selection of phosphorothioate single-stranded DNA aptamers for TGF-beta-1 protein
WO2006012571A1 (en) 2004-07-23 2006-02-02 Electronic Bio Sciences, Llc Method and apparatus for sensing a time varying current passing through an ion channel
AU2005272823B2 (en) 2004-08-13 2012-04-12 President And Fellows Of Harvard College An ultra high-throughput opti-nanopore DNA readout platform
WO2006035207A2 (en) * 2004-09-30 2006-04-06 Ge Healthcare Uk Limited Fluorescent nucleotide analogues
US20060105461A1 (en) 2004-10-22 2006-05-18 May Tom-Moy Nanopore analysis system
US7867716B2 (en) 2004-12-21 2011-01-11 The Texas A&M University System High temperature ion channels and pores
GB0505971D0 (en) 2005-03-23 2005-04-27 Isis Innovation Delivery of molecules to a lipid bilayer
WO2007002204A2 (en) 2005-06-21 2007-01-04 The Trustees Of Columbia University In The City Of New York Pyrosequencing methods and related compostions
US20070190542A1 (en) 2005-10-03 2007-08-16 Ling Xinsheng S Hybridization assisted nanopore sequencing
US7397232B2 (en) 2005-10-21 2008-07-08 The University Of Akron Coulter counter having a plurality of channels
WO2007053719A2 (en) 2005-10-31 2007-05-10 The Trustees Of Columbia University In The City Of New York Chemically cleavable 3'-o-allyl-dntp-allyl-fluorophore fluorescent nucleotide analogues and related methods
US7982029B2 (en) 2005-10-31 2011-07-19 The Trustees Of Columbia University In The City Of New York Synthesis of four color 3′O-allyl, modified photocleavable fluorescent nucleotides and related methods
EP1963530B1 (en) 2005-12-22 2011-07-27 Pacific Biosciences of California, Inc. Active surface coupled polymerases
US20070298511A1 (en) 2006-04-27 2007-12-27 The Texas A&M University System Nanopore sensor system
US7777505B2 (en) 2006-05-05 2010-08-17 University Of Utah Research Foundation Nanopore platforms for ion channel recordings and single molecule detection and analysis
DE112007002932B4 (de) 2006-12-01 2015-08-06 The Trustees Of Columbia University In The City Of New York Vierfarben DNA-Sequenzierung mittels Synthese unter Verwendung von abspaltbaren, reversiblen, fluoreszierenden Nucleotidterminatoren
US7902345B2 (en) 2006-12-05 2011-03-08 Sequenom, Inc. Detection and quantification of biomolecules using mass spectrometry
US8003319B2 (en) 2007-02-02 2011-08-23 International Business Machines Corporation Systems and methods for controlling position of charged polymer inside nanopore
WO2008102121A1 (en) 2007-02-20 2008-08-28 Oxford Nanopore Technologies Limited Formation of lipid bilayers
US20100035268A1 (en) * 2007-02-21 2010-02-11 Joseph Beechem Materials and methods for single molecule nucleic acid sequencing
EP3798317B1 (en) 2007-04-04 2024-01-03 The Regents of the University of California Compositions, devices, systems, and methods for using a nanopore
US9121843B2 (en) 2007-05-08 2015-09-01 Trustees Of Boston University Chemical functionalization of solid-state nanopores and nanopore arrays and applications thereof
US20090073293A1 (en) 2007-06-27 2009-03-19 Yoel Yaffe CMOS image sensors with increased dynamic range and methods of operating the same
EP2165353B1 (en) * 2007-06-29 2017-08-30 Applied Biosystems, LLC Systems and methods for electronic detection with nanofets
GB0713143D0 (en) 2007-07-06 2007-08-15 Ucl Business Plc Nucleic acid detection method
EP2201136B1 (en) 2007-10-01 2017-12-06 Nabsys 2.0 LLC Nanopore sequencing by hybridization of probes to form ternary complexes and variable range alignment
JP5309145B2 (ja) 2007-10-02 2013-10-09 プレジデント アンド フェロウズ オブ ハーバード カレッジ ナノポアによる分子の捕捉、再捕捉およびトラッピング
EP2725107B1 (en) 2007-10-19 2018-08-29 The Trustees of Columbia University in the City of New York DNA sequencing with non-fluorescent nucleotide reversible terminators and cleavable label modified ddNTPs and nucleic acid comprising inosine with reversible terminators
EP2940029B1 (en) 2007-10-19 2023-11-29 The Trustees of Columbia University in the City of New York Design and synthesis of cleavable fluorescent nucleotides as reversible terminators for dna sequencing by synthesis
GB0724736D0 (en) 2007-12-19 2008-01-30 Oxford Nanolabs Ltd Formation of layers of amphiphilic molecules
EP2107040B1 (en) 2008-03-31 2011-10-26 Sony Deutschland Gmbh A method of fabricating a membrane having a tapered pore
WO2009145828A2 (en) 2008-03-31 2009-12-03 Pacific Biosciences Of California, Inc. Two slow-step polymerase enzyme systems and methods
US8940142B2 (en) 2008-05-05 2015-01-27 The Regents Of The University Of California Functionalized nanopipette biosensor
JP5143953B2 (ja) * 2008-06-11 2013-02-13 レーザーゲン インコーポレイテッド ヌクレオチドおよびヌクレオシドならびにdna配列決定におけるその使用の方法
US8921046B2 (en) 2008-09-19 2014-12-30 Pacific Biosciences Of California, Inc. Nucleic acid sequence analysis
US20100227414A1 (en) 2009-03-05 2010-09-09 Trex Enterprises Corp. Affinity capture mass spectroscopy with a porous silicon biosensor
GB0905140D0 (en) 2009-03-25 2009-05-06 Isis Innovation Method
WO2011038241A1 (en) 2009-09-25 2011-03-31 President And Fellows Of Harvard College Nucleic acid amplification and sequencing by synthesis with fluorogenic nucleotides
EP2483680A4 (en) 2009-09-30 2014-01-01 Quantapore Inc ULTRASOUND SEQUENCING OF BIOLOGICAL POLYMERS WITH THE HELP OF A MARKED NANOPORE
AU2011213234B2 (en) 2010-02-08 2015-05-14 F. Hoffmann-La Roche Ag Systems and methods for manipulating a molecule in a nanopore
US20120052188A1 (en) 2010-02-08 2012-03-01 Genia Technologies, Inc. Systems and methods for assembling a lipid bilayer on a substantially planar solid surface
US20110192723A1 (en) 2010-02-08 2011-08-11 Genia Technologies, Inc. Systems and methods for manipulating a molecule in a nanopore
US9605307B2 (en) 2010-02-08 2017-03-28 Genia Technologies, Inc. Systems and methods for forming a nanopore in a lipid bilayer
US20110287414A1 (en) 2010-02-08 2011-11-24 Genia Technologies, Inc. Systems and methods for identifying a portion of a molecule
US8324914B2 (en) 2010-02-08 2012-12-04 Genia Technologies, Inc. Systems and methods for characterizing a molecule
CN102834716B (zh) 2010-02-23 2016-03-30 华盛顿大学 人工分枝菌酸膜
US8652779B2 (en) 2010-04-09 2014-02-18 Pacific Biosciences Of California, Inc. Nanopore sequencing using charge blockade labels
CA2805247C (en) 2010-07-14 2021-08-10 The Curators Of The University Of Missouri Nanopore-facilitated single molecule detection of nucleic acids
US10443096B2 (en) * 2010-12-17 2019-10-15 The Trustees Of Columbia University In The City Of New York DNA sequencing by synthesis using modified nucleotides and nanopore detection
WO2012088341A2 (en) 2010-12-22 2012-06-28 Genia Technologies, Inc. Nanopore-based single dna molecule characterization, identification and isolation using speed bumps
US8962242B2 (en) 2011-01-24 2015-02-24 Genia Technologies, Inc. System for detecting electrical properties of a molecular complex
US9110478B2 (en) 2011-01-27 2015-08-18 Genia Technologies, Inc. Temperature regulation of measurement arrays
US11274341B2 (en) 2011-02-11 2022-03-15 NABsys, 2.0 LLC Assay methods using DNA binding proteins
US9624539B2 (en) 2011-05-23 2017-04-18 The Trustees Of Columbia University In The City Of New York DNA sequencing by synthesis using Raman and infrared spectroscopy detection
WO2013016486A1 (en) 2011-07-27 2013-01-31 The Board Of Trustees Of The University Of Illinois Nanopore sensors for biomolecular characterization
US8541849B2 (en) 2012-02-14 2013-09-24 Genia Technologies, Inc. Noise shielding techniques for ultra low current measurements in biochemical applications
JP6178805B2 (ja) 2012-02-16 2017-08-09 ジニア テクノロジーズ, インコーポレイテッド ナノ細孔センサーとともに使用するための二重層を作製するための方法
JP6456816B2 (ja) 2012-04-09 2019-01-23 ザ・トラスティーズ・オブ・コランビア・ユニバーシティー・イン・ザ・シティー・オブ・ニューヨーク ナノ細孔の調製方法およびその使用
EP2861768A4 (en) 2012-06-15 2016-03-02 Genia Technologies Inc CHIP SETUP AND HIGH ACCURACY NUCLEIC ACID SEQUENCING
EP2864502B1 (en) 2012-06-20 2019-10-23 The Trustees of Columbia University in the City of New York Nucleic acid sequencing by nanopore detection of tag molecules
US9605309B2 (en) 2012-11-09 2017-03-28 Genia Technologies, Inc. Nucleic acid sequencing using tags
US10648026B2 (en) 2013-03-15 2020-05-12 The Trustees Of Columbia University In The City Of New York Raman cluster tagged molecules for biological imaging
EP2971051A4 (en) 2013-03-15 2017-03-01 The Trustees of Columbia University in the City of New York Method for detecting multiple predetermined compounds in a sample
EP3105354B1 (en) 2014-02-12 2020-05-06 The Trustees of Columbia University in the City of New York Single molecule electronic multiplex snp assay and pcr analysis
WO2015148402A1 (en) 2014-03-24 2015-10-01 The Trustees Of Columbia Univeristy In The City Of New York Chemical methods for producing tagged nucleotides
CN106795554A (zh) 2014-05-19 2017-05-31 哥伦比亚大学董事会 使用核苷酸可逆终止子的离子传感器dna和rna合成测序
WO2016144973A1 (en) 2015-03-09 2016-09-15 The Trustees Of Columbia University In The City Of New York Pore-forming protein conjugate compositions and methods
EP3274471B1 (en) 2015-03-23 2020-05-06 The Trustees of Columbia University in the City of New York Polymer tagged nucleotides for single molecule electronic snp assay

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101384729A (zh) * 2003-02-05 2009-03-11 通用电气医疗集团生物科学公司 固相测序
CN101495656A (zh) * 2006-06-07 2009-07-29 纽约哥伦比亚大学理事会 采用带修饰的核苷酸通过纳米通道进行dna序列测定
US20090269759A1 (en) * 2008-04-29 2009-10-29 Life Technologies Unnatural polymerase substrates that can sustain enzymatic synthesis of double stranded nucleic acids from a nucleic acid template and methods of use
WO2010117470A2 (en) * 2009-04-10 2010-10-14 Pacific Biosciences Of California, Inc. Nanopore sequencing devices and methods

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ANUP SOOD等: ""Terminal Phosphate-Labeled Nucleotides with Improved Substrate Properties for Homogeneous Nucleic Acid Assays"", 《J. AM. CHEM. SOC》 *
BRENT A. MULDER等: ""Nucleotide modification at the γ-phosphate leads to the improved fidelity of HIV-1 reverse transcriptase"", 《NUCLEIC ACIDS RESEARCH》 *
JOSEPH W. F. ROBERTSON等: ""Single-molecule mass spectrometry in solution using a solitary nanopore"", 《PNAS》 *
SHIV KUMAR等: ""TERMINAL PHOSPHATE LABELED NUCLEOTIDES: SYNTHESIS,APPLICATIONS, AND LINKER EFFECT ON INCORPORATION BY DNA POLYMERASES"", 《NUCLEOSIDES, NUCLEOTIDES, AND NUCLEIC ACIDS》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107082792A (zh) * 2012-04-09 2017-08-22 纽约哥伦比亚大学理事会 纳米孔的制备方法和其用途
CN112218640A (zh) * 2018-03-15 2021-01-12 哥伦比亚大学董事会 核苷酸类似物及其在核酸测序和分析中的用途
CN109232693A (zh) * 2018-09-28 2019-01-18 上海交通大学 一种核苷四磷酸的合成方法
CN114502714A (zh) * 2019-07-31 2022-05-13 安序源有限公司 评估靶分子的系统和方法

Also Published As

Publication number Publication date
US20200115745A1 (en) 2020-04-16
EP2652153B1 (en) 2017-07-05
US20130264207A1 (en) 2013-10-10
ES2641871T3 (es) 2017-11-14
EP2652153A2 (en) 2013-10-23
CN103282518A (zh) 2013-09-04
EP2652153A4 (en) 2014-05-14
US10443096B2 (en) 2019-10-15
WO2012083249A3 (en) 2013-04-11
US11499186B2 (en) 2022-11-15
US20230010731A1 (en) 2023-01-12
CN103282518B (zh) 2016-11-16
WO2012083249A2 (en) 2012-06-21

Similar Documents

Publication Publication Date Title
CN103282518B (zh) 使用经修饰的核苷酸和纳米孔检测的dna边合成边测序
US11795191B2 (en) Method of preparation of nanopore and uses thereof
US11608523B2 (en) Nucleic acid sequencing by nanopore detection of tag molecules
US11613771B2 (en) Methods for delivering an analyte to transmembrane pores
CN105026002B (zh) 生物分子处理平台及其用途
US20180346973A1 (en) Method for identification and enumeration of nucleic acid sequences, expression, splice variant, translocation, copy, or dna methylation changes using combined nuclease, ligase, polymerase, terminal transferase, and sequencing reactions
CN109891233A (zh) 用于生物分子的测量和测序的系统和方法
Class et al. Patent application title: METHOD OF PREPARATION OF NANOPORE AND USES THEREOF Inventors: Jingyue Ju (Englewood Cliffs, NJ, US) Shiv Kumar (Belle Mead, NJ, US) Shiv Kumar (Belle Mead, NJ, US) Chuanjuan Tao (New York, NY, US) Minchen Chien (Tenafly, NJ, US) James J. Russo (New York, NY, US) John J. Kasianowicz (Darnestown, MD, US) Joseph Wf Robertson (Washington, DC, US) Assignees: THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK GOVERNMENT OF THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF COMMERCE
WO2022263489A1 (en) Nucleoside-5 -oligophosphates having a cationically-modified nucleobase
Lund et al. Electronic DNA Sequencing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination