TWI827559B - 用於寫入、讀出以及控制儲存在聚合物中之數據之系統及方法 - Google Patents

用於寫入、讀出以及控制儲存在聚合物中之數據之系統及方法 Download PDF

Info

Publication number
TWI827559B
TWI827559B TW107138371A TW107138371A TWI827559B TW I827559 B TWI827559 B TW I827559B TW 107138371 A TW107138371 A TW 107138371A TW 107138371 A TW107138371 A TW 107138371A TW I827559 B TWI827559 B TW I827559B
Authority
TW
Taiwan
Prior art keywords
polymer
dna
frequency
nanopore
chamber
Prior art date
Application number
TW107138371A
Other languages
English (en)
Other versions
TW201930601A (zh
Inventor
保羅 普瑞奇
瑪加 卡西迪
Original Assignee
美商艾瑞迪亞公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US2017/059100 external-priority patent/WO2018081745A1/en
Priority claimed from US15/969,745 external-priority patent/US10640822B2/en
Application filed by 美商艾瑞迪亞公司 filed Critical 美商艾瑞迪亞公司
Publication of TW201930601A publication Critical patent/TW201930601A/zh
Application granted granted Critical
Publication of TWI827559B publication Critical patent/TWI827559B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/30Nucleotides
    • C12P19/34Polynucleotides, e.g. nucleic acids, oligoribonucleotides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/48707Physical analysis of biological material of liquid biological material by electrical means
    • G01N33/48721Investigating individual macromolecules, e.g. by translocation through nanopores
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/12Computing arrangements based on biological models using genetic models
    • G06N3/123DNA computing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0009RRAM elements whose operation depends upon chemical change
    • G11C13/0014RRAM elements whose operation depends upon chemical change comprising cells based on organic memory material
    • G11C13/0016RRAM elements whose operation depends upon chemical change comprising cells based on organic memory material comprising polymers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0009RRAM elements whose operation depends upon chemical change
    • G11C13/0014RRAM elements whose operation depends upon chemical change comprising cells based on organic memory material
    • G11C13/0019RRAM elements whose operation depends upon chemical change comprising cells based on organic memory material comprising bio-molecules

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Analytical Chemistry (AREA)
  • Evolutionary Biology (AREA)
  • Microbiology (AREA)
  • General Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Immunology (AREA)
  • Artificial Intelligence (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Nanotechnology (AREA)
  • Pathology (AREA)
  • Software Systems (AREA)
  • Mathematical Physics (AREA)
  • Computing Systems (AREA)
  • Evolutionary Computation (AREA)
  • Data Mining & Analysis (AREA)
  • Computational Linguistics (AREA)
  • Chemical Kinetics & Catalysis (AREA)

Abstract

本揭露提供利用荷電聚合物(例如DNA)儲存信息的新穎系統,該荷電聚合物的單體對應機器可讀代碼,例如二進制代碼,且可利用包括奈米孔的的新穎奈米晶片裝置合成及/或讀取該荷電聚合物;用於以奈米晶片格式合成寡核苷酸的新穎方法及裝置;利用拓撲異構酶沿3’至5’方向合成DNA的新穎方法;當聚合物經過奈米孔時,藉由測量電容或阻抗變化(例如,藉由諧振頻率響應中的變化)讀取荷電聚合物(例如DNA)的序列的新穎方法及裝置;以及進一步提供其中可用的化合物、組成、方法及裝置。

Description

用於寫入、讀出以及控制儲存在聚合物中之數據之系統及方法
本發明係關於藉由使用奈米孔裝置來合成及測序聚合物例如核酸,可用於信息儲存及檢索的新穎方法、組成及裝置。
對在物理媒體上或其中儲存更多的數據有持續的需求,儲存裝置變得越來越小,而其容量變得越來越大。據報道,儲存數據量每兩年翻倍,且依據一項研究,到2020年之前,我們每年創造並複製的數據量將達到44澤字節(ZetaByte),或者44萬億吉字節。而且,現有數據儲存媒體例如硬盤驅動器、光學媒體以及磁帶較不穩定且在長期儲存以後損壞。
急需替代方法來長期例如數十年或數世紀儲存大量數據。
一些提出使用DNA儲存數據。DNA極其穩定且理論上可編碼大量數據並將該數據儲存很長時間。例 如,參見Bancroft,C等人的Long-term Storage of Information in DNA,Science(2001)293:1763-1765。此外,作為儲存媒體的DNA不容易遭遇傳統數位儲存媒體的安全風險。但沒有實際的方法來實施此思想。
例如,WO 2014/14991說明一種在DNA寡核苷酸上儲存數據的方法,其中,以二進制格式編碼信息,每個核苷酸一位元(bit),具有96位元(96個核苷酸)數據塊,19個核苷酸地址序列,以及用於擴增及測序的側翼序列。接著,為讀取該代碼,利用PCR擴增該序列並利用高速測序儀例如Illumina HiSeq機器測序。接著,利用地址標簽以正確的順序排列該數據塊序列,過濾該地址及側翼序列,並將該序列數據轉換為二進制代碼。此等方法具有嚴重限制。例如,該96位元數據塊可能僅編碼12個字母(使用傳統的一個字節或每個字母或空格8位)。所儲存的有用信息與“內務”信息之比低-該序列信息的其中約40%被地址及側翼DNA佔用。該說明書說明使用54,898寡核苷酸來編碼書。用以合成寡核苷酸的噴墨打印高保真DNA微晶片限制寡核苷酸的尺寸(所述159米是上限)。而且,讀取寡核苷酸需要擴增及隔離,其引入額外的錯誤可能性。還參見WO 2004/088585A2;WO 03/025123 A2;C BANCROFT:"Long-Term Storage of Information in DNA",Science(2001)293(5536):1763c-1765;COX J P L:"Long-term data storage in DNA",Trends in Biotechnology(2001)19(7):247-250。
DNA測序裝置包括來自Oxford Nanopore、Genia及其它公司的基於奈米孔的裝置。在許多這些裝置中,通常在充滿流體的單元中使用奈米孔,以藉由在DNA經過該奈米孔時測量電流變化來讀取DNA數據,電流變化通常在奈米安培的範圍內。業界已提出基於電容變化的測量,但未商業化;該變化在皮法/飛法/阿法(pico/fempto/attofarad)的範圍內。相應地,可靠地且可重複地檢測此類小變化是很困難的,因為它們難以區分典型背景噪聲(noise)。而且困難被進一步增強因DNA可以大約每秒1百萬個鹼基的速率經過奈米孔,這快到無法利用現有的方式精確讀取,需要使用蛋白奈米孔來減慢DNA通過奈米孔的速度,且對於讀取大量數據是不切實際的。
現有的基於奈米孔的DNA數據讀取器無法克服這些問題,因此不能提供高精度、可重複、可靠、自動化且穩健的DNA數據讀取結果。因此,想要具有一種裝置,其提供高品質、可靠的DNA讀取結果,並且還提供可擴展的方法以同時可靠地讀取在多個DNA分子上所儲存的數據。
儘管DNA的潛在信息密度及穩定性使其成為用於數據儲存的有吸引力的媒體(如25年多的時間裡所意識到的那樣),但仍沒有實際的方法以此形式讀寫大量數據。
我們開發了利用奈米流體系統合成核酸序 列以及奈米孔讀取器讀取該序列的新的核酸儲存方法。我們的方法允許數百、數千或甚至數百萬鹼基長的DNA鏈的合成、儲存及讀取。由於序列長,識別信息僅佔用序列的較小部分,從而信息密度遠高於上述方法中的信息密度。而且,在一些實施例中,所合成的核酸在奈米晶片上將具有特定的位置,因此,即使沒有識別信息也可識別該序列。在奈米室中所執行的測序是非常迅速的,且通過奈米孔讀取序列可極快,每秒高達一百萬鹼基的量級。由於僅需要兩種鹼基類型,因此該測序與必須區分四種核苷酸鹼基類型(腺嘌呤、胸腺嘧啶、胞嘧啶、鳥嘌呤)的測序過程相比更快且更精確。在特定具體實施例中,該兩種鹼基將不會彼此配對並形成二級結構,且還將具有不同的尺寸。例如,為此,腺嘌呤和胞嘧啶比腺嘌呤和胸腺嘧啶(傾向於雜合)或腺嘌呤和鳥嘌呤(具有類似尺寸)更好。
在一些具體實施例中,此系統可用以合成編碼數據的長聚合物,可對其擴增及/或釋放,並接著在不同的測序儀上測序。在其它具體實施例中,該系統可用以提供定制DNA序列。在其它具體實施例中,該系統可用以讀取DNA序列。
在一個具體實施例中所使用的奈米晶片包含藉由至少一個奈米孔連接的至少兩個隔開的反應隔間(compartment),該奈米孔防止組分的至少其中一些混合,但只允許單個分子的DNA或其它荷電聚合物例如RNA或肽核酸(PNA)以可控方式從一個反應隔間進入另一個反應 隔間中。該聚合物(或至少添加單體的該聚合物的端部)從一個室至另一個室的轉移允許利用酶(防止該酶穿過奈米孔,例如由於它們太大或由於它們被拴繫於基質或大部分)對該聚合物進行順序操作/反應,例如添加鹼基。奈米孔傳感器彙報該聚合物的移動或位置及其狀態,例如它的序列以及嘗試的反應是否成功。這允許寫入、儲存及讀取數據,例如其中,鹼基序列對應機器可讀代碼,例如二進制代碼,各鹼基或基組對應1或0。
相應地,除其它以外,本發明包括以下具體實施例,
●用於合成包括至少兩種不同單體的荷電聚合物(例如DNA)的奈米晶片,該奈米晶片包括由一個或多個奈米孔隔開的兩個或更多反應室,其中,各反應室包括電解液,用以將該荷電聚合物引入該室中的一個或多個電極,以及用以促進向該聚合物添加單體或寡聚體一種或多種試劑。視需要地,該奈米晶片可配置有功能元件以指導、引導及/或控制該DNA,視需要地,它可塗布有經選擇以允許DNA平滑流動或附著該DNA的材料或由該材料製成,且它可包括奈米電路元件以提供及控制鄰近該奈米孔的電極。例如,視需要地,該一個或多個奈米孔可分別與電極關聯,該電極可控制該聚合物穿過該奈米孔的移動以及/或者檢測在該奈米孔與該聚合物的交界處的電位、電流、電阻或電容的變化,從 而在該聚合物經過該一個或多個奈米孔時檢測該聚合物的序列。在特定具體實施例中,利用聚合酶或位點特異性重組酶合成該寡聚體。在一些具體實施例中,在合成的過程中對該聚合物測序,以允許檢測並視需要地糾正錯誤。在一些具體實施例中,如此獲得的該聚合物被儲存於該奈米晶片上並可在想要訪問該聚合物序列中編碼的信息時進行測序。
●用於確定奈米孔晶片中的聚合物(例如DNA)的序列的方法及裝置,透過如下方式:當藉由DC偏置牽引該DNA穿過該奈米孔時,測量諧振RF電路中的電容變化。
●利用所述奈米晶片合成聚合物(例如DNA)的方法。
●單鏈DNA分子,其中,該序列基本上僅由非雜合核苷酸組成,例如,腺嘌呤及胞嘧啶核苷酸(A及C),將它們依序設置以對應二進制代碼,例如以用於數據儲存的方法中。
●雙鏈DNA,包括對應二進制代碼的一系列核苷酸序列,其中,該雙鏈DNA還包括
●讀取DNA中所編碼的二進制代碼的方法,包括使用奈米孔測序儀。
●數據儲存的方法以及用於數據儲存的裝置,利用上面的奈米晶片來製造包括至少兩種不同單體的荷電聚合物(例如DNA),其中,將該單體依序設置以 對應二進制代碼。
●用於在基於奈米孔的晶片上原位在存儲串(例如DNA或聚合物)上儲存及讀取數據的方法及系統包括:提供單元,該單元具有至少三個室,具有經設置以向該聚合物添加“1”位元的Add“1”室及經設置以向該聚合物添加“0”位元的Add“0”室,以及“去保護”室,經設置以分別於該聚合物進入該Add“1”或Add“0”室時使該聚合物能夠接收該“1”位元及“0”位元;接著基於預定數位數據模式引導該聚合物從該“去保護”室穿過該奈米孔到達該Add“1”室或該Add“0”室,以在該聚合物上創建該數位數據模式;以及利用該晶片上的奈米孔-聚合物諧振器(nanopore-polymer resonator;NPR)的諧振頻率響應於該聚合物經過該奈米孔時讀取在該聚合物上所儲存的該數位數據。
●用於讀取聚合物中所儲存的數據的方法及系統包括:提供具有電感器及單元的諧振器,該單元具有奈米孔以及可穿過該奈米孔的聚合物,該諧振器在探針頻率具有AC輸出電壓頻率響應,響應在該探針頻率的AC輸入電壓;提供具有至少該探針頻率的該AC輸入電壓;以及監控至少在該探針頻率的該AC輸出電壓,在該探針頻率的該AC輸出電壓標示在監控時在該聚合物中所儲存的該數據,其中,該聚合物包括至少兩種單體,其具有不同的屬 性,從而引起不同的諧振頻率響應。
藉由下文中所提供的詳細說明,本發明的其它態樣及適用領域將變得更加清楚。應當理解,儘管該詳細說明及特定例子標示本發明的較佳具體實施例,但它們僅是出於說明目的,並非意圖限制本發明的範圍。
1‧‧‧電性控制層
2‧‧‧流體層
3‧‧‧電性接地層
4‧‧‧奈米孔
5‧‧‧奈米孔膜
6‧‧‧去保護室
7‧‧‧聚合物
9‧‧‧位置
11‧‧‧接觸
12‧‧‧電壓控制
13‧‧‧控制電極
4800‧‧‧單元
4802、4804、6206、6537、6539‧‧‧室
4806‧‧‧膜
4808‧‧‧奈米孔
4810‧‧‧DNA分子
4812‧‧‧上鹼基
4814‧‧‧中鹼基
4816‧‧‧下鹼基
4818、4820‧‧‧電極
4830‧‧‧等效電路圖
4900‧‧‧電路
4952‧‧‧幅度響應
4954、5130、5132、5230、5232‧‧‧圖形
5002‧‧‧幅度響應曲線
5003‧‧‧相位曲線
5004、5006、5111、5211‧‧‧虛線
5010、5012、5018、5020、5022、5028‧‧‧幅度響應曲線
5100‧‧‧DNA讀取時間序列
5102、5104、5106、5108、5110、5202、5204、5206、5208、5210‧‧‧列
5112、5114、5116、5118、5120‧‧‧響應曲線
5200‧‧‧概述例子
5300‧‧‧方塊圖
5302、5304、5306‧‧‧諧振器(NPR)
5308‧‧‧AC輸入電壓、AC輸入源
5310‧‧‧衰減器
5312、5314、5316‧‧‧等效電路
5320‧‧‧放大器
5322、5326、5330、5710、5712、5716、6410、6412、6710、6712、6714、6716、6720、6722、6808‧‧‧線
5324‧‧‧A/D轉換器
5328‧‧‧頻率分析(或分解)邏輯
5502、5510、5550、5570‧‧‧曲線
5512、5514、5516、5518‧‧‧頻率分量
5600、5620‧‧‧相位
5602、5604、5606‧‧‧幅度線
5700‧‧‧頂層方塊圖
5702、5704、5706、5708‧‧‧行
5714‧‧‧方框
5800‧‧‧單元
5802‧‧‧頂部接觸
5804‧‧‧介電層
5806‧‧‧垂直連接
5808‧‧‧電感器
5810‧‧‧輸入線
5812‧‧‧電容器
6000‧‧‧電路
6002‧‧‧左單元
6004‧‧‧右單元
6100‧‧‧晶片設計
6102‧‧‧板
6200‧‧‧裝置
6202、6502、6602‧‧‧左室
6203、6205‧‧‧奈米孔
6204、6504、6604‧‧‧右室
6210、6212、6214、6620、6622、6624、6626、6630、6632、6634、6636‧‧‧電極
6220、6222‧‧‧輸入線
6300‧‧‧裝置
6302、6304‧‧‧進入線
6500、6600、6606、6608、6610、6612‧‧‧單元
6503、6505、6652‧‧‧箭頭
6506、6508、6510、6512‧‧‧室單元
6514、6516‧‧‧去保護電極
6520、6522‧‧‧共同電極
6528‧‧‧奈米孔
6529‧‧‧膜
6530、6532、6534、6536‧‧‧去保護室
6540、6542、6544、6546‧‧‧箭頭
6550‧‧‧存儲串
6552‧‧‧點
6554‧‧‧珠
6590‧‧‧橫向電極
6642‧‧‧共同去保護電極
6650‧‧‧聚合物
6700、6702‧‧‧記憶體晶片
6704‧‧‧流體單元
6800‧‧‧儲存系統
6802‧‧‧讀/寫控制器
6804‧‧‧寫控制器
6810、6856‧‧‧方框
6812‧‧‧循環時鐘
6814、6820、6822、6852、6854、7102、7504、7506‧‧‧線
6850‧‧‧讀控制器邏輯
6858‧‧‧頻率振盪器邏輯
6860‧‧‧讀信號
6862‧‧‧A/D轉換邏輯
6864‧‧‧FFT邏輯
6870‧‧‧電腦系統
6872‧‧‧匯流
6874‧‧‧處理器
6876‧‧‧控制器
6878‧‧‧用戶
6880‧‧‧顯示器
6900‧‧‧表
6902、7000、7004、7006、7008、7010、7012‧‧‧時間圖
6906、6908‧‧‧列
6910、6912、6914‧‧‧圖
6916‧‧‧部分方波
6918、6922、6924、6928‧‧‧圖形段的第一部分
6920、6926、6930‧‧‧部分方波
7002‧‧‧寫入循環圖
7014‧‧‧箭頭
7020‧‧‧數據字
7030‧‧‧流程圖
7032、7034、7036、7038、7040、7042、7044、7046‧‧‧方塊
7104‧‧‧位元
7106‧‧‧地址段
7108‧‧‧數據段
7110‧‧‧數據格式、錯誤檢查段
7112‧‧‧儲存字
7120、7130‧‧‧數據格式
7122、7124、7126‧‧‧特殊位元或序列
7132、7134、7136‧‧‧特殊位元
7140‧‧‧數據部分
7202、7204、7206、7208‧‧‧單元
7210、7212、7214、7216、7302、7310、7312、7314、7316‧‧‧存儲串
7304、7306、7308‧‧‧數據串
7402、7404、7406‧‧‧特定單元
7410、7412‧‧‧儲存字
7502‧‧‧儀器
7700‧‧‧關係圖
7702、7704、7706、7708、7710‧‧‧時間段
7712‧‧‧AC信號
7714‧‧‧電壓
7716‧‧‧虛線
7800‧‧‧單元
7802‧‧‧上室
7804‧‧‧中室
7806‧‧‧下室
7808‧‧‧上電極
7809‧‧‧電極
7810‧‧‧中電極
7811‧‧‧導線
7812‧‧‧下電極
7814‧‧‧奈米孔
7815、7817、7906‧‧‧膜
7816‧‧‧奈米孔、DC電壓V1dc
7818‧‧‧DC電壓V2dc
7820‧‧‧DNA
7822、7824‧‧‧箭頭
7826‧‧‧AC分量V1ac
7828‧‧‧AC分量V2ac
7830、7832‧‧‧T型偏置器連接
7850‧‧‧等效電路
7852‧‧‧諧振器NPR1
7854‧‧‧諧振器NPR2
7856、7858、7860‧‧‧虛線
7900‧‧‧單元
7902、7904‧‧‧流體室
7908‧‧‧奈米孔
7910‧‧‧DNA分子
7912、7914、7918、7920、8130、8132‧‧‧電極
7922‧‧‧DC輸入電壓源V1dc
7924‧‧‧AC電壓V2ac
7970‧‧‧電路
8000‧‧‧單元
8002‧‧‧AC分量V1ac
8004‧‧‧“T型偏置器”連接
8100、8200‧‧‧單元
8102、8104、8106、8108、8110‧‧‧電極對
8112、8114、8116、8118、8120‧‧‧奈米孔
8122‧‧‧DNA分子
8124‧‧‧AC輸入電壓Vac
8128、8154、8314、8602‧‧‧線
8134‧‧‧DC輸入電壓Vdc
8136、8156‧‧‧虛線
8148‧‧‧AC輸入電壓
8150‧‧‧AC輸出電壓信號
8201‧‧‧奈米通道
8202、8204、8206、8208、8210‧‧‧電極對
8222‧‧‧DNA
8240、8242‧‧‧電極
8250‧‧‧基質
8252、8326、9402、9404‧‧‧上室
8254、8328、9406‧‧‧下室
8300‧‧‧諧振器
8302‧‧‧輸入端口
8304‧‧‧輸出端口
8305‧‧‧虛線
8306‧‧‧供給線
8307‧‧‧端口
8308‧‧‧開口環
8310‧‧‧間隙
8312‧‧‧奈米孔
8316‧‧‧橫向AC耦合距離Dcpl
8320‧‧‧上電極
8322‧‧‧下電極
8324‧‧‧膜
8330‧‧‧雙室單元
8332‧‧‧DNA
8604‧‧‧垂直AC耦合距離Dvcpl
8802‧‧‧直線
8902‧‧‧區域
9002‧‧‧直線
9004‧‧‧頂部行
9006‧‧‧中部行
9008‧‧‧底部行
9102‧‧‧區域
9202、9204‧‧‧電極
9210、9212‧‧‧虛線
9302‧‧‧矽基
9304‧‧‧諧振器層
9306‧‧‧SiN層
9308‧‧‧蝕刻
9310‧‧‧氮化矽層
9312‧‧‧異質結構
9314‧‧‧開口
9316‧‧‧第二開口
9318‧‧‧奈米孔
9320‧‧‧供給線接觸
9322‧‧‧流體晶片
9324‧‧‧CMOS晶片
9326‧‧‧FPGA讀取PCB
9408‧‧‧奈米通道
9410、9412‧‧‧奈米孔
9416‧‧‧底部電極
從該詳細說明及附圖將更充分地理解本發明,其中:
第1圖顯示具有被奈米孔穿孔的隔膜以及位於該膜的兩側上的電極的簡單兩室奈米晶片設計圖。
第2及3圖顯示如何將荷電聚合物(例如DNA)向陽極牽引。
第4及5圖顯示藉由反轉電極的極性可使聚合物移回。
第6圖顯示用於DNA合成的兩室奈米晶片,其中,聚合酶位於一個室中,去保護酶位於另一個室中,且兩者都不能經過奈米孔。
第7圖顯示當3’-保護dATP(A)流經左室並將電流設為“正向”以將DNA引入該室中時添加腺嘌呤核苷酸。
第8圖顯示寡核苷酸的去保護,從而可添加額外的核苷酸。例如,去保護發生於藉由將電流設為“逆向”而使DNA進入該室中以後。
第9圖顯示添加3’-保護dCTP(C)。在某些 具體實施例中,利用流體流動來更換此室的內容物,例如,如圖所示,先前在此室中具有“A”。
第10圖顯示怎樣可提供多個獨立的保留室,而流動室變為單條通道來提供試劑。
第11圖顯示藉由將DNA附著至室(附圖中的上DNA片段)或者藉由將DNA耦接至不能通過奈米孔的大基團(附圖中的下DNA片段)來保持DNA與其室關聯的方法。在此系統中,DNA的端部仍可進入流動室中並接收額外的核苷酸,而另一端留在保留室中。
第12圖顯示將DNA附著至室壁並藉由多個電極控制的配置。
第13圖顯示簡單地藉由控制電極的極性而在需要時可怎樣將DNA保留於室中。
第14圖顯示具有經過兩側的自由流動試劑陣列,DNA結合於室的表面。
第15圖顯示在鄰近隔膜之側上具有電極的替代設計,其允許比較便宜的製造。
第16圖顯示三隔間佈置,其中,藉由電極可使DNA在隔間和隔間之間移動。此系統不需要在合成期間試劑的顯著流動。
第17圖顯示在三隔間佈置中可怎樣配置試劑的例子。
第18圖顯示鄰近奈米孔拴繫的寡核苷酸,其中,該奈米孔在膜的兩側上具有電極元件。
第19圖顯示沿著包括奈米孔的膜附著且分別在鄰近奈米孔的電極的控制下的一系列DNA分子,在該膜的兩側上具有流道。例如,如圖所示,左流道提供緩衝劑清洗/3’-保護dATP(A)/緩衝劑清洗/3’-保護dCTP(C)/緩衝劑清洗流,其中,僅當所需核苷酸存在時才將DNA分子引入該流動室中。右道提供去保護劑,以將核苷酸的3’端去保護並允許添加另一個核苷酸。在一個具體實施例中,當用緩衝劑清洗左道時,該去保護劑流動。在另一個具體實施例中,該去保護劑太大,以致不能穿過奈米孔到達左道。
第20至22圖示意顯示概念試驗的證明,其中,用以編碼數據的位元是利用拓撲異構酶附著的短寡聚體。
第23圖顯示用於奈米孔測序儀的格式,其中,利用電容變化讀取聚合物序列。在此電容讀出方案中,電極形成電容器的頂部及底部板,由包括奈米孔的膜隔開。該電容器嵌入諧振電路中,其中,脈動直流可牽引該荷電聚合物穿過該奈米孔。藉由使用高頻阻抗譜,當該聚合物(例如DNA)經過該奈米孔時測量電容變化。此方法的主要優點(尤其對於DNA)是測量頻率可極高(有效地針對每個循環進行測量,因此100MHz頻率對應每秒1億次測量),且遠大於單體穿過該奈米孔轉移的速率(DNA,例如,除非一定程度限制,否則將以每秒1億核苷酸量級的速度響應電流經過該奈米孔)。
第24圖顯示雙添加室佈局,適於添加兩種不同類型的單體或寡聚體,例如用於2位元或二進制編碼。該圖的上部顯示頂視圖。下部顯示側視剖面。在此具體實施例中的整個裝置可自高達3個獨立製造的層組裝並藉由晶圓接合連接,或者可藉由蝕刻單個基質形成。該晶片包括電性控制層(1);包含位於保留室的頂部上的兩個添加室的流體層(2),荷電聚合物(例如,DNA)被固定於該第一與第二添加室的奈米孔入口之間;以及電性接地層(3)。
第25圖顯示第24圖的雙添加室佈局的操作。將觀察到,在各添加室的基部,具有奈米孔(4)。該奈米孔例如藉由用FIB、TEM、濕式或乾式蝕刻鑽出,或者藉由介電擊穿製成。包括該奈米孔的膜(5)為例如從1原子層至數10奈米厚。它由例如SiN、BN、SiOx、石墨烯、過渡金屬二硫化物例如WS2或MoS2製成。在奈米孔膜(5)下面具有保留或去保護室(6),其包含試劑以在添加室的其中一個中添加單體或寡聚體以後對聚合物去保護(應當記得,單體或寡聚體是以端部保護的形式添加的,從而一次僅添加單個單體或寡聚體)。藉由在電性控制層(1)中改變電極的極性可將聚合物(7)引入或出添加室。
第26圖顯示與第24及25圖類似佈局的頂視圖,但這裡具有四個添加室,其共用共同的保留或去保護室且聚合物被拴繫於通向各該四個室的位置(9)。此佈局的剖面將如第24及25圖中所示,且可藉由電性控制層(第24圖中的1)中的電極的操作使荷電聚合物進入各該四個 添加室中。
第27圖顯示奈米孔晶片的頂視圖,該奈米孔晶片具有多組如第24及25圖中所示的雙添加室,以允許並行合成多個聚合物。藉由串聯流徑將單體(這裡為被表示為A及G的dATP及dGTP核苷酸)載入各室中。一個或多個共同的去保護流動單元允許在該添加室的其中之一中添加單體或寡聚體以後對聚合物去保護。這也允許根據需要分離聚合物(例如,在DNA的情況下使用限制酶,或者化學脫離鄰近奈米孔的表面,以及外部收集。在此某些具體實施例中,該去保護流動單元垂直於用以填充添加室的流體加載通道。
第28圖進一步詳細顯示用於雙添加室佈局的線路。電性控制層(1)包括由金屬或多晶矽製成的線路。線路密度藉由三維堆疊增加,藉由電性沉積(例如,藉由PECVD、濺鍍、ALD等)設置電性隔離。在一個具體實施例中,至添加室中的頂部電極的接觸(11)藉由深反應離子蝕刻(Deep Reactive Ion Etch;DRIE)(cryo(低溫)或BOSCH製程)利用矽通孔(Through Silicon Via;TSV)製成。單獨的電壓控制(12)允許單獨處理各添加室,從而允許並行的多個聚合物的序列的精細控制。該圖的右側顯示頂視圖,說明至多個添加單元的線路。電性接地層(3)可為共同的(如圖所示),或隔開的,以減小單元之間的交叉耦合。
第29圖顯示替代配置,其中,添加室的控制電極(13)可以包覆方式沉積於該室的側面上,而不是位 於該室的頂部。
第30圖顯示SDS-PGAE凝膠確認如例3中所述的拓撲異構酶添加協議有效,與預期的A5及B5產品對應的帶清晰可見。
第31圖顯示瓊脂糖凝膠確認實施例5的PCR產品是正確尺寸。道0為25鹼基對階梯;通道1為實驗的產物,線對應預期的分子量;通道2為負控制#1;通道3為負控制#2;通道4為負控制#4。
第32圖顯示瓊脂糖凝膠(Agarose gel)確認如實施例5中所述的限制酶產生預期的產物。在左邊的階梯是100鹼基對階梯。通道1為未酶切NAT1/NAT9c,通道2為酶切NAT1/NAT9c。通道3為未酶切NAT1/NAT9cI,通道4為酶切NAT1/NAT9cI。
第33圖顯示靠近奈米孔固定DNA。分格(1)顯示在左室中的一端上具有摺紙(origami摺紙)結構的DNA(在實際奈米晶片中,在左室中初始具有許多此等摺紙結構)。分格(2)顯示系統的陽極在右邊,其將DNA驅動至奈米孔。儘管DNA鏈能夠通過奈米孔,但摺紙結構太大,以致不能通過,因此該DNA被“卡住”。將電流關閉(分格3)使該DNA散開。藉由合適的化學,當該DNA鏈的端部與奈米孔附近的表面接觸時,它能夠結合。在分格(4)中,添加限制酶,其自該DNA切割該摺紙結構。清洗該室以移除酶及殘餘DNA。最終結果為單個DNA分子附著於奈米孔附近,能夠來回移動穿過奈米孔。
第34圖顯示基本功能奈米孔。在各分格中,y軸為電流(nA)且x軸為時間(s)。左分格“RF噪聲的屏蔽”顯示法拉第籠的功用。在流動單元中設置沒有奈米孔的晶片並施加300mV。當法拉第籠的蓋子關閉時(第一箭頭),可看到噪聲降低。當栓鎖關閉時(第二箭頭),小的尖峰出現。注意電流是~0nA。在孔製造以後(中分格),施加300mV(箭頭)導致~3.5nA的電流。當向接地室施加DNA並施加+300mV時,當瞬時電流下降時,可觀察到DNA移位(右分格)。(要注意的是,在使用TS緩衝劑的情況下:50mM Tris,pH8,1M NaCl)。針對此DNA移位實驗使用Lambda DNA。
第35圖顯示簡化圖,說明DNA摺紙結構的主要特徵:大的單鏈區,立方體摺紙結構,以及在摺紙結構附近存在2個限制位點(SwaI及AlwN1)。
第36圖顯示所製造的DNA摺紙結構的電子顯微鏡圖像,並顯示預期的拓撲。在5mM Tris鹼、1mM EDTA、5mM Nacl、5mM MgCl2中製造摺紙。為保持該摺紙結構,較佳地具有~5mM的Mg++濃度或約1M的Na+/K+濃度。以500nM在4℃儲存該摺紙結構。
第37圖顯示限制性酶切DNA摺紙以確認正確的組裝及功能。最左邊的通道提供MW標準。藉由AlwN1及Swa1酶切摺紙來測試限制性位點。四個測試通道包含如下試劑(單位為微升):
Figure 107138371-A0202-12-0015-1
測試通道(1)為負控制;(2)為藉由Swa1酶切;(3)為藉由AlwN1酶切;(4)為藉由Swa1/AlwN1雙酶切。在室溫下執行酶切60分鐘,接著37℃執行90分鐘。Agarose gel 1/2x TBE-Mg(1/2x TBE與5mM MgCl2),用溴化乙錠染色觀察。用任一種酶的單獨酶切顯示在膠中沒有移動效應,但兩種酶一起酶切(通道4)導致具有不同長度的兩個片段,如預期那樣。
第38圖顯示生物素標記寡核苷酸與鏈酶親和素塗布珠的結合相對與控制BSA塗布珠的結合。Y軸為螢光單元,“預結合”是在結合珠之前來自測試溶液的寡核苷酸(oligo)螢光,(-)控制是在與兩個不同批次BSA-共軛珠結合以後看到的螢光,SA-1及SA-2是在與兩個不同批次鏈黴親和素-共軛珠結合以後看到的螢光。藉由BSA-共軛珠觀察到少量表觀結合,但藉由鏈黴親和素-共軛珠看到較大的結合。
第39圖顯示在不同緩衝系統MPBS及HK 緩衝劑中生物素標記寡核苷酸與鏈酶親和素塗布珠的結合相對與控制BSA塗布珠的結合。左邊的豎條“Neg Ctrl”是在結合珠之前來自測試溶液的寡核苷酸螢光。分別與BSA或鏈黴親和素珠結合以後,中間的豎條顯示“BSA珠”的螢光,右邊的豎條顯示“SA珠”的螢光。在兩種緩衝系統中,鏈黴親和素珠相對控制減小螢光,標示在不同緩衝系統中,生物素標記寡核苷酸與鏈黴親和素塗布珠結合得很好。
第40圖顯示功能共軛SiO2奈米孔,其中,表面在一側塗布鏈黴親和素並在另一側上塗布BSA。x軸為時間且y軸為電流。圓點顯示電流反轉的點。當電流反轉時有簡短的過沖,接著電流固定在大致相同的絕對值。該奈米孔顯示在200mV~+3nA以及在-200mV~-3nA的電流。
第41圖顯示向奈米孔中插入摺紙DNA結構的表示。
第42圖顯示將單鏈DNA附著至鄰近奈米孔的鏈黴親和素塗布表面的表示。
第43圖顯示將摺紙DNA附著至奈米孔附近的表面的實驗結果。電流沿兩個方向為+或-~2.5nA,其小於+或-~3nA的初始電流,反映被摺紙結構部分阻礙。x軸為時間(s),y軸為電流(nA),圓圈表示電壓切換點。
第44圖顯示插入摺紙DNA,導致電流略微下降。當釋放電流時,該摺紙立即退出奈米孔。x軸為時間(s),y軸為電流(nA),圓圈表示電壓切換點。
第45圖顯示藉由施加電流DNA鏈來回穿過奈米孔的受控移動的表示。在左側,該DNA在孔中,因此,所觀察到的電流將低於孔中沒有DNA的情形。當電流反轉時(右側),孔中沒有DNA,因此電流將不變。
第46圖顯示確認此表示的實驗結果。當施加正電壓時,電流為~3nA,與當孔為開放時通常觀察到的電流相當。當電壓反轉時,電流為~-2.5nA。這低於當孔開放時通常看到的電流,並對應當孔被DNA鏈阻擋時通常觀察到的電流。數個順序電壓切換顯示一致的結果,表明該DNA如第45圖中所示在配置上交替。
第47圖顯示用以將DNA鏈接至鄰近奈米孔的表面的不同共軛化學。
第48A、48B及48C圖顯示依據本發明的具體實施例的聚合物及奈米孔以及等效電路的三個視圖。
第49A圖是依據本發明的具體實施例用奈米孔單元製成的諧振器的等效電路。
第49B圖是依據本發明的具體實施例的第49A圖的諧振器的輸出響應的幅度及相位圖。
第50圖顯示依據本發明的具體實施例的第49A圖的諧振器的輸出響應的幅度及相位的範圍的一組曲線。
第51圖顯示依據本發明的具體實施例聚合物經過奈米孔以及在探針頻率的輸出響應的所得諧振器幅度及相位的時間序列。
第52圖顯示依據本發明的具體實施例聚合物經過奈米孔以及在第二探針頻率的輸出響應的所得諧振器幅度及相位的時間序列。
第53圖顯示依據本發明的具體實施例多個並聯奈米孔-聚合物諧振器及信號處理的等效電路。
第54圖顯示依據本發明的具體實施例的數個諧振頻率帶寬的頻率圖。
第55A圖顯示依據本發明的具體實施例的AC輸入電壓Vin的頻率圖。
第55B圖顯示依據本發明的具體實施例的替代AC輸入電壓Vin的時間-頻率圖。
第56圖顯示依據本發明的具體實施例在三個探針頻率的幅度及相位頻率圖。
第57圖顯示依據本發明的具體實施例的二維陣列奈米孔-聚合物諧振器的方塊圖。
第58圖顯示依據本發明的具體實施例的奈米孔記憶體晶片的側剖視圖。
第59圖顯示依據本發明的具體實施例用於第58圖的晶片中的電感器的頂視圖。
第60圖顯示依據本發明的具體實施例連接AC與DC兩信號的“T型偏置器(bias-tee)”配置的等效電路圖。
第61圖顯示依據本發明的具體實施例的第60圖的“T型偏置器”配置的部分圖。
第62圖顯示依據本發明的具體實施例具有兩個電感器(每個頂部Add室上具有一個)的奈米孔記憶體晶片的另一個具體實施例的側剖視圖。
第63圖顯示依據本發明的具體實施例在頂部Add室的其中之一上具有一個電感器的奈米孔記憶體晶片的另一個具體實施例的側剖視圖。
第63A圖是依據本發明的具體實施例具有與諧振器的頂部電極連接的單個共同電感器並在各諧振器單元中具有固定電容的多個並聯奈米孔-聚合物諧振器及信號處理的等效電路。
第63B圖顯示依據本發明的具體實施例具有第63A圖的配置的奈米孔記憶體晶片的另一個具體實施例的側剖視圖。
第64圖顯示依據本發明的具體實施例在去保護室的底部上具有電感器的奈米孔記憶體晶片的另一個具體實施例的側剖視圖。
第64A圖 顯示依據本發明的具體實施例針對第64圖的配置連接AC及DC兩信號的“T型偏置器”配置的等效電路圖。
第64B圖 顯示依據本發明的具體實施例具有單個共同電感器並在各諧振器單元中具有固定電容的多個並聯奈米孔-聚合物諧振器及信號處理的等效電路。
第64C圖顯示依據本發明的具體實施例具有第64B圖的配置的奈米孔記憶體晶片的另一個具體實施 例的側剖視圖。
第65圖顯示依據本發明的具體實施例具有透明頂部及底部電極的一組連接的3室單元奈米孔裝置的部分立體視圖。
第66圖顯示依據本發明的具體實施例具有透明頂部及電極的一組連接的3室單元奈米孔裝置的替代具體實施例的部分立體視圖。
第67圖顯示依據本發明的具體實施例按照第65圖連接的奈米孔單元陣列的電路方塊圖。
第68圖顯示依據本發明的具體實施例的讀/寫記憶體控制器及奈米孔記憶體晶片的方塊圖。
第68A圖顯示依據本發明的具體實施例的電腦系統的方塊圖。
第69圖顯示依據本發明的具體實施例的記憶體添加循環以及執行該循環所需的引導電壓的表格及圖形。
第70圖顯示依據本發明的具體實施例利用交替寫循環針對各種數據輸入如何填充記憶體的圖形及資料映像(data map)。
第70A圖顯示依據本發明的具體實施例用於執行第70圖中所示的寫循環的控制器邏輯的流程圖。
第70B圖顯示依據本發明的具體實施例藉由如第66圖中所示配置奈米孔晶片寫入“1”及“0”的步驟的表格。
第71圖顯示依據本發明的具體實施例位於存儲串上的位元(bit)的三種不同數據格式列表。
第72圖顯示依據本發明的具體實施例針對一行中的各單元的存儲串上的位元的數據格式列表。
第73圖顯示依據本發明的具體實施例針對一行中的各單元的存儲串上的位元的替代數據格式列表。
第74圖顯示依據本發明的具體實施例針對一行中的單元的存儲串上的位元的替代並行數據儲存格式列表。
第75圖顯示依據本發明的具體實施例顯示讀/寫記憶體控制器及用於流體/試劑的儀器的奈米孔記憶體系統的方塊圖。
第76圖為凝膠電泳製備,顯示對DNA分子的寡核苷酸匣(“位元”)的拓撲異構酶介導添加。
第77圖顯示例7的DNA摺紙分子。
第77A圖顯示依據本發明的具體實施例隨著時間推移具有不同DC電壓電平的DC及AC電壓的輸入電壓圖。
第78A圖顯示依據本發明的具體實施例具有兩個縱向奈米孔諧振器的雙奈米孔裝置的側視圖。
第78B圖顯示依據本發明的具體實施例的第78A圖的雙奈米孔裝置的等效電路。
第79A圖顯示依據本發明的具體實施例具有橫向諧振器的雙室奈米孔裝置的側視圖。
第79B圖顯示依據本發明的具體實施例的第79A圖的雙室裝置的部分的等效電路。
第79C圖顯示依據本發明的具體實施例的第79A圖的橫向諧振器的等效電路。
第80A圖顯示依據本發明的具體實施例具有使用不同AC源的橫向諧振器及縱向諧振器的雙室奈米孔裝置的側視圖。
第80B圖顯示依據本發明的具體實施例具有使用相同AC源的橫向諧振器及縱向諧振器的第80A圖的雙室奈米孔裝置的側視圖。
第81A圖顯示依據本發明的具體實施例具有使用相同AC源的多個橫向諧振器的奈米孔裝置的側視圖。
第81B圖顯示依據本發明的具體實施例具有多個橫向諧振器(針對各橫向諧振器使用不同AC源)的第81A圖的奈米孔裝置的側視圖。
第82A圖顯示依據本發明的具體實施例具有多個橫向諧振器(具有奈米通道並使用相同AC源)的裝置的側視圖。
第82B圖顯示依據本發明的具體實施例的第82A圖的奈米通道及電極的側視圖。
第82C圖顯示依據本發明的具體實施例的第82A圖的奈米通道及電極的側視圖。
第83圖顯示依據本發明的具體實施例具有 方形開口環的開口環諧振器的頂視圖。
第84圖顯示依據本發明的具體實施例具有圓形開口環的開口環諧振器的頂視圖。
第85圖顯示依據本發明的具體實施例的第83圖及84的開口環諧振器沿線8314的側視圖。
第86圖顯示依據本發明的具體實施例具有方形開口環及垂直偏移的供給線的開口環諧振器的頂視圖。
第87圖顯示依據本發明的具體實施例第86圖的開口環諧振器沿線8304的側視圖。
第88圖顯示依據本發明的具體實施例由共同的供給線驅動的多個開口環諧振器的頂視圖。
第89圖顯示依據本發明的具體實施例的第88圖的諧振器的其中之一的放大視圖。
第90圖顯示依據本發明的具體實施例由共同的供給線驅動的多個替代幾何開口環諧振器的頂視圖。
第91圖顯示依據本發明的具體實施例的第90圖的諧振器的其中之一的放大視圖。
第91A圖顯示依據本發明的具體實施例的第90圖的諧振器的其中之一的立體視圖。
第92A、92B、92C、92D、92E、92F圖顯示依據本發明的具體實施例的橫向諧振器的橫向電極的端部的各種幾何的頂視圖。
第92G圖顯示依據本發明的具體實施例的 橫向諧振器的橫向電極的側視圖。
第93圖顯示依據本發明的具體實施例使用開口環諧振器的兩室單元的製程。
第94圖顯示依據本發明的具體實施例在下方共同通道中具有奈米通道的三室奈米孔裝置的側視圖。
第95圖顯示依據本發明的具體實施例在下方共同通道中具有替代奈米通道配置的三室奈米孔裝置的側視圖。
第96圖顯示荷電拓撲異構酶的SDS-PAGE。
下面有關較佳具體實施例的詳細說明僅為示例性質,並非意圖限制本發明、其應用或使用。
本文中所使用的範圍用於快捷說明在此範圍內的每個值。可選擇在此範圍內的任意值作為該範圍的終點。此外,本文中所引用的所有參考整體藉由引用併入本文。若本揭露中的定義與所引用的參考的定義存在衝突,則本揭露主導。
除非另外指出,否則在本說明書中的此處及其它地方所表達的所有百分比及數量應當被理解為是指重量百分比。所給出的數量是基於材料的有效重量。
本文中所使用的“奈米晶片”是指奈米流體裝置,其包括多個室,該多個室包含流體以及視需要地允許流體流動的通道,其中,該奈米晶片的特徵的關鍵尺寸例如將該些室彼此隔開的元件的寬度從1個原子至10微 米厚,例如,小於1微米,例如0.01-1微米。在該奈米晶片中的材料的流動可藉由電極調節。例如,當DNA及RNA荷負電時,它們會被牽引至荷正電電極。參見例如Gershow,M等人的Recapturing and Trapping Single Molecules with a Solid State Nanopore,Nat Nanotechnol.(2007)2(12):775-779,其藉由引用併入本文。在一些情況下,可藉由柵極元件以及藉由沖洗、注入以及/或者將流體吸入或吸出該奈米晶片來調節流體的流動。該系統支持核酸(DNA/RNA)的精確多路複用分析。在某些具體實施例中,該奈米晶片可由矽材料製成,例如二氧化矽或氮化矽。氮化矽(例如,Si3N4)尤其適合用於此目的,因為它在化學上較惰性且即使僅幾奈米厚也可有效阻擋水及離子的擴散。也可使用二氧化矽(如本文中的例子中所使用),因為它是化學改性的良好表面。或者,在某些具體實施例中,該奈米晶片可整體或部分由可形成與單分子一樣薄的薄片的材料製成(有時被稱為單層材料),例如石墨烯,例如如Heerema,SJ等人的Graphene nanodevices for DNA sequencing,Nature Nanotechnology(2016)11:127-136;Garaj S等人的Graphene as a subnanometre trans-electrode membrane,Nature(2010)467(7312),190-193中所述,其內容藉由引用併入本文,或者過渡金屬二硫化物,例如二硫化鉬(MoS2),如Feng等人的Identification of single nucleotides in MoS2 nanopores,Nat Nanotechnol.(2015)10(12):1070-1076中所述,其內容藉由引用併入本文,或者 氮化硼,如Gilbert等人的Fabrication of Atomically Precise Nanopores in Hexagonal Boron Nitride,eprint arXiv:1702.01220(2017)中所述。
在一些具體實施例中,該奈米晶片包括此等單層材料,其較堅硬及惰性,例如,至少與石墨烯一樣惰性及堅硬,例如MoS2。可將單層材料例如用作包括奈米孔的膜的全部或部分。該奈米晶片可用金屬部分加襯,例如,可為層式的壁(例如,金屬-氮化矽-金屬),且接著可配置該金屬以在奈米孔附近提供可控電極對,從而可藉由電動力使核酸來回移動穿過奈米孔,此外還可藉由在核酸經過奈米孔時測量電位的變化對核酸測序。
用於對DNA測序的奈米晶片奈米流體裝置眾所周知,例如如Li,J等人的Solid-state nanopore for detecting individual biopolymers,Methods Mol Biol.(2009)544:81-93;Smeets RM等人的Noise in solid-state nanopores,PNAS(2008)105(2):417-21;Venta K等人的Differentiation of short,single-stranded DNA homopolymers in solid-state nanopores,ACS Nano.(2013)7(5):4629-36;Briggs K等人的Automated fabrication of 2-nm solid-state nanopores for nucleic acid analysis,Small(2014)10(10):2077-86;以及Chen Z的DNA translocation through an array of kinked nanopores,Nat Mater.(2010)9(8):667-75中所述,各文獻的全部內容藉由引用併入本文,例如,針對它們在包括奈米孔的奈米晶片的設計及製造上的教導。
本文中所使用的“奈米孔”是具有小於1微米的直徑的孔,例如2-20奈米直徑,例如在2至5奈米的量級。單鏈DNA可經過2奈米的奈米孔;單鏈或雙鏈DNA可經過4奈米的奈米孔。具有極小的奈米孔例如2-5奈米允許DNA經過,但較大的蛋白酶不行,從而允許DNA(或其它荷電聚合物)的受控合成。若使用較大的奈米孔(或較小的蛋白酶),可將該蛋白酶與阻止該蛋白酶經過奈米孔的基質共軛,例如與較大的分子例如較大的蛋白共軛,與珠共軛,或者與室中的表面共軛。已知不同類型的奈米孔。例如,藉由在膜例如脂雙層中組裝孔形成蛋白來形成生物奈米孔。例如,在細胞膜中天然存在a-溶血素及類似蛋白孔,其中,它們充當離子或分子進出細胞的通道,且可將此類蛋白重新用作奈米通道。例如,藉由使用反饋控制低能離子束雕刻(ion beam sculpting;IBS)或高能電子束照明藉由在合成膜中配置孔,在合成材料例如氮化矽或石墨烯中形成固態奈米孔。藉由在合成材料中嵌入孔形成蛋白可製成雜化奈米孔。若在奈米孔的兩端或兩側具有金屬表面或電極,則經由電解質媒體通過奈米孔可建立通過奈米孔的電流流動。電極可由任意導電材料製成,例如銀、金、鉑、銅、二氧化鈦,例如塗布有氯化銀的銀。
配置固態奈米孔例如氮化矽、膜的方法是已知的。在一種方法中,用膜材料例如氮化矽塗布矽基質,且該膜的總體配置藉由光刻及濕化學蝕刻創建,以提供具有所需尺寸的氮化矽膜從而納入奈米晶片中,例如約 25x25微米。藉由使用聚焦離子束(focused ion beam;FIB)在該氮化矽膜中打出初始的0.1微米直徑孔或腔。離子束雕刻可配置奈米孔,或者藉由縮小較大的孔(例如藉由在膜表面上的粒子束誘發橫向大量輸送),或者藉由自相對側包含腔的該膜的平坦側透過逐層離子束濺鍍移除膜材料,從而當最終到達該腔時,具有銳邊奈米孔。熄滅離子束曝光,之後藉由該孔傳輸的離子電流適於所需孔尺寸。參見例如Li等人的Solid-state nanopore for detecting individual biopolymers,Methods Mol Biol.(2009)544:81-93。或者,藉由使用TIM中的高能(200-300keV)電子束照明可配置奈米孔。藉由使用半導體製程技術、電子束光刻、SiO2掩膜層的反應離子蝕刻,以及Si的非等向性KOH蝕刻,在40奈米厚的膜中製作錐狀20x20奈米及更大的孔。使用TEM中的電子束將該較大的20奈米孔縮小為較小的孔。該TEM允許實時觀察該縮小過程。藉由使用較薄的膜(例如,<10奈米厚),可用TEM中的高能聚焦電子束鑽出奈米孔。通常參見Storm AJ等人的Fabrication of solid-state nanopores with single-nanometre precision.Nature Materials(2003)2:537-540;Storm AJ等人的Translocation of double-stranded DNA through a silicon oxide nanopore.Phys.Rev.E(2005)71:051903;Heng JB,等人的Sizing DNA Using a Nanometer-Diameter Pore.Biophys.J(2004)87(4):2905-11,各文獻的內容藉由引用併入本文。
在其它具體實施例中,藉由在膜上使用較 高的電壓電位,利用介電擊穿製作奈米孔,其中,抬升電壓直至檢測到電流,例如,如Kwok等人的“Nanopore Fabrication by Controlled Dielectric Breakdown,”PLOS ONE(2014)9(3):e92880所述,其內容藉由引用併入本文。
藉由使用這些技術,並且當然依據所使用的精確技術以及膜的厚度及精確組成,在固體材料例如氮化矽中的奈米孔的總體形狀可大致類似兩個漏斗,它們的尖端會合於最窄點處,也就是,實際的奈米孔。此等雙錐形有助於引導聚合物經過奈米孔並返回。可使用成像技術例如原子力顯微鏡(atomic force microscopy;AFM)或透射電子顯微鏡(transmission electron microscopy;TEM)(尤其TEM)來驗證並測量奈米膜、FIB孔或腔,以及最終奈米孔的尺寸、位置及配置。
在一些具體實施例,將聚合物(例如DNA)的一端拴繫在奈米孔附近或者通向奈米孔的漏斗的內壁上。若聚合物的一端被拴繫靠近奈米孔,由於聚合物初始藉由擴散接近奈米孔,然後由電性梯度驅動,因此梯度驅動運動被最大化且擴散運動被最小化,並由此增強速度及效率。參見例如Wanunu M的Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient,Nat Nanotechnol.(2010)5(2):160-5;Gershow M.的Recapturing and trapping single molecules with a solid-state nanopore.Nat Nanotechnol.(2007)2(12):775-9;Gershow,M.的Recapturing and Trapping Single Molecules with a Solid State Nanopore.Nat Nanotechnol.(2007)2(12):775-779。
在一個具體實施例中,將聚合物(例如DNA)的一端附著至珠並驅動聚合物穿過孔。附著至該珠將阻止聚合物完全經過相鄰室中的隔膜的相對側上的奈米孔,接著,關閉電流,且聚合物(例如DNA)附著至與隔膜的另一側上的室中的奈米孔相鄰的表面。例如,在一個具體實施例中,將ssDNA的一端共價附著至50奈米珠,並將另一端生物素化。將鏈黴親和素結合至隔膜的另一側上的室中的所需附著點處的區域。藉由電位拉動DNA穿過奈米孔,且該生物素附著至該鏈黴親和素。至珠及/或鄰近奈米孔的表面的該附著可為共價接合或者強非共價接合(類似生物素-鏈黴親和素接合)。接著,用酶切去該珠並沖洗掉。在一些具體實施例中,用限制酶切割單鏈DNA,其切割單鏈DNA例如如K.Nishigaki的Type II restriction endonucleases cleave single-stranded DNAs in general.Nucleic Acids Res.(1985)13(16):5747-5760中所述,該文獻藉由引用併入本文。在其它具體實施例中,提供互補寡核苷酸,以形成雙鏈限制位點,接著可用相應限制酶對其切割。
當聚合物經過奈米孔時,由聚合物經過時奈米孔的部分堵塞引起的奈米孔上的電位、電容或電流的變化可被檢測並用以識別聚合物中的單體的序列,因為不同的單體可藉由它們的不同尺寸及靜電位識別。
現有技術未揭露如本文中所述的在DNA製 造方法中使用包括奈米孔的奈米晶片,但此等晶片是已知的且在市場上可買到以用於DNA的快速測序。例如,MinION(Oxford Nanopore Technologies,Oxford,UK)小且可連接到膝上型電腦。當單鏈DNA以每秒30個鹼基經過蛋白奈米孔時,MinION測量電流。孔中的DNA鏈破壞離子流,導致與序列中的核苷酸對應的電流變化。Mikheyev,AS等人的A first look at the Oxford Nanopore MinION sequencer,Mol.Ecol.Resour.(2014)14,1097-1102。儘管MinION的精確性差,需要重複的重新測序,但若被讀取的DNA僅包含兩個容易識別的鹼基,例如A及C,則利用本發明的奈米晶片測序的速度及精確性可大大提升。
在一些具體實施例中,包括奈米孔的膜可具有三層配置,在絕緣核心材料例如氮化矽膜的兩側上具有金屬表面。在此具體實施例中,該金屬表面例如藉由光刻方式配置,以提供具有成對電極的微電路,在每個奈米孔的每端具有一個電極,例如,從而可在該電極之間並經由電解質媒體穿過奈米孔建立通過奈米孔的電流流動,電流可牽引聚合物穿過奈米孔並可藉由反轉極性將它牽引回來。當聚合物經過奈米孔時,電極可測量奈米孔上的電位變化,從而識別聚合物中的單體的序列。
在一些具體實施例中,聚合物的序列經設計以儲存數據。在一些具體實施例中,以二進制代碼(1及0)儲存數據。在一些具體實施例中,各鹼基對應1或0。在其它具體實施例中,容易識別的兩個或更多鹼基的序列對 應1且另一個容易識別的兩個或更多鹼基的序列對應0。在其它具體實施例中,可以三進制、四進制或其它代碼儲存數據。在特定具體實施例中,聚合物為DNA,例如單鏈DNA,其中,該DNA僅包含兩個鹼基類型且不包含能夠自我雜合的任意鹼基,例如,其中,該DNA包括腺嘌呤及鳥嘌呤,腺嘌呤及胞嘧啶,胸腺嘧啶及鳥嘌呤,或胸腺嘧啶及胞嘧啶。在一些具體實施例中,該兩個鹼基可穿插一個或多個額外鹼基,例如A及C可包含T,從而以不會導致嚴重自我雜合的頻率,例如藉由在編碼序列中標示斷開來“不時打斷”序列。在其它具體實施例中,例如,若核酸為雙鏈,可採用一些或全部可用鹼基。
核苷酸鹼基可為天然的或者可在一些具體實施例中由非天然鹼基組成或包括非天然鹼基,例如,如Malyshev D等人的“A semi-synthetic organism with an expanded genetic alphabet”,Nature(2014)509:385-388中所述,該文獻藉由引用併入本文。
在一個具體實施例中,藉由向聚合物添加單個單體例如在DNA的情況下的單個核苷酸來儲存數據。在一個具體實施例中,聚合物為DNA且單體為腺嘌呤(A)及胞嘧啶(C)殘基。A及C殘基具有優點,因為(i)A及C具有大的尺寸差異,因此應當有助於通過奈米孔的分化,(ii)A及C不會彼此配對,從而不會形成顯著的二級結構,該二級結構可能使奈米孔信號的解釋複雜化,以及(iii)出於相同的原因,G不太佳,因為眾所周知它們會形成鳥嘌 呤四鏈體。藉由末端轉移酶(或者多核苷酸磷酸化酶)添加核苷酸,但該核苷酸為3’保護,從而每次僅添加單個核苷酸。在添加下一核苷酸之前移除該保護。
在一些具體實施例中,DNA保留於奈米晶片中。在其它具體實施例中,移除該DNA,並視需要地將其轉換為雙鏈DNA以及/或者視需要地將其轉換為晶形,例如以增強長期穩定性。在其它具體實施例中,可擴增DNA並移除擴增的DNA以供長期儲存,而原始模板DNA例如結合於奈米晶片中的室壁的DNA可保留於奈米晶片中,其中,可讀取該DNA以及/或者將其用作模板以形成額外DNA。
在一些具體實施例中,在合成期間,將DNA或其它聚合物固定至鄰近奈米孔的表面。例如,在一個具體實施例中,單鏈DNA分子在5’端分別附著至鄰近奈米孔的表面,其中,在各奈米孔的電流可針對該奈米孔藉由電極獨立調節,從而該DNA分子的3’端可自保留室穿過奈米孔被拉入流動室中(該流動室包含3’保護dNTP流以及用以添加3’保護dNTP的聚合酶或末端轉移酶),或者被保留於保留室中,其中,奈米孔阻止酶進入,從而不添加dNTP。參見例如第12-16圖以及第18及19圖的圖示。在其它具體實施例中,藉由使用拓撲異構酶,藉由添加至5’端(3’端附著)構建單鏈DNA,如下面更詳細所述。藉由控制各DNA分子是否參與每個循環,可精確控制各DNA分子的序列,例如如下所示:
Figure 107138371-A0202-12-0034-2
A流=3’保護dATP C流=3’保護Dctp
在此示意圖中的奈米孔1及奈米孔2與不同DNA鏈關聯且其位置(進或出流動室)可獨立控制。可對DNA去保 護,藉由保留室中的特定酶,或者藉由改變流動室中的流以通過酶、化學、光催化或其它方式提供去保護。在一個具體實施例中,去保護劑流動於A流與C流的循環之間,例如在用緩衝劑清洗流動室時,從而去保護劑不會對核苷酸構件塊去保護。在其它具體實施例中,去保護劑太大,以致不能穿過奈米孔到達流動室。
上述例子的最終結果將為:A及C被添加至奈米孔1的DNA,且C及C被添加至奈米孔2的DNA。
在另一個具體實施例中,室配置類似,但將雙鏈DNA固定至鄰近奈米孔的表面,並利用位點特異性重組酶(也就是,例如利用如下所述的拓撲異構酶荷電寡核苷酸,自發識別並切割已知為位點特異性重組序列的序列段內的雙鏈核酸的至少其中一鏈的酶)順序添加例如兩種或更多類型的寡核苷酸片段(分別對應二進制代碼)。
在某些具體實施例中,在合成以後,可能想要保持荷電聚合物(例如DNA)於凝聚態。這有幾個原因:
●該聚合物在此形式應當更穩定,
●凝聚該聚合物將減少擁擠並允許使用少量的較長聚合物,
●有序凝聚可降低該聚合物形成結或纏結的可能性,
●若任意該些室是互連的,則它將幫助阻止該聚合物變得如此長以致於在施加電流時經過與本該經過的孔不同的孔。
●凝聚將幫助保持聚合物遠離電極,其中,電化學可能 損傷該聚合物。
人類細胞為約10微米但包含80億個DNA鹼基對。將它展開將超過一米長。DNA能夠納入細胞中是因為它纏繞組蛋白。在某些具體實施例中,組蛋白或類似蛋白在本發明的奈米晶片中提供類似功能。在一些具體實施例中,奈米晶片的內表面稍微荷正,從而荷電聚合物(例如DNA)傾向於微弱黏附於該些表面。
在某些具體實施例中,荷電聚合物例如單鏈或雙鏈DNA結合於鄰近奈米孔的表面。這可以各種方式實施。一般來說,為將該聚合物定位於該奈米孔,將該聚合物附著至較大的結構(例如,珠、蛋白,或DNA摺紙結構(下面說明),具有太大的直徑以致不能穿過該奈米孔,例如>10奈米,例如,約20-50奈米),利用電流拉動該荷電聚合物穿過該奈米孔,將該聚合物遠離該大結構的端部固定至鄰近該奈米孔的表面,例如,其中,該表面經改性以接受附著至該聚合物鏈的該遠端的鏈接基團,從而附著該聚合物鏈,並切去該大結構。
可以各種方式實施將該聚合物遠離該大結構的端部固定至鄰近該奈米孔的表面的步驟。在一個具體實施例,該聚合物為單鏈DNA,並具有預附著DNA鏈(約50bp(鹼基對)),其與該單鏈DNA的部分互補,從而該單鏈DNA與該預附著DNA鏈可藉由鹼基配對結合。若該配對足夠強,即使在該DNA被操作時也足以保持該DNA固定。此附著方法的優點是它允許該DNA根據需要自奈米 晶片移離以供長期儲存該DNA。或者,藉由使用共軛化學例如下面實施例1中所述的鏈黴親和素-生物素共軛或者“點擊”化學(參見Kolb等人的Angew.Chem.Int.Ed.(2001)40:2004-2021(藉由引用併入本文)以及/或者利用酶附著例如藉由將寡核苷酸共價預附著至遠端表面並接著使用DNA連接酶連接它們)將該鏈共價附著至表面。
一旦將該鏈的遠端附著至鄰近該奈米孔的表面,即切去該大結構,例如,利用核酸內切酶在該大結構附近的限制位點切割。
該大結構可為珠、大分子,例如可逆地結合至DNA鏈的蛋白,或者DNA摺紙結構。DNA摺紙包括使用鹼基配對來創建三維DNA結構。在Bell等人的Nano Lett.(2012)12:512-517中概括說明了DNA摺紙技術,該文獻藉由引用併入本文。例如,在當前的發明中,可使用DNA摺紙以將單個DNA分子附著至鄰近奈米孔的表面。在一個具體實施例中,該結構為“蜂窩立方體”,例如每側約20奈米。這防止DNA的此部分穿過奈米孔(正如附文中)。長鏈DNA(單鏈或雙鏈)附著至該摺紙結構。該DNA鏈穿過奈米孔,直至該摺紙立方體遇到奈米孔並阻止進一步的前進。接著,關閉電流並將該鏈附著至鄰近奈米孔的表面。
在另一個具體實施例中,具有摺紙結構的荷電聚合物(例如DNA)位於三室配置的中間室中。該摺紙將阻止該DNA完全進入其它2室中(或者在2室例子中的 另一個室)。因此,在此例中,該聚合物不需要被固定至表面。這降低該聚合物打結的風險且無需將該聚合物的一端結合至表面並在另一端切割大部分的步驟。具有摺紙的室的體積應當保持盡可能小,從而該聚合物保持較靠近孔,這將幫助確保在施加電流時該聚合物快速移位。應當注意的是,儘管包含該聚合物的該摺紙部分的中間室不能與其它中間室互連(否則不同聚合物會混在一起),但其它室(或者在該3室例子中的室組)可互連。若需要,這些其它室可具有較大的體積,因為當DNA被移至該室時,該聚合物必然靠近孔(其中部分實際上將位於孔中)。
在一些具體實施例中,該裝置包括三個串聯室,其中,添加室是相鄰的,以允許流動,且具有共同的電極,而“去保護”室流體隔離,除了穿過奈米孔的流動,並具有單獨的電極。
在其它具體實施例中,該DNA或其它荷電聚合物不固定,但可在室中的電極的控制下,在合成室與去保護室之間移動,同時限制聚合酶及去保護劑在室間移動,因為它們太大,以致不能經過將該些室連接的奈米孔,以及/或者因為它們被固定至室中的表面。參見例如第1圖-9及16-17。
使荷電聚合物經過奈米孔所需的電流依賴於例如聚合物的性質、奈米孔的尺寸、包含奈米孔的膜的材料,以及鹽濃度,因此將根據需要針對特定系統進行優化。在本文中的例子中所使用的DNA的情況下,電壓及電 流的例子將為例如50-500mV,通常100-200mV,以及1-10nA,例如約4nA,鹽濃度在100mM至1M的量級。
荷電聚合物(例如DNA)移動經過奈米孔通常很快,例如每個鹼基1至5us,因此在每秒1百萬個鹼基的量級(1MHz,若我們採用頻率的術語),這為獲得區別於系統中的噪聲的精確讀取帶來挑戰。藉由使用當前的方法,(i)需要在序列中重複核苷酸,例如,連續約100次,以產生可測量的特性變化,或者(ii)使用蛋白孔,例如Alpha溶血素(aHL)或恥垢分枝桿菌(MspA),其提供較長的孔,具有當鹼基經過時可多次讀取的可能性,且在一些情況下,可經調整以每次一個鹼基的方式提供DNA經過孔的受控供給,在一些情況下,在各鹼基經過時使用核酸外切酶對其切割。可用各種方法,例如,●減慢聚合物的速度,從約1MHz減至約100-200Hz,例如利用包括電流變液的媒體,其於施加電壓時變得較黏稠,從而減慢聚合物經過奈米孔的速度;或者等離子體流體系統,其中,媒體的黏性可由光控制;或者分子馬達或棘輪;●在聚合物中例如在單鏈DNA中提供序列,其將形成大的二級結構,例如“髮夾”、“錘頭”或“啞鈴”配置,其將須經線性化,以適合穿過奈米孔,從而使信息不太密集並提供具有較長持續時間的信號;●提供同一序列的多次讀取,例如藉由使用快速交流電流,以允許多次讀取同一序列幀,並與直流電流的 短暫脈衝結合,以將分子拉至下一序列幀;藉由多次讀取整個序列;或者藉由並行讀取多個相同的序列,在每種情況下,校對該些讀取,以提供一致讀取,其放大信號;●當單體(例如,核苷酸)經過奈米孔時測量由電容變化誘發的高頻信號中的阻抗變化,而不是直接測量電流流動或電阻的變化;●增強不同鹼基之間的電流、電阻或電容的差異,例如藉由使用在尺寸上具有較大差異或者以其它方式改性以發出不同信號的非天然鹼基;或者藉由在DNA內形成較大的二級結構,例如“髮夾”、“錘頭”或“啞鈴”配置,這些結構因它們的較大尺寸而提供增強的信號;●使用光學讀取系統,例如使用鄰近奈米孔的集成光學天線,其充當光轉換器(或者光信號增強器),以互補或替代標準離子流測量,例如,如Nam等人的“Graphene Nanopore with a Self-Integrated Optical Antenna”,Nano Lett.(2014)14:5584-5589中所述,其內容藉由引用併入本文。在一些具體實施例中,用螢光染料標記單體例如DNA核苷酸,從而各不同單體在經過奈米孔與其光學天線的會合處時以特徵強度發出螢光。在一些具體實施例中,當聚合物高速經過奈米孔時,固態奈米孔剝離螢光標記,導致一系列可探測光子爆發,例如,如McNally等人的“Optical recognition of converted DNA nucleotides for single molecule DNA sequencing using nanopore arrays”,Nano Lett.(2010)10(6):2237-2244以及Meller A.的“Towards Optical DNA Sequencing Using Nanopore Arrays”,J Biomol Tech.(2011)22(Suppl):S8-S9中所述,各文獻的內容分別藉由引用併入本文。
在一個具體實施例中,荷電聚合物為核酸,例如單鏈DNA,其中,該序列提供二級結構,Bell等人的Nat Nanotechnol.(2016)11(7):645-51(藉由引用併入本文)說明使用可以固態奈米孔格式檢測的啞鈴配置的較短序列標記免疫分析中的抗原。用於Bell等人中的奈米孔較大,因此整個啞鈴結構可經過該孔,但藉由使用小於啞鈴配置的直徑的奈米孔,DNA將“解壓縮”並線性化。可使用更複雜的配置,例如,其中,每位對應類似tRNA的序列(參見例如Henley等人的Nano Lett.(2016)16:138-144,其藉由引用併入本文)。因此,本發明提供具有至少兩種類型二級結構的荷電聚合物,例如單鏈DNA,其中,該二級結構編碼數據(例如,二進制數據,其中,一個二級結構類型為1且另一個為0)。在其它具體實施例中,使用二級結構減慢DNA通過奈米孔的速度或者在序列中提供中斷,以促進序列的讀取。
在另一個具體實施例中,本發明使用包括一系列至少兩種不同DNA基序的DNA分子,其中,各基序專門結合特定配體,例如雙鏈DNA的基因調節蛋白或 單鏈DNA的tRNA,其中,該至少兩種不同DNA基序例如以二進制代碼編碼信息,其中,一個基序為1且另一個為0,例如,其中,當DNA經過奈米孔時,該配體增強奈米孔上的信號差異(例如電流或電容的變化)。
如上所述,當不同的單體經過奈米孔時,它們影響經過奈米孔的電流流動,主要藉由物理性地阻擋奈米孔並改變奈米孔上的導電性。在現有的奈米孔系統中,直接測量此電流變化。電流讀取系統的問題是系統中存在相當大的噪聲,且在DNA的情況下,例如,當測量不同核苷酸單元經過奈米孔時的電流波動時,需要較長的集成時間,在百分之一秒的量級,以精確檢測不同單體之間例如不同鹼基之間的差異。最近,研究表明可使用阻抗及電容的變化來研究細胞及生物系統,儘管有可能與鹽及生物分子發生複雜的交互。例如,Laborde等人的Nat Nano.(2015)10(9):791-5(藉由引用併入本文)證明高頻阻抗譜可用以檢測生理鹽條件下的微小電容變化以及成像超出德拜極限的微顆粒及活細胞。
因此,在本發明的一個具體實施例中,我們測量電容變化,而不是直接測量電流變化,例如,其中,當單體(例如,核苷酸)經過奈米孔時,藉由測量由電容變化誘發的射頻信號的相位變化來識別荷電聚合物的序列。
簡單地說,電容存在於一個電性導體與另一個之間具有間隙的任意電路中。儘管電流直接隨電容變化,但它不會隨電容同時變化。例如,若我們要繪製具有 交流電流的電容電路中隨時間變化的電流及電壓,我們會看到儘管電流與電壓分別形成正弦波,但該些波不同相。當存在電流變化時,存在電容變化,其反映於信號的相位變化。射頻交流電流提供具有固定頻率及幅度的信號,而信號的相位將隨電路的電容變化。在我們的系統中,我們使用脈動直流(也就是,具有DC偏置的AC信號)而不是純交流電流(也就是,電壓在兩個值之間交替,但電壓不經過“零”線,從而保持極性且一個電極保持正而另一個電極保持負),從而可牽引荷電聚合物穿過奈米孔(在DNA的情況下朝向正電極)。當奈米孔中沒有東西時,電容具有一個值,當聚合物的不同單體經過奈米孔時,該電容值變化。在一些具體實施例中,合適的頻率範圍在射頻範圍中,例如1MHz至1GHz,例如50-200MHz,例如約100MHz,例如低於可能引起媒體的顯著介電加熱的較高微波頻率。可使用其它頻率,如本文中所述。為降低干擾的可能性,可在不同的奈米孔施加不同的頻率,從而可藉由單條射頻輸入線同時測量多個奈米孔。
在高頻測量阻抗變化(由於例如電容變化)增加特定時間跨度內可用的信噪比,因為它降低電子測量電路中固有的1/f噪聲或“粉紅”噪聲的影響。使用高頻信號增強信噪比,因為許多測量在給定時間跨度內進行,從而提供更穩定的信號,該信號容易與因環境或裝置變化及波動而導致的阻抗變化區分。
藉由將這些原則應用於當前的發明,本發 明在一個具體實施例中提供一種當單體(例如,核苷酸)經過奈米孔時測量由電容變化誘發的高頻信號中的阻抗變化的方法,例如,一種讀取包括至少兩種不同類型單體的荷電聚合物(例如DNA分子)的單體序列的方法,包括在奈米孔上施加射頻脈動直流電流,例如在1MHz至1GHz的頻率,例如50-200MHz,例如約100MHz,其中,該脈動直流電流牽引該荷電聚合物穿過該奈米孔,並藉由在該荷電聚合物穿過該奈米孔時測量該奈米孔上的電容變化來讀取該單體序列。
例如,請參照第48A圖、48B、48C,顯示基於奈米孔的單元4800具有上(或頂部)室4802及下(或底部)室4804以及膜4806,該膜隔開兩個室4802、4804。該膜由如上所述的材料製成。另外,在該單元中具有穿過該膜的奈米孔4808(或奈米尺寸的孔),其具有本文中所述的形狀及尺寸,允許在室4802、4804之間的流體連通。
在單元4800內部具有聚合物分子例如單鏈DNA分子4810(或ssDNA),例如如上所述。在此實施例中,DNA 4810具有三個單位或鹼基:上鹼基4812、中鹼基4814,以及下鹼基4816。DNA 4810中的各該鹼基4812至4816或者鹼基的集合可被稱為用以表示或儲存數據的信息“位”,也如本文中所述。若需要,可使用任意其它聚合體或DNA分子(單鏈或雙鏈),如上所述。
可用例如本文中所述的流體填充單元4800的室4802、4804,其允許DNA 4810在室4802、4804之間 浮動及移動。單元4800還具有一對電極4818、4820:與輸入電壓Vin連接的上(或頂部)電極4818,以及與接地(或GND或0伏)連接的下(或底部)電極4820。在一些具體實施例中,下電極4820還可與非零DC電壓連接,但仍可藉由使用AC耦合電容器(與該電極連接,具有使AC電壓藉由的電容值(下文中詳細討論)處於AC(或rf或射頻)“地”。施加於電極4818、4820的電壓確定單元4800中的DNA 4810的移動。尤其,當DNA鏈4810在存在電場或電壓或電荷差的情況下時,DNA 4810將被吸引至正電荷或電壓,因為DNA分子4810具有淨負電荷,如前面參照第1至5圖所述。
在此情況下,當頂部電極4818相對底部電極4820(這裡顯示為地或0伏)具有正電壓時,DNA 4810(若它處於下室4804中)將穿過奈米孔4808向頂部電極4818移動,並進入上室4802中。反之,當頂部電極4818相對底部電極4820具有負電壓時,DNA 4810將穿過奈米孔4808向底部電極4818移動,並進入下室4804中。第48A、48B及48C圖顯示DNA 4810穿過奈米孔4808從上室4802向下室4804移動。
請參照第48A至48C圖,單元4800(或奈米孔及DNA系統)可被電性模擬為等效電路圖4830,其顯示為並聯的電容器C1與電阻器R1。尤其,頂部電極4818看到由局部環境設置的對地的電容C1及電阻R1,其中,電容器C1表示單元4800的電容,其由兩個電極4818、 4820(也就是電容器板)的屬性以及它們之間的介電材料的屬性確定,至少由單元4800內的流體以及具有奈米孔4808的膜4806定義。電阻器R1表示與單元4800關聯的DC電阻,至少由與上面所述的單元的介電材料關聯的損耗定義,其顯示為該兩個電極之間的DC漏電流。
當DNA 4810經過奈米孔4808時,單元電容與電阻(或單元阻抗,Z單元)都變化。不同的DNA鹼基具有不同的尺寸,並因此對電容及電阻具有不同的影響,從而導致不同的等效電路模型,如第48A至48C圖所示。尤其,在第48A圖中,DNA 4810在奈米孔4808的外部,導致一組值C1、R1(或Z單元1)。在第48B圖中,DNA 4810的鹼基4814在奈米孔中,導致另一組值C2、R2(或Z單元2)。類似地,在第48C圖中,DNA 4810的鹼基4812在奈米孔中,導致另一組值C3、R3(或Z單元3)。
請參照第49A及49B圖,單元4800的電容C及電阻R(奈米孔及DNA系統)可與電感器L組合,以形成如電路4900所示(第49A圖)的“電感器-單元”或“單元-電感器”RLC諧振電路或諧振器或濾波器(或帶止濾波器,或陷波濾波器,或帶阻濾波器),具有由圖形4952顯示的幅度頻率響應,以及由圖形4954顯示的相位頻率響應。電路4900的中心或諧振頻率fres由下式給出:ωres=2πfres=Sqrt(1/LC)x Sqrt(1-(L/C)/R2) Eq.1其中,C及R分別是在給定時間的該單元的電容及電阻,且L是電感器的值(其相對該單元中的DNA的位置是一個 常數)。還可具有與該電感器L串聯的等效線圈電阻器(未顯示),標示該電感器線圈繞組的DC電阻。不過,若該線圈電阻可忽略不計,則它不必顯示於電路圖中或諧振頻率fres式中。
當單元電阻R的值大時,式1變為:ωres=2πfres=Sqrt(1/LC) Eq.2
請參照第49B圖,諧振電路4900的幅度響應4952(對於C及R的給定值)在諧振頻率fres處具有最大衰減(最小阻抗),且在諧振頻率fres附近的窄頻帶(或停止頻帶)△fstp上具有陡幅度衰減響應,△fstp是幅度響應(Vout/Vin)低於標準閾值的頻率範圍,例如3dB(或20Log[SQRT(2)])。對於所有其它頻率,輸出幅度基本恒定且不衰減。諧振電路4900的相應相移響應曲線4954在諧振頻率fres處具有45度的相移(此時複阻抗的電抗或虛部等於零),並在諧振頻率fres的每側上的窄停止頻帶△fstp上具有陡相位響應,從而在高於fres並在帶△fstp外部的頻率處,相移處於或接近180度,且在低於fres並在帶△fstp外部的頻率處,相移處於或接近0度。另外,相位響應輸出在所有其它頻率上基本恒定且不移動。
請參照第50圖,顯示該諧振電路(或濾波器)的一組諧振頻率響應幅度曲線5002及相位曲線5003,其響應DNA(或沿長度具有變化尺寸的其它聚合物或分子)經過奈米孔並改變對地(例如,0伏)所測電容(或阻抗),從而改變諧振頻率fres,如幅度響應曲線5010-5018及相應相 位響應曲線5020-5028所示。尤其,如上面的式2所示,增加對地所測電容降低諧振頻率fres。另外,增加DNA“鹼基”尺寸(更加阻擋奈米孔)可增加單元電容(取決於DNA的介電常數),從而降低諧振頻率fres。反之,減小DNA鹼基尺寸(更加不阻擋奈米孔)可減小單元電容(取決於DNA的介電常數),從而增加諧振頻率fres。藉由使用標準DNA鹼基(G、C、A、T),尺寸量級將為:G(最大)、A、T、C(最小)。相應地,假定DNA的介電常數隨DNA鹼基適當變化,當DNA在奈米孔中時,當最大鹼基例如鹼基G在奈米孔中時,fres將為最低,且當最小鹼基例如鹼基C在奈米孔中時,fres將為最高。另外,當奈米孔開放(未阻擋)時,也就是在奈米孔中沒有DNA或聚合物時,fres將為最高頻率。此諧振頻率的範圍或頻帶在第50圖中顯示為△fres。另外,對於第50圖中所示的針對幅度的諧振器響應曲線5010-5018以及針對相位的5020-5028,諧振器的總帶寬(在其上的幅度及相位受諧振器實質影響)在第50圖中顯示為△fBW
此外,假定影響阻抗的所有其它單元條件保持固定,針對給定單元-電感器諧振電路(或諧振器或濾波器)的總諧振頻帶△fres將在奈米孔開放(或者不被聚合物阻擋)時具有最大諧振頻率fres-最大值,並在奈米孔封閉(或者被聚合物阻擋)時具有最小諧振頻率fres-最小值,且單元諧振頻率fres可藉由在給定時間奈米孔中的聚合物的尺寸改變(或調節或更改),並因此在本文中可被稱為奈米孔-聚合物 諧振器(或NPR)。此外,諧振器的總帶寬△fBW(在其上的幅度及相位受諧振器實質影響)將類似地基於諧振頻帶△fres確定。
當向諧振器施加AC電壓並在固定頻率f探針(例如在顯示為垂直虛線5004的DNA鹼基的諧振頻率範圍的中心附近,不一定與中心(或諧振)頻率fres對齊)觀察(或監控)的諧振器的輸出電壓信號(Vout)時,諧振器在此頻率f探針提供四個不同的可能輸出信號(或者幅度衰減或相移量),取決於經過奈米孔的特定DNA鹼基(尺寸),以及當DNA不在奈米孔中時(“開孔”狀態)的第五輸出電壓狀態。這五個輸出信號藉由響應曲線組5002、5003與對應監控頻率f探針的線5004相交的位置顯示,也就是,幅度V1-V5,以及相位Ph1-Ph5。
或者,若在不同的頻率f探針2(例如在最低頻率響應曲線5010的諧振頻率附近,顯示為垂直虛線5006,其例如在低於f探針的頻率)監控輸出電壓,則在頻率f探針2的輸出電壓將為5個幅度輸出電壓V6-V10(不同於在f探針看到的輸出電壓V1-V5)以及5個輸出相移ph6-ph10(不同於在f探針看到的輸出電壓ph1-ph5)。尤其,這些不同的五個輸出信號藉由響應曲線組5002、5004與對應監控頻率f探針2的線5006相交的位置顯示,也就是幅度V6-V10,以及相位ph6-ph10。V1-V10及Ph1-Ph10的值是任意命名的,僅用於識別或標記目的。探針或監控頻率f探針、f探針2的值或位置可基於所需響應值設置,如下所述。 如下所示,藉由使用當聚合物在奈米孔中時看到的諧振頻率範圍內的探針或監控頻率的值,可提供有用的輸出值範圍。若需要,可使用其它測量或探針頻率,只要其符合所需功能及性能要求。
尤其,若四個鹼基將按大小次序順序通過奈米孔(也就是,G、A、T、C),當最大鹼基(例如,鹼基G)經過奈米孔時,諧振頻率fres將為最低(電容最高),並分別藉由(最左邊)幅度及相位曲線5010、5020顯示相應響應。在此情況下,在曲線5010、5020與線5004相交之處的頻率f探針處的輸出電壓將分別對應輸出電壓V2及輸出相位ph1。或者,若在監控頻率f探針2監控輸出電壓,在曲線5010、5020與線5006相交之處的頻率f探針2處的輸出電壓將分別對應輸出電壓V10及輸出相位Ph6。
類似地,當下一個較小鹼基(例如,鹼基A)經過奈米孔時,諧振頻率fres將略高於先前鹼基的諧振頻率,且響應分別藉由幅度及相位曲線5012、5022顯示。在此情況下,在曲線5012、5022與線5004相交之處的頻率f探針處的輸出電壓將分別對應輸出電壓V5及輸出相位Ph2。或者,若在監控頻率f探針2監控輸出電壓,則在曲線5012、5022與線5006相交之處的頻率f探針2處的輸出電壓將分別對應輸出電壓V9及輸出相位Ph7。
類似地,當下一個較小鹼基(例如,鹼基T)經過奈米孔時,諧振頻率fres將略高於先前鹼基的諧振頻率,且響應分別藉由幅度及相位曲線5014、5024顯示。在 此情況下,在曲線5014、5024與線5004相交之處的頻率f探針處的輸出電壓將分別對應輸出電壓V4及輸出相位Ph3。或者,若在監控頻率f探針2監控輸出電壓,則在曲線5014、5024與線5006相交之處的頻率f探針2處的輸出電壓將分別對應輸出電壓V8及輸出相位Ph8。
當最小鹼基(例如,鹼基C)經過奈米孔時,諧振頻率fres將略高於先前鹼基的諧振頻率,且響應分別藉由幅度及相位曲線5016、5026顯示。在此情況下,在曲線5016、5026與線5004相交之處的頻率f探針處的輸出電壓將分別對應輸出電壓V3及輸出相位Ph4。或者,若在監控頻率f探針2監控輸出電壓,則在曲線5016、5026與線5006相交之處的頻率f探針2處的輸出電壓將分別對應輸出電壓V7及輸出相位Ph9。
最後,當奈米孔中沒有DNA時,諧振頻率fres將為最高(電容最低),且響應分別藉由幅度及相位曲線5018、5028顯示。在此情況下,在曲線5018、5028與線5004相交之處的頻率f探針處的輸出電壓將分別對應輸出電壓V1及輸出相位Ph5。或者,若在監控頻率f探針2監控輸出電壓,則在曲線5018、5028與線5006相交之處的頻率f探針2處的輸出電壓將分別對應輸出電壓V6及輸出相位Ph10。
請參照第51圖,顯示依據本揭露的具體實施例的DNA讀取時間序列5100的概述例子,用於藉由在固定探針(或監控)頻率f探針測量的本揭露的“電感器-單元” 諧振器或“電容-諧振”DNA數據讀取技術讀取DNA鏈4810中利用兩位元(例如,兩個鹼基)儲存於DNA中的數據。該DNA讀取時間序列具有5個時間段或階段T1-T5,顯示為5列5102至5110,且時間段之間的推進由虛線5111顯示。對於各時間階段T1至T5,有圖像顯示針對此時間階段的DNA 4810(第48圖)及其相對奈米孔4808的位置,還有分別針對時間階段T1-T5的幅度及相位響應曲線5112-5120,以顯示該響應曲線與監控頻率f探針的交點(與第50圖中所示的曲線組中的曲線對應),以及兩個輸出值圖形5130、5132,以顯示在各時間階段T1-T5上在監控頻率f探針處分別針對幅度及相位響應的相應輸出信號(例如,電壓值)。圖形5130、5132的值V1-V5及Ph1-Ph5可為任意電壓值,標示具有合適範圍及比例以提供本文中所述的功能的參數的輸出值。
關於在第51圖的例子中的各該5個時間狀態T1-T5的DNA 4810的位置及移動,在時間階段T1(5102)=沒有DNA在奈米孔中(開放孔),在時間階段T2(5104)=鹼基A在奈米孔中,在時間階段T3(5106)=鹼基G在奈米孔中,在時間階段T4(5108)=鹼基A在奈米孔中,以及在時間階段T5(5110)=沒有DNA在奈米孔中(開放孔)。
請參照第50及51圖,在時間階段T1開始,DNA 4810位於孔4808的外部,對地的電容低(如本文中所述),諧振頻率fres高,且在監控頻率f探針所測量的幅度輸出信號高且相位值很低(例如,約0度),對應第50圖 中所示的響應曲線5018、5028,在曲線5018、5028與線5004相交之處的f探針處的輸出值分別對應輸出電壓V1及輸出相位Ph5。在時間T2,DNA鹼基4816(鹼基A,在此例中)進入孔4808,對地的電容增加,諧振頻率fres移至較低的中心頻率,且在f探針所測量的幅度輸出信號低且相位值為中間值(例如,約90度),對應第50圖中所示的響應曲線5012、5022,在曲線5012、5022與線5004相交之處的f探針處的輸出值分別對應輸出電壓V5及輸出相位Ph2。在時間T3,DNA鹼基4814(鹼基G,在此例中為最大鹼基)進入孔4808,對地的電容極高,且諧振頻率fres移至更低,但在f探針處的幅度輸出信號為中間值,輸出值為上中(例如,約135度),對應第50圖中所示的響應曲線5010、5020,在曲線5010、5020與線5004相交之處的f探針處的輸出值分別對應輸出電壓V2及輸出相位Ph1。
在時間T4,DNA鹼基4812(在此例中鹼基A)進入孔4808(再次),對地的電容降低(從在T3的值),諧振頻率fres移至中心頻率,且在f探針所測量的幅度輸出信號低且相位值為中間值(例如,約90度),對應第50圖中所示的響應曲線5012、5022,在曲線5012、5022與線5004相交之處的f探針處的輸出值分別對應輸出電壓V5及輸出相位Ph2。在時間T5,DNA 4810位於孔4808的外部(再次),對地的電容低,諧振頻率fres(再次)移至高頻率,且在f探針所測量的幅度輸出信號為高,對應第50圖中所示的響應曲線5018、5028,在曲線5018、5028與線5004相交之 處的f探針處的輸出值分別對應輸出電壓V1及輸出相位Ph5。
請參照第52圖,顯示時間序列(T1-T5)的另一個概述例子5200,用於利用不同的固定探針(或監控)頻率f探針2藉由本揭露的電容-諧振DNA數據讀取技術讀取DNA鏈中利用兩位元(例如,兩個鹼基)儲存於DNA中的數據。該序列具有5個時間段或階段T1-T5,顯示為5列5202至5210,且時間段之間的推進由虛線5211顯示。對於各時間階段T1至T5,有圖像顯示針對此時間階段的DNA 4810(第48圖)及其相對奈米孔4808的位置,還有分別針對時間階段T1-T5的幅度及相位響應曲線5112-5120,以顯示該響應曲線與監控頻率f探針2的交點(與第50圖中所示的曲線組中的曲線對應),以及兩個輸出值圖形5230、5232,以顯示在各時間階段T1-T5上在監控頻率f探針2處分別針對幅度及相位響應的相應輸出信號(例如,電壓值)。圖形5130、5132的值V1-V5及Ph1-Ph5可為任意電壓值,標示具有合適範圍及比例以提供本文中所述的功能的參數的輸出值。
關於在第52圖的例子中的各該5個時間狀態T1-T5的DNA 4810的位置及移動,在時間階段T1(5202)=沒有DNA在奈米孔中(開放孔),在時間階段T2(5204)=鹼基A在奈米孔中,在時間階段T3(5206)=鹼基G在奈米孔中,在時間階段T4(5208)=鹼基A在奈米孔中,以及在時間階段T5(5210)=沒有DNA在奈米孔中(開放 孔)。
請參照第50及52圖,在時間階段T1開始,DNA 4810位於孔4808的外部,對地的電容低(如本文中所述),諧振頻率fres高,且所測量的幅度輸出信號高且相位值很低(例如,約0度),對應第50圖中所示的響應曲線5018、5028,在曲線5018、5028與線5006相交之處的f探針2處的輸出值分別對應輸出電壓V6及輸出相位Ph10。在時間T2,DNA鹼基4816(鹼基A,在此例中)進入孔4808,對地的電容增加,諧振頻率fres移至較低的中心頻率,且在f探針2所測量的幅度輸出信號為中間值且相位值為低中值(例如,約45度),對應第50圖中所示的響應曲線5012、5022,在曲線5012、5022與線5006相交之處的f探針2處的輸出值分別對應輸出電壓V9及輸出相位Ph7。
在時間T3,DNA鹼基4814(鹼基G,在此例中為最大鹼基)進入孔4808,對地的電容極高,且諧振頻率fres移至更低,在f探針2處的幅度輸出信號為低輸出值且輸出相位在約中間值(例如,約90度),對應第50圖中所示的響應曲線5010、5020,在曲線5010、5020與線5006相交之處的f探針2處的輸出值分別對應輸出電壓V10及輸出相位Ph6。在時間T4,DNA鹼基4812(在此例中鹼基A)進入孔4808(再次),對地的電容降低(從在T3的值),諧振頻率fres移至中心頻率,且在f探針2所測量的幅度輸出信號為中間值且相位值為低,對應第50圖中所示的響應曲線5012、5022,在曲線5012、5022與線5006相交之處的 f探針2處的輸出值分別對應輸出電壓V9及輸出相位Ph7。在時間T5,DNA 4810位於孔4808的外部,對地的電容低,諧振頻率fres(再次)移至較高頻率,且在f探針2所測量的幅度輸出信號為高且相位信號極低(例如,約0度),對應第50圖中所示的響應曲線5018、5028,在曲線5018、5028與線5006相交之處的f探針2處的輸出值分別對應輸出電壓V6及輸出相位Ph10。
請參照第51及52圖的兩個例子,並比較輸出圖形5130、5132以及5230、5232,可看到所需輸出值可基於測量或監控頻率f探針、f探針2選擇。
儘管上面說明了使用兩位元及四位元(鹼基)代表將要被讀取的數據的DNA,但若需要,可將任意數目的“位元”(或單體或鹼基)用於數據儲存聚合物,只要單元電容或阻抗(及相應諧振頻率,或頻率響應)的變化足以針對各位產生可將其與各其它位區分開來的輸出幅度及/或相位。儘管此等電容變化可藉由改變鹼基的物理分子尺寸(例如,直徑)實施,但若需要,可使用鹼基的任意屬性,在經過奈米孔時它創建單元的獨特電容值。例如,可使用具有不同介電屬性、不同離子(或電荷)屬性,以及/或者不同量子機械/電性屬性的鹼基,只要它們符合所需功能及性能要求。
請參照第53圖,顯示本揭露的DNA數據讀取網絡陣列的等效電路及方塊圖5300,具有並聯陣列諧振電路或奈米孔聚合物諧振器(NPR)5302-5306(NPR1- NPR3),各諧振電路藉由單獨的耦合電容器CCPL(下文中說明)與共同的AC輸入電壓源5308並聯,該AC輸入電壓源提供AC電壓Vin,其頻率至少包括針對各諧振電路NPR1-NPR3(下文中詳細說明)的所需測量頻率(f探針)。各諧振器NPR1-NPR3(下文中詳細說明)分別具有獨特的電感器值L1-L3,與相應單元的等效電路5312-5316串聯連接(類似第48A-48C圖中所述的單元4800,並類似第49A圖中所述的等效電路4900),該等效電路具有可變電容器C及可變電阻器R,它們相對單元4810中的奈米孔4808基於單元4800中的聚合物(或DNA)4810(第48A圖)的位置變化(如上所述)。各獨特的電感器值L1-L3設置獨特的諧振頻帶△fres(第50圖)以及相應總諧振器帶寬△fBW(第50圖),下文中參照第54圖詳細說明。因此,多個諧振器NPR1-NPR3在頻率多路複用(或頻分多路複用)佈置中並聯連接,從而創建諧振器NPR1-NPR3陣列,所有諧振器由單個AC輸入電壓5308驅動,且各自對應其自己的探針輸入頻率。
請參照第53圖,在連接並聯陣列諧振器NPR1-NPR3之前,可將可選的AC RF衰減器5310與AC輸入源5308串聯,以提供分壓器或與諧振器NPR1-NPR3匹配的阻抗以及/或者基於興趣操作頻率範圍上的諧振器的阻抗值的範圍調節AC輸出電壓Vout範圍。衰減器5310可為恒定型或切換型或可變型RF衰減器,取決於所使用的頻率範圍、陣列及負載的阻抗,以及/或者所需功能及性能特性。
請參照第53圖,可將並聯陣列諧振器NPR1-NPR3的AC輸出電壓Vout提供給放大器(或前置放大器)5320,該放大器對輸出信號Vout執行信號調節,例如移除噪聲,圍繞興趣測量頻率濾波,將諧振器陣列的阻抗與下游裝置或組件隔離,提升測量靈敏度,放大或衰減Vout信號,以及/或者執行提供所需功能及/或性能所需的AC輸出電壓信號Vout的其它所需信號調節。在一些具體實施例中,該放大器也可為有源濾波器,其圍繞探針頻率的其中一個或多個對AC輸出電壓信號濾波。放大器5320藉由線5322向A/D轉換器5324(例如,集成電路或晶片)提供模擬AC調節輸出電壓Vout信號,該A/D轉換器數位採樣該調節AC輸出電壓Vout並藉由線5326提供數位輸出數據,標示該採樣調節AC輸出電壓Vout信號。A/D轉換器的採樣速率可為任意速率,其提供充足的輸出信號採樣,以保持在所需測量頻率(例如,探針頻率)執行頻率分析的能力。還可將該AC輸出電壓降頻變換至較低的中間頻率或DC,例如若基本探針頻率太高(或快),以至不能直接被該A/D轉換器精確採樣(或者,出於其它設計或性能原因),藉由將該AC輸出信號與相同(類似)頻率混合,例如零差或外差解調,或任意其它類型或解調或頻率變換,只要它保持精確測量所需參數所需的幅度及/或相位分量。A/D轉換器5234可具有儲存該採樣輸出數據的板上記憶體以及/或者可與可儲存所有或部分該採樣輸出數據的獨立記憶體裝置(未顯示)連接或通信。藉由線5326向數位信 號處理頻率分析(或分解)邏輯5328提供該數位採樣輸出數據,例如FFT(或快速傅裡葉變換)邏輯或晶片,其對該數位採樣數據執行數位信號處理(DSP)並藉由線5330提供數位數據,標示存在於該採樣AC輸出信號Vout中的頻率分量(或諧波)的幅度及/或相位。若需要,可使用任意其它頻率分析硬件、固件及/或軟件替代FFT邏輯5328,只要它提供本文中所述的功能及性能並充分測量在所需興趣頻率的輸出信號的幅度及/或相位(例如,至少在所需探針或測量頻率)。
放大器5320、A/D轉換器5324以及FFT邏輯5329都是可從集成電路提供者例如Texas Instruments公司、Analog Devices公司、National Instruments公司、Intel公司,或其它類似製造商獲得的已知硬件或固件組件(其可具有電腦可編程部分)。可使用的用於數位化的組件的一個例子包括:Xilinx FFT LogiCORE,part no.4DSP FMC103,1126,Alazartec 9360,9370。若需要,可使用其它組件,只要它們提供本文中所述的功能及性能。另外,該FFT邏輯可藉由現場可編程門陣列(FPGA)執行。
另外,替代用A/D轉換器採樣該輸出電壓並執行數位信號處理以確定頻率分量,可將輸出信號Vout提供一個或多個模擬濾波器(未顯示),該模擬濾波器被調節至所需頻率以識別所需頻率分量的幅度及/或相位並提供標示該頻率分量的幅度及/或相位的模擬輸出電壓信號。
請參照第54圖,頻率圖5400顯示針對本 揭露的第53圖的多個諧振器NPR1-NPR3的採樣頻率分隔。尤其,如上參照第53圖所述,各諧振器NPR1-NPR3具有獨特的諧振器帶寬△fBW1、△fBW2、△fBW3,其分別藉由獨特的電感器值L1-L3設置或確定。諧振器NPR1-NPR3的帶寬△fBW1、△fBW2、△fBW3可藉由頻率分隔或間隙△f間隙與相鄰的諧振器帶寬隔開,從而相鄰諧振器的諧振器帶寬△fBW不重疊且不會引起相鄰諧振器之間的干擾或串擾。在一些具體實施例中,帶寬可重疊,只要各鹼基的頻率響應不同,因此不影響識別各諧振器的響應的能力。
類似地,在第54圖中,顯示分別對應諧振器NPR1-NPR3的帶寬△fBW1、△fBW2、△fBW3的一組探針或監控頻率fp1、fp2、fp3,其可為在提供本文中所述的所需輸出信號的各諧振器帶寬△fBW1、△fBW2、△fBW3內的頻率,例如在聚合物在奈米孔中時所看到的諧振頻率的範圍中(如上面參照第50-52圖所述)。若需要,可使用其它測量或探針頻率,只要它符合所需功能及性能要求。
儘管間隙頻率主要藉由選擇電感器L值確定,但為避免由可能發生於系統操作條件下的系統參數變化引起的操作期間的不良重疊所需的相鄰頻帶之間的分隔量還可藉由各種因素確定,包括但不限於單元設計參數容差(例如,電極、電感器、電容器、流體、單元壁、膜、材料、尺寸,以及因單元而異的任意其它單元設計參數),環境操作範圍,例如溫度、壓力、濕度等、電磁干擾或噪聲參數/效應,任意單元與單元(或室與室)交互,以及/或者任 意其它設計慣例、安全或監管要求或容限,或者可能影響所需功能或性能的任意其它因素。此類因素可引起給定諧振器的帶寬從其理想狀態改變,因此應當針對隨時間及環境變化的頻率分隔在總體設計容差參數中加以考慮。
請參照第55A及55B圖,本揭露的AC輸入電壓Vin至少包括所需測量或探針頻率,將在該頻率對輸出AC電壓Vout進行頻率分析(例如,藉由第53圖的FFT邏輯5330)。請參照第55A圖,AC輸入電壓Vin可為由曲線5502顯示的連續寬帶AC頻率信號,具有從最小可能的測量頻率f最小值至最小可能的測量頻率f最大值的所有頻率,或者從第一探針頻率fp1至最後探針頻率fPN。在此情況下,所有諧振器NPR1-NPR3藉由該寬帶頻率信號激發並將在輸出信號的頻率分量中呈現響應。或者,AC輸入電壓Vin可為由曲線5510顯示的寬帶AC頻率信號,僅具有所需探針或監控頻率fp1、fp2、fp3、fpN,分別如單獨頻率分量5512、5514、5516、5518所示。此外,針對陣列中所有諧振器的AC輸入電壓Vin的總頻率範圍可從約1.0MHz至100GHz(或更高)。若需要,可使用其它頻率,只要它符合本文中所述的功能及性能。AC輸入電壓Vin可藉由已知的振盪器晶片提供(其可為可調節的及/或可編程的),該振盪器晶片針對所需設計配置及激發提供所需AC頻率分量,例如FMC2850、TIDAC900,或Xilinx DS558。在Vin包含多個單獨探針頻率的情況下,Vin可藉由將獨立的AC頻率電子地組合在一起創建,或者直接數學合成並編程於 振盪器中(藉由硬連線或與其連接的微處理器編程)。
請參照第55B圖,AC輸入電壓Vin可為由曲線5550顯示的時間掃描AC頻率信號,掃描從最小可能測量頻率f最小值至最小可能測量頻率f最大值的輸入頻率,或者從第一探針頻率fp1至最後探針頻率fPN,接著以重複時間段T重複。在此情況下,輸入電壓Vin的頻率在任意給定時間僅在一個頻率,且所有諧振器NPR1-NPR3響應該單個輸入頻率並將在輸出信號對該頻率呈現響應。另外,在此情況下,由於系統每次僅響應一個頻率,且系統知道輸入電壓Vin的頻率掃描時序,因此無需頻率分析,因為系統可在與所需探針頻率關聯的時間採樣幅度及/或相位並直接確定值。
或者,AC輸入電壓Vin可為由曲線5570顯示的時步AC頻率信號,其中,輸入頻率從第一探針頻率fp1步進至最後探針頻率fPN,並在每個頻率等待預定駐留時間TD,接著以重複時間段T重複。在此情況下,與掃描-頻率曲線5550類似,輸入電壓Vin的頻率在任意給定時間僅在一個頻率,所有諧振器NPR1-NPR3響應該單個輸入頻率並將在此時在輸出信號對該頻率呈現響應。駐留時間TD允許系統有更多時間在各探針頻率採樣輸出信號。另外,在此情況下,由於系統每次僅響應一個頻率,且系統知道時序,因此無須頻率分析(或分解),因為系統可在與所需探針頻率關聯的時間採樣幅度及/或相位並直接確定值。
此外,針對陣列中的所有諧振器的AC輸入電壓Vin的總頻率範圍(以及探針測量頻率)可從約1.0MHz至100GHz(或更高)。若需要,可使用其它頻率,只要它們符合本文中所述的功能及性能要求。AC輸入頻率應當被設置在支持足夠數目的輸入頻率循環(週期)的值,以允許單元的阻抗被充分採樣。這可部分基於DNA(或其它聚合物)經過奈米孔的速度。例如,若DNA正以約1MHz(也就是,每秒1百萬個鹼基)的速率經過奈米孔,且若AC輸入頻率為100MHz,則單元阻抗將針對每個鹼基接收(或經歷)100個輸入頻率循環,其對應100:1“採樣”速率。若需要,可使用其它輸入頻率及採樣速率,只要它們提供所需功能及性能。例如,數位解析給定輸入頻率所需的最小採樣頻率為Nyguist採樣頻率,其為輸入頻率的2倍。在此情況下,對於1MHz的輸入信號(DNA通過奈米孔的速率),最小(或Nyquist)採樣速率將為2MHz。
請參照第56圖,針對本揭露的一些具體實施例分別顯示AC輸出電壓Vout幅度及相位5600、5620的頻譜圖的例子。尤其,對於AC輸出電壓信號Vout,顯示三個幅度線5602、5604、5606,分別對應NPR1、NPR2、NPR3的頻率響應。對於此例,所使用的探針頻率為f探針2,並僅具有兩位元,類似第52圖中所示的例子。在針對此例獲得此輸出時,NPR1具有在時間T3的列5206中所示的情形(第52圖),且相應頻率響應線5602標示幅度V10及相位Ph6。同時,NPR2具有在時間T2的列5204中所示 的情形(第52圖),且相應頻率響應線5604標示幅度V9及相位Ph7。另外同時,NPR3具有在時間T5的列5210中所示的情形(第52圖),且相應頻率響應線5606(第56圖)標示幅度V6及相位Ph10。
在一些具體實施例中,所使用的探針或測量頻率可基於諧振器頻率響應、聚合物屬性以及其它因素例如可能影響輸出信號的品質的系統噪聲而變化。在一些具體實施例中,系統可實時在測量頻率之間切換,以確保獲得最佳品質輸出信號,或者可使用多個不同的測量頻率來執行數據讀取的錯誤檢查或驗證。在此情況下,Vin的AC輸入頻率應當包括測量頻率,例如藉由相應改變或調節(與測量同步)或者使測量頻率作為所提供的連續AC輸入頻率分量的部分。
請參照第57圖,針對本揭露的具體實施例顯示頂層方塊圖5700。尤其,當在晶片上佈局諧振器(或NPR)陣列時,可將其配置為MxN諧振器二維陣列,其中,具有M行5702-5708且各行具有N個諧振器,所有諧振器並聯連接(如線5716所示)且所有NPR藉由線5710上的同一AC輸入電壓Vin 5308(第53圖)驅動且所有NPR促成線5712上的共同頻分多路複用AC輸出電壓Vout,可將該輸出電壓供給放大器(或前置放大器)5320(第53圖)。在此情況下,各行5702-5708可對應頻帶,例如100MHz-199MHz(對於行5702),200MHz-299MHz(對於行5704),300MHz-399MHz(對於行5706),以及對於其它行以此類推。在各行 5702-5708內,可具有多個諧振器(或NPR),每個諧振器被顯示為方框5714,具有名稱f行、列(row,column)。給定行中的各NPR具有與該行關聯的頻帶內的諧振器帶寬△fBW,並藉由間隙頻帶△f間隙與相鄰NPR隔開頻率,以避免相鄰諧振器之間的干擾或串擾,如上參照第54圖所述。
例如,若指定頂部5702的第一行具有頻帶100MHz-199MHz,則在此行5702中的NPR f1,1至f1,N將在此頻帶內並藉由間隙頻帶彼此隔開,如上面及參照第54圖所述。因此,以此格式,讀取系統可被視為二維陣列數據元件,藉由單條輸入及輸出線可單獨讀取該些數據元件。若需要,可使用其它頻帶及範圍。
請參照第58圖,顯示多層晶片結構5800的剖視圖,包括單元4800(第48A圖)、電感器L(第49A、53圖),以及耦合電容器CCPL,並包括頂部接觸5802,可在此接觸處連接輸入(及輸出)I/O電壓線,這裡將它們總稱為奈米孔-聚合物諧振器(NPR)。單元4800的匹配組件(第48A圖)在第58圖中被同樣標記。在上電極4818上方是與晶片電感器5808(第59圖)L的中心的垂直連接5806,且晶片電感器5808的另一端與耦合晶片電容器5812連接。晶片電容器5812的上側與I/O接觸5802連接。多層三維堆疊允許單元4800及電路組件增加封裝,從而使單元5804封裝緊密。尤其,請參照第48A及58圖,單元4800。還可具有隔開各功能電路元件的介電層5804。可以一維或二維陣列將諧振器或NPR結構5800的多個拷貝連接在一起, 以創建具有上面例如參照第53及57圖所述的NPR陣列的“晶片”。另外,藉由“倒裝晶片”接合或提供所需功能及性能的任意其它技術,可在合適位置(例如在陣列中的最後NPR 5800之後)在輸出線接觸層5802中的晶片結構中集成放大器5320(第53圖),例如CMOS放大器或前置放大器。另外,請參照第59圖,顯示可用於晶片5800中的電感器L的頂視圖,該電感器可藉由使用已知的晶片-電感器製造技術製造,例如光刻製造或其它製造技術。如本文中所述,還可具有施加於電極以將浮動於室中的DNA或聚合物移動或引導至特定所需室的DC電壓。如本文中所述,藉由I/O接觸向所有NPR 5800施加AC電壓,其對於所有NPR可為共同的,且可藉由線5812上的AC輸入電壓供給,且可藉由線5810向各電極單獨施加DC電壓,各NPR具有其自己的獨立DC電壓輸入線5810,以單獨控制電極4818。
請參照第60及61圖,為允許AC及DC電壓驅動同一單元,AC及DC線可藉由使用“T型偏置器(bias tee)”連接與結構5800連接,該“T型偏置器”連接具有第60圖中所示的電路6000以及第61圖中所示的樣本物理晶片設計6100。請參照第60圖,AC RF(高頻)輸入信號Vin藉由耦合電容器CCPL與電感器L耦接(如前所述)且DC輸入可藉由高阻線Rw與電感器L的同一側連接,該高阻線具有足夠的自感以“阻擋”高頻AC信號經由DC輸入源路徑離開電路。或者,若需要,電阻線Rw可與電感器L的另一側連接(電極側)連接。不過,在此情況下, 電阻線Rw的值將用以抑制諧振(作為與對AC接地的單元電容並聯的另一個電阻器)。
請參照第61圖,顯示“T型偏置器”連接的物理設計6100的例子,其顯示“T型偏置器”連接的放大視圖。高頻AC輸入信號Vin藉由傳輸線(例如,頂部I/O接觸5802-第58圖)電容式耦接至電感器L,該傳輸線與第二板6102具有間隙,以創建耦合AC並阻擋DC電壓的耦合電容器CCPL。另外,DC輸入電壓(或DC“引導”電壓)可藉由高阻線Rw與電感器L的同一側連接,該高阻線具有足夠的自感以“阻擋”高頻AC信號經由DC輸入源路徑離開電路,也如上面參照第60圖所述。“T型偏置器”連接的結果是施加於電感器L的電壓是具有由DC輸入電壓確定的DC偏置的AC輸入電壓。
請參照第62圖,顯示多層晶片結構6200的剖視圖,該結構包括具有與第24、25、28及29圖中所示及本文中所述類似的三室的單元,並具有兩個集成電感器L1A、L1B。在此情況下,具有上(或頂部)左室6202,其具有頂部左電極6210及奈米孔6203(用於添加位元,例如“0”);頂部右室6204,其具有頂部右電極6212及奈米孔6205(用於添加位元,例如“1”);以及頂部左6002及頂部右6004室兩室共同的下“去保護”室6206,其具有相應電極6214,該電極可接地(例如,0伏)。對於該三室單元,它可被視為具有並聯的兩個電容器,分別具有它們自己的隨時間變化的阻抗。在此情況下,左電感器L1A與左頂部 電極6210連接,且右電感器L1B與右頂部電極6212連接。其餘的組件及元件可與前面針對兩室單元設計所述相同。藉由使用如上所述的“T型偏置器”連接,AC RF I/O輸入線可電容式耦接至電感器,各DC 6220、6222輸入線藉由電阻器或電阻線耦接電感器。若電感器L1A、L1B具有不同的值,則左右室會具有不同的諧振頻率及不同的諧振帶寬。在此情況下,每個三室單元將具有兩個諧振器,該兩個諧振器具有兩個諧振帶寬,該兩個諧振帶寬可位於如上所述經詢問或監控以讀取聚合物(或DNA)上的數據的頻率空間中。若電感器L1A、L1B具有相同的值,仍可針對各室讀取DNA,因為系統每次僅可讀取一個室,因為每個單元僅有一個聚合物(或DNA)鏈。因此,它是固有的時間順序或時間依賴,因此它們不需要在頻率上隔開來實施數據讀取。不過,可能想要隔開它們以確保(或驗證)實際正在讀取正確的室。
請參照第63圖,顯示多層晶片結構6300的剖視圖,該結構包括具有與第62圖中所示類似的三室單元,具有單個集成電感器L1A。在一些具體實施例中,依據數據讀取及寫入協議,可能想要僅使用一個單元例如頂部左單元6002來讀取聚合物數據,並且另一個單元例如6004可能不會被配置以用於讀取,因而不具有電感器且不形成諧振器。在此情況下,AC輸入電壓Vin及DC引導電壓可藉由使用“T型偏置器”連接與電感器L1A耦接(如上針對其它具體實施例所述),以驅動左頂部電極6210,DC 引導電壓進入線6302,而對於右頂部電極6212,可如線6304所示直接連接DC引導輸入電壓。其餘的組件及元件可與前面針對三室單元設計參照第62圖所述相同。
請參照第64及64A圖,替代具有附著至頂部電極的其中一個或兩個的電感器,單個集成電感器L1可與底部電極6214連接,且頂部電極6210、6212分別與線6410、6412上的針對該電極的相應DC引導電壓單獨連接。在此情況下,在該電路的頂部及底部將具有“T型偏置器”型連接(見第64A圖)。在此情況下,可向底部電極提供AC RF輸入電壓,其可藉由耦合電容器CCPL AC耦接至電感器L1,且在頂部的耦合電容器將AC耦接至AC RF地。DC線6410、6412(第64圖)分別藉由Rw(第64A圖)與它們的相應電極耦接,且DC經過單元及電感器並經過底部Rw至DC接地。底部接觸可充當AC rf I/O線,且頂部接觸4610可充當DC I/O線。另外,DC接地也可為DC輸入線,唯一要求是在頂部與底部電極之間定義DC電位差。藉由共同的電感器L1,仍可針對各室讀取DNA,因為系統每次僅可讀取一個室,因為每個單元僅具有一個聚合物(或DNA)鏈(或存儲串,如本文中所述)(如上所述)。因此,它是固有的時間順序或時間依賴。請參照第63、63A及63B圖,在一些具體實施例中,替代針對各諧振器使用單獨的電感器L(例如,如第63圖中所示)以設置獨特的諧振頻率及頻率帶寬,可針對陣列中的所有諧振器使用單個共同的電感器L共同並可提供與各單元並聯的單獨電容器CR,其值設置各 諧振器的諧振頻率。在此情況下,記憶體晶片可具有針對各室從頂部電極至底部電極的內置固定晶片諧振器電容器CR,其經測量以針對各單元與共同電感器一起設置諧振頻率。當聚合物經過奈米孔6203、6205時且單元的電容變化時,此電容變化將調節總並聯電容組合並相應調節諧振頻率。與單獨電感器L的情況類似,固定諧振電容器CR的值將經設置以針對諧振器陣列中的各諧振器提供獨特的諧振頻率響應。如上針對電感器具體實施例所述,可能僅需要一個電容器(一個諧振器)執行測量,或者若使用兩個,它們可為相同的值(由於如上所述的固有時間順序),或者若需要,可為不同的值,以用於驗證,冗餘或其它目的。第63A圖顯示具有固定諧振電容器CR1、CR2、CR3及共同電感器L共同的數個單元的等效電路圖的例子。
請參照第64、64B、64C圖,在一些具體實施例中,替代在各諧振器的底部上使用單獨的電感器L(例如在第64圖中所示)來設置獨特的諧振頻率及頻率帶寬,可針對陣列中的所有諧振器使用單個共同底部電感器L共同並可提供與各單元並聯的單獨電容器CR,其值設置各諧振器的諧振頻率。針對底部的電感器可執行使用固定方式的類似的變化,其中,可使用諧振電容器CR1、CR2、CR3以及共同電感器L共同。在此情況下,記憶體晶片可具有針對各室從頂部電極至底部電極的內置固定晶片諧振器電容器CR(第64C圖),其經測量以針對各單元與共同電感器L共同一起設置諧振頻率。
`揭露不需要單獨尋址單元來讀取各單元中的數據。另外,本揭露允許利用頻分多路複用,藉由使用單條源輸入線及單條輸出線讀取在各單元中的聚合物上所儲存的數據。另外,本發明的數據讀取技術適用於任意類型的奈米孔,例如固態、基於蛋白,或任意其它類型的奈米孔。此外,本揭露的系統及方法使用高rf頻率讀取存儲串(或DNA或聚合物),例如約1MH-100GHz(或更高),其基本消除1/f噪聲,因此系統與不使用此等高頻測量方法的系統相比將可能具有較高的靈敏度(或粒度或保真度)。此外,使用高頻方法還提供快速時間標度以讀取(或採樣)經過奈米孔的存儲串,從而無需出於採樣或測量目的而故意減慢存儲串的速度。
在一些具體實施例中,本發明提供用於對包括至少兩種不同單體的荷電聚合物(例如DNA)測序的奈米晶片,該奈米晶片包括至少第一及第二反應室,各室包括電解質媒體,並藉由包括一個或多個奈米孔的膜隔開,其中,在包括一個或多個奈米孔的該膜的兩側上設置連接於電路中的一對電極(例如,以相對板的形式),該電極隔開1至30微米的距離,例如約10微米,從而當將射頻脈動直流電流例如約1MHz至100GHz(或更高)施加於該電極時,該電極之間的間隙具有電容,以牽引該荷電聚合物穿過該奈米孔,例如從一個室到下一個室,且當該荷電聚合物經過該奈米孔時,該脈動直流射頻電流的相位隨電容變化而變化,從而允許檢測該荷電聚合物的單體序列。在某 些具體實施例中,該奈米晶片包括多組反應室,其中,在一組內的反應室藉由具有一個或多個奈米孔的膜隔開,且該反應室組藉由屏蔽層隔開,以最大限度降低該反應室組之間的電性干擾以及/或者隔開多個線性聚合物並允許對它們並行測序。
例如,在一個具體實施例中,該電極構成嵌入諧振電路中的電容器的頂部及底部板,且當該DNA經過位於該板之間的孔時測量電容變化。
在某些具體實施例中,例如依據下面的奈米晶片1等等的其中任意奈米晶片,該奈米晶片還包括用於合成聚合物(例如DNA)的試劑。
因此,在一個具體實施例中,本發明提供一種用於在奈米晶片(例如基於奈米孔的裝置,例如奈米晶片1等等的其中任意奈米晶片)中合成包括至少兩種不同單體的荷電聚合物(例如,核酸(例如,DNA或RNA))的方法(方法1),該奈米晶片包括一個或多個添加室,包含試劑,用於以末端保護形式(blocked form)在緩衝溶液中向該荷電聚合物添加一個或多個單體(例如,核苷酸)或寡聚體(例如,寡核苷酸),從而在一個反應循環中僅可添加單個單體或寡聚體;以及一個或多個保留室,包含緩衝溶液,但不是添加該一個或多個單體或寡聚體所需的所有試劑,其中,該些室藉由包括一個或多個奈米孔的一個或多個膜隔開,以及 其中,該荷電聚合物可經過該奈米孔,但用於添加一個或多個單體或寡聚體的該試劑的至少其中之一不能經過該奈米孔,該方法包括a)藉由電性吸引使具有第一端及第二端的荷電聚合物的該第一端進入添加室,從而以保護形式將單體或寡聚體添加至該第一端,b)使具有保護形式的該添加單體或寡聚體的該荷電聚合物的該第一端進入保留室,以及c)對該添加單體或寡聚體去保護,以及d)重複步驟a-c,其中,在步驟a)中所添加的該單體或寡聚體是相同的或不同的,直至獲得所需聚合物序列。
例如,本發明提供
1.1 方法1,其中,該聚合物為核酸,例如,其中,該聚合物為DNA或RNA,例如,其中它是DNA,例如dsDNA或ssDNA。
1.2 任意上述方法,其中,該聚合物例如該核酸的該第二端被保護或結合於鄰近該奈米孔的基質。
1.3 任意上述方法,其中,該電性吸引藉由在各室中的電極之間施加電位提供,其中,可控制在該電極之間的極性及電流,例如,以將該核酸吸引至正電極。
1.4 任意上述方法,其中該聚合物為核酸且(i)該核酸的該第一端為3’端,所述添加該核苷酸是沿5’至3’方向並藉由聚合酶催化,例如,其中,該 聚合酶被阻止(例如,由於其尺寸或由於被拴繫至第一室中的基質中)經過該奈米孔,該核苷酸在添加時為3’保護,並在該3’保護核苷酸添加至該核酸的3’端以後,例如在該保留室中移除該核酸上的3’保護基團;或者(ii)該核酸的該第一端為5’端,所述添加該核苷酸是沿3’至5’方向,該核苷酸在添加時為5’保護,並在該5’保護核苷酸添加至該核酸的5’端以後,例如在第二室中移除該5’保護基團;(例如,其中,在5’保護核苷酸上的磷酸鹽是藉由5’保護基團與不能經過該奈米孔的大基團耦接的核苷亞磷醯胺,從而在耦接該核酸以後,未反應的核苷酸被沖洗掉,自該核酸切割該大的5’保護基團並沖洗掉,從而可使該核酸的5’端進入該保留室中);其中,所述向該核酸添加核苷酸藉由該核酸的該第一端進出該一個或多個添加室控制,並繼續該循環直至獲得所需序列。
1.5 任意上述方法,其中,如此合成的該聚合物中的該單體或寡聚體序列(例如,該核酸中的該核苷酸序列)對應二進制代碼。
1.6 任意上述方法,其中,如此合成的該聚合物為單鏈DNA。
1.7 任意上述方法,其中,藉由在該單體或寡聚體經過該奈米孔時對該單體或寡聚體測序,在該過程或合成期間 檢查該聚合物(例如,該核酸)的該序列,以識別排序中的錯誤。
1.8 任意上述方法,其中,如此合成的該聚合物為單鏈DNA,其中,在該序列中至少95%,例如至少99%,例如基本上所有的鹼基選自不與該鏈中的其它鹼基雜合的兩個鹼基,例如選自腺嘌呤與胞嘧啶的鹼基。
1.9 任意上述方法,其中,並行獨立合成多個聚合物(例如,寡核苷酸),從而藉由獨立控制它們是否在一個或多個添加室或一個或多個保留室中來獲得具有不同序列的聚合物(寡核苷酸)。
1.10 任意上述方法,其中,具有包含適於添加不同單體或寡聚體例如不同核苷酸的試劑的至少兩個添加室,例如,其中,具有包含適於添加第一單體或寡聚體的試劑的一個或多個添加室以及包含適於添加第二不同單體或寡聚體的試劑的一個或多個添加室,例如其中,具有包含適於添加腺嘌呤核苷酸的試劑的一個或多個添加室以及包含適於添加胞嘧啶核苷酸的試劑的一個或多個添加室。
1.11 任意上述方法,其中,至少一個添加室為流動室,提供流動循環,包括(i)向該流動室提供適於添加第一單體或寡聚體的試劑,(ii)沖洗,(iii)向該流動室提供適於添加第二不同單體或寡聚體的試劑,以及(iv)沖洗,以及重複該循環,直至該合成完成,其中,該聚合物中的該單體或寡聚體序列藉由在各循環中的步驟(i)或(iii)期間引入或阻止該聚合物的該第一端進入該流動室來控制;
1.12 任意上述方法,其中,該聚合物為DNA且至少一個添加室為流動室,提供流動循環,包括(i)向該流動室提供適於添加第一類型核苷酸的試劑,(ii)沖洗,(iii)向該流動室提供適於添加第二類型核苷酸的試劑,以及(iv)沖洗,以及重複該循環直至該合成完成,其中,該序列藉由控制該DNA的該第一端(例如,3’端)在或不在該流動室中來控制。
1.13 任意上述方法,其中,該聚合物為DNA且至少一個添加室為流動室,提供流動循環,包括(i)向該流動室提供適於添加第一類型核苷酸的試劑,(ii)沖洗,(iii)向該流動室提供適於添加第二類型核苷酸的試劑,以及(iv)沖洗,(i)向該流動室提供適於添加第三類型核苷酸的試劑,(ii)沖洗,(iii)向該流動室提供適於添加第四類型核苷酸的試劑,以及(iv)沖洗,以及重複該循環直至該合成完成,其中,當存在適於添加該不同類型的核苷酸的試劑時,藉由控制該DNA的該第一端(例如,3’端)在或不在該流動室中來控制該序列。
1.14 任意上述方法,其中,該聚合物為DNA且該奈米晶片包括兩個添加室,該兩個添加室為流動室,(a)第一流動室提供流動循環,包括(i)向該第一流動室提供適於添加第一類型核苷酸的試劑,(ii)沖洗,(iii)向該第一流動室提供適於添加第二不同類型核苷酸的試劑,以及(iv)沖洗,以及重複該循環直至該循環完成,以及(b)第二流動室提供流動循環,包括(i)向該第二流動室提供適於添加第三類型 核苷酸的試劑,(ii)沖洗,(iii)向該第二流動室提供適於添加第四不同類型核苷酸的試劑,以及(iv)沖洗,以及重複該循環直至該合成完成,其中,該核苷酸選自dATP、dTTP、dCTP,以及dGTP,以及其中,藉由將該DNA的該第一端(例如,3’端)引導至提供下一所需核苷酸的流動室中來控制該序列。
1.15 任意上述方法,其中,該聚合物為DNA,且該奈米孔晶片包括用於添加dATP的一個或多個添加室,用於添加dTTP的一個或多個添加室,用於添加dCTP的一個或多個添加室,以及用於添加dGTP的一個或多個添加室。
1.16 任意上述方法,其中,合成的該聚合物(例如,核酸)分別藉由它們的第二端與鄰近奈米孔的表面結合。
1.17 任意上述方法,其中,當該聚合物經過該奈米孔時,藉由檢測電位、電流、電阻、電容及/或阻抗的變化,在每個循環以後確定該聚合物(例如,核酸)的該序列。
1.18 任意上述方法,其中,該聚合物為核酸且該核酸的合成發生於緩衝溶液中,例如溶液包括pH7-8.5例如約pH8的緩衝劑,例如包括三羥甲基胺基甲烷(Tris)、合適的酸,以及視需要地螯合劑(例如乙二胺四乙酸(EDTA))的緩衝劑,例如包含Tris鹼、乙酸及EDTA的混合物的TAE緩衝劑,或包括Tris鹼、硼酸及EDTA的混合物的TBE緩衝劑;例如,溶液包括10mM Tris pH8、1mM EDTA、150mM KCL,或例如50mM乙酸鉀、20mM Tris-acetate、10mM乙酸鎂,pH 7.9@25℃。
1.19 任意上述方法,其中,該聚合物為單鏈DNA,還包括將該合成單鏈DNA轉換為雙鏈DNA。
1.20 任意上述方法,還包括在該聚合物合成完成以後,自該奈米晶片移除該聚合物(例如,核酸)。
1.21 任意上述方法,其中,該聚合物為核酸,還包括利用合適的引物及聚合酶(例如,Phi29)擴增及檢索合成核酸的拷貝。
1.22 任意上述方法,其中,該聚合物為核酸,還包括用限制酶切割該合成核酸並自該奈米晶片移除該核酸。
1.23 任意上述方法,其中,該聚合物為核酸,還包括擴增如此合成的該核酸。
1.24 任意上述方法,還包括自該奈米晶片移除該聚合物(例如,核酸)並結晶該聚合物。
1.25 任意上述方法,其中,該聚合物為核酸,還包括穩定該核酸,例如,藉由乾燥包括該核酸以及一種或多種緩衝劑(例如,硼酸鹽緩衝劑)、抗氧化劑、保濕劑例如多元醇,以及視需要地螯合劑的溶液,例如如US 8283165B2中所述,其包含於此作為參考;或者藉由在該核酸與聚合物之間形成基質,例如poly(ethylene glycol)-poly(l-lysine)(PEG-PLL)AB型嵌段共聚物;或者藉由添加互補核酸鏈或結合該DNA的蛋白。
1.26 任意上述方法,包括:(i)在存在聚合酶的情況下,在添加室中使核酸與 3’保護核苷酸反應,該聚合酶催化該3’保護核苷酸至 該核酸的3’端的添加;(ii)至少將如此獲得的該3’保護核酸的3’端牽引出該添加室、穿過該至少一個奈米孔、進入保留室中,其中,該聚合酶被阻止(例如,由於其尺寸或由於被拴繫於第一室中的基質)經過該奈米孔;(iii)以例如化學或酶促方式對該3’保護核酸去保護;以及(iv)若需要向該寡核苷酸添加額外的3’保護dNTP,則將該寡核苷酸的3’端牽引至相同或不同的添加室中,從而重複步驟(i)-(iii),或者若不需要,則允許該核酸的3’端保留於該保留室中,直至下一個循環,其中,將所需3’保護dNTP提供至該添加室;以及(v)重複步驟(i)-(iv)的循環,直至獲得所需核酸序列。
1.27 任意上述方法,其中,該聚合物為核酸單鏈DNA(ssDNA)且該一個或多個奈米孔具有允許ssDNA經過但不允許雙鏈DNA(dsDNA)經過的直徑,例如,約2奈米的直徑。
1.28 任意上述方法,其中,該單體為3’保護核苷酸,例如,去氧核苷三磷酸(dNTP),例如選自去氧腺苷三磷酸(dATP)、去氧鳥苷三磷酸(dGTP)、去氧胞苷三磷酸(dCTP)、去氧胸苷三磷酸(dTTP),例如dATP或dCTP。
1.29 任意上述方法,其中,該聚合物為核酸且所述向該核酸添加該核苷酸藉由聚合酶催化,例如,模板獨立聚 合酶,例如,末端去氧核苷酸轉移酶(TdT),或多核苷酸磷酸化酶,例如,其中,該聚合酶催化在DNA的3'-羥基末端的去氧核苷酸的納入。
1.30 任意上述方法,其中,該膜包含多個奈米孔以及分別結合至鄰近奈米孔的表面的多個聚合物,例如多個核酸,分別藉由其5’端與鄰近奈米孔的表面結合。
1.31 任意上述方法,其中,獨立合成分別結合於鄰近奈米孔的表面的多個聚合物,例如,分別在5’端結合於鄰近奈米孔的表面的多個核酸,其中,各奈米孔具有關聯的電極對,其中,該對中的一個電極鄰近該奈米孔的一端且另一個電極鄰近該奈米孔的另一端,從而藉由該電極對所提供的電流可使各聚合物獨立地移動於第一與第二室之間。
1.32 任意上述方法,其中,該聚合物為在5’端結合至鄰近奈米孔的表面的3’保護核酸,並藉由使用電力例如藉由使用自相鄰室中的電極施加的電力牽引該3’保護核酸的3’端穿過該奈米孔。
1.33 方法1.20,其中,該新的3’保護dNTP與第一3’保護dNTP相同或不同。
1.34 方法1.20,其中,在該循環的步驟(i)中所使用的該3’保護dNTP在3’保護dATP與3’保護dCTP之間以每個循環交替。
1.35 任意上述方法,其中,該聚合物為核酸,且該核酸的去保護通過酶執行,以移除ssDNA上而不是3’保護 dNTP上的3’保護基團。
1.36 任意上述方法,還包括當該聚合物經過奈米孔時,檢測該聚合物的該序列的步驟,以確認已合成所需序列。
1.37 任意上述方法,包括當該聚合物經過奈米孔時,檢測該聚合物的該序列的步驟,以藉由當該DNA被牽引穿過該奈米孔時測量諧振RF電路中的電容變化來確認已合成所需序列。
1.38 任意上述方法,其中,用於向該荷電聚合物添加一個或多個單體或寡聚體的該試劑包括選自拓撲異構酶、DNA聚合酶,或其組合的試劑。
1.39 任意上述方法,其中,所述向該荷電聚合物添加一個或多個單體或寡聚體依據方法2等等或方法A等等的其中任意方法執行。
例如,本發明提供一種用於在奈米晶片中合成核酸的方法,該奈米晶片包括藉由包括至少一個奈米孔的膜隔開的至少第一室與第二室,藉由向具有第一端及第二端的核酸的第一端的核苷酸添加循環在緩衝溶液中執行該合成,其中,該核酸的該第一端藉由電性吸引在一個或多個添加室(其包含能夠添加核苷酸的試劑)與一個或多個保留室(其不包含添加核苷酸所需的試劑)之間移動,該些室藉由分別包括一個或多個奈米孔的一個或多個膜隔開,其中,該奈米孔足夠大,以允許該核酸通過,但太小以致不允許添加核苷酸所必需的至少一種試劑通過,例如,其中,該 方法對應方法1等等的其中任意方法。
例如,方法1A,其為一種方法,例如,依據方法1等等的其中任意方法,用於在基於奈米孔的裝置中合成包括至少兩種不同單體或寡聚體的荷電聚合物,該基於奈米孔的裝置包括:一個或多個添加室或通道,包含緩衝溶液及試劑,用於以保護形式向該荷電聚合物添加一個或多個單體或寡聚體,從而在一個反應循環中僅可添加單個單體或寡聚體;以及一個或多個去保護室或通道,包含緩衝溶液及去保護試劑,用於自以保護形式添加至該荷電聚合物的該一個或多個單體或寡聚體移除該保護基團,其中,該添加室或通道藉由包括一個或多個奈米孔的一個或多個膜與該去保護室隔開,以及其中,該荷電聚合物可經過奈米孔且用於添加一個或多個單體或寡聚體的該試劑的至少其中之一不能經過奈米孔,以及該去保護劑的至少其中之一不能經過奈米孔,該方法包括a.藉由電性吸引使具有第一端及第二端的荷電聚合物的該第一端進入添加室或通道,從而以保護形式將單體或寡聚體添加至該第一端,b.使具有保護形式的該添加單體或寡聚體的該荷電聚合物的該第一端進入保留室,從而移除該添加單體或寡聚體上的該保護基團,以及 c.重複步驟a及b,其中,在步驟a)中所添加的該單體或寡聚體是相同的或不同的,直至獲得所需聚合物序列;例如,其中,該裝置包括:一個或多個第一添加室或通道,包含適於添加第一類型單體或寡聚體的試劑;以及一個或多個第二添加室,包含適於添加第二不同類型單體或寡聚體的試劑,以及其中,在步驟a中,使該荷電聚合物的該第一端進入該第一添加室或該第二添加室中,取決於想要添加第一類型單體或寡聚體還是第二不同類型單體或寡聚體。
在某些具體實施例中,該聚合物的該序列對應二進制代碼,例如,其中,該聚合物為核酸且該序列對應二進制代碼,其中,每一位(0或1)由鹼基例如A或C表示。
在某些具體實施例中,該聚合物為DNA。
在特定其它具體實施例中,每一位由短序列單體而不是單個單體表示。例如,在一個此等具體實施例中,合成DNA塊,其中,每個塊藉由該奈米孔生成獨特的信號並對應零或一。此具體實施例具有特定的優點:在奈米孔尤其固態奈米孔中更難以檢測單個核苷酸,因此使用塊不太容易出現讀取錯誤,儘管該聚合物中的信息密度相應降低。
例如,藉由使用位點特異性重組酶(也就是,自發識別並切割已知為位點特異性重組序列的序列段內的雙鏈核酸的至少其中一鏈的酶),可添加核苷酸塊(雙鏈)。 在一個此等具體實施例中,該位點特異性重組酶為拓撲異構酶,用以將拓撲共軛dsDNA寡核苷酸塊與該序列連接。這些寡核苷酸本身不會具有與另外的連接相容的結構,直至用限制酶切割它們。牛痘病毒拓撲異構酶I專門識別DNA序列5’-(C/T)CCTT-3’。該拓撲異構酶與雙鏈DNA結合並在5’-(C/T)CCTT-3’切割位點切割該DNA。要注意的是,該切割不完全,因為該拓撲異構酶僅在一個鏈上切割該DNA(儘管在另一鏈上的附近缺口會引起雙鏈斷裂),且於切割時,該拓撲異構酶共價附著至該3’核苷酸的3’磷酸鹽。接著,該酶保持與該DNA的3’端共價結合,並可在初始切割的同一鍵處重新連接該共價保持鏈(發生於DNA鬆弛期間),或者它可與具有相容突出端的異源受體DNA重新連接,從而形成重組分子。在此具體實施例中,我們創建dsDNA供體寡核苷酸(例如,包括一個針對“0”且另一個針對“1”的至少兩種不同序列的其中之一,),側面具有拓撲異構酶重組位點以及生成拓撲異構酶連接位點的限制位點。該些匣為Topo荷載(Topo-charged),也就是說,它們與拓撲異構酶共價結合,該酶將會將它們結合至接收者寡核苷酸上的拓撲異構酶連接位點。當用限制酶切割該接收者的生長DNA鏈時,該鏈能夠與拓撲荷載匣連接。因此,個人只需連續地從限制酶至拓撲荷電匣循環生長DNA,每個循環添加另一個供體寡核苷酸。針對克隆已說明相關方法,參見例如Shuman S的Novel approach to molecular cloning and polynucleotide synthesis using vaccinia DNA topoisomerase.J Biol Chem.(1994);269(51):32678-84,其內容藉由引用併入本文。
利用類似的策略可添加單個鹼基。在存在合適的單鏈“去保護”“受體”DNA的情況下,拓撲荷載DNA藉由該拓撲異構酶酶促並共價連接(‘添加’)至該受體,在該過程中自該DNA移除該拓撲異構酶。接著,類型IIS限制酶可切割單個鹼基(正在被“添加”的鹼基)以外的所有添加DNA。可重複此去保護-添加過程,以添加額外鹼基(位)。如本文中的例子中顯示,使用拓撲/類型IIS限制酶組合向目標單鏈DNA的5’端添加單個核苷酸是可行的。使用類型IIS限制酶支持在不同於識別序列的位置切割DNA(可在https://www.neb.com/tools-and-resources/selectioncharts/type-iis-restriction-enzymes找到其它類型IIS限制酶)。在此系統中使用肌苷(其充當“通用鹼基”並與任意其它鹼基配對)允許此反應發生,而在目標DNA中不具有任意特定序列要求。添加至單鏈目標DNA的核苷酸的身份是3’核苷酸,牛痘拓撲異構酶藉由3’磷酸鹽與其共軛。由於牛痘拓撲異構酶的識別序列為(C/T)CCTT,我們使用此系統向目標DNA添加“T”。相關的拓撲異構酶SVF可使用識別序列CCCTG(https://www.ncbi.nlm.nih.gov/pubmed/8661446)。因此,可使用SVF添加G而不是“T”。與牛痘拓撲相配,可用T及G編碼二進制數據。
在單個鹼基添加的另一種方法中,5’磷酸鹽提供保護集團,以沿3’至5’方向提供單個鹼基添加。荷載 反應使拓撲異構酶荷載具有5’磷酸鹽基團的單個T(或G,或所需其它核苷酸)。當荷載拓撲異構酶“看到”自由的5’未保護(未磷酸化)單鏈DNA鏈時,它將向該鏈添加該T,從而具有添加至該5’的T的DNA。具有可與該拓撲異構酶及該單鏈受體DNA結合的序列的接頭DNA的存在促進此添加。(要注意的是,該接頭DNA是催化的-它可在重複的反應中被重新用作模板)。所添加的核苷酸在其上具有5’磷酸鹽,因此直至它被暴露於磷酸酶才會作為用於進一步添加的基質,該磷酸酶移除該5’磷酸鹽。重複該過程,利用牛痘拓撲異構酶向目標單鏈DNA的5’端添加單個“T”以及利用SVF拓撲異構酶添加單個“G”,從而允許構造用T及G編碼二進制信息的序列。可使用其它拓撲異構酶添加A’或C’,不過此反應的效率較低。
當荷載拓撲異構酶時,具有荷載與未荷載產品的混合,這代表兩個種類之間的平衡。可以許多方式設計拓撲異構酶留下的“突出端”,以優化反應的效率。富含GC的突出端往往具有較快的荷載反應,但具有趨向於生成較低的產品良率的荷載平衡。我們已發現具有一些鹼基錯配(或使用肌苷)替代“正常的”配對降低“逆”反應並提升良率。此外,在存在多聚核苷酸激酶(加ATP)的情況下執行該反應藉由磷酸化反應“副產品”(其降低逆反應速率)來提升良率。在某些具體實施例中,拓撲異構酶可藉由添加不損壞功能的額外胺基酸序列“累積”,以確保它們足夠大,導致它們不能經過奈米孔。
使用拓撲異構酶-介導策略的一個優點是單體被共價附著至拓撲異構酶,並因此無法“逃離”從而干擾其它反應。當使用聚合酶時,單體可擴散,從而聚合酶及/或去保護劑應當是特定的(例如,相對C對A具有選擇性),或者,藉由流提供該單體,因此它們沒有機會混合。
在一個態樣中,本發明提供荷載單個核苷酸的拓撲異構酶,也就是,與單個核苷酸共軛的拓撲異構酶,例如,其中,該拓撲異構酶藉由該核苷酸的3’磷酸鹽共軛,且核苷酸在5’位置被“磷酸化”保護。
在另一個態樣中,本發明提供一種藉由沿3’至5’方向向DNA鏈添加單個核苷酸或寡聚體,利用拓撲異構酶-介導連接合成DNA分子的方法(方法A),包括(i)使DNA分子與荷載所需核苷酸或寡聚體的拓撲異構酶反應,其中,在5’端阻止該核苷酸或寡聚體進一步添加,接著(ii)對如此形成的該DNA的5’端去保護,以及重複步驟(i)及(ii),直至獲得所需核苷酸序列,例如,
A1.1 方法A,它是一種藉由沿3’至5’方向添加單個核苷酸來合成DNA分子的方法,包括(i)使DNA分子與荷載具有5’保護形式例如5’磷酸化形式的所需核苷酸的拓撲異構酶反應,從而將具有5’保護形式的所需核苷酸添加至該DNA的5’端,接著(ii)藉由使用磷酸酶對如此形成的該DNA的5’端去保護,以及重複步驟(i)及(ii),直至獲得所需核苷酸序列;或者
A1.2 方法A,它是一種藉由沿3’至5’方向添加寡聚 體來合成DNA分子的方法,包括(i)使DNA分子與荷載所需寡聚體的拓撲異構酶反應,從而將該寡聚體與該DNA分子連接,接著(ii)使用限制酶以為另一個寡聚體的拓撲異構酶-介導連接提供5’位點,以及重複步驟(i)及(ii),直至獲得所需寡聚體序列。
A1.3 任意上述方法,包括提供連接酶及ATP,以密封該DNA中的缺口(注:該拓撲異構酶連接僅連接一條鏈)。
A1.4 任意上述方法,其中,該拓撲異構酶-荷載供體寡核苷酸包括在與攜帶該拓撲異構酶的鏈互補的鏈上的5’突出端,包括聚肌苷序列(注:肌苷充當“通用基”並與任意其它鹼基配對)。
A1.5 任意上述方法,其中,該限制酶為類型IIS限制酶,其可切割單個鹼基(正在被“添加”的鹼基)以外的所有添加DNA。
A1.6 任意上述方法,其中,該拓撲異構酶選自牛痘拓撲異構酶及SVF拓撲異構酶I。
A1.7 任意上述方法,其中,使用牛痘拓撲異構酶(其識別(C/T)CCTT)添加dTTP核苷酸並使用SVF拓撲異構酶I(其識別CCCTG)添加dGTP核苷酸,例如以提供二進制代碼。
A1.8 任意上述方法,其中,該DNA為雙鏈且該保留室還包括連接酶及ATP,以修復未藉由該拓撲異構酶連接的DNA鏈。
A1.9 任意上述方法,包括使用拓撲異構酶抑制劑, 以抑制自由拓撲異構酶與DNA寡聚體的結合及活性,例如,其中,該抑制劑選自新生黴素及香豆黴素。
A1.10 任意上述方法,其中,如此提供的該DNA鏈具有包括胸腺嘧啶(T)核苷及去氧鳥苷(G)核苷的序列。
A1.11 任意上述方法,其中,該拓撲異構酶添加單個鹼基,而限制酶在自藉由拓撲異構酶添加的該鹼基沿5’方向的一個核苷酸的位置切割。
A1.12 任意上述方法,其中,如此提供的該DNA鏈具有包括“TT”及“TG”二核苷酸序列的序列。
A1.13 任意上述方法,其中,該DNA為單鏈。
A1.14 任意上述方法,其中,該DNA為雙鏈。
A1.15 任意上述方法,其中,該DNA位於基質或磁珠上,其中,它可選擇性暴露於提供所需序列所需的試劑或自其移除。
A1.16 任意上述方法,其中,用於添加或去保護該DNA的該試劑的其中一些或全部藉由流供應並藉由沖洗移除。
A1.17 任意上述方法,其中,接頭DNA的存在促進該單個核苷酸或寡聚體至單鏈DNA的該附著,該接頭DNA具有可與該拓撲異構酶及該單鏈受體DNA結合的序列。
A1.18 任意上述方法,執行於系統中,其中,奈米孔將包括該拓撲異構酶的室與包括該磷酸酶或限制酶的室隔開,其中,該奈米孔允許藉由電性吸引使該DNA而不是該酶移動,例如,如方法2等等的其中任意方法中所述。
一個可能的問題是聚合-G序列可能形成G-四鏈體二級結構。藉由將該限制酶向後移一個鹼基(向該拓撲序列的5’)並遵循類似的拓撲/IIS策略,可添加“TT”或“TG”,它們分別可代表不同的位元。儘管這將需要2個鹼基來編碼一位元,但它具有避免聚合-G序列的優點。在其它具體實施例中,在該拓撲識別序列的3’端中的其它鹼基(儘管與(C/T)CCTT相比效率較低)可允許與(C/T)CCTA、(C/T)CCTC及(C/T)CCTG利用痘病毒拓撲異構酶共軛(https://www.ncbi.nlm.nih.gov/pubmed/17462694)。也可使用蛋白工程/選擇技術提升這些反應的效率,並可使用類似的方法來添加非常規鹼基。
在某些具體實施例中,藉由此方法合成DNA的方法包括用連接酶及ATP處理該DNA。該拓撲異構酶僅連接該DNA的一側(另一側基本上缺口)。該連接酶將修復該缺口並確保該拓撲異構酶本身不會重切該反應產品並切割它。
在某些具體實施例中,該方法包括使用拓撲異構酶抑制劑來抑制自由拓撲異構酶與該DNA寡聚體的結合及活性。合適的抑制劑包括新生黴素及香豆黴素。要注意的是,不想要完整的抑制,因為低水平拓撲異構酶活性可幫助“放鬆”螺旋DNA,其尤其在合成長的DNA鏈時有用。
因此,在另一個具體實施例中,本揭露提供一種用於在奈米晶片中合成DNA的方法(方法2),該奈米 晶片包括:一個或多個添加室,包含拓撲異構酶-荷載寡核苷酸(也就是,在3’端與拓撲異構酶結合的寡核苷酸);以及一個或多個保留室,包括限制酶或去保護物,例如磷酸酶,該些室還包含相容緩衝溶液並藉由包括至少一個奈米孔的膜隔開,其中,該拓撲異構酶及該限制酶被阻止經過該奈米孔(例如,由於它們太大以及/或者由於它們分別被拴繫於第一及第二室中的基質),該合成藉由向具有第一端及第二端的核酸的第一端添加單個核苷酸或短寡核苷酸塊的循環來執行,其中,藉由電性吸引使該核酸的該第一端在添加室與保留室之間移動,例如在如下一個具體實施例中:(i)藉由電力使接收者DNA(例如,雙鏈DNA)的5’端進入第一添加室中,(ii)在該第一添加室中提供拓撲異構酶-荷載供體寡核苷酸,其中,該供體寡核苷酸包括拓撲異構酶結合位點,信息序列(例如,選自至少兩種不同的核苷酸或序列,例如,其中,一個序列對應“0”且另一個對應二進制代碼中的“1”),以及限制位點,該限制位點在被限制酶切割時將產生拓撲異構酶連接位點;(iii)留出足夠的時間使該供體寡核苷酸連接從而延伸該接收者DNA;(iv)藉由電力方式使如此延伸的該接收者DNA的5’端進入該保留室中,例如,從而該限制酶切割該接收者DNA,以提供拓撲異構酶連接位點,或者在單個核苷酸添加的情 況下,該去保護物例如磷酸酶在該單鏈DNA上生成5’未保護核苷酸;以及(v)重複步驟(i)-(iv)的循環,添加具有相同或不同信息序列的寡核苷酸,直至獲得所需DNA序列。
例如,本發明提供
2.1 方法2,其中,該接收者DNA的3’端鄰近奈米孔附著,且該接收者寡核苷酸的5’端包括拓撲異構酶連接位點,且在步驟(iv)以後包括步驟:藉由沖洗該第一添加室並向該第一添加室提供新的拓撲異構酶-荷載供體寡核苷酸向該接收者DNA的5’端添加額外寡核苷酸,其中,該新的供體寡核苷酸具有與先前供體寡核苷酸不同的信息序列;以及若需要向該接收者DNA添加該新的供體寡核苷酸,則牽引該接收者核酸的5’端返回至該第一室中,並重複步驟(i)-(iii),或者若不需要,則允許該接收者DNA保留於第二室中,直至所需供體寡核苷酸被提供給該第一室。
2.2 任意上述方法,其中,並行獨立合成多個接收者DNA分子,從而藉由獨立控制它們是否在該第一室中來獲得具有不同序列的DNA分子。
2.3 任意上述方法,其中,獨立合成分別在3’端與鄰近奈米孔的表面結合的多個接收者DNA分子,其中,各奈米孔具有關聯的電極對,其中,該對中的一個電極鄰近該奈米孔的一端且另一個電極鄰近該奈米孔的另一端,從而藉由該電極對所提供的電流可使各接收者DNA分子獨立地移動於該第一與第二室之間。
2.4 任意上述方法,其中,用於該循環的步驟(i)中的該供體寡核苷酸在包括第一信息序列的供體寡核苷酸與包括第二信息序列的供體寡核苷酸之間以每個循環交替。
2.5 方法2,包括步驟:藉由使該接收者DNA的5’端返回至該第一添加室以添加具有相同信息序列的寡核苷酸或者使該接收者DNA的5’端進入具有在3’端與拓撲異構酶結合的供體寡核苷酸的第二添加室,從而向該接收者DNA的5’端添加額外寡核苷酸,其中,在該第二添加室中的該供體寡核苷酸具有與該第一添加室中的該供體寡核苷酸不同的信息序列。
2.6 任意上述,其中,該供體寡核苷酸包括如下結構:(SEQ ID NO 1)5’CGAAGGG<Informational sequence A or B>GTCGACNNNNN 3’GCTTCCC<---------Complement---------->CAGCTGNNNNN
其中,N是指任意核苷酸且該限制酶為Acc1,其可切割該DNA(例如,在上面的序列中的GTCGAC),以提供合適的突出端。
2.7 任意上述方法,其中,該供體寡核苷酸具有髮夾結構,例如,2.6,其中,在該頂部與底部鏈上的NNNNN基團結合。
2.8 任意上述方法,其中,該拓撲異構酶荷載寡核苷酸的至少其中之一具有如下結構:(SEQ ID NO 1)5’CGAAGGG<Informational sequence A or B>GTCGACNNNNN 3’*TTCCC<---------Complement---------->CAGCTGNNNNN(*=拓撲異構酶)
2.9 任意上述方法,其中,該拓撲異構酶荷載寡核苷酸的至少其中之一具有如下結構:5’pCACGTCAGGCGTATCCATCCCTT* 3’GTGCAGTCCGCATAGGTAGGGAAGCGC
2.10 上述方法,其中,該拓撲異構酶荷載寡核苷酸。
2.11 任意上述方法,其中,當該寡核苷酸經過該奈米孔時,藉由檢測電位、電流、電阻、電容及/或阻抗的變化,在每個循環以後確定合成DNA的序列。
2.12 任意上述方法,其中,該DNA的該合成發生於緩衝溶液中,例如,溶液包括pH7-8.5例如約pH8的緩衝劑,例如包括三羥甲基胺基甲烷(Tris)、合適的酸,以及視需要地螯合劑(例如乙二胺四乙酸(EDTA))的緩衝劑,例如包含Tris鹼、乙酸及EDTA的混合物的TAE緩衝劑,或包括Tris鹼、硼酸及EDTA的混合物的TBE緩衝劑;例如,溶液包括10mM Tris pH8、1mM EDTA、150mM KCL,或例如50mM乙酸鉀、20mM Tris-acetate、10mM乙酸鎂,pH 7.9@25℃。
2.13 任意上述方法,還包括自該奈米晶片移除該DNA。
2.14 任意上述方法,還包括擴增如此合成的該DNA。
2.15 任意上述方法,還包括自該奈米晶片移除該DNA並結晶該DNA。
2.16 任意上述方法,還包括穩定該DNA,例如,藉由 乾燥包括該DNA以及一種或多種緩衝劑(例如,硼酸鹽緩衝劑)、抗氧化劑、保濕劑例如多元醇,以及視需要地螯合劑的溶液,例如如US 8283165B2中所述,其包含於此作為參考;或者藉由在該核酸與聚合物之間形成基質,例如poly(ethylene glycol)-poly(l-lysine)(PEG-PLL)AB型嵌段共聚物。
2.17 任意上述方法,包括提供連接酶及ATP以密封該DNA中的缺口(注:該拓撲異構酶連接僅連接一條鏈)。
2.18 任意上述方法,其中,該拓撲異構酶-荷載供體寡核苷酸包括在與攜帶該拓撲異構酶的鏈互補的鏈上的5’突出端,包括聚肌苷序列(注:肌苷充當“通用基”並與任意其它鹼基配對)。
2.19 任意上述方法,其中,該限制酶為類型IIS限制酶,其可切割單個鹼基(正在被“添加”的鹼基)以外的所有添加DNA。
2.20 任意上述方法,其中,該拓撲異構酶選自牛痘拓撲異構酶及SVF拓撲異構酶I。
2.21 任意上述方法,其中,使用牛痘拓撲異構酶(其識別(C/T)CCTT)添加dTTP核苷酸並使用SVF拓撲異構酶I(其識別CCCTG)添加dGTP核苷酸,例如以提供二進制代碼信息。
2.22 任意上述方法,其中,該保留室還包括連接酶及ATP,以修復未藉由該拓撲異構酶連接的DNA鏈。
2.23 任意上述方法,包括使用拓撲異構酶抑制劑,以 抑制自由拓撲異構酶與DNA寡聚體的結合及活性,例如,其中,該抑制劑選自新生黴素及香豆黴素。
2.24 任意上述方法,其中,如此提供的該DNA鏈具有包括胸腺嘧啶(T)核苷及去氧鳥苷(G)核苷的序列。
2.25 任意上述方法,其中,該拓撲異構酶添加單個鹼基,而該限制酶在自藉由拓撲異構酶添加的該鹼基沿5’方向的一個核苷酸的位置切割。
2.26 任意上述方法,其中,如此提供的該DNA鏈具有包括”TT”及“TG”二核苷酸序列的序列。
2.27 任意上述方法,它是一種藉由沿3’至5’方向添加單個核苷酸來合成DNA分子的方法,包括(i)使DNA分子與荷載具有5’保護形式例如5’磷酸化形式的所需核苷酸的拓撲異構酶反應,從而將具有5’保護形式的所需核苷酸添加至該DNA的5’端,接著(ii)藉由使用磷酸酶對如此形成的該DNA的5’端去保護,以及重複步驟(i)及(ii),直至獲得所需核苷酸序列。
2.28 任意上述方法,它是一種藉由沿3’至5’方向添加寡聚體來合成DNA分子的方法,包括(i)使DNA分子與荷載所需寡聚體的拓撲異構酶反應,從而將該寡聚體與該DNA分子連接,接著(ii)使用限制酶以為另一個寡聚體的拓撲異構酶-介導連接提供5’位點,以及重複步驟(i)及(ii),直至獲得所需寡聚體序列。
2.29 任意上述方法,它是一種依據方法A等等的其中任意方法的方法。
該合成反應的產品可被檢測、審查以用於品質控制目的,並讀取以提取編碼於該聚合物上的數據。例如,該DNA可藉由傳統方式擴增及測序,以確認該奈米孔測序穩健。
在另一個具體實施例中,本發明提供寡核苷酸,其包括拓撲異構酶結合位點,信息序列(例如,選自至少兩種不同序列,例如,其中,一個序列對應“0”且另一個對應二進制代碼中的“1”),以及限制位點,該限制位點在被限制酶切割時將產生拓撲異構酶連接位點,例如包括下面的序列:(SEQ ID NO 2)5’CGAAGGG<Informational sequence A or B>GTCGAC 3’GCTTCCC<---------Complement---------->CAGCTG
其中,該信息序列A或B為3-12(例如約8)個核苷酸序列。
在另一個具體實施例中,本發明提供一種拓撲異構酶荷載寡核苷酸,其中,該寡核苷酸包括拓撲異構酶結合位點,信息序列(例如,選自至少兩種不同序列,例如,其中,一個序列對應“0”且另一個對應二進制代碼中的“1”),以及限制位點,該限制位點在被限制酶切割時將產生拓撲異構酶連接位點,例如拓撲異構酶荷載寡核苷酸具有如下結構:(SEQ ID NO 1)5’CGAAGGG<Informational sequence A or B>GTCGACNNNNN 3’*TTCCC<---------Complement---------->CAGCTGNNNNN
其中,該信息序列A或B為3-12(例如約8)個核苷酸序列且*是與該寡核苷酸共價結合的拓撲異構酶,例如,其中,該拓撲異構酶為牛痘病毒拓撲異構酶I。
在某些具體實施例中,藉由使用電腦化晶片控制器,例如依據方法1等等、方法A等等、或方法2等等,控制奈米孔晶片以執行合成及/或讀取聚合物的方法。
例如,請參照第65圖,針對本揭露的一些具體實施例顯示奈米孔記憶體晶片的一組3室的基於奈米孔的單元6500(各單元類似上面所述)的選擇性透明表面的部分立體圖。尤其,將一組四個3室單元6506、6508、6510、6512連接在一起,從而將各連接單元6506-6512的上(或頂部)左室6502(Add“0”室)流體連接在一起,以形成Add“0”流動通道或Add“0”室6502。此外,也將各連接單元6506-6512的上(或頂部)右室6504(Add“1”室)流體連接在一起,以形成獨立的Add“1”流動通道或Add“1”室6504。此外,Add“0”室(或通道)6502具有共同電極6520,且Add“1”室(或通道)6504具有不同的共同電極6522。在一些具體實施例中,可具有單個金屬或導電條,以提供各添加通道的該共同電極,以及在一些具體實施例中,可具有獨立的電極,它們藉由晶片中的線路連接。
在共同的Add通道6502、6504下方為單獨的“去保護”室6530-6536,與上面所述類似,這些“去保護 室”與其它室流體及電性隔離。在各去保護室6530-6536的底部上是相應的單獨可控的“去保護”電極,例如第65圖中可見的去保護電極6514、6516分別對應去保護室6534、6536。另外,單元6506-6512的上室分別具有穿過膜6529的相應奈米孔6528。另外,在此例子中,流體單元6512具有左頂部Add“0”室6537以及右頂部Add“1”室6539。儘管流體單元6502-6512的Add“0”室藉由流體通道6502流體連接,且流體單元6502-6512的Add“1”室藉由流體通道6504流體連接,但各流體單元6506-6512具有獨立的記憶體儲存串(例如,DNA或聚合物)6550,該儲存串的一端穿過奈米孔6550進入Add“1”或Add“0”室並返回其相應去保護室6530-6536,該去保護室與其它室流體及電性隔離(在此例中)。因此,各3室流體單元6506-6512表示獨立的記憶體儲存單元或記憶體單元(下文詳細討論)。
由於第65圖的配置具有連接在一起的所有Add“0”電極,以及獨立的、連接在一起的所有Add“1”電極,並單獨控制該去保護電極,寫入(或添加)可發生於寫入(或添加)“循環”,例如Add“0”循環,此時,需要寫入“0”的所有單元可被同時寫入,接著Add“1”循環,此時,需要寫入“1”的所有單元都可被同時寫入。若需要,可使用其它數據寫入循環或方法。
此外,可自前或後用流體填充(或沖洗,或清洗或清空)Add“0”及Add“1”通道6502、6504,分別如箭頭6503-6505所示,且可從側面用流體填充(或沖洗,或清 洗或清空)去保護室6530-6536,分別如箭頭6540-6546所示。不要求流體及電性連接每個Add“1”室或流體及電性連接每個Add“0”室。若如此連接大量室,可提高效率;一般來說,連接的單元越多,可實現越高的效率。
此外,藉由將聚合物6550的一端結合(或拴繫或附著)至中央去保護室6536的表面,例如顯示為去保護室6536中的點6552,可防止整個聚合物(或DNA)或“串”或存儲串6550完全退出該中央去保護室。可使用去保護室6536中的其它位置拴繫該聚合物,只要它符合所需功能及性能要求。在一些具體實施例中,結構6554例如珠、顆粒,或摺紙,或其它結構可被附著至聚合物6550的一端,並防止該聚合物穿過奈米孔6550離開去保護室6536。類似的標準適用於在其它去保護室6530-6534中的聚合物存儲串6550。
用以儲存數據的聚合物6550可為本文中所述的DNA,或者它可為具有本文中所述的屬性的任意其它聚合物或其它材料。用以儲存數據的聚合物6550在本文中也可被稱為“存儲聚合物”或“存儲串”(由於其串狀外觀)。
請參照第66圖,針對本揭露的一些具體實施例顯示奈米孔記憶體晶片的一組3室的基於奈米孔的單元6600(各單元類似上面所述)的選擇性透明表面的部分立體圖。尤其,類似第65圖,將一組四個3室單元6606、6608、6610、6612連接在一起,從而將各連接單元6606- 6612的上(或頂部)左室6602(Add“0”室)流體連接在一起,以形成Add“0”流動通道6602。此外,也將各連接單元6606-6612的上(或頂部)右室6604(Add“1”室)流體連接在一起,以形成獨立的Add“1”流動通道6604。不過,在此具體實施例中,與單元6606-6612關聯的該Add“0”室具有獨立的電極6620-6626,且與單元6606-6612關聯的Add“1”室也具有獨立的電極6630-6636。此流體及電極配置與上面參照第27圖所述及所示類似。在一些具體實施例中,該些上室(Add“0”及Add“1”)可流體隔開或彼此隔離,以避免在試圖控制DNA的路徑時相鄰Add室之間的潛在電性串擾。
另外,對於第65圖,即使獨立控制電極,去保護室也可被流體連接。在此情況下,在通道之間可能具有串擾,例如附近的DNA被相鄰單元所看到的電場及/或電流吸引。
在一些具體實施例中,該電極可具有三維形狀,例如三角形或錐形,自單元的底部上升或向下突出至單元中。在此情況下,電極可經構造以產生更針對、集中或更加靠近單元的奈米孔的電場,從而可降低流體連接但電性隔開的相鄰單元之間的串擾。
若存儲串(或DNA或聚合物)太長,它可能自一個添加室纏繞穿過另一個添加室的頂部。為避免此問題,沿流動通道在相鄰單元之間設置部分牆壁,以使相鄰奈米孔之間的距離對於長DNA來說較長。
在該Add室下方為共同的“去保護”室6640, 其對於所有上ADD室是共同的,與上面所述類似。在共同去保護室6540的底部上是共同去保護電極6642。另外,單元6606-6612的該上室可分別具有穿過膜6529的奈米孔6528,與上面所述類似。
此外,可自側面用流體填充去保護室6540(依據該單元的結構配置)。在一些具體實施例中,可從左側(或右側)填充該去保護室,如箭頭6650所示。在其它具體實施例中,可自前(或後)側填充該去保護室,如箭頭6652所示。
另外,藉由將聚合物6550的一端結合(或拴繫)至中央去保護室6650的表面,例如顯示為單元6612的點6652,可阻止整個DNA或聚合物“串”(或存儲串)6550完全退出該中央去保護室。類似的配置適用於其它單元6606-6610。可使用其它位置拴繫該聚合物,只要它符合所需功能及性能要求。
請參照第67圖,針對本揭露的具體實施例顯示基於奈米孔的“記憶體晶片”6700的示意電路方塊圖。尤其,記憶體晶片6700可具有多個基於奈米孔的“記憶體單元”6702(或“儲存單元”或“數據儲存單元”),各單元具有儲存數據的能力。各“記憶體單元”6702具有多室的基於奈米孔的流體單元6704,其具有與上面所述類似的單元結構(例如,具有包括奈米孔的膜以及“存儲串”6550(例如,DNA或其它聚合物,如本文中所述))。“記憶體單元”6702還可包括任意固態或半導體被動或主動電路或晶片層或組件, 它們與流體單元6704接口,以提供本文中所述的數據儲存(或寫入或添加)以及/或者數據檢索(或讀取或測序)功能。
可將記憶體單元6702連接在一起(電性地及流體地),例如具有共同流體“Add”通道及共同“Add”電極以及獨立“去保護”室的3室單元,例如參照第65圖中所示及所述。若需要,可使用任意數目的室及本文中所述的任意單元配置。
可將“記憶體單元”6702配置為MxN陣列,具有M行及N列,將各單元6702標記為CM,N。更具體地說,將第一行中的單元6702標記為C1,1-C1,N,並將最後行中的單元6702標記為CM,1-CM,N。M及N可為提供所需功能及性能的任意值,且M,N可分別小至1並大至1百萬、1千萬、1億、10億,或1萬億,或更大,取決於該記憶體晶片的所需足印尺寸及各記憶體單元的尺寸。
記憶體晶片6700在線6710上具有Add“0”輸入DC電壓,其與各該Add“0”電極電性連接(直接或藉由片上電路或組件,如本文中所述)。在線6710上的該Add“0”輸入DC電壓將該Add“0”電極驅動至所需電壓狀態(如本文中所述),以幫助定位(或移動或引導)存儲串6550(DNA或其它聚合物,如本文中所述)至流體單元6704的所需室。在此配置中,各該記憶體單元的所有Add“0”電極為共用的或共同的,或電性連接的,如第65圖中所示。
記憶體晶片6700在線6712上還具有 Add“1”輸入DC電壓,其與各該Add“1”電極電性連接(直接或藉由片上電路或組件,如本文中所述)。在線6710上的該Add“1”輸入DC電壓將該Add“1”電極驅動至所需電壓狀態(如本文中所述),以幫助定位(或移動或引導)存儲串6550(DNA或其它聚合物,如本文中所述)至流體單元6704的所需室。在此配置中,各該記憶體單元的所有Add“1”電極6522是共用的或共同的,如第65圖中所示。
記憶體晶片6700還具有在多條線(或匯流)6714上的“去保護”輸入DC電壓,分別與各單元6702中的相應“去保護”電極電性連接(直接或藉由片上電路或組件,如本文中所述)。該去保護輸入DC電壓將給定單元的相應去保護電極驅動至所需電壓狀態(如本文中所述),以幫助定位(或移動或控制)存儲串6550(DNA或其它聚合物,如本文中所述)至流體單元6704的所需室。在此配置中,各該去保護電極被獨立驅動,如第65圖中所示,因此需要多個電性連接或匯流(或去保護匯流)6714。每行記憶體單元6702將設有相應數目的去保護輸入DC電壓線。例如第一行具有一組N條去保護線6716供給該行中的N個單元6702,且最後一行M中具有獨立的一組N條去保護線6718供給該行M中的N個單元6702。
分別在線6710、6712、6714上的該DC輸入電壓Add“0”、Add“1”以及去保護在本文中可被稱為DC“引導”電壓VST(或聚合物或DNA引導電壓或存儲串引導電壓),因為它們被用以在合適的時間將聚合物存儲串 “引導”至流體單元6704的合適的室,以獲得所需結果,例如向存儲串上寫入或添加“0”或“1”,或閒置,或者將存儲串移動至特定的室,以支持寫入或讀取數據,或執行驗證測試等。可自基於電腦的控制器電路或邏輯或裝置提供分別在線6710、6712、6714上的DC輸入電壓Add“0”、Add“1”以及去保護,如本文中所述,其具有合適的邏輯以執行本文中所述的功能。
記憶體晶片6700還分別在線6720、6722上具有AC輸入電壓Vin以及AC輸出電壓Vout。如本文中所述,在線6720上的AC輸入電壓Vin並行地與各記憶體單元6702電性連接。該AC Vin藉由線6720上向各記憶體單元6702提供AC信號,例如rf或射頻信號,且該些記憶體單元被配置為諧振器或奈米孔聚合物諧振器(NPR),分別對輸入AC Vin具有不同的頻率響應,如本文中所述。不同於第67圖中所示,線6720可連接記憶體單元6702及/或晶片上的電子組件、電極,以及其中的流體單元6704,取決於用於奈米孔聚合物諧振器(NPR)的電路配置、流體單元配置、電極配置,或其它因素,如本文中所述。可自基於電腦的控制器電路或邏輯或裝置提供在線6720上的該AC輸入電壓Vin,如本文中所述,其具有合適的邏輯以提供合適的AC輸入電壓Vin並執行本文中所述的功能。
來自各記憶體單元6702的組合頻率響應可被提供給片上放大器(或前置放大器)5320(第53圖),該放 大器在線6722上提供AC輸入電壓Vout,標示該組合頻率響應。在線6722上的AC輸出電壓Vout可被提供給基於電腦的處理電腦或邏輯或裝置,其具有合適的邏輯,例如模擬-數位(A/D)轉換及數位信號處理(digital signal processing;DSP)邏輯,如本文中所述,以讀取存儲串6550上所儲存的數據並可執行如本文中所述的其它功能。
請參照第68圖,依據本揭露的具體實施例,顯示具有基於奈米孔的記憶體晶片6700(第67圖)以及記憶體讀/寫控制器6802的讀/寫記憶體儲存系統6800的頂層硬件方塊圖。尤其,記憶體讀/寫控制器6802可具有寫控制器邏輯6804,其藉由線接收要被寫入至記憶體晶片6700的輸入數據並藉由線6808接收儲存該數據的地址(或標記或指針或類似物),並分別藉由線6710、6712、6714向奈米孔記憶體晶片6700提供DC引導電壓Add“0”、Add“1”,以及去保護。寫控制器6804具有提供本文中所述的功能所需的合適的硬件、軟件及固件(包括任意微處理器或基於微電腦的處理器晶片或裝置以及/或者記憶體儲存),如方框6810所示。
此外,寫控制器6804還可提供寫入(或添加)循環時鐘6812(或振盪器),其確定記憶體晶片6700何時寫入(或添加或儲存)“0”或“1”位。尤其,寫控制器晶片6804基於寫入循環時鐘6812提供該DC引導電壓(Add“0”、Add“1”、去保護),以使記憶體晶片6700向該記憶體單元寫入“1”或“0”。如上參照第65圖所述,在特定的單元配置 中,例如當所有Add“0”電極被連接在一起且獨立地,所有Add“1”電極被連接在一起,以及去保護電極被單獨控制時(例如在第65圖中),數據位元的寫入(或添加)可發生於寫入(或添加)“循環”,例如Add“0”循環,此時需要寫入“0”的所有單元可被同時寫入,接著Add“1”循環,此時需要寫入“1”的所有單元都可被同時寫入。該寫入循環時鐘在線6814上提供寫入循環信號,以使寫入請求裝置或平臺或電腦匯流能夠確定該記憶體晶片的寫入狀態。若需要,可使用其它數據寫入循環、定時或方法。
在一些具體實施例中,寫控制器6802還可藉由線6820自系統或電腦匯流接收控制信號,例如寫請求(W-REQ)信號,以請求特定數據被寫入至記憶體晶片6700,且寫控制器6802還可藉由線6822提供寫入(或添加)完成(W-COM)信號,以標示何時被請求數據已被寫入至記憶體晶片6700。
記憶體讀/寫控制器6802還可具有記憶體讀控制器邏輯6850,其可藉由線6852接收與想要自記憶體晶片6700讀取的數據的儲存位置對應的讀地址(或標記或指針或類似物),並藉由線6854提供自記憶體晶片6700讀取的被請求數據。讀取控制器6850還可具有必要的邏輯及組件,以藉由線6720向記憶體晶片6700提供AC輸入電壓信號Vin。如本文中所述,該AC輸入電壓Vin為AC rf(射頻)信號,其具有與記憶體晶片6700中的奈米孔諧振器(NPR)的帶寬對應的頻率分量。為提供該Vin信號, 讀控制器6850可具有頻率振盪器邏輯6858(可編程或非可編程),其提供必要的頻率分量(本文中所述),以使該讀控制器邏輯能夠自奈米孔記憶體晶片6700讀取被請求數據。如本文中所述,該AC Vin信號可被直接合成,組合多個探針頻率,且可為單個寬帶信號,或者時間掃描或步進頻率信號,或提供本文中所述的功能的任意其它AC信號。
讀控制器6850還藉由線6722自記憶體晶片6700接收輸出AC Vout電壓,並對該Vout信號執行A/D轉換及數位信號處理(例如,藉由使用板上A/D轉換邏輯6862及FFT邏輯6864),如本文中所述,以確定在特定讀地址的所需數據的值並藉由讀數據輸出線6854提供輸出數據。
讀控制器6850具有提供本文中所述的功能所需的合適的硬件、軟件及固件(包括任意微處理器或基於微電腦的處理器晶片或裝置以及/或者記憶體儲存),如方框6856所示。
此外,讀控制器6850還可自寫入循環時鐘6812(或振盪器)藉由線6814接收該寫入(或添加)循環時鐘信號,如上所述,其確定何時記憶體晶片6700將寫入(或添加或儲存)“0”或“1”位。尤其,控制器晶片6804將基於寫入循環時鐘6812提供DC引導電壓(Add“0”、Add“1”、去保護),以使記憶體晶片6700向記憶體單元寫入“1”或“0”。由於藉由本揭露寫入的動作需要DNA(或聚合物或存儲串)經過奈米孔以進入所需室來添加位並且還於退回至 保護室時經過奈米孔,該寫入循環時鐘信號也可被讀控制器6850使用以確定何時是讀取數據的最佳時間,下面參照第69圖詳細討論。
在一些具體實施例中,該讀控制器可向寫控制器6804提供讀信號6860,以請求控制器6804藉由線6710-6714提供必要的引導電壓(Add“0”、Add“1”、Deblock),從而使該存儲串經過奈米孔來實現該存儲串的讀取。
在一些具體實施例中,讀控制器6850還可藉由線6870接收讀請求(RD-REQ)信號以自記憶體晶片6700請求特定數據,且讀控制器6850還可藉由線6822提供讀完成(RD-COM)信號,以標示何時已自記憶體晶片6700讀取被請求數據。若需要,記憶體控制器6802可僅執行一個功能,例如針對奈米孔晶片讀取或寫入,或者若需要,它可執行這兩種功能(讀取及寫入)。
請參照第68A圖,奈米孔記憶體系統6800可為較大電腦系統的部分,其可與地址/數據/控制匯流6870交互,且還可與獨立的記憶體控制器6876交互,所有這些都與一個或多個CPU/處理器6874交互。例如,讀/寫地址及/或數據輸入、輸出及/或控制線的其中一個或多個,例如第68圖中所示的元件符號6820、6822、6808、6814、6852、6854、6872、6870,可自匯流6872或記憶體控制器6876接收或向其提供。電腦系統8670可與用戶6878及顯示器6880交互。
請參照第69圖,其顯示依據本揭露的具體實施例用於第65圖中所示的配置的採樣DC引導電壓(VST)的表6900及引導電壓VST的相應時間圖6902以及在記憶體晶片6700上的相關結果。尤其,表6900顯示將要被提供給記憶體單元的相應電極的DC引導電壓VST(例如,分別為Add“0”、Add“1”、去保護,或VST0、VST1、VSTDB)6904,基於寫入循環定時以使記憶體晶片6700向記憶體單元寫入“1”或“0”,例如Add“0”循環,此時需要寫入“0”的所有單元可被同時寫入,接著Add“1”循環,此時需要寫入“1”的所有單元都可被同時寫入。
請參照第69圖及第65圖,在列6906(第69圖)中顯示用於Add“1”循環的採樣引導電壓,且在列6908中顯示用於Add“0”的引導電壓。更具體地說,在Add“1”循環期間,想要使存儲串(DNA或聚合物)6550穿過奈米孔6528至流體單元6512的Add“1”室6539(第65圖)。為此,可使Add“1”電極電壓VST1為地(GND)或0伏,Add“0”電極電壓VST0為負電壓(相對Add“1”電壓),且去保護電極電壓VSTDB在負電壓(相對Add“1”電壓),直至“1”位被寫入(或添加)至串6550。在寫入“1”位以後,藉由使該去保護電壓變為正電壓(相對Add“1”電壓及Add“0”電壓)(若該存儲串具有淨負電荷,例如DNA,這將吸引該存儲串),可將串6550拉回至去保護室6536中(為下一個寫入指令做好準備)。
時間圖6902顯示針對Add“1”及Add“0” 寫入循環的引導電壓的值。在此情況下,對於圖6910,針對Add“1”循環,顯示Add“1”電壓值在整個Add“1”循環被保持於GND(0伏)的恒定值,且圖6912顯示Add“0”電壓的值在整個Add“1”循環被保持於負電壓的恒定值(例如,-1.0伏)。針對“去保護”電壓的圖6914顯示具有兩部分6916及6920的方波,其開始於負電壓值(如上所述),以自去保護室6536(第65圖)釋放存儲串並允許存儲串6550的一端自去保護室6536穿過奈米孔6528到達Add“1”室6539,其中,Add“1”位反應發生如圖形6914上所示,對於“1”位的寫入還藉由“W1”標示。圖形段的第一部分6918(標記為“T1”)是存儲串(DNA或聚合物)穿過奈米孔6528進入Add“1”室6539中所需的時間,此後,在時間“W1”期間,“添加”化學反應發生。時間量W1應當被設置為足夠長,以使“1”位添加反應完成,該添加反應可具有例如約.01-100Hz或約10秒至100毫秒的反應時間。若需要,針對添加反應可使用其它添加反應時間,取決於所使用的化學,如本文中所述。
接著,在去保護時間圖形段6920中,去保護電壓相對Add“1”電壓變為正,其將存儲串6550拉回穿過奈米孔6528至去保護室中,在此之後使其保持保持時間段(Hold time,TH1)足夠長,以使去保護反應發生,如本文中所述(與Add反應時間類似)。由元件符號6922標示的時間“T2”是存儲串6550穿過奈米孔6528所需的時間。在該循環的此部分1920中的剩餘時間(保持時間,TH1),該 串被保持於去保護室中,等待下一個寫入請求。因此,除了去保護反應外,在此保持時間期間在該串上不發生任何活動(NA)。
接著,該寫入循環重複,這次針對Add“0”循環,列6908。請參照第69圖及第65圖,在列6908中顯示用於Add“0”循環的採樣引導電壓。更具體地說,在Add“0”循環期間,想要使存儲串(DNA或聚合物)6550穿過奈米孔6528到達流體單元6512的Add“0”室6537(第65圖)。為此,可使Add“0”電極電壓VST0為地(GND)或0伏執行,Add“1”電極電壓VST1在負電壓(相對Add“0”電壓),以及Deblock(去保護)電極電壓VSTDB在負電壓(相對Add“0”電壓),直至“0”位被寫入(或添加)至串6550。在寫入“0”位以後,藉由使該去保護電壓變為正電壓(相對Add“1”電壓及Add“0”電壓)(若該存儲串具有淨負電荷,例如DNA,這將吸引該存儲串),可將串6550拉回至去保護室6536中(為下一個寫入指令做好準備)。
類似地,對於Add“0”循環,針對Add“0”循環的圖6912顯示Add“0”電壓值在整個Add“0”循環被保持於GND(0伏)的恒定值,且圖6910顯示Add“0”電壓的值在整個Add“0”循環被保持於負電壓的恒定值(例如,-1.0伏)。針對Add“0”循環的“去保護”電壓的圖6914顯示具有兩部分6926及6930的方波,其開始於負電壓值(如上所述),以自去保護室6536(第65圖)釋放存儲串並允許存儲串6550的一端自去保護室6536穿過奈米孔6528到達 Add“0”室6537,其中,Add“0”位反應發生如圖形6914上所示,對於寫入位“0”還藉由“W0”標示。該圖形段的第一部分6924(標記為“T3”)是存儲串(DNA或聚合物)穿過奈米孔6528進入Add“0”室6537中所需的時間,此後,在時間“W0”期間,“添加”位“0”化學反應發生。時間量W0應當被設置為足夠長,以使該添加反應完成,該添加反應可具有例如約10-100Hz或約10秒至100毫秒的反應時間。若需要,針對添加可使用其它添加反應時間,取決於所使用的化學,如本文中所述。
接著,在去保護時間圖形段6930中,去保護電壓相對Add“0”電壓變為正,其將存儲串6550拉回穿過奈米孔6528至去保護室6536中,在此之後使其保持保持時間段TH2足,該時間段足夠長,以使去保護反應發生,如本文中所述(與Add反應時間類似)。由元件符號6928標示的時間“T4”是存儲串6550穿過奈米孔6528並重新進入去保護室所需的時間。在該寫入循環的此部分1930中的剩餘時間(保持時間,TH2),該串被保持於去保護室中,等待下一個寫入請求。因此,除了去保護反應外,在此保持時間期間在該串上不發生任何活動(NA)。
因此,對於所述具體實施例,去保護電壓可控制寫入“1”或“0”,釋放存儲串進入相應Add室,以及在寫入以後自該室移除存儲串並在去保護室中保持串。因此,若給定寫入循環或其部分需要,藉由調節循環期間的“保持”時間,去保護電壓可創建無活動(NA)狀態或閒置狀態。 藉由在循環期間調節寫入時間W1、W0,還可確定寫入(或添加)時間何時開始及結束的定時。此外,依據存儲串完全穿過奈米孔所用的穿過時間T1-T4,可能需要調節寫入時間W1(Add“1”)、W0(Add“0”)以確保有足夠的時間在Add室中執行所需的寫入(或添加)反應。相應地,針對流體、電極或本文中所述的其它配置等的任意配置及具體實施例,上面所討論的讀/寫控制器6802(第68圖)可具有實時測量並調節這些狀態的邏輯。此外,穿過時間將依賴於鹼基的數目,鹼基越多,時間越長。例如,對於100K鹼基,以每秒1百萬鹼基的速度經過奈米孔(DNA穿過奈米孔的典型平均速度)將耗費約100毫秒經過奈米孔。進入孔中還可能有延遲,例如約100毫秒,不過可使用其它值。
此外,在圖形6914上所示的穿過時間T1-T4期間,當存儲串(或DNA或聚合物)正在穿過奈米孔時,讀/寫控制器6802可讀取(或測序)經過奈米孔的位元的值,如本文中所述。因此,對於各寫入循環(Add“1”循環或Add“0”循環),分別具有兩個時間段T1、T2或T3、T4,此時,系統可讀取在存儲串上所儲存的數據。連續讀取數據可用於驗證數據、提供多次數據讀取、標記數據中的錯誤,以及出於其它原因。
關於本揭露的自存儲串讀取數據,有許多可能的方法及因素要考慮,包括定時(例如,讀取的時間及頻率)、流體及電極以及其它相關配置(例如,如何提供引導信號來執行讀取),以及其它因素,這可基於本文中的揭 露及總體記憶體系統的設計、功能及性能要求確定。
在一些具體實施例中,僅可在沒有寫入發生且Add室已被沖洗並移除了化學“Add”功能(例如,添加酶等)時讀取存儲串(或DNA或聚合物)。在此情況下,可藉由讀控制器引導存儲串出入所需奈米孔,且信息由讀控制器儲存以供以後使用。在此情況下,讀控制器可與另一個記憶體儲存裝置通信,以保持檢索數據供以後使用。
存儲串(或DNA或聚合物)穿過奈米孔(入或出Add室)所用的穿過(或者轉移)時間T1、T2、T3、T4可基於存儲串的長度變化(串上的位元越多,所用的時間越長)且穿過奈米孔的串轉移速度(串經過奈米孔越慢,所用的時間越長)。轉移速度可基於若干因素變化,包括串接近奈米孔的角度,奈米孔的幾何(圓錐體、圓柱體等)、與串的直徑(可沿其長度變化)相比奈米孔的直徑,串中的纏結、包裹或盤繞量,速度沿串的長度如何變化,流體動力效應、與室壁的摩擦/吸引/結合、黏滯效應、流體中的聲波,以及其它因素。
若無法精確知道速度,則系統可能不能精確地確定具有一長串相同位狀態的字中的位元的數目,例如000000或1111111。不過,本揭露的系統及方法可確定或校正速度,透過以下方式:在單元的存儲串(或DNA或聚合物)上寫入預定的“速度校正序列”數據,例如交替的1及0(也就是101010101010),並將它置於在已知的或可確定的位置中的串上的儲存數據中,例如靠近串的開始或在 寫入一定數目的字以後,或者在檢測到具有特殊屬性例如特大的“特殊”位以後,如下文中詳細所述。當系統讀取該交替“1010”模式時,它可確定串的速度,因為它知道該模式。若需要,可沿存儲串將此等速度校正序列置於多個位置,以實現速度的多次實施校正。
在一些具體實施例中,若在位之間具有“基線分辨率”(也就是,若位信號在下一位之前返回至基線值),則可能不必要校正速度。不過,具有長度等於或長於位的奈米孔,則不會預期基線分辨率。在此情況下,系統將同時讀取數個位並評估其隨時間如何變化,例如,對於序列1101110,從110011至100111至001110,以此類推。為有效解釋此情景,需要盡可能多地的單位時間測量。此外,系統可執行同一DNA的多次讀取,以平均時間域的變化的至少其中一些,其中許多是隨機的。
第69圖中所示的引導電壓VST的採樣電壓值是針對具有淨(或總或平均)負電荷的存儲串,例如負荷電聚合物,例如DNA,或其它負荷電聚合物。若存儲串具有淨正電荷,則這裡所示的值將反轉。基於電子電路組件或其它因素,若需要,針對本文中所示的存儲串(或DNA或聚合物)引導電壓可使用其它值,只要相對電壓差足以獲得所需結果。此外,引導電壓不一定具有正負值。只需要由引導電壓創建的相對電壓差使它們創建必要的電場力以使存儲串穿過奈米孔6528移動至所需室。
請參照第70圖,顯示一系列時間圖7000, 具有寫入循環圖7002以及相應一組位元時間圖7004-7012,顯示5位元字如何針對相應五種不同的位元模式填充。尤其,寫入(或添加)循環圖顯示方波7002,標示Add“0”循環、Add“1”循環、Add“0”循環以及依次類推的交替重複寫入循環。時間圖7004-7012顯示左邊的五個5位二進制數據字7020(11100、00011、01010、1111、0000)的例子,以及相應時間圖7004-7012顯示利用交替寫入循環7002(Add“1”、Add“0”)方法何時在單個單元中寫入5位元數據字7020的每一位。具有“X”的單元標示在寫入循環7002的部分期間沒有數據寫入。該圖形還顯示各數據字7020在何時被完全寫入單元中,由箭頭7014顯示。對於數據11100,它用9個循環寫入,數據00011用8個循環寫入,數據01010用5個循環寫入,1111用10個循環寫入,以及數據0000用9個循環寫入。因此,若向給定單元寫入各字,寫入相同位元數的寫入循環數(或時間)可基於字中的1或0的模式變化。在此例中,寫入循環的數目從5個循環至10個循環變化(也就是,從位元數至位元數的兩倍)。
不過,若單元被並行寫入(或添加),也就是,將每一位分配給不同的單元並同時寫入,則最大寫入循環數將為2,且最小數將為1,獨立於位元數或位元的模式。因此,若寫入速度重要且使用具有交替寫入循環的具體實施例,格式化將要被寫入並行單元中的數據而不是向單個單元串行寫入數據字可能是有利的。因此,對於一些具體 實施例,在寫入循環管理與數據存儲單元格式之間可能具有折中。
請參照第70A圖,顯示依據本揭露的具體實施例用於寫入位元的讀/寫記憶體控制器6802(第68圖)的寫入/Vst控制邏輯6804的流程圖7030。流程/邏輯7030開始於方塊7032,其檢查寫入循環是否為Add“0”循環。若不是,則該流程進至方塊7034,其檢查該寫入循環是否為Add“0”循環。若不是,則該流程退出。若方塊7034的結果為YES(是),則方塊7036將引導電壓VST設為第69圖中所示的值,例如VST1=GND;VST0=Neg(負)。接著,方塊7038檢查將要被寫入的下一個位元數據是否為“1”。若不是,則該流程退出。若是,則方塊7040設置VSTDB=Neg(負),以釋放存儲串(或DNA或聚合物)至Add“1”室中,持續時間t=T1+W1,如第69圖中所示。接著,在經過此時間以後,該邏輯設置VSTDB=Pos(正),以將存儲串拉出該Add室進入去保護室中,且該流程退出。
若方塊7032的結果為YES,則該寫入循環處於Add“0”循環中,且方塊7042將VST設置為第69圖中所示的值,例如VST1=Neg;VST0=GND。接著,方塊7044檢查將要被寫入的下一個位元數據是否為“0”。若No(不是),則該流程退出。若Yes(是),則方塊7046設置VSTDB=Neg,以釋放存儲串(或DNA或聚合物)至Add“0”室中,持續時間t=T3+W0,如第69圖中所示。接著,在經過此時間以後,該邏輯設置VSTDB=Pos,以將存儲串拉出該 Add室進入去保護室中,且該流程退出。流程7030不斷自行重複以尋找下一個寫入循環並相應響應。
請參照第70B圖,顯示針對第66圖中所示的奈米孔記憶體裝置單元配置的寫入“1”及“0”的步驟的表格,尤其,單元在去保護室的底部上具有共同電極且在頂部添加室具有單獨可控電極。針對每種類型寫入在列7082中具有四個步驟且針對寫控制器在列7084中顯示相應的控制器動作,以及在列7076中顯示相應結果,以解釋針對特定步驟在晶片內部發生什麼。
請參照第71圖,儲存數據的格式可基於各種因素及設計標準變化。尤其,存儲串(或DNA或聚合物)6550可顯示為線7102,在其上為一系列橢圓,標示在給定記憶體單元中的存儲串6550上寫入(或添加)的單獨“位”。在一些具體實施例中,可一個接一個地寫入位元7104,以構建“儲存字”。第一示例數據格式7110顯示儲存字7112的三個組成部分:地址段7106、數據段7108,以及錯誤檢查段7110。地址段7106為記憶體系統所使用的標記或指針,以定位所需數據。與在電腦記憶體匯流上的硬件地址線將尋址獨特的記憶體位置的傳統半導體記憶體儲存不同,本揭露的記憶體晶片及系統需要地址(或標記)作為儲存數據的部分並標示想要檢索的數據所處的位置。在第71圖中所示的例子中,地址與數據以及錯誤檢查數據(例如奇偶校驗、校驗和、錯誤校正碼(ECC)、循環冗餘檢查(CRC),或任意其它形式的錯誤檢查以及/或者安全信 息,包括加密信息)鄰近或鄰接。在儲存字7112中,各組成部分:地址7106、數據7108、錯誤檢查7110在存儲串中彼此相接。由於各組成部分具有已知長度(位元數),例如地址=32位元,數據=16位元,錯誤檢查=8位元,因此各儲存字7112及其組成部分可藉由計算位元數確定。
另一種示例數據格式7120顯示相同的三個組成部分:地址段7106、數據段7108,以及錯誤檢查段7110。不過,在各段之間具有“特殊位元或序列”段S1、S2、S3,分別顯示為元件符號7122、7124、7126。這些特殊位元S1、S2、S3可為預先確定的一系列位或代碼,其標示接下去為什麼段,例如,1001001001可標示接下去為地址,而10101010可標示接下去為數據,以及1100110011可標示接下去為錯誤檢查段。在一些具體實施例中,該特殊位元可為附著至串的不同分子位元或位元結構,例如啞鈴、花,或其它“大”分子結構,在它經過奈米孔能夠時容易辨別。替代大,它可具有其它分子屬性來提供不同於1位及0位元的電容或諧振的獨特的變化,如上所述。
另一種示例數據格式7130僅顯示沒有地址部分的數據部分7140,以及錯誤檢查部分7110。在此結構中,該串僅保持“數據”部分而沒有地址部分,該地址部分可被儲存於其它串中,如下文中所述。在此例中,也具有特殊位元S1、S2、S3,分別被顯示為元件符號7132、7134、7136。與例7120類似,這些特殊位元S1、S2、S3可為預先確定的一系列位或代碼,其標示數據段之間的分隔並標 示何時接著為錯誤檢查段,或者可為附著至串的不同分子位或位結構,它在經過奈米孔時容易辨別,如上所述。
請參照第72圖,顯示單行記憶體單元7202-7208,分別具有與各單元關聯的採樣存儲串7210-7216。本揭露的記憶體系統顯著不同於傳統的半導體記憶體,因為本揭露的各記憶體單元可儲存大量數據,而不是各記憶體單元儲存單位信息(1或0)。因此,若將傳統半導體記憶體視為二維陣列,則當前的記憶體系統為三維陣列,其中,該陣列中的各記憶體單元位置具有顯著的儲存深度。這為如何儲存數據及檢索數據提供大範圍的選擇。
對於第72圖中所示的例子,各單元可儲存線性自包含信息串(儲存字),與第71圖的例子7110中所述類似。在此情況下,各儲存字背靠背儲存於其它儲存字的頂上。且在該行中的各單元7202-7208複製此結構,並針對多行重複(未顯示)。
請參照第73圖,在一些具體實施例中,一些單元可僅儲存地址信息,且一些單元僅儲存數據信息。在此情況下,各行可具有單元例如單元1 7310,其具有地址或指針存儲串7302,以及該行的其餘部分例如單元2-單元N,7310-7316分別具有相應數據串7304-7308。在此情況下,地址或指針將具有標示數據被儲存於記憶體晶片上的位置的值,例如行(row)、列(column)及入口數據(entry),例如行3、列8、入口數據50,意味著對應此地址的數據駐留於行3與列8中的第50個數據塊。這有效地將地址物 理鄰近數據去耦(decouple),從而可提供儲存靈活性。此外,各串可具有一個或多個錯誤檢查或安全部分,以驗證在串上所儲存的信息。這可針對陣列中的各行重複。
請參照第74圖,不是在給定存儲串上鄰接地(或串行地)儲存信息,而是可將數據並行地儲存於記憶體單元陣列中。例如,當儲存儲存字時,可以單個儲存動作中將它較快地儲存,將它儲存於陣列上,與傳統半導體記憶體陣列作用的方式類似,但由於三維深度,允許一遍一遍地重複執行,每次向串上“推入”(儲存)另一個儲存字。此類格式還支持給定儲存字(一經定位)的快速並行檢索。在此情況下,可分配特定單元7402儲存地址/指針,可分配特定單元7204儲存並行數據,以及可分配特定單元7406儲存錯誤檢查及安全數據。例如,可將第72圖中所示的儲存字7210(在一個串上串行儲存)如所示儲存為儲存字7410,其具有Address(地址)1、Data(數據)1,以及Error Check(錯誤檢查)1,且將它在多個單元上並行儲存(1-N、N+1至M,以及M+1至P)。類似地,對於儲存字7412,將它與儲存字7410平行堆疊於相同的串上(在其下或頂上,取決於在串上的儲存的方向)。在一些具體實施例中,可以二維方式並行儲存數據,從而創建儲存信息的層式二維陣列,例如可儲存多層二維圖像擷取數據,除了允許實時儲存二維圖像外,各二維快照堆疊於前一快照的頂上。
位元可為二進制位元,不過,它們不限於任意鹼基編號系統,因為本揭露允許存儲棒寫入(或添加)不 止兩個不同的值,如本文中所述。在此情況下,可相應調節單元設計。例如,對於鹼基-4系統(例如,GCAT,對於基於DNA的系統),將具有4個添加室及單個去保護室,如本文中所述。可將此擴展用於大於2的任意鹼基數系統,例如3、4、5、6、7、8、9、10(十進制),或更多,至N。其中具有N個添加室及1個去保護室。唯一限制將是室經取向以使存儲串(或DNA或聚合物)可到達所有添加室。
本文中所使用的術語“數據”包括所有形式的數據,包括可儲存於記憶體中的表示地址(或標記或指針,包括物理的或虛擬的)的數據、任意類型的機器代碼(包括但不限於對象代碼、可執行代碼等)、錯誤檢查、加密、庫、數據庫、堆棧等。在特定例子中,例如在第71至74圖中(或者上下文暗示的其它地方),術語“數據”可被顯示並說明為獨立於“地址”或“錯誤檢查”。在這些情況下,這些術語可用以顯示不同形式的數據,僅用於說明目的。
晶片流體儀器及控制:請參照第75圖,奈米孔晶片6700(第67圖)可與讀/寫記憶體控制器6802交互,如上參照第68圖所述,該讀/寫記憶體控制器可控制電壓(AC及DC)以控制存儲串來添加位或讀取存儲串上的位元,共同由線7504顯示。該記憶體晶片還可藉由線7506與儀器7502接口,該儀器可向記憶體晶片提供流體,例如用緩衝劑、酶及/或聚合物或DNA(或其它存儲串)填充晶片,如本文中所述。儀器7502及記憶體控制器6802可自電腦系統6870控制或接收指令,例如參照第68A圖所述 及所示,該電腦系統可與用戶6878交互並可具有顯示器6880。電腦系統6870可藉由電腦匯流6872(第68圖)與讀/寫記憶體控制器6802及儀器7502交互。儀器7502具有必要的電子、電腦處理能力、接口、記憶體、硬件、軟件、固件、邏輯/狀態機、數據庫、微處理器、通信鏈路、顯示器或其它視聽用戶界面、打印裝置,以及任意其它輸入/輸出接口,包括充足的流體及/或氣動控制、供應及測量功能,以提供功能或獲得本文中所述的結果。
尤其,該儀器可對記憶體晶片執行下面的流體動作:藉由毛細作用及或微泵送用必要的流體、酶、試劑、DNA或類似物初始填充晶片。對於Add1及Add0具有流動通道及去保護為隔離室的具體實施例,去保護室可首先(藉由毛細作用)被一起填充,接著被密封-水及緩衝劑將行進至添加室中,該添加室接著可由它們的酶/緩衝劑填充或者去保護室可藉由目標添加(例如噴墨)被單獨填充並乾燥及密封。在此情況下,可在真空下填充Add室,以確保沒有氣泡陷於去保護室中,或者可用允許氣體但不允許水藉由的材料(例如PDMS)密封去保護室。此外,可在組裝期間藉由使單元的底部開放來填充去保護室,並將單元底部置於所需流體中,且流體將藉由毛細作用進入去保護室中。
有各種流體設計來獲得所需的流體填充及沖洗結果。例如,可以連續的蛇形(前後)模式將Add“0”通道及Add“1”通道分別連接在一起(類似通道一起),並自通 道上方的層藉由過孔供給流體。該過孔可藉由足以向通道供應所需流體的標準流體接口連接儀器。在一些具體實施例中,Add通道可分別自位於通道上方的層上的針對Add“0”通道的共同儲液池及針對Add“1”通道的共同儲液池藉由獨立的過孔供給。若需要,可使用任意其它流體設計。針對Add通道的採樣尺寸為:寬度為約100奈米至約10微米,高度為約1微米至約50微米,以及從該晶片的一側至另一側的長度為約100毫米(1釐米或1000微米)。依據串聯連接的通道數,蛇形連接通道將為此的倍數。
若需要,還可在初始化及單元測試期間使用儀器7502。例如,對於單元初始化及奈米孔質量的單元測試質量控制(QC),以確保觀察到預期的電流(電流與孔尺寸成比例)。此外,針對DNA存在的質量控制:確保預期電流(或電容或阻抗,或諧振的幅度或相位偏移,如本文中所述)改變移動經過奈米孔的DNA(或聚合物等)的特性(例如,預期的電流降低,或諧振的幅度或相位偏移,如本文中所述)。此外,它可用於電路形成的質量控制,其類似針對奈米孔質量所執行的質量控制。
儀器7502還可用於DNA添加,如前所述,其中,藉由添加室(或通道)的其中之一引入具有摺紙的DNA,可向單元施加電流,直至檢測到插入,在去保護室中的改性DNA端部擴散並接著附著至表面,以及向添加室引入限制酶以切割摺紙,接著藉由緩衝劑流移除該摺紙。
在另一個具體實施例中,本發明提供如上 所述的單鏈或雙鏈DNA分子,其中,該單鏈或該編碼序列基本由非雜合鹼基組成,例如腺嘌呤及胞嘧啶(A及C),它們依序設置以對應二進制代碼,例如,用於數據儲存的方法中。例如,本發明提供DNA(DNA 1),其中,該DNA為單鏈或雙鏈,至少1000個核苷酸長,例如,1000-1000000個核苷酸,或者,例如,5000至20000個核苷酸長,其中,該核苷酸的序列對應二進制代碼;例如
1.1 DNA1,其中,該DNA為單鏈。
1.2 DNA1,其中,該DNA為雙鏈。
1.3 任意上述DNA,其中,在單鏈或在編碼鏈中的該核苷酸選自腺嘌呤、胸腺嘧啶以及胞嘧啶核苷酸,例如,選自腺嘌呤及胞嘧啶核苷酸或胸腺嘧啶及胞嘧啶核苷酸。
1.4 任意上述DNA,主要由非雜合核苷酸組成,從而當為單鏈的形式時,它不會形成顯著的二級結構。
1.5 任意上述DNA,其中,該核苷酸為至少95%,例如99%,例如100%腺嘌呤及胞嘧啶核苷酸。
1.6 任意上述DNA,包括核苷酸或核苷酸序列,經添加以分隔或不時打斷包括二進制代碼的該核苷酸,例如分隔該1與0或1與0的組,從而可更容易地讀取連續的1或0。
1.7 任意上述DNA,其中,(a)該二進制代碼中的每一位對應單個核苷酸,例如1及0分別對應A或C;或者(b)該二進制代碼中的每一位對應一系列不止一個核苷酸,例如2、3或4個核苷酸,例如AAA或CCC。
1.8 任意上述DNA,經結晶。
1.9 任意上述DNA,與一種或多種緩衝鹽(例如,硼酸鹽緩衝劑)、抗氧化劑、保濕劑例如多元醇,以及視需要地螯合劑,例如如US 8283165B2中所述(其包含於此作為參考)一起以乾燥形式;以及/或者在該核酸與聚合物之間形成基質,例如poly(ethylene glycol)-poly(1-lysine)(PEG-PLL)AB型嵌段共聚物;以及/或者與互補核酸鏈或結合該DNA的蛋白一起提供。
1.10 任意上述DNA,包含識別序列。
1.11 任意上述DNA,包含PCR擴增序列。
1.12 任意上述DNA,包含一個或多個校正序列,例如,已知的核苷酸序列,其可用以校正基於奈米孔的測序裝置,例如,以測量該DNA經過該奈米孔的速度或者因不同核苷酸經過該奈米孔而對電容或電流的相對影響。
1.13 任意上述DNA,包含:末端鏈接基團,使它能夠被固定至基於奈米孔的裝置例如奈米晶片1等等中的該奈米孔附近的表面;間隔序列,足夠長,以於該DNA鏈被固定至表面時,允許該DNA鏈到達該奈米孔;數據儲存序列,其中,該序列編碼數據,密碼子或其它信息;以及視需要地限制序列,使該DNA能夠被切割並在合成後被檢索。
1.14 任意上述DNA,藉由方法1等等或方法2等等或方法A等等的其中任意方法製成。
在又一個具體實施例中,本發明在儲存信 息的方法中提供任意DNA 1等等的使用。
在另一個具體實施例中,本發明在儲存信息的方法中提供單鏈DNA的使用,例如,其中,該序列基本上為非自我雜合。
可例如如第23至29圖中所示製造奈米晶片。例如,在一種格式中,各聚合物鏈與兩個或四個添加室關聯,其中,該兩個添加室格式可用於在該聚合物中編碼二進制代碼,且該四個添加室格式尤其可用於製造定制DNA序列。各添加室包含獨立可控電極。該添加室包含試劑以向緩衝劑中的該聚合物添加單體。該添加室藉由包括一個或多個奈米孔的膜與保留室隔開,該保留室對於多個添加室可為共同的,且其包含去保護試劑及緩衝劑,以對在該添加室中所添加的保護單體或寡聚體去保護。該奈米晶片包括多個添加室組,以允許眾多聚合物的並行合成。
例如,在一些具體實施例中,本揭露的基於奈米孔的記憶體裝置可被製造於例如約200至400微米厚的拋光單晶矽晶圓上。藉由例如低壓化學氣相沉積(low pressure chemical vapor deposition;LPCVD)或其它類似技術在該矽晶圓的兩側上沉積具有約200奈米厚的氮化矽層。接著,在該單晶矽晶圓的頂側上沉積例如約1-5微米厚的二氧化矽層,並接著拋光。接著,在該二氧化矽層的頂上沉積薄的氮化矽層(例如,約5-20奈米)。接著,沉積二氧化矽層(例如,約5微米)。接著,藉由蝕刻穿過該二氧化矽創建流體“Add”通道,以暴露位於該通道的底部的 該薄氮化矽層。這些通道將成為“Add 1”及“Add 0”通道。接著,從底部蝕刻該矽晶圓至該氮化矽。在此之後,穿過該二氧化矽蝕刻單獨的去保護室,以暴露該薄氮化矽層。接著,藉由使用電子束或其它合適的技術,在該薄氮化矽層中的合適位置創建奈米孔。將具有填充有導電金屬以充當線路的過孔的玻璃晶圓(約300微米厚)與該初始矽晶圓對齊,並將該些晶圓接合在一起。將具有填充有導電金屬以充當線路的過孔的額外玻璃晶圓(約300微米厚)與該接合晶圓的底部對齊並接合。藉由蝕刻或鑽孔於該裝置的頂層直至該流體通道引入流體進口及出口。至嵌入該裝置內的電極的連接(內部連接至該流體通道及該去保護室)可在該裝置的頂部及底部表面上訪問。若需要,針對上面的層可使用其它厚度,只要它們提供本文中所述的功能及性能。
高帶寬及低噪聲奈米孔傳感器及檢測電子對於實現單個DNA鹼基分辨率是重要的。在某些具體實施例中,將該奈米晶片電性鏈接至互補金屬氧化物半導體(Complementary Metal-Oxide Semiconductor;CMOS)晶片。可將固態奈米孔集成於CMOS平臺內,緊鄰偏置電極及定制設計的放大器電子,例如,如Uddin等人的“Integration of solid-state nanopores in a 0.5 μm cmos foundry process”,Nanotechnology(2013)24(15):155501中所述,其內容藉由引用併入本文。
在另一個具體實施例中,本揭露提供用於合成及/或測序包括至少兩種不同單體的荷電聚合物(例如 DNA)的奈米晶片(Nanochip 1),該奈米晶片包括藉由包括一個或多個奈米孔的膜隔開的至少第一與第二反應室,其中,各反應室包括用以將該荷電聚合物牽引至該室中的一個或多個電極,並且還包括電解質媒體以及視需要地,用於向該聚合物添加單體的試劑,例如,
1.1 奈米晶片1,其中,該奈米孔具有2至20奈米的直徑,例如2-10奈米,例如2-5奈米。
1.2 任意上述奈米晶片,其中,該奈米晶片的該反應室的壁的其中一些或全部包括矽材料,例如矽、二氧化矽、氮化矽,或其組合,例如氮化矽。
1.3 任意上述奈米晶片,其中,該奈米晶片的該反應室的壁的其中一些或全部包括矽材料,例如矽、二氧化矽、氮化矽,或其組合,例如氮化矽,且該奈米孔的其中一些或全部藉由離子轟擊製造。
1.4 任意上述奈米晶片,其中,該奈米孔的其中一些或全部由位於膜例如脂雙層中的孔形成蛋白α-溶血素組成。
1.5 任意上述奈米晶片,其中,該反應室的壁的其中一些或全部經塗布以最大限度降低與該試劑的交互,例如,用聚合物例如聚乙二醇塗布,或用蛋白例如牛血清白蛋白塗布。
1.6 任意上述奈米晶片,包括電解質媒體。
1.7 任意上述奈米晶片,包括電解質媒體,該電解質媒體包括緩衝劑,例如pH7-8.5例如約pH8的緩衝劑,例 如包括三羥甲基胺基甲烷(Tris)、合適的酸,以及視需要地螯合劑(例如乙二胺四乙酸(EDTA))的緩衝劑,例如包含Tris鹼、乙酸及EDTA的混合物的TAE緩衝劑,或包括Tris鹼、硼酸及EDTA的混合物的TBE緩衝劑;例如,溶液包括10mM Tris pH8、1mM EDTA、150mM KCL,或例如50mM乙酸鉀、20mM Tris-acetate、10mM乙酸鎂,pH 7.9@25℃。
1.8 任意上述奈米晶片,包括用於向該聚合物添加單體的試劑。
1.9 任意上述奈米晶片,能夠合成(“寫入”,例如藉由順序向該聚合物添加單體或單體組)並測序(“讀取”,例如藉由測量該單體經過該奈米孔時的電流及/或電感的變化)該聚合物。
1.10 任意上述奈米晶片,其中,包括一個或多個奈米孔的該膜包括在兩側上的金屬表面,該金屬表面藉由絕緣體例如氮化矽膜隔開,例如藉由光刻方式配置該金屬表面,以在各奈米孔的兩端提供電極,例如,從而可經由電解質媒體藉由該奈米孔建立流過該奈米孔的電流,例如,從而該電流可牽引該聚合物穿過該奈米孔且當該聚合物經過該奈米孔時,該奈米孔上的電位變化可被測量並用以識別該聚合物中的單體序列。
1.11 任意上述奈米晶片,包括荷電聚合物,其為DNA。
1.12 任意上述奈米晶片,包括荷電聚合物,其為單鏈DNA(ssDNA)。
1.13 任意上述奈米晶片,包括荷電聚合物,其為包括預定限制位點的DNA。
1.14 任意上述奈米晶片,包括荷電聚合物,其為DNA,其中,該DNA為上面的DNA 1等等的其中任意所述DNA。
1.15 任意上述奈米晶片,包括荷電聚合物,其為DNA,其中,該DNA包括至少95%,例如99%,例如100%腺嘌呤及胞嘧啶。
1.16 任意上述奈米晶片,包括荷電聚合物,其為DNA,其中,該DNA僅包括腺嘌呤及胞嘧啶。
1.17 任意上述奈米晶片,包括一個或多個端口,以允許引入或沖洗掉緩衝劑及試劑。
1.18 任意上述奈米晶片,包括緩衝溶液,例如,包括pH 7-8.5例如約pH8的緩衝劑的溶液,例如包括三羥甲基胺基甲烷(Tris)、合適的酸,以及視需要地螯合劑(例如乙二胺四乙酸(EDTA))的緩衝劑,例如包含Tris鹼、乙酸及EDTA的混合物的TAE緩衝劑,或包括Tris鹼、硼酸及EDTA的混合物的TBE緩衝劑;例如,溶液包括10mM Tris pH8、1mM EDTA、150mM KCL,或例如50mM乙酸鉀、20mM Tris-acetate、10mM乙酸鎂,pH 7.9@25℃。
1.19 任意上述奈米晶片,其為或能夠被凍乾儲存並隨後重新水合,例如,其中,該奈米晶片的結構包括可水合或透水聚合物。
1.20 任意上述奈米晶片,其以乾燥形式合成,例如,其中,該奈米晶片的結構包括可水合或透水聚合物,接著 在使用前水合,視需要地,接著,寫入製程一經完成,即執行凍乾以長期儲存。
1.21 任意上述奈米晶片,其中,用組蛋白穩定該荷電聚合物(例如DNA)。
1.22 任意上述奈米晶片,其中,該內表面為正荷電。
1.23 任意上述奈米晶片,其中,該電極可操作地連接於電容電路中,該電容電路能夠在該奈米孔上提供射頻脈動直流電流,例如在1MHz至1GHz的頻率,例如50-200MHz,例如約100MHz,其中,該脈動直流電流可牽引該荷電聚合物穿過該奈米孔,並藉由在該荷電聚合物穿過該奈米孔時測量該奈米孔上的電容變化來確定該單體序列。
1.24 任意上述奈米晶片,包括保留或去保護室,其包含試劑,以對該聚合物去保護,接著在該添加室中的其中之一中添加單體或寡聚體。
1.25 任意上述奈米晶片,包括多對添加室。
1.26 任意上述奈米晶片,包括藉由晶圓接合而結合的電性控制層、流體層,以及電性接地層,例如,如第24圖中所示。
1.27 任意上述奈米晶片,其中,該奈米孔藉由用FIB、TEM、濕式或乾式蝕刻鑽孔製成。
1.28 任意上述奈米晶片,其中,包括該奈米孔的該膜為從1原子層至30奈米厚。
1.29 任意上述奈米晶片,其中,包括該奈米孔的該膜 由SiN、BN、SiOx、石墨烯、過渡金屬二硫化物例如WS2或MoS2製成。
1.30 任意上述奈米晶片,包括由金屬或多晶矽製成的線路。
1.31 任意上述奈米晶片,其中,線路密度藉由三維堆疊增加,藉由介電沉積提供電性隔離(例如,藉由PECVD、濺鍍、ALD等)。
1.32 任意上述奈米晶片,其中,至該添加室中的該電極的接觸藉由深反應離子蝕刻(Deep Reactive Ion Etch;DRIE)利用矽通孔(Through Silicon Via;TSV)製成,例如利用cryo或BOSCH製程,或藉由濕式矽蝕刻。
1.33 任意上述奈米晶片,其中,針對各添加室中的電極的單獨電壓控制允許各添加室中的電極被單獨控制及監控。
1.34 任意上述奈米晶片,其中,各聚合物與第一添加室、第二添加室以及去保護室關聯。
1.35 任意上述奈米晶片,其中,一個或多個室具有流體流。
1.36 任意上述奈米晶片,其中,一個或多個室是流體隔離的。
1.37 任意上述奈米晶片,其中,該去保護室具有流體流。
1.38 任意上述奈米晶片,其中,添加室具有共同的流體流。
1.39 任意上述奈米晶片,其中,室間的線路在具有類似類型的室之間(例如,在第一添加室之間、在第二添加室之間,以及在去保護室之間)是共同的。
1.40 任意上述奈米晶片,其中,該添加室具有單獨的電壓控制且該去保護室具有共同的電性地。
1.41 任意上述奈米晶片,其中,該去保護室具有單獨的電壓控制,該第一添加室具有共同的電性地且該第二添加室具有共同的電性地。
1.42 任意上述奈米晶片,其中,該奈米晶片藉由晶圓接合製造,並在接合之前用所需試劑預填充該些室。
1.43 任意上述奈米晶片,其中,一個或多個內部表面經矽烷化。
1.44 任意上述奈米晶片,具有用於引入或移除流體的一個或多個端口。
1.45 任意上述奈米晶片,其中,限制該室中的該電極直接接觸該荷電聚合物,例如,其中,將該電極設置為遠離該奈米孔,從而使結合至鄰近該奈米孔的表面的該荷電聚合物無法觸及,或其中,該電極被材料保護,該材料將允許水或單原子離子(例如,Na+,K+以及Cl-離子)通過,但該聚合物或將要與該聚合物結合的單體或寡聚體試劑不能通過。
1.46 任意上述奈米晶片,與互補金屬氧化物半導體(CMOS)晶片電性鏈接。
1.47 任意上述奈米晶片,可操作地鏈接至晶片控制 器,如前所述。
例如,在一個具體實施例中,本發明提供一種奈米晶片,例如依據奈米晶片1等等的其中任意晶片,以對包括至少兩種不同單體的荷電聚合物(例如DNA)測序,該奈米晶片包括至少第一及第二反應室,它們包括電解質媒體並藉由包括一個或多個奈米孔的膜隔開,其中,各反應室包括設於該膜的相對側上的至少一對電極,其中,該電極可操作地連接於電容電路中,該電容電路能夠在該奈米孔上提供射頻脈動直流電流,例如,在1MHz至1GHz的頻率,例如,50-200MHz,例如約100MHz,例如,其中,該脈動直流電流可牽引該荷電聚合物穿過該奈米孔,並可藉由在該荷電聚合物穿過該奈米孔時測量該奈米孔上的電容變化來確定該單體序列。
在另一個具體實施例中,本發明提供一種讀取包括至少兩種不同類型的單體的荷電聚合物(例如DNA)分子的單體序列的方法,包括在奈米孔上施加射頻脈動直流電流,例如在1MHz至1GHz的頻率,例如50-200MHz,例如約100MHz,其中,該脈動直流電流牽引該荷電聚合物穿過該奈米孔,並藉由在該荷電聚合物穿過該奈米孔時測量該奈米孔上的電容變化來讀取該單體序列,例如,其中,該電路為諧振電路並藉由檢測該諧振頻率中的變化來檢測該電容變化。
例如,在特定具體實施例中,本發明提供一種基於奈米孔的裝置1(Device 1),例如,奈米晶片,例如, 依據奈米晶片1等等的其中任意晶片,其能夠讀取在聚合物中所儲存的數據,該裝置包括:a.諧振器,具有電感器及單元,該單元具有奈米孔以及可穿過該奈米孔的聚合物,該諧振器在探針頻率具有AC輸出電壓頻率響應,響應在該探針頻率的AC輸入電壓;b.AC輸入電壓源,經配置以提供至少該探針頻率的AC輸入電壓;以及c.監控裝置,經配置以監控至少在該探針頻率的該AC輸出電壓,在該探針頻率的該AC輸出電壓標示在監控時在該聚合物中所儲存的該數據。
例如,在裝置1的某些具體實施例中,該聚合物包括至少兩種單體,其具有不同的屬性,從而在該探針頻率引起不同的諧振頻率響應,該響應標示至少兩個不同的數據位元,例如,兩種不同的DNA核苷酸或寡核苷酸;以及/或者該電感器與有效電容串聯連接以創建該諧振器,該電感器與有效電容的組合與在該探針頻率的該諧振頻率響應相關。
例如,在特定具體實施例中,本發明提供一種用於讀取在聚合物中所儲存的數據的方法(方法3),例如,結合方法1等等,方法A等等,或方法2等等的其中任意方法,例如,利用依據奈米孔1等等或裝置1等等的其中任意裝置的裝置,該方法包括:a.提供具有電感器及單元的諧振器,該單元具有奈米 孔以及可穿過該奈米孔的聚合物,該諧振器在探針頻率具有AC輸出電壓頻率響應,響應在該探針頻率的AC輸入電壓;b.提供具有至少該探針頻率的該AC輸入電壓;以及c.監控至少在該探針頻率的該AC輸出電壓,在該探針頻率的該AC輸出電壓標示在監控時在該聚合物中所儲存的該數據;例如,
3.1 方法3,其中,該聚合物包括至少兩種不同類型的單體或寡聚體,其具有不同的屬性,從而引起不同的諧振頻率響應。
3.2 方法3.1,其中,該至少兩種類型單體或寡聚體包括:至少第一單體或寡聚體,其具有第一屬性,以於該第一單體或寡聚體在該奈米孔中時引起第一諧振頻率響應;以及第二單體或寡聚體,其具有第二屬性,以於該第二單體或寡聚體在該奈米孔中時引起第二諧振頻率響應。
3.3 方法3.2,其中,在該探針頻率的該第一頻率響應的特性不同於在該探針頻率的該第二頻率響應的同一特性。
3.4 方法3.3,其中,該第一及第二頻率響應的該特性包括幅度及相位響應的至少其中之一。
3.5 方法3.4,其中,該單體的該第一屬性及該第二屬性包括介電屬性。
3.6 任意上述方法,其中,該第一及第二單體或寡聚體分別包括多個單體或寡聚體。
3.7 任意上述方法,其中,該單元包括至少頂部及底部電極,該奈米孔設於該電極之間,且該單元在其中具有流體,以及其中,該電極、該奈米孔及該流體具有於該聚合物經過該奈米孔時變化的有效單元電容。
3.8 任意上述方法,其中,該電感器與該有效電容串聯連接以創建該諧振器,該電感器與有效電容的組合與該諧振頻率響應相關。
3.9 任意上述方法,其中,藉由施加於該電極的DC引導電壓使該聚合物經過該奈米孔。
3.10 任意上述方法,其中,該單元具有至少三個室、至少兩個奈米孔,以及至少三個電極,以使該聚合物經過該奈米孔。
3.11 任意上述方法,其中,該單體的至少其中兩種標示至少兩個不同的數據位元。
3.12 任意上述方法,其中,多個單體標示一個位元數據。
3.13 任意上述方法,其中,該聚合物包括DNA,以及其中,該DNA包括鹼基,該鹼基的至少其中兩種在該探針頻率提供獨特的頻率響應。
3.14 任意上述方法,其中,該探針頻率為約1MHz至約1GHz。
3.15 任意上述方法,其中,該單體的至少其中兩種具有介電屬性,其影響該諧振器的該頻率響應,以在該探針頻率產生至少兩種不同的頻率響應。
3.16 任意上述方法,其中,該聚合物包括DNA且該序列編碼蛋白或生物功能RNA,例如mRNA。
3.17 任意上述方法,其中,該序列例如以二進制、三進制或四進制代碼編碼電腦可讀數據。
3.18 任意上述方法,其為一種讀取或確認依據方法1等等、方法A等等或方法2等等的其中任意方法排序的聚合物的序列的方法。
在另一個具體實施例中,本發明提供一種用於在基於奈米孔的晶片中原位在聚合物上儲存並讀取數據的方法,包括:a.提供單元,該單元具有至少三個室,包括經設置以向該聚合物添加“1”位元的Add“1”室及經設置以向該聚合物添加“0”位元的Add“0”室,以及“去保護”室,經設置以分別於該聚合物進入該Add“1”或Add“0”室時使該聚合物能夠接收該“1”位及“0”位;b.接著基於預定數位數據模式引導該聚合物從該“去保護”室穿過該奈米孔到達該Add“1”室或該Add“0”室,以在該聚合物上創建該數位數據模式;以及c.利用該晶片上的奈米孔-聚合物諧振器(NPR)的諧振頻率響應於該聚合物經過該奈米孔時讀取在該聚合物上所儲存的該數位數據,例如利用依據方法3等等的方法。
在另一個具體實施例中,本發明提供一種 數據儲存方法方法及裝置,利用奈米晶片例如奈米晶片1等等的其中任意晶片製作包括至少兩種不同單體或寡聚體的荷電聚合物(例如DNA),其中,該單體或寡聚體依序設置以對應二進制代碼,例如,依據前面的方法1及/或方法2等等的其中任意方法。
例如,在一個具體實施例中,包括如此合成的該聚合物的該奈米晶片提供數據儲存裝置,因為該奈米晶片可被激活且該聚合物的序列可藉由使其經過奈米孔來檢測。在其它具體實施例中,將該聚合物自該奈米晶片移除,或將該聚合物擴增且該擴增聚合物自該奈米晶片移除,儲存直至需要,並接著藉由使用傳統的測序儀例如傳統的奈米孔測序裝置讀取。
在另一個具體實施例中,本發明提供一種儲存信息的方法,包括合成DNA1等等的其中任意DNA,例如,依據方法1等等或方法2等等的其中任意方法。
在另一個具體實施例中,本發明提供一種藉由使用奈米孔測序儀例如藉由使用如本文中所述的奈米晶片1等等讀取例如編碼於DNA1等等的其中任意DNA上的二進制代碼的方法。
在另一個具體實施例中,本發明提供任意上述方法,其中,利用溶解該荷電聚合物的酶(例如水解DNA的去氧核糖核酸酶(DNase))擦除該奈米晶片。
請參照第48A及58圖,如本文中所述,藉由在頂部及底部電極4818、4820上施加DC引導電壓(Vin 或Vst)(該DC引導電壓在奈米孔4808上創建電場並驅動負充電DNA 4810離開負電荷並朝向正電荷),DNA分子4810可在室流體中移動(或行進或移位)穿過奈米孔4808從上室4802至下室4804。尤其,如本文中所述,當頂部電極4818相對底部電極4820(這裡顯示為接地或0伏)具有正電壓時,DNA 4810將穿過奈米孔4808(若它在下室4804中)向頂部電極4818移動並進入上室4802中。反之,當頂部電極4818相對底部電極4820具有負電壓時,DNA 4810將穿過奈米孔4808向底部電極4818移動,並進入下室4804中。
請參照第77A及58圖,顯示Vin與時間的關係圖7700,其中,Vin是針對在數個時間段7702-7710上的Vin的數個DC值(例如,-V1、0、+V1),在本文中參照第58至61圖所述的“T型偏置器”連接以後,AC信號(或AC分量或RF輸入)7712在線5812上的“AC In/Out”(第58圖)與DC偏置(或引導)電壓7714在線5810上的“DC In”的組合,如在電極4818所見(第58圖)。Vin的AC分量可為單個頻率、時變頻率,或寬帶頻率信號,如本文中參照第55A及55B圖所述,或者具有任意所需形狀信號(例如,正弦波、方波、三角波等)的任意其它頻帶信號,以提供所需結果。當Vin的DC值為-V1時(在時間段7702、7710期間),DNA 4810將位於底部室4804中,且當Vin的DC值為+V1時(在時間段7706期間),DNA 4810將位於頂部室4802中。當Vin的DC值為0V(接地)時(在 時間段7704、7708期間),沒有電壓施加於奈米孔4808上,因此沒有在任何特定方向驅動DNA 4810,也就是,該DNA將在它最近被驅動進入的室的液體/流體中“浮動”。在此情況下,DNA 4810可基於布朗運動、雜散電或磁力,流體力,熱力學力,或局部作用於DNA 4810鏈上的其它力在該室四處移動或浮動。
此外,DNA穿過奈米孔4808的移位時間(或速度)可隨時調節或停止,而不影響本揭露的AC諧振測量或靈敏度。尤其,DNA分子4810(第48A圖)、6550(第65圖)移動(或行進或橫越或移位)穿過奈米孔4808(第48A、58圖)、6528(第65圖)的速度可藉由分別由頂部及底部電極4818、4820(第48A圖)施加於奈米孔4808上的電場(或電壓)的幅度(也就是,Vin的DC值(或DC分量或DC偏置或DC輸入))部分確定。
已知藉由控制DC電壓,可減慢或停止DNA穿過奈米孔的移位速度。例如,在第77A圖中,若將Vin的DC分量從+/-V1降至較低幅度值+/-V2,如虛線7716所示,則DNA將較慢地經過奈米孔4808,同時保持Vin的AC分量7712與先前一樣(未顯示於7716上)。DC分量電壓從V1(7714)至V2(7716)的如此變化不影響諧振測量,因為它僅基於輸入電壓Vin的AC分量7712。因此,可調節DNA 4810的速度,而不影響AC諧振頻移測量。
若需要,結合本揭露的測量技術可使用用於調節穿過奈米孔的DNA移位速度的其它技術,例如 Heller的美國專利公開2014/0099726或Dunbar等人的美國專利號8,961,763至所述,其分別藉由引用併入本文,以便理解本揭露。
請參照第78A圖,更具體地說,其顯示具有相應電壓源的雙孔裝置或單元7800的頂層方塊圖及側視圖。尤其,可具有三個室,例如上室7802、中室7804,以及下室7806,分別用流體填充(與本文中所述類似);三個相應電極,例如上電極7808、中電極7810,以及下電極7812,以及穿過相應膜7815、7817的兩個奈米孔7814、7816,其流體連接三個室7802-7806。中電極7810可附著至中室7804的側面,或者可穿入中室7804的流體中(例如,“濕”或“浴”電極),顯示為藉由導線7811連接的電極7809,且電極7809可鄰近奈米孔7814、7816設置,且可來自中室7804的一側或多側,且可部分或全部圍繞奈米孔7814、7816的直徑。
在室7802、7804之間的奈米孔7814上施加第一DC電壓V1dc 7816,並在室7806、7804之間的奈米孔7816上施加第二DC電壓V2dc 7818。DC電壓V1dc(7816)、V2dc(7818)具有相反極性並因此在DNA 7820上施加相反力,如箭頭7822、7824所示,從而藉由V1dc與V2dc之差確定淨力(以及所導致的速度),它可被很精確地設置,以允許很精確地控制DNA 7820,如上述專利申請及專利中所述。此外,輸入電壓還可分別具有一個或兩個相應AC分量V1ac(7826)、V2ac(7828),且該AC及DC分 量可在相應“T型偏置器”連接7830、7832處組合,以向相應電極7808、7810提供DC偏置AC輸入信號。T型偏置器連接7830、7832還可分別包含電感器L1、L2,其可與相應諧振器的總電容一起設置(或調節)相應諧振器的諧振頻率,如本文中所述。尤其,可具有兩個諧振器(或奈米孔諧振器或NPR),一個NPR與上室7802關聯,且一個NPR與下室7804關聯,在此情況下,將使用兩個AC電壓V1ax、V2ac,如第78A及78B圖中所示。可將該些NPR設置(或調節)為相同的諧振頻率,或者可將它們設置為不同的諧振頻率,取決於所需功能及性能要求。或者,諧振器NPR1、NPR2可在不同的時間運行,以降低在同一裝置或單元(或電化學多室結構)7800上運行的相鄰諧振器之間的電性串擾或干擾的風險。
在一些具體實施例中,可僅使用一個奈米孔諧振器(NPR),對應室對的其中之一7802、7804或7806、7804,在此情況下,將使用AC電壓V1ac、V2ac的其中相應一者及“T型偏置器”連接7830、7832的其中相應一者。單個諧振器的使用可最大限度地降低同一裝置7800中的相鄰諧振器之間的電性(或電磁)串擾或干擾的風險,當荷電DNA串7820經過兩孔7814、7816時可能增強此類串擾。此類串擾可藉由濾波或信號處理被最大限度地降低或過濾掉,或者可為共模效應,其不影響當DNA鹼基經過奈米孔中的電極時所引起的諧振頻移以及如本文中所述的此類偏移的相應測量。
請參照第78B圖,顯示針對具有兩個諧振器的雙孔(或兩孔)裝置7800(第78A圖)的AC部分的AC等效電路7850。尤其,裝置7800(第78A圖)的上室及中室7802、7804形成第一奈米孔諧振器NPR1(7852),其具有耦合電容器Ccp11、電感器L1,以及單元或室可變電容C1及電阻R1,該可變電容C1及電阻R1隨著DNA 7820穿過第一奈米孔7814而變化,如前所述。另外,裝置7800(第78A圖)的下室及中室7806、7804形成第二奈米孔諧振器NPR2(7854),其具有耦合電容Ccpl2、電感器L2,以及單元或室可變電容C2及電阻R2,該可變電容C2及電阻R2隨著DNA 7820穿過第二奈米孔7816而變化,如前參照其它NPR具體實施例所述。若兩個諧振器NPR1、NPR2被設為相同的頻率,則兩個電感器L1、L2的值將被設為相同的值。在針對每個裝置或單元7800使用單個諧振器的情況下,在該裝置的等效電路中將僅有NPR諧振器7852、7854的其中一個。
可將其它雙孔裝置(或單元)7800(藉由共同的一組輸入/輸出線)並行地電性連接並(藉由使用頻分多路複用器)同時詢問頻率響應,如虛線7856-7860所示,與參照第53圖所述類似,可針對單或雙諧振器裝置或單元7800執行此操作。
由於各該諧振器獨立操作,可將它們調節為不同的頻率,以提供特定的所需測量性能。例如,當奈米孔7814、7816正在測量同一DNA串7820時,第一諧 振器NPR1可經調節以最優化一種DNA鹼基類型(例如,較大的嘌呤G及A)的檢測靈敏度(例如,針對給定諧振頻移最大化輸出幅度或相位變化),且第二諧振器NPR2可經調節以最優化另一種DNA鹼基類型(例如,較小的嘧啶C及T)的檢測靈敏度。此等最大輸出信號變化可在頻率響應曲線的斜率為最高之處(最接近垂直)看到,例如在第50圖中所示的給定DNA鹼基及給定探針測量頻率的頻率響應曲線的最小值與最大值之間的大約一半處。
在一些具體實施例中,該些諧振器可被調節至相同的諧振頻率並在相同或不同的探針頻率監控,且第二諧振器被用作相同數據或其可預測變量的延遲的第二次測量,例如用於質量控制或冗餘目的或用於其它目的。尤其,當探針頻率對於兩個諧振器相同時,輸出信號數據應當相同,而當探針頻率不同時,輸出信號數據將以可預測的方式變化(或不同),已知自第一諧振器輸出數據確定測量第二探針頻率及預期DNA鹼基。
在一些具體實施例中,該些諧振器可被調節至相同的諧振頻率並在不同的探針頻率測量,該探針頻率經選擇以最優化給定DNA鹼基類型的檢測靈敏度(例如,最大化給定諧振頻移的輸出幅度或相位變化)。例如,第一諧振器NPR1的探針/測量頻率可經調節以最優化一種DNA鹼基類型(例如,較大嘌呤G及A)的檢測靈敏度,且第二諧振器NPR2的探針/測量頻率可經調節以最優化另一種DNA鹼基類型(例如,較小的嘧啶C及T)的檢測靈敏 度。在此情況下,可使用第一諧振器檢測G及A,並使用第二諧振器檢測C及T。
在針對各裝置或單元7800使用單個諧振器的情況下,藉由使用該單元的關聯電感器僅設置一個諧振頻率。在此情況下,可在多個探針頻率詢問(或監控或測量)各DNA鹼基,取決於輸出信號頻率檢測的速度及DNA經過奈米孔的移位速度以及/或者重新運行、重新詢問,或“乒乓”來回穿過奈米孔的DNA的能力。在該限制中,可藉由多個樣本確定該串中各DNA鹼基的全頻響應分佈(例如第50圖中所示)。
請參照第79A圖,在一些具體實施例中,引起諧振偏移的有效電容(或有效阻抗)變化可在奈米孔的直徑上橫向測量,如藉由雙室橫向測量單元7900所示。尤其,單元7900具有上(頂部)及下(底部)流體室7902、7904,與單元4800(第48A圖)的上下室類似;以及隔開兩室7902、7904的膜7906。膜7906由本文中所述的材料製成並具有穿過膜7906的奈米孔7908(或奈米尺寸孔),奈米孔7908具有例如本文中所述的形狀及尺寸,以允許室7902、7904之間的流體連通。在單元7900內部是在溶液中的聚合物分子,例如單鏈DNA分子7910(或ssDNA),例如本文中所述。若需要,可使用任意其它分子或聚合物,只要它們提供與本文中所述類似的性能及/或功能。
單元7900的室7902、7904可用流體填充, 例如本文中所述,以允許DNA 7910在室7902、7904之間浮動及移動。單元7900還具有與DC輸入電壓源V1dc 7922連接的上(或頂部)電極7918,以及與DC電壓源7922的另一側連接的下(或底部)電極7920,其在此具體實施例中與DC接地連接(或GND或0伏)。
單元7900還具有位於膜7906的內部的“橫向”電極7902(左)、7904(右),它們沿該膜從單元7900的外邊緣向奈米孔7908的邊緣延伸,如下文中詳細所述。橫向電極7912、7914可嵌入具有奈米孔7908的膜7906中。在一些具體實施例中,橫向電極7912、7914可附著至、蝕刻於,或以其它方式設於膜7906的上或下表面。電極7912、7914可鄰近奈米孔7908設置,且可來自圍繞奈米孔7908的多個側面或角度。在一些具體實施例中,電極7912、7914可與膜7906隔開,且可穿透至兩室7902、7904之間的室流體中作為“濕”或“浴”電極(未顯示),以及靠近奈米孔入口或出口設置,以測量奈米孔7908上的電容。
橫向電極7912、7914與AC輸入電壓源V1ac 7924連接。此外,DC電壓V1dc被施加於頂部及底部電極7918、7920,以驅動或引導單元7900中的DNA 7910的移動,如本文中所述。
請參照第79B圖,可在橫向電極7912、7914上沿橫向方向將橫向測量單元4900(或奈米孔及DNA系統)電性模擬為等效電路圖8000,該圖顯示為並聯連接的橫向電容器Ct及橫向電阻器Rt,與用於第48A至48C圖 中顯示的垂直或縱向測量電性模型的模型類似。尤其,左橫向電極7912看到由局部環境設置的對地的橫向電容C1及橫向電阻R1,其中,橫向電容器Ct代表單元7900的橫向電容,由兩個橫向電極7912、7914的屬性(也就是,電容器“板”)以及它們之間的介電材料的屬性確定,至少由單元7900內的流體以及具有奈米孔7908的膜7906定義。電阻器Rt代表與單元7900關聯的DC橫向電阻,至少由與上述單元的介電材料關聯的損耗定義,其顯示為兩個電極之間的DC漏電流。
當DNA 7910經過奈米孔7908時,該單元橫向電容及橫向電阻(或總橫向單元阻抗Zt單元)都變化。不同的DNA鹼基具有不同的尺寸,因此對橫向電容Ct及橫向電阻Rt具有不同的影響,從而導致針對各DNA鹼基的不同橫向等效電路模型,與參照第48A至48C圖所述類似,其中,C1、R1、C2、R2以及C3、R3的值將由Ct1、Rt1、Ct2、Rt2以及Ct3、Rt3替代,但在其它方面等效,從而導致三個不同的阻抗值(Zt單元1、Zt單元2、Zt單元3)。
請參照第79C圖,與第49A及49B圖類似,單元7900(奈米孔及DNA系統)的橫向電容Ct及橫向電阻Rt可與電感器Lt組合,以創建如電路7970所示(與第49A圖類似)的橫向“電感器-單元”或“單元-電感器”RLC(或LC)諧振電路或諧振器或濾波器(或帶止濾波器,或陷波濾波器,或帶阻濾波器),其具有包括橫向單元阻抗Zt單元的 橫向諧振器阻抗Ztres,並具有由圖形4952(第49B圖)顯示的幅度頻率響應,以及由圖形4954(第49B圖)顯示的相位頻率響應。橫向諧振電路7970的中心或諧振頻率fres顯示於式1及式2中,如前所述,L、C、R的值由Lt、Ct、Rt替代。
在一些具體實施例中,橫向諧振器的橫向電感器(或電感)Lt可為螺旋電感器或本文中所述的其它電感配置,其提供所需的諧振器特性(與諧振器有效阻抗的其它部分一起)並可設於膜7906內或表面上,與第58及59圖中所示及所述類似,或者可在該單元中的其它位置或者可具有其它配置,例如開口環諧振器的有效阻抗的部分,如下文中詳細所述。
橫向諧振等效電路7970(針對Ct及Rt的給定值,或者Zt單元的給定值)的幅度及相位頻率響應與第49B圖的圖形4952、4954中所示以及先前所述基本相同。類似地,響應DNA(或沿其長度具有變化尺寸的其它聚合物或分子)經過奈米孔並改變對地(例如,0伏)的所測電容(或阻抗),從而改變諧振頻率fres的第50圖中所示的諧振電路(或濾波器)的一組諧振頻率響應幅度曲線5002及相位曲線5003也基本相同。第79A至79C圖中所示的橫向諧振電路配置在本文中也被稱為橫向奈米孔諧振器(或橫向NPR或TNPR)。
另外,橫向奈米孔諧振器(TNPR)也可被多路複用(或頻分多路複用),與第53圖中所示類似,其中, 各TNPR(TNPR1-TNPR3)諧振器可並聯連接(類似第53圖中的NPR1-NPR3諧振器)並藉由共同的AC電壓源供給(或與其連接)。在一些具體實施例中,由於沒有將AC與DC電壓源組合於共同的電極,沒有“T型偏置器”連接,因此,AC輸入(或RF輸入)信號可被直接施加於電感器,沒有針對各多路複用諧振器TNPR1-TNPR3的耦合電容器CCPL。相應地,沒有需要被耦合電容器CCPL阻擋的橫向DC電壓(或引導電壓)。不過,特定諧振器設計具體實施例仍可能需要等效耦合電容器CCPL,(即使沒有DC引導電壓被阻擋),如下所述,例如對於特定開口環諧振器(SRR)設計或可能需要與等效電路模型中的諧振器串聯的等效耦合電容器CCPL的其它設計。
橫向奈米孔諧振器TNPR具有與參照第48A-48C、49A-49B、50、51、52、53、54、55A、55B、55、57圖及相關附圖所述的縱向(或垂直或“沿孔長度”)奈米孔諧振器NPR(或縱向NPR或LNPR)配置相同的頻率響應及頻分多路複用(FDM)屬性。此外,本文中所揭露的任意具體實施例及單元設計可用於本文中所述的橫向諧振器設計(TNPR),以測量或讀取分子結構或數據。例如,第65及66圖中所示的具體實施例可經修改以圍繞奈米孔6528的其中一個或多個添加橫向電極6590。另外,本文中所示的硬件及軟件邏輯以及控制邏輯及具體實施例也可用於TNPR配置。
在參照第48A-48C圖及相關附圖所述的縱 向(或垂直或“沿孔長度”)奈米孔諧振器(LNPR)配置與參照第79A-79C圖及相關附圖所述的橫向(或水平或“穿過孔徑”)奈米孔諧振器(TNPR)配置之間的一個潛在差異是給定單元設計的有效總(或平均)單元電容值可能在縱向配置LNPR中較大,至少部分因為電極(或電容器“板”)的潛在較大表面積以及/或者可能存在於LNPR配置的一些具體實施例中的電極之間的潛在較大間距。不過,即使平均有效電容值在一種配置中較大,當所測量的分子(例如,各NDA鹼基或其它分子結構)經過奈米孔時,電容變化(或阻抗變化)量及相應諧振頻移(幅度及/或相位)在LNPR與TNPR配置之間基本類似。
使用TNPR配置的一個優點是它將DC引導電壓與AC感測或測量電壓隔開(separate)(或去耦(decouple))。因此,無需“T型偏置器”連接,因為不需要組合AC與DC電壓源來驅動共同電極。
請參照第80圖,在一些具體實施例中,本揭露可在同一單元中使用LNPR與TNPR兩種配置。更具體地說,顯示具有相應電壓源的雙諧振器裝置或單元8000的頂層方塊圖及側視圖。尤其,可如第80圖中所示修改第79A圖中所示的單元7900,以創建具有第79A至79C圖中所示的橫向諧振器TNPR以及第48A圖至第61圖中所示的縱向諧振器LNPR的雙諧振器單元8000配置。
如本文中第79A圖所述,在橫向電極7912、7914上施加橫向AC電壓V2ac 7924。另外,在電極7918、 7920上施加DC引導電壓V1dc,以在兩室7902、7904之間引導DNA,也如參照第79A圖所述。此外,該輸入電壓還可具有相應AC分量V1ac(8002),並以“T型偏置器”連接8004組合該AC與DC分量(例如參照第58至61圖所述),以向電極7918提供組合DC-偏置AC輸入信號。“T型偏置器”連接8004還可包含電感器Lv,其與該垂直諧振器的總電容一起設置(或調節)垂直諧振器VNPR的諧振頻率,如本文中所述。
請參照第80A圖,在一些具體實施例中,兩個諧振器LNPR、TNPR可運行(或藉由相應AC源V1ac、V2ac激發)於不同的時間(時間多路複用),以降低運行於同一裝置或單元(或電化學多室結構)8000上的相鄰諧振器之間的電性串擾或干擾的風險,或出於其它原因。另外,各單元中的兩個諧振器LNPR、TNPR可被設置(或調節)為相同的諧振頻率(例如,每個使用相同的諧振器電感器L)或者它們可被設置為不同的諧振頻率(例如,每個使用不同的諧振器電感器L值),以及/或者針對兩個諧振器輸出信號,探針測量頻率可為相同或不同,取決於所需功能及性能要求,例如參照第78B圖當使用兩個諧振器時所述。對於第80A圖中所示的具體實施例,來自分別與AC輸入源V1ac、V2ac關聯的兩個諧振器LNTP、TNPR的輸出電壓分別為V1out、V2out”且可執行於如第80A圖中所示的獨立線上。
請參照第80B圖,在一些具體實施例中,藉由使用相同的線路來驅動單元陣列中的所有所需諧振器, 可在單個共同AC源V2ac運行(或驅動或激發)兩個諧振器LNPR、TNPR。在此情況下,各單元中的兩個諧振器LNPR、TNPR可被設置(或調節)為不同的諧振頻帶(例如,針對各諧振器使用不同的諧振器電感器L值)以避免來自該兩個諧振器的諧振器頻率輸出信號之間的重疊及干擾,因為該輸出信號可能在同一返回線V2out上(如第80B圖中所示)。此外,出於類似的原因,針對兩個諧振器LNPR、TNPR的探針測量頻率可能也在不同的頻率來測量該兩個諧振器輸出信號。
當在給定單元中使用兩個諧振器LNPR、TNPR時,可同時取得(或獲得或採樣)當DNA分子7910(例如,給定DNA鹼基或單體)穿過奈米孔7908時來自該兩個諧振器的頻移或頻率響應的輸出測量結果。接著,可將該兩個輸出結果用作冗餘或品質檢查,以驗證結果。在一些具體實施例中,該兩個同時測量結果可經組合、平均、過濾、相關、互相關,或以其它方式信號處理,以更精確地識別在給定時間經過電極7912、7914的單體的類型。此類相關或處理可有助於移除兩次測量之間的共模效應或異常數據。
在此情況下,讀取邏輯例如讀控制邏輯6850(第68圖)將控制讀取何時發生,以確保它們在相同的時間針對同一樣本窗口。請參照第68圖,對於兩室裝置或單元,例如本文中所述,寫/Vst控制邏輯6804可僅具有一條或兩條DC輸出引導電壓線,以在上下室之間控制 DNA(而不是所示三條線6710-6714:Add0、Add1、去保護)。另外,讀控制邏輯6856可具有多條AC源電壓Vin線,以驅動單元(例如,V1ac、V2ac、第80A圖),以及多條AC響應測量線,以讀取/測量來自單元的頻率響應AC輸出電壓(例如,V1out、V2out、第80A圖)以及/或者作本領域技術人員已知的各種其它調節,以適應本文中所述的設計或具體實施例。類似地,在第75圖中,可使用讀/寫記憶體控制器6802以在室之間移動或引導或驅動DNA,從而讀取DNA(或興趣分子或樣本),且奈米孔記憶體晶片(奈米晶片)可為本文中所述的兩室晶片,其可用於讀取DNA(或分子或樣本),且可使用儀器7502來保持樣本並將它們流體提供給本文中所述的單元或裝置,以讀取DNA(或興趣分子或樣本),且本領域的技術人員可對第68及75圖以及第67圖(顯示三室單元的陣列)作各種其它調節,以適應本文中所述的各種不同單元設計或具體實施例。
本領域的技術人員應當理解,本文中針對橫向諧振器TNPR及雙諧振器LNPR、TNPR,針對兩室裝置或單元或單元陣列所述的具體實施例也可被容易地應用於本文中所述的三室裝置(例如,Add0、Add1、Deblock)以及四室或更多室裝置、單元或單元陣列,例如如第65圖中所示,其顯示在基於三室的陣列裝置中的橫向電極6590。
請參照第81A及81B圖,在共同單元8100中可設置多個橫向奈米孔諧振器TNPR,單元8100與先前所述的TNPR單元7900類似(第79A圖),但在單元8100 內的各奈米孔8112-8120的相對側上具有多個橫向電極對8102-8110。電極對8102-8110可嵌入或設於具有奈米孔8112-8120的膜上,如上面在第79A圖中所述。在單元8100中的DNA分子(或其它興趣分子)8122可被驅動(或引導)穿過各奈米孔8112-8120並由各橫向諧振器TNPR測量。另外,橫向電極對(以及相應環諧振器,若使用)之間的間距De可被設置為足夠大,以最大限度地降低相鄰電極對之間的電磁干擾影響。另外,具有在各橫向電極對8102-8110上並聯連接的共同AC輸入電壓Vac 8124。可藉由放大器A 8216處理AC輸出電壓信號Vout,該放大器與前面參照第53及67圖所述的放大器A 5320類似。若需要,也可向陣列中的其它單元提供共同AC輸入電壓Vac,如線8128所示,如前所述。另外,可具有分別在單元8100的頂部及底部的電極8130、8132上施加的DC輸入(或引導或驅動)電壓Vdc 8134,其可用以驅動DNA 8122(或其它興趣分子)穿過奈米孔8112、8120。若需要,也可向陣列中的其它單元提供DC引導電壓Vdc,如虛線8136所示。在一些具體實施例中,可能想要單獨控制各單元的各引導電壓。在此情況下,陣列中的各單元8100具有獨立的Vdc引導電壓。當將共同的AC輸入電壓Vac 8124用作AC源以驅動單元8100中的橫向諧振器TNPR時,應當將各TNPR調節至不同的諧振頻帶,以避免重疊輸出信號,如前所述。
請參照第81B圖,在一些具體實施例中,第81A圖的單元8100可連接以具有與各TNPR的各橫向電 極對8102-8110連接的獨立AC輸入電壓V1ac-VNac。在此情況下,可具有獨立的AC輸出電壓信號Vout1-VoutN8150,該些信號可藉由它們的相應放大器A 8252進行處理,該放大器與前面參照第53及67圖所述的放大器A 5320類似。若需要,獨立的AC輸入電壓V1ac-VNac也可被提供給陣列中的其它單元的各諧振器,如線8154所示。例如,第一AC輸入電壓V1ac被提供給陣列中的各單元中的第一TNPR,它們將共用共同輸出電壓。
另外,可分別在單元8100的頂部及底部電極8130、8132上施加DC輸入(或引導或驅動)電壓Vdc 8134,以驅動DNA 8122(或其它興趣分子)穿過奈米孔8112、8120。若需要,DC引導電壓Vdc也可被提供給陣列中的其它單元,如虛線8156所示。在一些具體實施例中,可能想要單獨控制各單元的各引導控制電壓。在此情況下,陣列中的各單元8100將具有獨立的Vdc引導電壓。當使用不同的AC輸入電壓Vac1-VacN 8148作為AC源來驅動單元8100中的各橫向諧振器TNPR並具有獨立的輸出信號時,若需要,可將各TNPR調節至相同的(或重疊頻帶)諧振頻率(或重疊頻帶或帶寬)。或者,若需要,可將各TNPR調節至不同的諧振頻率。
如第81A及81B圖中所示具有串聯的多個TNPR允許多次順序測量讀取同一DNA或分子,若需要,可將其用於品質控制及/或冗餘。在一些具體實施例中,可將各TNPR諧振器的諧振頻率調節至對頻移(幅度及/或相 位)提供最大靈敏度的頻率,以最優化測量的精確度,同時沒有重疊頻帶(依據配置當必要時),如前所述。例如,對於DNA串,第一TNPR 8102可被調節至DNA鹼基G,TNPR 8104可被調節至DNA鹼基C,TNPR 8106可被調節至DNA鹼基A,TNPR 8108可被調節至DNA鹼基T。如上所述,每個諧振器可在不與單元8100中以及/或者在陣列中的其它單元中(若連接於單元陣列中)的其它TNPR重疊的不同頻帶,取決於所使用的配置(例如,第81A及81B圖)。
請參照第82A圖,在一些具體實施例中,顯示具有與流體奈米通道(或奈米管)8201(或奈米流體通道)交互的多個橫向電極8202-8210(以及相應橫向諧振器TNPR)的單元8200。單元8200與第81A及81B圖的單元8100類似,具有DC電壓Vdc 8134,以及AC電壓Vac 8124,但該單元經修改從而可具有流體奈米尺寸通道或管道8201,而不是位於膜中的奈米孔,DNA 8222(或其它分子或單元)沿該通道或管道行進或流動於上室8252與下室8254之間的流體。在此情況下,橫向電極對8202-8210可沿奈米通道8201的壁的相對側設置。請參照第82B及82C圖,顯示分別具有方形(或矩形)剖面(第82B圖)及圓形(或橢圓)剖面(第82C圖)的奈米通道8201的具體實施例的立體圖。奈米通道8201可具有比典型奈米孔的長度長的長度Lc,例如長度超過約50至100奈米(或更大),及約10奈米至1000奈米的寬度(在側壁之間),以及約10奈米至1000奈米的高度(或深度)Hc(從奈米通道的側壁的頂部至 底部)。若需要,可使用其它尺寸,只要它們提供本文中所述的功能及性能。該通道的寬度Wc可被設置為至少部分線性化或拉長DNA,從而該DNA不會在流體奈米通道8201中自行纏結或打結或折疊等等,以允許該DNA沿該流體奈米通道基本上線性流動,從而一次僅一個單體佔據奈米通道的一段,例如熵約束。例如,對於雙鏈DNA,奈米通道8201的寬度Wc可為約40奈米,而對於單鏈DNA,寬度Wc可為約20奈米。若需要,可使用其它寬度。在一些具體實施例中,寬度Wc及高度Hc可為大致相同的尺寸,以幫助提供DNA的基本線性流動。可具有保持DNA(或其它分子)8222的上流體室8252。當在上下電極8240、8242上施加電壓Vdc(例如,相對電極8242在電極8240為負電壓)時(如前面針對DNA移動所述),DNA 8222的一端被牽引至奈米通道8201的頂部中,並流經各對電極8202-8210(在這裡,它被各橫向諧振器TNPR讀取),接著退出奈米通道8201的底部,在這裡,它被保持於下流體室8254中。
奈米通道8201可與Cao等人的美國專利8,722,327及Austin等人的9,725,315中所述的奈米通道類似,它們藉由引用併入本文,以便理解本發明。奈米通道8201可藉由提供本文中所述的功能及性能要求的任意技術形成。在一些具體實施例中,奈米通道8201可被圖案化或蝕刻於基質8250例如提供本文中所述的功能及性能的熔融石英或其它材料中。另外,電極之間的間距Dc可被設置為足夠大,以避免電極8202-8210的相鄰行之間的無 法接受的電磁干擾。另外,電極8202-8210(以及相應開口環諧振器或橫向諧振器TNPR)可施加於或光刻製造於基質材料層8250上。此外,在電極8202-8210的行之間的基質材料8250可由絕緣材料製成(或摻雜有向其添加添加的合適摻雜物),以將電極8202-8210的相鄰行之間的電磁干擾限制於可接受的水平,或者最大限度地降低此類干擾。在一些具體實施例中,奈米通道8201可為多條奈米通道的其中之一,各通道8201具有其自己一組測量電極8202-8210,在基質8250中以陣列形式配置,例如多條並行通道。在一些具體實施例中,若需要,可具有奈米通道陣列或網絡,以保持或引導或轉移本揭露所測量的DNA(或其它分子)。在一些具體實施例中,該奈米通道可為具有外徑及內徑8260的奈米尺寸管道,DNA在其內流動。在一些具體實施例中,通道8201可為串聯設置的一系列短奈米通道或奈米管道且可藉由預定間距隔開。通道8201可為任意剖面形狀,例如方形、矩形、圓形、橢圓形、多邊形,或其它形狀或其任意組合。當用於奈米通道時,NPR或奈米孔諧振器可被稱為奈米通道諧振器,或更普遍地稱為“奈米路徑”諧振器(NPR),其可適用於本文中所述的奈米孔或奈米通道或其它奈米尺寸開口。此外,若需要,還可如第81B圖中所示電性連接具有奈米通道8201的單元8200,以具有獨立的AC輸入電壓V1ac-VNac並具有獨立的輸出電壓Vout1-VoutN。
請參照第83-85圖,在一些具體實施例中,可用於橫向奈米孔諧振器TNPR的一類LC諧振器設計是開口環諧振器(或SPR),其經配置以具有位於該諧振器的開口環部分的間隙中的奈米孔。尤其,第83圖顯示具有AC供給線8306的開口環諧振器8300層的部分頂視圖,該AC供給線接收輸入端口8302所提供的AC輸入電壓AC IN(或Vin,如本文中所述)並在輸出端口8304提供AC輸出電壓。在供給線8306上的AC輸入電壓與具有方形形狀的SRR 8300的開口環8308部分或結構(在本文中也被稱為“諧振器”部分)AC耦合。AC供給線8306針對沿開口環8308的一側的預定耦合長度Lcpl設置預定耦合距離Dcpl 8316,以形成開口環8308的AC耦合電容。在該開口環中具有間隙“g”(或開口)8310,奈米孔8312位於其中。當DNA(或其它分子)經過該奈米孔時,它改變開口環8306中的間隙g 8310上的電容,從而改變該開口環諧振器LC電路的諧振頻率。開口環8308的尺寸可經設置以在間隙“g”8310中提供所需諧振頻率及所需電場強度,如本文中詳細所述。另外,沿開口環8308的一側的耦合長度Lcpl及耦合距離Dcpl經設置以在供給線8306與諧振器(開口環)8308之間提供合適的能量轉移量。這可被稱為幾何電容,其將藉由標準平行板電容公式確定。在一些具體實施例中,供給線8306可沿諧振器8308的不止一側耦合AC電壓,例如以確保足夠的AC電壓與諧振器8308耦合,如虛線8305所示,在此情況下,輸出電壓AC OUT將位於 端口8307。
請參照第84圖,其顯示第83圖的開口環諧振器8300的替代具體實施例的部分頂視圖,具有呈圓形形狀的開口環(或諧振器)部分8308。若需要,可使用其它形狀,只要它提供所需功能及性能。
請參照第85圖,其顯示沿第83及84圖的線8314的部分前剖視圖,具有設於膜8324的頂上的開口環8308,奈米孔8312位於該膜中。膜8324將流體填充雙室單元8330的上室8326與下室8328隔開,與本文中所述的其它雙室單元類似,該單元具有可用以在該兩室8326、8328之間引導或驅動DNA(或其它興趣分子)8332的上電極8320及下電極8322。
請參照第86及87圖,在一些具體實施例中,供給線8306可位於不同於開口環8308部分的垂直平面上。在此情況下,供給線8306可設於該SRR的開口環部分8308上方或下方。尤其,第86圖顯示具有位移於開口環8308上方的供給線8306的第83圖的SRR。第87圖顯示沿第86圖的線8602的部分前剖視圖,顯示在開口環8308上方的供給線8306的垂直位移,它們藉由垂直AC耦合距離Dvcpl 8604隔開,類似第83圖中所示的橫向AC耦合距離Dcpl 8316。
請參照第88、89、90、91、91A圖,本揭露的開口環諧振器SRR可以如第88圖中所示的方形/矩形形狀開口環8308及第90圖中所示的修改後的方形/矩形形 狀開口環8308的陣列配置連接。在第88及90圖中,供給線8306自輸入端口8302接收AC輸入電壓VAC,並將沿供給線8306的AC電壓AC耦合至該陣列中的各開口環8308,並在輸出端口304提供輸出電壓VAC。奈米孔8312位於如前所述的間隙g中。請參照第89及90圖,可使開口環8306的間隙g的長度Lg足夠長,以允許奈米孔8312沿直線8802(第88圖)、9002(第90圖)位於間隙g中。
藉由形成具有不同幾何的開口環,諧振器8308可沿共同供給線8306為頻分多路複用,例如第88圖及90中所示。尤其,諧振器8308所示的不同面積環創建不同的諧振頻率,類似使用不同的電感器L或電容器C的值來設置諧振,如前所述。在第90圖頂部行9004中,形狀因寬高比而異,在中部行9006,形狀因寬度而異(具有共同高度),以及在底部行9008,形狀因長度而異(具有共同寬度)。若需要,可使用其它變化。
第91及91A圖中所示的開口環(或諧振器)8308的各種尺寸h、w、s、g、L(以及材料)可經設置以在間隙“g”8310中提供所需諧振頻率及所需電場強度,其中E為電場,H為磁場,以及k為入射場的波向量,顯示於x、y、z坐標系統中,如Bagiante的“Giant Electric Field Enhancement in Split Ring Resonators Featuring Nanometer-sized間隙s”,Scientific Reports,5:8051,DOI:10.1038/srep.08051中所述,其藉由引用併入本文。開口環諧振器的諧振頻率可藉由開口環(諧振器)8306的尺寸及 幾何以及所用材料確定,例如如Shamonin的“Resonant Frequencies of a Split-Ring Resonator:Analytical Solutions and Numerical Simulations”,Microwave and Opt.Tech.Letters.Vol.44,pp.133-136,2005中所述,其藉由引用併入本文。此外,為最大化由DNA(或其它分子)經過間隙g中的奈米孔8312所引起的開口環諧振器的諧振頻率變化的靈敏度,想要最大化奈米孔8312所處的間隙g 8310中的電場(或E場)強度的值,顯示為區域8902(第89圖)、9102(第91圖)。間隙電場強度可藉由形成盡可能小的間隙g例如100奈米來最大化,如Bagiante中所述,其中,基質由高阻矽製成,以及金結構的相關尺寸為L=20微米,w=10微米,s=20微米,以及h=60奈米,其中,在最低階諧振例如在約50GHz觀察到顯著的THz電場增強(例如,約14,000)。若需要,針對間隙g可使用其它值,只要它在奈米孔(或奈米通道)所處的該間隙上提供充足的電場強度,以提供諧振頻率的充分偏移來測量穿過奈米孔或奈米通道的分子。
若需要,針對本揭露可使用其它LC諧振器,例如微帶、共面波導、偽集總元件LC(其中,電感器及電容器藉由使用晶片本身的幾何形狀來幾何製作,而不是使用集總元件晶片組件),只要它們提供本文中所述的功能及性能。
請參照第92A、92B、92C、92D、92E、92F圖,顯示靠近奈米孔8312的電極的各種可能頂視幾何。請 參照第92G圖,顯示具有奈米孔8312的膜的側視圖。尤其,第92A圖顯示電極9202、9204比奈米孔8312的直徑寬且電極具有垂直(或直角)邊。第92B圖顯示電極9202、9204的寬度與奈米孔8312直徑相同。第92C圖顯示電極9202、9204在奈米孔附近階梯下降至奈米孔尺寸,並具有直角邊。第92D圖顯示電極9202、9204在奈米孔附近逐漸下降至奈米孔尺寸,並具有直角邊。第92E圖顯示電極9202、9204具有依據奈米孔處的奈米孔幾何圓化或外形設計的端部。第92F圖在奈米孔附近階梯下降至奈米孔直徑,其中,奈米孔與電極都具有直角邊。
請參照第92G圖,顯示具有奈米孔8312的膜中的電極9202、9204的側視圖,顯示開始寬並在中心收窄至本文中所述的所需奈米孔直徑尺寸的奈米孔8312剖面(例如,“X”形或在共同頂端相交的兩個錐形),並顯示靠近中心(奈米孔8312在此處具有最小直徑)的電極。在一些具體實施例中,奈米孔剖面的邊也可被圓化,而不是呈直線,且可遵循如虛線9212所示的類似外徑及中心直徑。另外,在一些具體實施例中,電極可在抵達奈米孔的邊之前停止,如虛線9210所示(第92A-92G圖)。
請參照第93圖,其顯示創建用以實施本揭露的部分的晶片的製造過程的例子。尤其,在步驟1中,在矽基9302的頂上形成SiN層9306並藉由使用LPCVD(低壓化學氣相沉積)低應力氮化矽形成具有約50奈米厚度Au的諧振器層9304(若需要,可使用其它厚度)。接著,在步 驟2中,蝕刻9308諧振器層9304,以藉由使用光刻例如用KI(碘化鉀)濕式蝕刻Au(金)定義諧振器(或開口環)幾何。接著,在步驟3中,生長TEOS氧化矽(約150奈米)的異質結構9312,接著約20奈米的LPCVD低應力氮化矽層9310。接著,在步驟4中,在矽基9302中蝕刻開口的後側,以藉由使用標準蝕刻技術形成後側(或底側)開口(或室)9314。接著,在步驟5中,蝕刻前側(或頂側)以形成第二開口(或室)9316並定義奈米孔9318。接著,在步驟6中,添加供給線接觸9320以將諧振器與供給線(未顯示,見第83圖中的供給線8306)連接(或耦接),其位於CMOS晶片9324中,以完成流體晶片/層9322的主要部分(可以後增加頂部/底部電極,如下所述)。自此情況下,供給線接觸9320可將供給線與諧振器的不止一個部分(或側)耦接。
接著,在步驟7中,將流體晶片/層9322上下翻轉並晶圓結合至CMOS讀取層晶片9324,並接著藉由使用已知的標準集成電路製造、連接及組裝技術與現場可編程門陣列(FPGA)印刷電路板(PCB)層9326封裝。尤其,將多室流體晶片部分9322用於DNA控制,並將(藉由諧振偏移)用於阻抗測量的諧振器結構集成於流體晶片9322中。諧振器輸出的讀取藉由晶圓接合至流體晶片9322的包含放大器、阻抗匹配電路的CMOS晶片9324讀取,並接著將流體/CMOS晶片堆疊9322、9324與FPGA讀取PCB 9326封裝,其中,FPGA控制信號生成,並處理自諧振器讀取的數據。底部電極(未顯示)可為面向室9316的CMOS 晶片9324的部分,並可藉由與矽層9302(及流體晶片9222)的頂部接合的頂部層(未顯示)添加頂部電極(未顯示)。
如本文中所述,本文中所述的橫向諧振器TNPR的橫向電極可具有各種不同的幾何,取決於所需性能及靈敏度以及所使用的材料及諧振器設計。當用於本文中所述的開口環諧振器時,電極可定義在間隙g附近的開口環(諧振器)8306的部分。
請參照第94及95圖,本文中所述的具有Add 0及Add 1上室9402、9404以及共同的下(或去保護)室9406的三室(例如第62、65及66圖中所示)可在下室9406中具有奈米尺寸流體通道或奈米通道9408,該流體奈米通道具有約40奈米的寬度“Wc”,以幫助防止DNA纏結或打結,類似先前參照第82A、82B及82C圖所述的奈米通道。尤其,奈米通道9408可具有至少約10奈米長的長度Lc(比奈米孔的長度長),及約10奈米至1000奈米的寬度(在側壁之間)Wc,以及約10奈米至1000奈米的從側壁的頂部至奈米通道的底部的高度(或深度)Hc(第95圖)。若需要,可使用其它尺寸,只要它們提供本文中所述的功能及性能。通道9408的寬度Wc可經設置以至少部分線性化或拉長DNA,從而該DNA不會在流體奈米通道9408中自行纏結或打結或折疊等等,以允許該DNA沿該流體奈米通道線性流動,從而一次僅一個單體佔據奈米通道的一段,例如熵約束。例如,對於雙鏈DNA,奈米通道8201的寬度Wc可為約40奈米,而對於單鏈DNA,寬度Wc可為 約20奈米。若需要,可使用其它寬度。在一些具體實施例中,寬度Wc及高度Hc可為大致相同的尺寸,以幫助提供沿奈米通道9408的DNA的基本線性流動。奈米通道9408可類似上述Cao等人的美國專利8,722,327及Austin等人的的9,725,315中所述的奈米通道,它們藉由引用併入本文,以便理解本發明。在一些具體實施例中,若需要,可具有奈米通道陣列或網絡,以保持或引導或轉移本揭露所測量的DNA(或其它分子)。奈米通道9408可藉由提供本文中所述的功能及性能要求的任意技術形成,例如參照第82A-82C圖所述。在一些具體實施例中,奈米通道9408可為具有外徑及內徑的奈米尺寸管道,DNA在其內流動。通道9408可為任意剖面形狀,例如方形、矩形、圓形、橢圓形、多邊形,或其它形狀或其任意組合。DNA(或其它聚合物或分子)9408可具有附著至一端的珠或DNA摺紙或其它顆粒或分子(例如第65圖中所示的珠6554),以使DNA的部分保留於下方的共同去保護室9406中且不經過奈米孔9410、9412。在一些具體實施例中,該珠可為磁性的或荷電的,從而將它吸引至底部電極9416,以確保將DNA拉至奈米通道中。在第94圖中,垂直通道9408具有長度Lc及寬度Wc。在第95圖中,奈米通道9408延伸至頁面中且DNA將沿下方通道9406的底部平置。在一些具體實施例中,可將奈米通道9408沿下室9406的底部從左向右取向,類似第65圖中的底部電極6514所示。
可使用任意其它技術替代使用FFT(快速傅立葉變換)邏輯5328(第53圖)來測量(或監控或確定或計算)輸出電壓信號的頻率成分,例如被設置或調節為合適的監控或探針頻率或興趣頻帶的一個或多個固定或可調數位或模擬帶通濾波器。可使用任意其它技術來測量頻分多路複用輸出電壓信號的所需頻率成分。
此外,如本文中所述,本文中所述的各種奈米孔或奈米通道(或奈米路徑)諧振器(NPR)的諧振頻移(見第50至52圖)可以多種不同的方式測量並多路複用,以及優化測量靈敏度,每種方式可應用於本文中所述的任意具體實施例及諧振器及單元配置。在一些具體實施例中,探針或監控或測量頻率可被設置在固定的值或動態調節或改變,以藉由在探針頻率(其中,頻率響應(幅度及/或相位)具有最高斜率(也就是,當諧振頻移時具有最大信號強度變化))監控來最優化讀取一個或多個DNA鹼基(或其它興趣分子)的測量靈敏度。另外,在一些具體實施例中,給定DNA鹼基(或單體)的頻率響應(或其部分)可藉由獲得在不同頻率的多個探針樣本點向外“映射”,從而針對給定單體形成頻率響應曲線或頻率響應“特徵”。為此,可藉由同一諧振器執行DNA分子的多次獨立讀取(也就是,重新詢問)並針對每次測量偏移探針測量頻率,以最優化所需檢測單體的靈敏度,或者在不同的探針頻率分別測量串聯的多個諧振器,或者在分子經過時的給定時間自單個諧振器同時測量多個探針頻率。
另外,本揭露可結合兩室之間的奈米孔、奈米管道、奈米間隙、奈米通道,或任意其它奈米尺寸開口(共同稱為“奈米路徑”)使用,並可具有任意所需側視或頂視幾何形狀,例如圓形、橢圓形、方形、矩形、多邊形、具有圓角的多邊形,三角形、平行四邊形、菱形、星形、任意這些的組合,或任意其它所需形狀,只要它提供本文中所述的功能或性能,可將其中任意一種稱為“奈米孔”或“奈米路徑”。
尤其,在一些具體實施例中,在第58圖的兩室裝置5880中的奈米孔4808(第58圖)可藉由使用膜中的垂直奈米通道(其中,可使膜4806厚於典型奈米孔的長度(例如,大於約50奈米),例如約100-1000奈米(或更大))以及蝕刻於膜4806材料(例如,熔融石英或其它材料,其提供本文中所述的功能及性能,例如前面所述)中以在室4802、4804之間提供奈米尺寸流體路徑(或奈米路徑)的奈米通道創建,它們也可分別用於第62、63圖的三室裝置6200、6300的奈米孔6203、6205。在此情況下,可藉由使用前面參照第82A及82B圖所述沿奈米通道的一個或多個橫向電極檢測DNA。在一些具體實施例中,奈米孔4808(第58圖)可通過奈米孔與奈米通道的組合創建,例如,在膜4806中所蝕刻的水平奈米通道的底部中或其中一個壁中鑽孔、創建或設置奈米孔,取決於奈米通道的取向。
本揭露可使用高達或超過100GHz的頻率, 只要避免引起單元的液體或材料加熱或損傷或損傷正在測量的分子的特定頻率或能量。尤其,已表明,如前例如前面提到的Laborde的文章中所述,在荷電分子例如攜帶負電荷的DNA經過或存在於離子化溶液(例如可用於本文中所述的室中的流體)中時所引起的電場的離子屏蔽的有害效應在高頻降低。相應地,本揭露可以與集成電路技術所支持的頻率一樣高的頻率操作。
在一些具體實施例中,本揭露可藉由使用由NXP半導體製作的奈米-電容器陣列CMOS晶片實施,例如上面提到的Laborde的文章中所述的晶片,其中,NXP晶片的電極墊成為(或接口)流體晶片或單元5800的接地電極,例如第58圖中所示。
本揭露不要求單元為單獨可尋址以讀取各單元中的數據。此外,本揭露允許利用頻分多路複用藉由單條源輸入線及單條輸出線讀取在位於各單元中的聚合物上所儲存的數據。
本領域的技術人員應當理解,本文中所述的各單元配置及具體實施例可對被呈現或提供給本文中所述的單元的流體樣本中所駐留的DNA、蛋白,聚合物,或其它分子或部分進行詢問、評估、讀取或測序。在此情況下,可具有流體接口,其將一個或多個輸入樣本室或池與單元流體連接,從而向單元流體提供樣本以供詢問、測量或評估。
本文中所述的所有尺寸經顯示以用於本揭 露的示例具體實施例,若需要,可使用其它尺寸、幾何、佈局,以及取向,只要它們提供本文中所述的功能。
另外,本揭露不限於用於基於DNA的數據儲存,並可用於任意類型的分子數據儲存,例如具有必要的屬性以實現本文中所述的功能或性能的任意聚合物或其它材料。
本文中的任意自動或半自動裝置或組件可為電腦控制裝置,其具有必要的電子、電腦處理能力、接口、記憶體、硬件、軟件、固件、邏輯/狀態機、數據庫、微處理器、通信鏈路、顯示器或其它視聽用戶界面、打印裝置,以及任意其它輸入/輸出接口,包括充足的流體及氣動控制、供應及測量功能,以提供功能或獲得本文中所述的結果。除本文中另外明示或暗示以外,可將本文中所述的過程或方法步驟實施於在一個或多個通用電腦上執行的軟件模塊(或電腦程序)內。或者,可使用專門設計的硬件執行特定操作。此外,本文中所述的電腦或基於電腦的裝置可包括能夠執行本文中所述的功能的任意數目的計算機裝置,包括但不限於:平板電腦、筆記本電腦、臺式電腦等。
儘管本文中說明利用示例技術、算法或過程來實施本揭露,但本領域的技術人員應當理解,可使用或執行其它技術、算法及過程或本文中所述的技術、算法及過程的其它組合及序列以實現本文中所述的相同功能及結果,且它們被包括於本揭露的範圍內。
本文中所提供的流程圖中的任意過程說明、步驟或方塊標示一種可能的實施,且替代實施被包括於本文中所述的系統及方法的較佳具體實施例的範圍內,其中,本領域的技術人員將理解,可自所示或所述移除功能或步驟或以不同順序執行功能或步驟,取決於所關於的功能。
應當理解,除非本文中另外明示或暗示,否則關於本文中的特定具體實施例所述的任意特徵、特性、替代或修改還可被應用、使用或包含於本文中所述的任意其它具體實施例。另外,除非另外指出,否則本文中的附圖並非按比例繪製。
[實施例]
實施例1-固定DNA的一端緊鄰於奈米孔及經由電流之DNA的經調控往復移動
開發實驗過程以展現DNA係經由電流,於相關蛋白質不於腔室之間移動的條件下,於藉由奈米孔隔開的二個腔室之間往復移動。
由氮化矽製造包含二個腔室的奈米晶片。如述於Briggs K,et al.Automated fabrication of 2-nm solid-state nanopores for nucleic acid analysis,Small(2014)10(10):2077-86的方式製備<4nm(用於dsDNA或ssDNA)及2nm(僅用於ssDNA)的奈米孔。該二腔室係指稱為「近」腔室及「遠」腔室,該遠腔室為DNA的3’端接合處。
其顯示ssDNA(2nm孔)及ssDNA+dsDNA(4nm孔)而非蛋白質藉由該奈米孔。藉由該奈米孔係藉由電流中斷偵測。
接合DNA至孔表面:經由碳二亞胺媒介的附接將5’胺基修飾DNA附接至經羧基被覆的聚苯乙烯珠(Fluoresbrite® BB Carboxylate Microspheres 0.05μm,得自Polysciences,Inc.)。DNA的3’以生物素標記。DNA為預特定化的長度。
鏈親和素接合:接和係於氮化矽奈米孔的「遠」側進行,將鏈親和素接合至表面,如揭示於Arafat,A.Covalent Biofunctionalization of Silicon Nitride Surfaces.Langmuir(2007)23(11):6233-6244。
接近奈米孔的DNA固定化:緩衝液中經接和DNA的聚苯乙烯珠添加至「近」腔室及緩衝液添加至「遠」腔室(標準緩衝液:10mM Tris pH 8,1mM EDTA,150mM KCl)。施加電壓(~100mV)直到觀察到電流中斷(使用Axon Nanopatch200B膜片箝放大器)。50nm珠無法通過奈米孔,因此當DNA股以藉由而珠經加壓抵抗於該奈米孔端,電流高度地中斷。電流維持於1至2分鐘直到DNA接和生物素結合於遠測不可回復地結合至經固定的鏈親和素。為了確認DNA已經固定,保留電流。觀察不同的電流,DNA是否於孔中或離開孔。若其顯示DNA未經固定,則重複此過程。
經由內核酸酶釋放珠:限制酵素換中葉中 的限制酵素添加至經附接DNA的腔室。一具體例中,DNA為單股且含有將裂解單股DNA的酵素可裂解的限制位點。參照,例如,Nishigaki,K.,Type II restriction endonucleases cleave single-stranded DNAs in general.Nucleic Acids Res.(1985)13(16):5747-5760。一替代具體例中,互補寡核苷酸係附接至經附接DNA的腔室且使其雜合30分鐘以產生dsDNA,然後添加限制酵素。一旦釋放珠,將其洗出。電流於正向及反向間轉換以確認DNA進入/經由及離開孔。
展示受控的來回移動:使用標準緩衝液,於正向方向施加電流直到觀察到信號中斷及然後在DNA通過後反向至「正常」。施加反向電流直到觀察到信號中斷。觀察到當DNA停留於孔中時,信號不回復至正常。電流於正向及反向的施加係重複數個循環以確認DNA經由奈米孔往復移動。
實施例1a:於二氧化矽晶片固定DNA股至緊鄰奈米孔
奈米晶片內壁係由二氧化矽製造。雙側皆經矽烷化,但寡核苷酸僅附接至晶片壁的一側,然後做出奈米孔。
矽烷化:晶片壁的表面於30℃以食人魚溶液(市售可得的各種商品,通常包含硫酸(H2SO4)及過氧化氫(H2O2)的混合物,其由表面移除有機殘質)清潔,及以雙重過濾水清洗。製備(3-胺基丙基)三乙氧基矽烷(APTES),與50%甲醇(MeOH)、47.5% APTES、2.5%奈米純H2O的原液且於4℃熟成>1小時。然後APTES原液於甲醇中稀釋 1:500且於室溫施加至晶片壁並培養。然後以MeOH潤洗晶片壁且於室溫與晶片壁培養。然後以MeOH潤洗晶片壁後於110℃乾燥30分鐘。
接合:然後晶片壁於室溫於二異硫氰酸1,4-伸苯基酯(PDC)於二甲亞碸(DMSO)的0.5% w/v溶液中培養5小時。以DMSO簡明地清洗二次後以雙重過濾水簡明地清洗二次。然後晶片壁於37℃於雙重過濾水(pH 8)中與100nM經胺修飾的單股DNA寡聚物(約50個單體單元(mer))培養隔夜。然後晶片壁以28%氨水清洗二次以去活性化任何未反應材料,且以雙過濾水清洗二次。然後於壁做出一個或多個奈米孔。
一旦奈米孔的製作完成,內壁以約50鹼基對(bp)長的DNA寡聚物被覆。此使得欲定位至一奈米孔之具有互補於結合有DNA的表面的端-末序列的單股DNA藉由附接該ssDNA至相對大體積結構物(例如,珠、蛋白質、或具有直徑過大於適合藉由該奈米孔的DNAS摺紙結構),其中該互補於表面結合DNA的序列係遠離該大體積結構物,使用電流將帶電荷聚合物拉藉由該奈米孔,使ssDNA結合至緊鄰於該奈米孔之結合有DNA寡聚物的表面,且裂解出該大體積結構物。
實施例2:DNA合成-單核苷酸加成
藉由施加合適電流將DNA移至「保留」腔室且偵測DNA移動。
於適緩衝液(50mM乙酸鉀,20mM Tris-乙 酸鹽、10mM乙酸鎂,pH 7.9 @ 25℃)中的終端轉移酶酵素(TdT,New England Biolabs),加上可回復地封阻-dATP*係添加至「添加」腔室。緩衝液也添加至「保留」腔室。
具有於3’-OH的回復封阻的dNTPs使用於添加核甘酸至DNA。當添加至DNA鏈時,次個dNTP不能添加直到被封阻的dNTP解封。
去保護可為化學性或酵素性。利用不同的方案:
a.3’ O-烯丙基:烯丙基的移除係於水性緩衝液中藉由Pd-催化的去烯丙基化,如揭示於Ju J,Four-color DNA sequencing by synthesis using cleavable fluorescent nucleotide reversible terminators.Proc Natl Acad Sci USA.(2006);103(52):19635-40;或於聚乙二醇-400中藉由使用碘(10莫耳%),如揭示於Shankaraiah G.,et al.,Rapid and selective deallylation of allyl ethers and esters using iodine in polyethylene glycol-400.Green Chem.(2011)13:2354-2358。
b.3’ O-NH2:胺係於經緩衝的NaNO2中移除,如揭示於美國專利第8034923號。
c.3’-磷酸鹽。磷酸鹽係以內核酸酶IV(New England Biolabs)水解。可利用內核酸酶IV移除的其他可能的3’修飾包括磷乙醇醛及去氧核糖-5-磷酸鹽。
d.3’-O-Ac:乙酸鹽係藉由酵素性水解移除,如揭示於Ud-Dean,A theoretical model for template- free synthesis of long DNA sequence.Syst Synth Biol(2008)2:67-73。
然後藉由施加合適電流將DNA移至「遠」腔室及偵測DNA移動。DNA係藉由切換緩衝液去保護且添加去保護緩衝液/溶液如上述a至d所述。
操作過程係如所期望的重複以製造感興趣的序列。
實施例3:DNA合成:風阻寡核苷酸加成
雙股DNA的3’端係附接至緊鄰於具有4mm開口的奈米孔。該DNA的5’端具有CG突出(自5’讀取至3’)。
製造寡聚物匣A及B如下述者:(SEQ ID NO 1)5’ CGAAGGG<編碼A或B>GTCGACNNNNN 3’ GCTTCCC<互補>CAGCTGNNNNN
編碼A及編碼B各表示資訊序列。N指稱任何核苷酸。5’序列包含拓樸異構酶辨識位點及3’序列包含Acc1限制位點。該寡聚物係暴露至拓樸異構酶及該拓樸異構酶結合至3’胸腺嘧啶:5’ CGAAGGG<編碼A或B>GTCGACNNNNN 3’*TTCCC<互補>CAGCTGNNNNN(*=拓樸異構酶)
藉由施加合適電流將DNA移至「近」腔室及偵測DNA移動。拓樸異構酶-荷載「編碼A」寡聚務提供於「添加」腔室。藉由施加合適電流將DNA移至添加腔室及偵測DNA移動,於該處編碼A寡聚物結合至該DNA。 Acc1係添加至「保留」腔室,於該處其於限制位點裂解以提供拓樸異構酶接合位點。
重複操作過程直到達成所期望的序列,添加「編碼A」或「編碼B」。注意的是不需要持續添加新的Acc1至「保留」腔室;只需要在切換編碼或編碼B時將編碼A或編碼B寡聚物沖出至「添加」腔室。
為了定序只允許ssDNA通過的孔,對上述方案的某些修改為需要的。已知當dsDNA碰撞小孔(2nm)時,只有ssDNA通過且互補將被「剝」除。因此,如果進行此具有2nm孔的合成,需要確保合適的dsDNA能於另一側「重新組合」。為進行此者,將添加「CGAAGGG<編碼A或B>GTCGACNNNNN」(SEQ ID NO 1)至近腔室(以確保做出限制位點)及「CGAAGGG<編碼A或B>GT」(SEQ ID NO 3)至遠腔室(以確保做出拓樸可相容位點)。
闡述前述方法,在此展現編碼DNA資訊的依序「添加」至成長DNA鏈具有
Figure 107138371-A0202-12-0180-200
2依序添加(代表2位元數據),其各者包含「添加」及「去保護」步驟。用於概念的最適化及確證的起始試驗係於微管中進行。
此實施例中所描述的方案中,一位元的資訊係編碼於一列核苷酸。DNA位元係「添加」至經複合至牛痘拓樸異構酶I(topo)短的dsDNA序列。於合適的「經去保護」「受體」DNA的存在下,topo-荷載DNA「位元」係藉由拓樸異構酶酵素性及共價性連接(「添加」)之受體,於過程中其變成自DNA移除。然後限制酵素可裂解所添 加的位元將其「去保護」及做出用於添加次一個位元的合適「受體」序列。
Topo荷載:一般的荷載方案係如下所述,示意說明於第22圖及下文,其中N指稱任何核苷酸及A、T、G及C分別表示據有腺嘌呤、胸腺嘧啶、鳥嘌呤及胞嘧啶的核苷酸。彼此頂端的N為互補的。雖然此實施例使用限制酵素HpyCH4III,此基礎方案能與其他限制酵素運作,例如,實施例4所示。
N-N-N-N-N-N-N-N-N A-G-G-G-N-N-N-N-N-N-N-N-N-N N-N-N-N-N-N-N-N-N-T-T-C-C-C-N-N-N-N-N-N-N-N-N-N +拓樸異構酶* = N-N-N-N-N-N-N-N-N N-N-N-N-N-N-N-N-N + A-G-G-G-N-N-N-N-N-N-N-N-N-N *-T-T-C-C-C-N-N-N-N-N-N-N-N-N-N(topo-荷載)(位於彼此頂端的N為互補的)
加成
一般「添加」反應:N-N-N-N-N-N-N-N-N-N-A N-N-N-N-N-N-N-N-N-N..(受體)+ A-G-G-G-N-N-N-N-N-N-N-N-N-N *-T-T-C-C-C-N-N-N-N-N-N-N-N-N-N(topo-荷載)= N-N-N-N-N-N-N-N-N-N-A A-G-G-G-N-N-N-N-N-N-N-N-N-N N-N-N-N-N-N-N-N-N-N-T-T-C-C-C-N-N-N-N-N-N-N-N-N-N + *(游離topo)
去保護
一般「去保護」反應:...N-N-A-C-A-G-T-N-N-N-N-N-N-N-N-N-N ...N-N-T-G-T-C-A-N-N-N-N-N-N-N-N-N-N + HpyCH4III(限制酵素)= ...N-N-A-C-A ...N-N-T-G..(去保護) + ..G-T-N-N-N-N-N-N-N-N-N-N T-C-A-N-N-N-N-N-N-N-N-N-N(副產物)
由Integrated DNA Technologies(IDT)訂購下述寡核苷酸。某些寡核苷酸末端的「b」指稱生物素:
(SEQ ID NO 4)BAB:
Figure 107138371-A0202-12-0183-389
(SEQ ID NO 5):B2:ATCTACTTAAGAGATCATACAGCATTGCGAGTACG TA1:b-CACACTCATGCCGCTGTAGTCACTATCGGAAT
(SEQ ID NO 6):TA2:AGGGC GACACGGACAGTTTGAATCATACCG
(SEQ ID NO 7):TA3b:
Figure 107138371-A0202-12-0183-202
(SEQ ID NO 8):TB2:AGGGCGCAGCAAACAGTGCCTAGACTATCG
(SEQ ID NO 9):TB3b:
Figure 107138371-A0202-12-0184-203
(SEQ ID NO 10):FP1:CACGTACTCGCAATGCT
(SEQ ID NO 11):FP2:CGGTATGATTCAAACTGTCCG
(SEQ ID NO 12):FP3:GCCCTTGTCCGTGTC
寡核苷酸於溶解於100uM TE緩衝液且保存於-20℃。
藉由如下所述混和寡核苷酸製造雜合的寡核苷酸,加熱至95℃維持5分鐘,然後每3分鐘降溫5℃直到溫度達20℃。經雜合的寡核苷酸保存於4℃或-20℃。寡核苷酸的組合如下述:
B1/2 48uL B1 48uL B2 4uL 5M NaCl
A5 20uL TA1 20uL TA2 5uL TA3b 4uL 5M NaCl 51uL TE
B5 20uL TB1 20uL TB2 5uL TB3b 4uL 5M NaCl 51uL TE
此實施例中使用下述緩衝液及酵素:
TE:10M Tris pH 8.0,1mM EDTA,pH 8.0
WB:1M NaCl,10mM Tris pH8.0,1mM EDTA pH8.0
1x Topo:20mM Tris pH7.5,100mM NaCl,2mM DTT,5mM MgCl2
1x RE:50mM K-乙酸鹽,20mM Tris-乙酸鹽,10mM Mg-乙酸鹽,100ug/ml BSA pH 7.9 @ 25C。
牛痘DNA拓樸異構酶I(topo)係由Monserate Biotech(10,000U/mL)購得
HypCH4III係購自NEB
鏈親和素-被覆磁性珠(s-MagBeads)由ThermoFisher購得。
受體係如下述製備:5uL的s-珠磁珠於200uL WB(結合時間1分鐘)中清洗一次。5uL B1/2+195uL WB添加至珠且於室溫培育15分鐘,然後以200uL WB清洗一次後,以200uL 1x Topo清洗一次後,懸浮於150uL的1x Topo。
Topo-荷載A5(參照第20圖)係如下述製備:4uL 10x topo緩衝液+23uL水+8uL A5+5uL topo係於37℃培育30分鐘,添加至5uL s-珠磁珠(以200uL WB清洗一次,以200uL 1x Topo清洗一次,重新懸浮於150uL 1x topo),且於室溫使其結合15分鐘。
「添加」荷載A5至受體:s-珠磁珠由Topo-荷載-A5移除,添加至受體,且於37℃培育60分鐘。移除分液,於TE中稀釋1/200,且保存於-20℃。
去保護:材料以200uL的WB清洗一次,以200uL的1x RE清洗一次,及重新懸浮於15uL 10x RE及120uL水。添加15uL HypCH4III。混合物於37℃培育60分鐘,然後以200uL WB清洗一次,以200uL 1x topo清係一次,以製造申請人命名為「受體-A5」的產物。
Topo荷載B5(參照第21圖)係如下述製備: 組合4uL 10x topo緩衝液、23uL水及8uL B5+5uL topo且於37℃培育30分鐘。產物添加至5uL s-珠磁珠(以200uL WB清洗一次,以200uL 1x Topo清洗一次,及重新懸浮於150uL 1x topo)且於室溫使其結合15分鐘。
「添加」荷載B5至受體-A5:s-珠磁珠由Topo-荷載-B5移除,添加至受體-A5且於37℃培育60分鐘。移除分液。於TE中稀釋1/200,且保存於-20℃。
去保護:材料以200uL的WB清洗一次,然後以200uL的1x RE清洗一次,及重新懸浮於15uL 10x RE及120uL水。添加15uL HypCH4III,且混合物於37℃培育60分鐘。
確認上述反應工作係藉由得自A5(具有A5添加的受體:步驟iii,方案中的「A5添加」)及B5(具有B5添加的受體-A5:步驟vi,方案中的「B5添加」)的分液的PCR擴增。「無模板」係使用於作為A5的陰性對照。A5係使用作為B5的陰性對照,寡聚物BAB係使用作為B5的陽性對照。對於A5 PCR的期望產物尺寸為68bp,對於B5 PCR的期望產物尺寸為57bp。(也於凝膠運行B1/2,期望尺寸為~47bp,但其可為估計,乃因有突出及其係經生物素化)。PCR反應(30個循環的95/55/68(各1分鐘)係如下述進行:
Figure 107138371-A0202-12-0188-204
使用4至20% Tris-甘胺酸凝膠的SDS-PAGE係用於確認製造出期望尺寸的寡核苷酸。荷載係如上述進行,但荷載後直接(37℃培育步驟),混合上料緩衝液且樣品加熱至70℃持續2分鐘後於跑膠之前使其冷卻。膠以考瑪西(Coomassie)染色。對於陰性對照,對反應添加水取代topo。第30圖說明結果,清楚顯示對應於A5 PCR及B5 PCR之期望產物尺寸的條帶。
經由拓樸異構酶-荷載DNA匣的DNA位元添加及經由限制酵素的去保護操作因而顯得可行。該等概念試驗的證明中,DNA經由鏈親和素-附接磁性珠而固定,且依序地移至不同反應混合物,但於奈米晶片格式中,申請人作出隔開的反應腔室且使用電流將DNA移至該等不同反應腔室。
最終地,PCR展現當進行回應於「位元」資訊的依序添加DNA序列時做出所期望的DNA序列。該等 反應已如所設計的運作,甚至最小優化。
揭示於實施例2及3所製造的DNA予以回收及定序,使用商用奈米孔定序儀(MinION from Oxford Nanopore),確認獲得所期望的序列。
實施例4-DNA合成:使用不同限制酵素,封阻寡核苷酸添加
下述合成係以類似於實施例3的方式進行,但使用限制酵素MluI,其於「ACGCGT」切斷以形成:...NNNA CGCGTNNN... ...NNNTGCGC ANNN...
此實施例中,TOPO係經荷載以與互補序列形成複合物,其能使荷載TOPO轉移DNA至經以MluI切斷的DNA:5'pCACGTCAGGCGTATCCATCCCTTCGCGTTCACGTACTCGCAATGCTGTAG 3' GTGCAGTCCGCATAGGTAGGGAAGCGC AGTGCATGAGCGTTACGAGATCb + TOPO = 5’ pCACGTCAGGCGTATCCATCCCTT*( 3’ GTGCAGTCCGCATAGGTAGGGAAGCGC(‘*’指稱TOPO結合於3’磷酸)+ CGCGTTCACGTACTCGCAATGCTGTAG AGTGCATGAGCGTTACGAGATCb(b=生物素。此可利用鏈親和素移除)
藉由類似於前述實施例的過程,然後使用經荷載TOPO添加寡聚誤置所合成股的5’端,具有互補受體序列,藉此釋放TOPO,然後該股使用MluI「去保護,及重複此循環至到獲得所期望序列的寡聚物。
實施例5-使用拓樸異構酶方案之單一鹼基的添加
已發現拓樸異構酶系統亦可設計用於添加單一鹼基至單股DNA鏈(相較於實施例3,其揭示添加「匣」)。欲添加的DNA位元係含有於經覆和至牛痘拓樸異構酶I(topo)的短DNA序列中。於合適的單股「去保護」「受體」DNA的存在下,topo-荷載DNA係藉由拓樸異構酶酵素性及共價性接合(「添加」)至受體,其於此過程中變成自DNA移除。然後IIS型限制酵素可裂解具有所期望的單一鹼基(鹼基其係「經添加」)的所有經添加DNA。此去保護-添加過程重複至添加其他鹼基(位元)。
Topo荷載:一般荷載過程係如下述,相似於實施例3:...N-N-N-N-N-N-N-N-N-C-C-C-T-T-N-N-N-N-N-N-N-N-N-N-N-N-N... ...N-N-N-N-N-N-N-N-N-N-N-N-N-N-I-I-I-I-I N-N-N-N-N-N-N...生物素+ 拓樸異構酶(*) = N-N-N-N-N-N-N-N-N-N-N-N-N-N-N N-N-N-N-N-N-N-N-N...生物素(副產物)+ ...N-N-N-N-N-N-N-N-N-C-C-C-T-T* ...N-N-N-N-N-N-N-N-N-N-N-N-N-N-I-I-I-I-I(topo荷載)
如實施例3,彼此頂端的N為互補。I為肌苷酸。使用生物素移除未反應產物及副產物。單一鹼基的添加係如下述進行N-N-N-N-N-N-N-N-N-N...(受體序列核苷酸指稱為斜體)+ ...N-N-N-N-N-N-N-N-N-C-C-C-T-T* ...N-N-N-N-N-N-N-N-N-N-N-N-N-N-I-I-I-I-I(topo荷載) ...N-N-N-N-N-N-N-N-N-C-C-C-T-T-N-N-N-N-N-N-N-N-N-N... ...N-N-N-N-N-N-N-N-N-N-N-N-N-N-I-I-I-I-I + *(游離topo)
去保護說明如下述,使用BciVI限制酵素(粗體字位 點):...N-G-T-A-T-C-C-N-N-C-C-C-T-T-N-N-N-N-N-N-N-N-N-N... ...N-N-N-N-N-N-N-N-N-N-N-N-N-N-I-I-I-I-I + BciVI(限制酵素)= T-N-N-N-N-N-N-N-N-N-N...(注意「T」已被添加至受體DNA的5’)+ N-N-I-I-I-I-I(解離*)+ ...N-G-T-A-T-C-C-N-N-C-C-C-T ...N-N-N-N-N-N-N-N-N-N-N-N ---------------------------------------------------------------- T-N-N-N-N-N-N-N-N-N-N... N-N-I-I-I-I-I = T-N-N-N-N-N-N-N-N-N-N... + N-N-I-I-I-I-I(NNIIIII由具有經添加鹼基的單一股解離)
商用合成下述寡核苷酸(B=生物素,P-磷酸,I=肌苷酸):
(SEQ ID NO 13):NAT1:
Figure 107138371-A0202-12-0193-205
(SEQ ID NO 31):NAT9cI:P-IIIIIAAGGGATGGATACGCCTGACGTG
(SEQ ID NO 14):NAT9x:P-ATCGCCATACAGCATTGCGAG
(SEQ ID NO 15):NAT9:ACGTGAAGGGATGGATACGCCTGACGTG
(SEQ ID NO 16):Nat9Acc:CACGTAGCAGCAAACAGTGCC TAGACTATCG
(SEQ ID NO 17):Nat1P:CACGTCAGGCGTATCCATCC
(SEQ ID NO 18):FP4:CGATAGTCTAGGCACTGTTTG
聚物於TE緩衝液中溶解為100μM且保存於-20℃。
雜合:藉由如揭示方式混合寡核苷酸製造下述經雜合的寡核苷酸,加熱至95℃持續5分鐘,然後每3分鐘降低溫5℃直到溫度達20℃。經雜合的寡核苷酸保存於4℃或-20℃。
NAT1b/NAT9cI/NAT9x 8μL NAT1B 10μL NAT9cI 10μL NAT9x 48μL TE 4μL 5M NaCl
NAT1/NAT9cI 10μL NAT1 10μL NAT9cI 80uL PBS
NAT1/NAT9 10μL NAT1 10μL NAT9 80uL PBS
緩衝液及酵素:使用下述緩衝液:
TE:10M Tris pH 8.0,1mM EDTA,pH 8.0
PBS:磷酸鹽緩衝生理鹽水(137mM NaCl,2.7mM KCl,10mM Na2HPO4,1.8mM KH2PO4)(pH 7.4)
10x Cutsmart:500mM KAc,200mM Tris-Ac,100mM Mg-Ac,1mg/mL BSA pH 7.9
BciVI購自NEB及鏈親和素-被覆磁性珠(s-MagBeads)購自ThermoFisher
添加反應係如下述進行。
1.Topo荷載:試劑係如表格所示組裝
Figure 107138371-A0202-12-0195-206
然後於37℃培育試劑30分鐘。副產物藉由使用鏈親和素磁性珠(5uL)於1x topo緩衝液中於室溫10分鐘結合後移除。
2.反應:試劑如表所示組合:
Figure 107138371-A0202-12-0195-207
然後於37℃培育試劑30分鐘。額外的反應期望如下述進行:
Figure 107138371-A0202-12-0195-208
星號(*)表示拓樸異構酶。注意的是NAT9cI係經磷酸化,但此非顯示用於說明目的。
當於受體序列存在下荷載topo時,其進行下述反應:
Figure 107138371-A0202-12-0196-209
於瓊脂糖凝膠確認產物分子量的RCP擴增及測定。參照第30圖,描繪正確尺寸條帶於電泳道1(試驗),於陰性對照無條帶。
B.去保護反應:試劑如表所示組合:
Figure 107138371-A0202-12-0196-210
試劑於37℃培育90分鐘。對於去保護反應,使用購得的寡核苷酸做出額外反應的代表性產物,以及以BciVI限制酵素測試分解:
(SEQ ID NO 13):NAT1
Figure 107138371-A0202-12-0197-390
(SEQ ID NO 13):NAT1
Figure 107138371-A0202-12-0197-212
未知限制酵素是否將如所期望的切斷DNA,相對於「正規」鹼基提供切斷未點的3'為一系列肌苷酸。作為陽性對照,做出NAT1/NAT9cI的「合適的」鹼基對均等物(NAT1/NAT9c):
(SEQ ID NO 13):NAT1 5'CACGTCAGGCGTATCCATCCCTTCACGTACTCGCAATGCTGTATGGCGAT
(SEQ ID NO 19):NAT9c3' GTGCAGTCCGCATAGGTAGGGAAGTGCA
產物的PCR擴增接著於瓊脂糖凝膠的分子量測量(第31圖)顯示酵素如所期望的運作。對於陽性對照,當未分解時觀察到較大的條帶(電泳道1),但有分解時觀察到較小條帶(群)。相同模式亦見於NAT1/NAT9cI,顯示肌苷酸的存在不打消或干擾分解。小量的未分解產物似乎於NAT1/NAT9cI殘留,建議裂解非有效的,至少於該等條件下,如同於NAT1/NAT9c。裂解效力可藉由改變緩衝液條件及/或於NAT9cI的5'端添加更多肌肝酸而改良。
前述實施例展現使用The foregoing example demonstrates that it is feasible to use a Topo/TypeIIS限制酵素組合以於標靶單股DNA的5'端添加單一核苷酸係可行的。使用辨認序列CCCTG(https://www.ncbi.nlm.nih.gov/pubmed/8661446)的相關拓樸異構酶,SVF,添加「G」替代「T」,使用類似過程,因而允許編碼具有T及G二位元資訊的序列的構築。
如上所註記,使用拓樸異構酶策略產生dsDNA處,於相反股的DNA的缺口可使用連接酶及ATP修復。但當進行單一核苷酸添加時,如實施例所示,本發明係構建單股DNA,因此無缺缺需要修補且無需要使用連接酶。
實施例6-使用具有5-磷酸偶合的拓樸異構酶的單一鹼基添加
對於單一鹼基添加的另一方案,本發明使用5'磷酸作為封阻基團以於3'至5'方向提供單一鹼基對添加。荷載反應荷載具有單一T的拓樸異構酶(或G,或所期望的其他核苷酸),具有5’磷酸基團。當所荷載的拓樸異構酶「看得到」游離5'未封阻(未磷酸化)單股DNA鏈,其將將T添加至鏈,提供T經添加至5'的DNA。此添加係藉由具有該拓樸異構酶及單股受體DNA可結合的轉接器DNA的存在而促進。(應注意的是該轉接器DHA係催化性的-其可於重複的反應中重新使用作為模板)。所添加的核苷酸其具有5'磷酸,因此其不會為進一步添加的受質直到其暴露於磷酸酶,磷酸酶移除5'磷酸。重複此過程,使用Topo添加單一「T」至標靶單股DNA的5'端及SVF拓樸異構酶係添加單一「G」,因而允許編碼具有T及G二位元資訊的序列的構築。此過程示意性地說明如下述:
-般性:
荷載:
Figure 107138371-A0202-12-0200-213
轉移:
Figure 107138371-A0202-12-0200-214
Figure 107138371-A0202-12-0201-215
實施例7-使用DNA摺紙物有助於附接DNA至緊鄰於奈米孔
於一端具有大的摺紙結構的DNA係捕捉於奈米孔,且經由DNA的終端生物素部分體固定於表面-接合鏈親和素。摺紙結構的限制酵素裂解後,經固定DNA可經由孔往復移動,如同藉由電流中斷所確認。固定化能使單一DNA分子經由孔的經調控移動,其換言之能對DNA「讀取」及「寫入」資訊。
如第35圖所說明,形成巨大的雙股DNA單元,該單元過大而不適於通過奈米孔,該單元具有單股區 域,藉由具有合成中欲添加而作為錨定DNA的二個短的雙股區域連接至該劇大部分。然後該單股區域可脫離且錨定至緊鄰該奈米孔的表面,以及釋放該摺紙結構。參照第33圖。
奈米孔形成於具有20nm SiO2的3mm晶片,具有50*50μm的窗。晶片由Nanopore Solutions提供。奈米孔匣夾具及流通槽由Nanopore Solutions提供。擴增器為Tecella Pico 2擴增器。此係使用usb-電腦介面用以調控的usb-接電式擴增器。Tecella提供(Windows)軟體以調控該擴增器。萬用電表為FLUKE 17B+ Digital Multimeter,能偵測電流低至0.1uA。為了射頻雜訊的篩選,本發明使用具有USB介面的Concentric Technology Solutions TC-5916A屏蔽箱(法拉第籠(Faraday Cage))。寡核苷酸由IDT.com.取得。「PS」為炔丙基矽烷-O-(炔丙基)-N-(三乙氧基矽基丙基)胺甲酸酯得自http://www.gelest.com/product/o-propargyl-n-triethoxysilylpropylcarbamate-90/。
摺紙結構係基於具有「蜂窩」正方體摺紙結構的單股m13,該摺紙結構於每一側為~20nm。緊鄰於該蜂窩有雙股區域,其各含有獨特的限制位點。該等位點之一係使用於附接經修飾DNA以能附接近於該奈米孔,另一者係依但DNA附接後使用於裂解摺紙結構。
奈米孔形成:乃米孔係使用介電破壞形成於晶片,如下述:
1.仔細地將晶片裝設至匣中。
2.濕化:仔細地將100%乙醇吸液至晶片。必須移除泡沫。然而,應避免直接吸液溶液至晶片或可能破裂晶片(SiO2僅為20nm)。
3.表面處理:移除以純,且新鮮製備的食人魚溶液(75%硫酸,25%過氧化氫(30%))吸液至晶片。(使食人魚溶液達室溫)。維持30分鐘。
4.以蒸餾水潤洗4次。
5.以HK緩衝液(10mM HEPES pH 8,1M KCl)潤洗2次。
6.將匣組裝至流通槽。
7.添加700μL HK緩衝液至該流通槽的各腔室。
8.插入銀電及附接至該擴增其且緊閉法拉第籠。
9.以30mV測試電阻。不應偵測到電流。若偵測到電流,則晶片似乎是破裂且應重新起始。
10.連結電及至6VDC電流且以萬用電表測試。電流應為低的且不應改變。藉由增加1.5V電位且維持此電位直到電阻增加。如果5至10分鐘電阻不增加,則增加另一1.5V電位且再試一次。重複直到電阻增加,於該時點應立即停止施加的電位。(具有足夠的電位,發生介電破壞且於SiO2膜做出「孔洞」。當起始作出的孔洞為小,而隨著電位維持將增加尺寸)。
11.使用擴增器測試孔。於300mV,應觀察到少量至數nA的電流,於較大孔。
第34圖描述基本功能奈米孔。於各組中,y-軸為電流(nA)及x-軸為時間(s)。左組「RF雜訊的篩選」說明利用法拉第籠。沒有奈米孔的晶片係至於流通槽中且施加300mV。當緊閉法拉第籠的蓋子(第一箭號)可觀察到雜訊減低。當緊閉扣閂時發生小突跳(中間組)。注意的是電流為~0nA。孔製作後,施加300mV(箭號)的結果為3.5nA。當DNA施加至底腔室且施加+300mV,於電流中的通過減低可觀察到DNA轉位(右方組)。(注意的是,於使用TS緩衝液的情況中:50mM Tris,pH 8,1M NaCl)。使用Lambda DNA於此DNA轉位試驗。
氯化銀電極:
1.銀線焊接至絕緣銅線。
2.銅線接地,及銀線於新鮮30%次氯酸鈉浸漬30分鐘。
3.銀線應獲得暗灰色被覆(氯化銀)。
4.銀線以蒸餾水強力地潤洗後乾燥。
5.現在可使用。
珠的矽烷化:矽烷化方法係於SiO2被覆磁性珠(GBioscience)開始開發/測試。適用下述步驟準則:
1.於新鮮的食人魚溶液中欲先處理珠30分鐘。
2.以蒸餾水清洗3次。
3.以甲醇清洗2次。
4.於甲醇中稀釋APTES原液1:500。
5.添加經稀釋的APTES至珠,於RT培育45分鐘。
6.以甲醇潤洗。
7.於100℃維持30分鐘。
8.保存於真空。
矽晶片的矽烷化
1.將具有奈米孔的晶片裝設至匣中。
2.以甲醇潤洗,仔細地移除任何泡沫。
3.添加新鮮的食人魚溶液(平衡至室溫)且培育30分鐘。
4.以蒸餾水清洗4次。
5.以甲醇清洗3次。
6.於甲醇中稀釋APTES原液1:500且使用於清洗晶片次。於RT培育45分鐘。
7.以甲醇潤洗2次。
8.於空氣氣流下乾燥。
9.真空中保存隔夜。
珠的鏈親和素接合:鏈親和素接合係於上述所製備的經矽烷化珠開始開發/測試。
1.以修改磷酸鹽-緩衝生理鹽水(MPBS)清洗矽烷化珠。
2.製作新鮮的MPBS中的1.25%戊二醛(使用50%戊二醛,冷凍保存)。
3.添加1.25%戊二醛至珠且以每15分鐘緩和的上下吸液使其維持60分鐘。
4.以MPBS清洗2次。
5.以水清洗2次。
6.使其真空乾燥。
7.添加鏈親和素(500μg/mL於MPBS中)至珠且培育60分鐘。(對於陰性對照珠,使用牛血清白蛋白(BSA)(2mg/mL in MPBS)替換鏈親和素)。
8.移除鏈親和素及添加BSA(2mg/mL於MPBS中)。培育60分鐘。
9.以MPBS清洗2次。
10.保存於4℃。
矽晶片的鏈親和素接合
1.以乙醇潤洗經矽烷化的晶片2次。
2.以MPBS潤洗經矽烷化的晶片2次。
3.做出1.25%戊二醛於MPBS(使用50%戊二醛原液,冷凍保存)的新鮮溶液。
4.以1.25%戊二醛潤洗經片2次且以每15分鐘緩和的上下吸液使其維持60分鐘。
5.以MPBS清洗2次。
6.以水清洗2次。
7.於空氣氣流中乾燥。
8.對一半的晶片添加BSA(2mg/mL於MPBS中),且對另一半添加鏈親和素(500μg/mL於MPBS中)。培育60分鐘。製作匣其顯示一半的晶片係經鏈親和素修飾。
9.以BSA(2mg/mL於MPBS中)潤洗該二半的晶片。培育60分鐘。
10.以MPBS清洗。
本文所使用的緩衝液係如下述:
MPBS:8g/L NaCl,0.2g/L KCl,1.44g/L磷酸二鈉,0.240g/L磷酸鉀,0.2g/L聚山梨醇酯-20(pH 7.2)
PBS:8g/L NaCl,0.2g/L KCl,1.44g/L磷酸二鈉,0.240g/L磷酸鉀
TS:50mM Tris pH 8.0,1M NaCl
HK:10mM HEPES pH 8.0,1M KCl
TE:10mM Tris,1mM EDTA,pH 8.0
食人魚溶液:75%過氧化氫(30%)+25%硫酸
APTES原液:50%甲醇,47.5% APTES,2.5%奈米純水。於4℃熟成至少1小時。保存於4℃。
PDC原液:0.5% w/v二異硫氰酸1,4-伸苯酯於DMSO中
寡核苷酸(5’ TO 3’)依序為:
(SEQ ID NO 20):o1 CTGGAACGGTAAATTCAGAGACTGCGCTTTCCATTCTGGCTTTAATG
(SEQ ID NO 21):o3 GGAAAGCGCAGTCTCTGAATTTAC
(SEQ ID NO 22):N1 CTTACTGGAACGGCTATCGATATCGCAGCAGGACAGABN1生物素-CTTACTGGAACGGCTATCGATATCGCAGCAGGACAGA
(SEQ ID NO 23):N2 GTCCTGCTGCGATATCGATAGCCGTTCCAGTAAG
寡核苷酸對雜合係如下述進行:
1.做出寡聚物於TE緩衝液中100uM濃度的原液溶液
2.於PBS中稀釋寡聚物為10μM
3.於熱循環機中對5’加熱至85℃
4.藉由每3分鐘減低熱5℃直到25℃
5.保存於4℃或-20℃
鏈親和素接合:對SiO2的鏈親和素接合係使用SiO2被覆磁性珠開發及測試,然後該步驟準則適用於SiO2晶片。生物素化寡聚物對鏈親和素及BSA經接合珠二者的結合。如所期望的,於BSA-接合珠觀察到可忽略的結合,而於連親合素皆合珠觀察到強力的結合。參照第38圖。由於於高鹽(DNA移動係於高鹽中進行)中更為便利的進行接合,亦測試珠於HK緩衝液中的結合能力。於HK緩衝液中的結合係可相比於MPBS緩衝液中的結合(第39圖)。
做出摺紙構築物且確認如上述第35至37圖所揭示的可操作。摺紙結構的生物素化係使用寡核苷酸測試。本發明人已知由上述第37圖所揭示的「摺紙」結果,AlwNI未點為活性的。於摺紙DNA中重新作出確實序列節段的寡核苷酸對係使用下述者(o1/o3)。摺紙分子係說明第77圖:
寡聚物對o1/o3為CTGGAACGGTAAATTCAGAGACTGCGCTTTCCATTCTGGCTTTAATG o1(SEQ ID NO 20) CATTTAAGTCTCTGACGCGAAAGG o3(SEQ ID NO 21)
DNA於T4 DNA連接酶的存在下以AlwNI分解,且互補於該摺紙序列(其本身附接於長的ssDNA序列,該序列本身係附接至該摺紙物的另一側)的3’側的突出的生物素化寡聚物,根據下述反應:CTGGAACGGTAAATTCAGAGACTGCGCTTTCCATTCTGGCTTTAATG o1(SEQ ID NO 20)CATTTAAGTCTCTGACGCGAAAG o3(SEQ ID NO 21)+AlwNI = CTGGAACGGTAAATTCAGAGA CTGCGCTTTCCATTCTGGCTTTAATG(SEQ ID NO 24)CATTTAAGTC TCTGACGCGAAAGG(SEQ ID NO 25)+ B-CTTACTGGAACGGCTATCGATATCGCAGCAGGAC AGA BN1(SEQ ID NO 22)GAATGACCTTGCCGATAGCTATAGCGTCGTCCTG N2(SEQ ID NO 23)+連接酶= B- CTTACTGGAACGGCTATCGATATCGCAGCAGGACAGACTGCGCTTTCCATTCTGGCTTTAATG GAATGACCTTGCCGATAGCTATAGCGTCGTCCTGTCTGA CGCGAAAGG
此方案中,AlwN1裂解標靶DNA。當添加連接酶時此DNA可能重新連接,但限制酵素將再次將其切斷。然而,若/當(o1/o3之)(右)片段結合至BN1/N2,將不做出限制位點,因此,此產物將不被切斷。藉由測試有及無限制酵素,確認特定附接:
Figure 107138371-A0202-12-0210-216
添加連接酶以外的所有試劑且溶液於37℃培育60分鐘。添加連接酶且溶液於16℃培育隔夜。10x連接緩衝液意指NEB 10x T4 DNA連接酶緩衝液。連接酶於NEB T4 DNA連接酶。o1/o3及n1/n2意指黏合寡聚物對,如上文所說明。單位為微升。瓊脂糖凝膠分析確認於AlwNI存在下,形成較大產物,對應於經附接至摺紙結構的附接於長的ssDNA臂的生物素化寡核苷酸。在期望處,使用類似方案進行3’生物素化。
上文中申請人展現形成及使用奈米孔以偵 測電位誘發DNA通過該孔,做出附接其遠端至生物素的具有長的ss區域的摺紙分子,鏈親和素至二氧化矽的接合以及使用其捕捉生物素化DNA。使用該等工具附接及調控單一DNA分子至次於奈米孔的移動。
第一步驟矽接合鏈親和素至SiO2奈米孔的表面(及BSA接合至另一側)。此係根據上述步驟準則完成。所得孔傾向於具有較其起始所具有為更小的電流。在某些簡明的6v脈衝後,電流回復至接近其原始電流。於此時點的功能性奈米孔係示於第40圖。
其次,插入摺紙DNA。當摺紙DNA添加至合適的腔室且啟動電流,該摺紙物將插入該腔室。其代表者係示於第41圖。試驗結果為當以50pM的最終濃度導入該摺紙物時,確認該具有摺紙物的DNA相對快地(通常於數秒中)插入孔,其藉由所造成的跨越該奈米孔的電流的降低而可偵測(例如,於該等試驗中,摺紙物插入前的電流為~3nA,及插入後為~2.5nA)。如果電流允許運作較長時間,插入發生太快而無法觀察到。
經插入DNA對晶片的結合。在摺紙物插入至該奈米孔後,於再次施加電位之允許歷時15分鐘。該摺紙物的ssDNA區域端含有生物素,及鏈親和素係經接合至該奈米孔的表面。鏈親和素以接近共價鍵的親和常數結合至抗生物素。允許DNA擴散15分鐘且用以發現生物素端及結合至鏈親和素。事實上若DNA變成附接至表面,當電位回到觀察電位時應該稍微低於先前所觀察到的。再者, 往復轉轍電位應較低於無孔所觀察到的二個方向造成電流。示於此處的實施例中,無孔顯示~3nA的電流。第42圖顯示經附接DNA的代表者,及第43圖顯示轉轍所附接的摺紙DNA的電流的試驗結果。注意的是於二個方向觀察到的電流為~+/-2.5nA,其較低於無孔所觀察到的~+/-3nA。如果DNA不結合至表面,當電位轉轍時將回復原始電流(第44圖)。
為了移除摺紙結構,移除含有該摺紙結構的流通槽腔室中的緩衝液且置換為具有1uL Swa1/20 °L的1x Swa1緩衝液。於其他流通槽腔室中的緩衝液置換為無Swa1的1x Swa1緩衝液。此係於室溫培育60分鐘後,以HK緩衝液清洗後,施加電位。如第45圖所示的DNA往復的移動係藉由第46圖的數據確認,顯示經固定化DNA經由SiO2奈米孔的經調控移動。
實施例8-附接聚合物至緊鄰奈米孔表面的替代手段
前述實施例揭示藉由生物素化該DNA將DNA附接至緊鄰該奈米孔的表面及以鏈親和素被覆該附接表面。附接該聚合物的某些替代手段係說明第47圖。
a)DNA雜合:一方法中,於本發明的方法中延伸出的DNA係雜合至經覆接於接近該奈米孔的短的寡核苷酸。一旦完成合成,所合成的DNA可容易地移除而無需要限制酵素,或者替代地藉由結合寡核苷酸及所合成的DNA所形成的雙股可提供為限制酵素的受質。此實施例中,如下所述,短的寡聚物係使用生物素-鏈親和素接和 至表面,或使用二異硫氰酸1,4-伸苯酯連接:
生物素化DNA至SiO2的接合:
A.矽烷化:
1.預處理:食人魚溶液處理30分鐘,以雙蒸餾H2O(ddH2O)清洗
2.製備APTES原液:50% MeOH,47.5% APTES,2.5%奈米純H2O:於4℃熟成>1hr 4℃
3.於MeOH中稀釋APTES原液1:500
4.於室溫培育晶片
5.MeOH潤洗
6.乾燥
7.於110℃加熱30分鐘
接合:
1.以PDC原液處理晶片5h(室溫)(PDC原液:0.5% w/v二異硫氰酸1,4-伸苯酯於DMSO中)
2.於DMSO中清洗2次(簡短地!)
3.於ddH2O中清洗2次(簡短地!)
4.100nM胺基經修飾DNA於ddH2O(pH 8)中O/N 37℃
5.28%氨溶液(去活化)清洗2次
6.ddH2O清洗2次
具有互補於附接的寡核苷酸的單股DNA如上文所述導入且允許與附接的寡核苷酸雜合。
b)點擊化學(Click chemistry):點擊化學為 用於反應的一般用語,該反應為簡單且熱動力學有效的,不做出毒性及高反應性的副產物,於水或生物相容性溶劑中操作,且通常使用於連結受質選項與特定的生物分子。此情況中的點擊接合使用類似於下述者所使用的化學a)附接寡核苷酸,此處僅使用於附接本發明方法中合成過程中延伸的聚合物。此實施例中,DNA為聚合物,此化學將運作以附接以藉由添加生物相容性疊氮機團而官能化的其他聚合物。
矽烷化:
1.預處理:食人魚溶液處理30分鐘,ddH2O清洗
2.製備PS(炔丙基矽烷)原液:50% MeOH,47.5% PS,2.5%奈米純H2O:於4℃熟成>1hr
3.於MeOH中稀釋APTES原液1:500
4.於室溫培育晶片
5.MeOH潤洗
6.乾燥
7.於110℃加熱30分鐘
於疊氮官能機終端化的DNA將共價結合至表面(如第47圖所示)。疊氮終端化寡聚物係依序及附接至較長摺紙DNA,如前文添加生物素至DNA所述者。
實施例9:最適化拓樸異構酶-媒介DNA合成
由經雜合以形成雙股DNA匣的三個寡核苷酸組成寡核苷酸匣。匣經設計為在正向股DNA具有牛痘病毒拓樸異構酶辨識序列(CCCTT)且接著在負向股具有 GCCG序列。一旦拓樸異構酶辨識其標靶序列,拓樸異構酶裂解該寡核苷酸,且與該寡核苷酸的5’段形成共價鍵,造成「荷載」拓樸異構酶的形成。僅於正向股(CGAA匹配於負向股的GCCG)的CCCTT3’的未配對鹼基對的添加造成更有效的拓樸異構酶荷載。當鏈親和素被覆珠添加至混合物,結合至附接至正向DNA股的3’端的生物素時,寡核苷酸匣的經裂解3’部分(被稱為副產物)可由所荷載的拓樸異構酶移除。反應係說明如下述:
起始荷載寡核苷酸:
Figure 107138371-A0202-12-0215-217
斜體的寡核苷酸為5’磷酸化。
拓樸異構酶荷載後:
5' GCGCACGGTCTCCCGGCGTATCCATCCCTT 3’(SEQ ID NO 26)
3’ CGCGTGCCAGAGGGCCGCATAGGTAGGGAAGCCG 5’
拓樸異構酶係共價連結CCCTT辨識序列的3’(未顯示)。
副產物寡核苷酸係藉由結合至鏈親和素珠的生物素移除。
5' CGAATTCACGTACTCGCCAGTCTACAG-生物素3’結合至S/A被覆磁性珠 3’ AGTGCATGAGCGGTCAGATGTC 5’
所荷載的拓樸異構酶具有獨特的能力對具有互補突出的DNA受體股添加寡核苷酸的5’段:
DNA結合至荷載的Topo(SEQ ID NO26):DNA受體股(SEQ ID NO 27):
Figure 107138371-A0202-12-0216-218
DNA受體股藉由一個匣(或位元)延伸:
(SEQ ID NO 28):
Figure 107138371-A0202-12-0216-219
拓樸異構酶係藉由反應釋放。然後寡核苷酸匣,或位元,係藉由限制酵素Bsa I分解而「副產物化」,該Bsa I辨識核苷酸GGTCTC。Bsa I為is a type IIS類型限制酵素,其辨識不對稱DNA序列(GGTCTC序列)且裂解其等辨識序列的外側。設計匣為以Bsa I裂解將造成CGGC突出。此突出如所見於DNA受體股,允許另一個匣(或位元)添加另一個荷載的拓樸異構酶。
(SEQ ID NO 28):具有一個經保護的匣的DNA受體(Bsa I限制位點為粗體):
Figure 107138371-A0202-12-0217-220
(SEQ ID NO29):_Bsa I分解後具有一個匣的DNA受體:
Figure 107138371-A0202-12-0217-221
與荷載的拓樸異構酶培育造成另一個匣(位元)的添加,且延伸該DNA鏈以編碼更多資訊。
DNA結合至荷載的Topo DNA受體股加上一個匣 (SEQ ID NO 26):(SEQ ID NO 29):
Figure 107138371-A0202-12-0217-222
藉由二個匣(位元)延伸的DNA受體股(SEQ ID NO 30):
Figure 107138371-A0202-12-0217-223
Figure 107138371-A0202-12-0218-224
此步驟可重複再重複,以延伸DNA股具有編碼數據的「位元」。
試驗詳述:
拓樸異構酶荷載反應:40微升的鏈親和素-被覆磁性免疫珠(dynabeads)(Thermo Fisher)於B & W緩衝液(10mM Tris,pH 8.0,1mM EDTA,2M NaCl)中清洗5次。2.7pmole的生物素化荷載寡核苷酸添加至珠,及混合物於室溫培育10分鐘,溫和振盪。上清液抽離珠且丟棄,僅留接合的荷載寡核苷酸。然後將珠於含有牛痘病毒拓樸異構酶(6ug)的1x Cutsmart緩衝液(New England Biolabs,NEB)、10單位T4多核苷酸激酶(3’磷酸酶負向,NEB)、0.1uM ATP(NEB)及5mM DTT中,於37℃培育30分鐘以荷載拓樸異構酶。拓樸異構酶裂解荷載寡核苷酸後,多核苷酸激酶磷酸化興形成的副產物寡核苷酸的5’端,藉此預防拓樸異構酶再次回至一起連接荷載寡核苷酸,且增加荷載反應效率。任何未荷載的拓樸異構酶經由靜電力結合至鏈親和素-被覆免疫珠。經荷載的拓樸異構酶係由鏈親和素-被覆珠游離。多核苷酸激酶(PNK)係藉由重組蝦磷酸酶中和,該重組蝦磷酸酶反轉PNK活性,或較佳地該經荷載的拓樸異構酶藉由離子交換層析或經由鎳-NTA珠(拓樸異構酶係經His-6標簽)純化。
受體DNA對珠的起始結合:20微升的鏈親 和素-被覆磁性磁性免疫珠(Thermo Fisher)於B&W緩衝液(10mM Tris,pH 8.0,1mM EDTA,2M NaCl)中清洗5次。0.03pmoles的生物素化DNA受體寡核苷酸係添加至經清洗的珠,且於室溫振盪培育10分鐘。鏈親和素-被覆珠的上清液抽離且丟棄,僅留結合至珠的DNA受體股。
添加反應:製備添加混合物,添加大腸桿菌(Ecoli)DNA連接酶加上1mM NAD至經荷載的拓樸異構酶。視需要:添加100uM香豆黴素(Coumermycin)或1mM新生黴素(Novobiocin)。(說明:當經荷載的拓樸異構酶添加DNA至受體時,大腸桿菌DNA連接酶(其需要NAD)將「修復」殘留的缺口。此確保若未荷載拓樸異構酶遭遇此DNA其將不會裂解該DNA。再者,香豆黴素及新生酶素將抑制拓樸異構酶,以及較佳地抑制「荷載」且無「添加」反應。所以此抑制劑也助於確保任何未荷載拓樸異構酶形成於反應不活化期間)。50微升的添加混合物係添加至珠,且於37ºC培育15分鐘,使得DNA匣添加至DNA受體分子。第76圖顯示4%瓊脂糖凝膠,證實匣如所預期的添加。為了由磁性磁性珠釋放DNA以製備此凝膠,樣品以Eco(EcoRI)分解)。
然後將珠放置相鄰於磁鐵,移除拓樸異構酶溶液且保存於冰上。然後以55微升的1x cutsmart緩衝液(NEB)清洗珠3次,以移除拓樸異構酶的任何殘質。
去保護反應:然後珠與含有40單位的Bsa I及1單位的蝦鹼性磷酸酶的50微升的cutsmart緩衝液(具 有NAD及視需要的香豆黴素/新生黴素)培育。當限制酵素切斷DNA,留下5’磷酸,且此抑制經荷載的拓樸異構酶免於添加另一個匣。蝦鹼性磷酸酶的添加移除5’磷酸,藉此有效地去保護該匣。如蝦鹼性磷酸黴或牛小腸磷酸酶之磷酸酶的使用,增強反應效率;無該磷酸酶,5’磷酸具有抑制功效。
由珠移除Bsa I及SAP,且珠以cutsmart緩衝液清洗3次。其做好準備用於藉由經荷載的拓樸異構酶之另一個匣的添加。
此藉由培育DNA受體股與經荷載的拓樸異構酶(連接酶),接著以BsaI/rSAP分解之添加匣的順序,重複用於預添加的匣數。
實施例10:無限制酵素方案
前述實施例提供托保護的步驟準則,其結合磷酸酶酵素與限制酵素以劇烈地增加該系統的效率。某些情況中,申請人已發現5’-磷酸對於「受體」DNA抑制添加反應的能力係足夠強力甚至不需要限制酵素。僅使用磷酸酶替代磷酸酶與限制酵素的組合的簡化為有利的且未預期的。其需要較少試劑,其加速反應,且就可使用於「雜合」區域的核苷酸序列而言其提供更多彈性。此無限制酵素的方法係示於此處:
7F-T 5’ pCGGCAGATCTACCCTTCGAATTCACGTACTTG[SEQ ID NO:33] 3’ TCTAGATGGGAAGCCGpAGTGCATGAACp
7F-B1 7F-B2 + Topo = 5’ pCGGCAGATCTACCCTT*[SEQ ID NO:32]3’ TCTAGATGGGAAGCCGp(*=topo)
當此寡核苷酸經導入具有pCGGC突出的受體時,添加反應不發生於任何合適程度直到藉由SAP、CIP或其他合適的磷酸酶移除磷酸。例如:
Figure 107138371-A0202-12-0221-225
此方法的主要限制在於若限制酵素將切入及破壞拓樸異構酶結合位點為必需的,如上所述用於藉由單一核苷酸構築DNA鏈,則其不合適。
選擇特定方法列入考慮當拓樸異構酶係「經荷載」,有經荷載及未荷載的產物的混合物-其表示於 該二物種之間的平衡,此可受影響以最適化反應效率。拓樸異構酶留下的「突出」可設計為許多方式。富含GC的突出傾向於具有較快的荷載反應,但具有傾向於產生較低產物產率的荷載平衡。某些系統中,可期望為具有某些錯配(或使用肌苷酸)替代「適當」對,此乃因其可減低「逆」反應且改良產率。再者,於多核苷酸激酶(加上ATP)的存在下進行反應,藉由將減低逆反應速率的反應「副產物」磷酸化而改良產率。該方法以可經最適化用於規模放大,例如藉由使用管柱純化而非磁性珠以單離產物。
實施例11:荷載具有非共通鹼基的Topo
對於牛痘拓樸異構酶的共通辨識序列為(C/T)CCTT。當添加單一核苷酸至DNA鏈(如前文所述),此序列的最後位置(此情況中為「T」)將被添加至該DNA鏈。為了具有最大效率編碼DNA中的二進制數據(亦即每位元一鹼基),有用於能「荷載」具有最後位置為「T」以外的序列的拓樸異構酶。一般而言,非共通序列對於拓樸異構酶顯示較差反應性。然而,申請人於下文顯示「荷載」具有共通序列以外的序列的DNA的有效方法。
步驟1:黏合寡核苷酸。將如下表中所特定之組成導入4個管,加熱至94℃維持5分鐘後,使其冷卻至室溫。
Figure 107138371-A0202-12-0223-226
如下文所闡明,此將產生經黏合的DNA。該等DNA彼此不同於粗體字的核苷酸,其為topo共通序列的最後(3’)位置。再者應注意序列中的錯配(下加底線)。當拓樸異構酶結合其辨識序列且進行轉酯,該等錯配的存在減低逆反應速率且因此促進「經荷載」拓樸異構酶的形成。
7-BT:
7F-T 5’ P-CGGCAGATCTACCCTTCGAATTCACGTACTTG[SEQ ID NO:33]7F-B1 TCTAGATGGGAAGCCG AGTGCATGAAC 7F-B2
7-BTC:
7F-TC 5’ P-CGGCAGATCTACCCTCCGAATTCACGTACTTG[SEQ ID NO:35]7F-B1C TCTAGATGGGAGGCCG AGTGCATGAAC 7F-B2
7-BTG:
7F-TG 5’P-CGGCAGATCTACCCTGCGAATTCACGTACTTG[SEQ ID NO:36]7F-B1G TCTAGATGGGACGCCG AGTGCATGAAC 7F-B2
7-BTA:
7F-TA5’ P-CGGCAGATCTACCCTACGAATTCACGTACTTG[SEQ ID NO:37]7F-B1A TCTAGATGGGATGCCG AGTGCATGAAC 7F-B2
步驟2:然後該拓樸異構酶荷載上述寡核苷酸,藉由組合上述拓樸異構酶所述之四個寡核苷酸之各者。
Figure 107138371-A0202-12-0224-227
拓樸異構酶:60ng/μl於50mM磷酸鈉(pH 7.5),1mM DTT,0.5mM EDTA,50mM NaCl,50%甘油中。
10x緩衝液:200mM Tris(8.0),1M NaCl,50mM MgCl2,20mM DTT
如上述表所載混合該等成分,於37℃培育30分鐘,且於SDS-PAGE凝膠運作以確認反應如所預期的進行。凝膠結果顯示於第96圖。經荷載的拓樸異構酶可自未荷載的拓樸異構酶及其他反應組成及產物純化。雖然T反應(對應於共通CCCTT序列)產生最大產率的經荷載的拓樸異構酶(指示的),其他反應同樣產生顯著量的經荷載的拓樸異構酶,展現對於合成DNA的拓樸異構酶反應可使用於添加任何經選擇的單一核苷酸或寡聚物至DNA股於3’至5’方向,例如上述方法A,或如以下所述。
<110> 美商艾瑞迪亞公司
<120> 用於寫入、讀出以及控制儲存在聚合物中之數據之系統及方法
<130> DNA-01-TW
<160> 38
<170> PatentIn version 3.5
<210> 1
<211> 26
<212> DNA
<213> 人工序列
<220>
<223> 捐贈者寡核苷酸(合成序列)
<220>
<221> misc_feature
<222> (8)..(15)
<223> n(位於鹼基位置8至15)意指資訊序列A或B,其可為3至12個 核苷酸
<220>
<221> misc_feature
<222> (22)..(26)
<223> n為a,c,g,或t
<400> 1
Figure 107138371-A0202-12-0232-228
<210> 2
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 拓樸酶連接位點(合成序列)
<220>
<221> misc_feature
<222> (8)..(15)
<223> n(位於鹼基位置8至15)意指資訊序列A或B,其可為3至12 個核苷酸
<400> 2
Figure 107138371-A0202-12-0232-229
<210> 3
<211> 17
<212> DNA
<213> 人工序列
<220>
<223> 寡核苷酸(合成序列)
<220>
<221> misc_feature
<222> (8)..(15)
<223> n(位於鹼基位置8至15)意指資訊序列A或B,其可為3至12 個核苷酸
<400> 3
Figure 107138371-A0202-12-0233-230
<210> 4
<211> 81
<212> DNA
<213> 人工序列
<220>
<223> BAB(合成序列)
<400> 4
Figure 107138371-A0202-12-0233-231
<210> 5
<211> 35
<212> DNA
<213> 人工序列
<220>
<223> B2(合成序列)
<400> 5
Figure 107138371-A0202-12-0233-232
<210> 6
<211> 30
<212> DNA
<213> 人工序列
<220>
<223> TA2(合成序列)
<400> 6
Figure 107138371-A0202-12-0234-233
<210> 7
<211> 71
<212> DNA
<213> 人工序列
<220>
<223> TA3b(合成序列)
<400> 7
Figure 107138371-A0202-12-0234-234
<210> 8
<211> 30
<212> DNA
<213> 人工序列
<220>
<223> TB2(合成序列)
<400> 8
Figure 107138371-A0202-12-0234-235
<210> 9
<211> 71
<212> DNA
<213> 人工序列
<220>
<223> TB3b(合成序列)
<400> 9
Figure 107138371-A0202-12-0234-236
<210> 10
<211> 17
<212> DNA
<213> 人工序列
<220>
<223> FP1(合成序列)
<400> 10
Figure 107138371-A0202-12-0234-237
<210> 11
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> FP2(合成序列)
<400> 11
Figure 107138371-A0202-12-0235-238
<210> 12
<211> 15
<212> DNA
<213> 人工序列
<220>
<223> FP3(合成序列)
<400> 12
Figure 107138371-A0202-12-0235-239
<210> 13
<211> 50
<212> DNA
<213> 人工序列
<220>
<223> NAT1(合成序列)
<400> 13
Figure 107138371-A0202-12-0235-240
<210> 14
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> NAT9x(合成序列)
<400> 14
Figure 107138371-A0202-12-0235-241
<210> 15
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> NAT9(合成序列)
<400> 15
Figure 107138371-A0202-12-0236-242
<210> 16
<211> 31
<212> DNA
<213> 人工序列
<220>
<223> Nat9Acc(合成序列)
<400> 16
Figure 107138371-A0202-12-0236-243
<210> 17
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> Nat1P(合成序列)
<400> 17
Figure 107138371-A0202-12-0236-244
<210> 18
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> FP4(合成序列)
<400> 18
Figure 107138371-A0202-12-0236-245
<210> 19
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> NAT9c(合成序列)
<400> 19
Figure 107138371-A0202-12-0236-246
<210> 20
<211> 47
<212> DNA
<213> 人工序列
<220>
<223> o1(合成序列)
<400> 20
Figure 107138371-A0202-12-0237-247
<210> 21
<211> 24
<212> DNA
<213> 人工序列
<220>
<223> o3(合成序列)
<400> 21
Figure 107138371-A0202-12-0237-248
<210> 22
<211> 37
<212> DNA
<213> 人工序列
<220>
<223> N1(合成序列)
<400> 22
Figure 107138371-A0202-12-0237-249
<210> 23
<211> 34
<212> DNA
<213> 人工序列
<220>
<223> N2(合成序列)
<400> 23
Figure 107138371-A0202-12-0237-250
<210> 24
<211> 47
<212> DNA
<213> 人工序列
<220>
<223> 寡核苷酸(合成序列)
<400> 24
Figure 107138371-A0202-12-0238-251
<210> 25
<211> 24
<212> DNA
<213> 人工序列
<220>
<223> 寡核苷酸(合成序列)
<400> 25
Figure 107138371-A0202-12-0238-252
<210> 26
<211> 30
<212> DNA
<213> 人工序列
<220>
<223> 寡核苷酸(合成序列)
<400> 26
Figure 107138371-A0202-12-0238-253
<210> 27
<211> 84
<212> DNA
<213> 人工序列
<220>
<223> 寡核苷酸(合成序列)
<400> 27
Figure 107138371-A0202-12-0238-254
<210> 28
<211> 74
<212> DNA
<213> 人工序列
<220>
<223> 寡核苷酸(合成序列)
<400> 28
Figure 107138371-A0202-12-0238-255
<210> 29
<211> 61
<212> DNA
<213> 人工序列
<220>
<223> 寡核苷酸(合成序列)
<400> 29
Figure 107138371-A0202-12-0239-256
<210> 30
<211> 91
<212> DNA
<213> 人工序列
<220>
<223> 寡核苷酸(合成序列)
<400> 30
Figure 107138371-A0202-12-0239-257
<210> 31
<211> 23
<212> DNA
<213> 人工序列
<220>
<223> NAT9cI(合成序列)
<400> 31
Figure 107138371-A0202-12-0239-258
<210> 32
<211> 16
<212> DNA
<213> 人工序列
<220>
<223> 寡核苷酸(合成序列)
<400> 32
Figure 107138371-A0202-12-0239-259
<210> 33
<211> 32
<212> DNA
<213> 人工序列
<220>
<223> 寡核苷酸(合成序列)
<400> 33
Figure 107138371-A0202-12-0240-260
<210> 34
<211> 16
<212> DNA
<213> 人工序列
<220>
<223> 寡核苷酸(合成序列)
<400> 34
Figure 107138371-A0202-12-0240-261
<210> 35
<211> 32
<212> DNA
<213> 人工序列
<220>
<223> 寡核苷酸(合成序列)
<400> 35
Figure 107138371-A0202-12-0240-262
<210> 36
<211> 32
<212> DNA
<213> 人工序列
<220>
<223> 寡核苷酸(合成序列)
<400> 36
Figure 107138371-A0202-12-0240-263
<210> 37
<211> 32
<212> DNA
<213> 人工序列
<220>
<223> 寡核苷酸(合成序列)
<400> 37
Figure 107138371-A0202-12-0240-264
<210> 38
<211> 11
<212> DNA
<213> 人工序列
<220>
<223> 寡核苷酸(合成序列)
<400> 38
Figure 107138371-A0202-12-0241-265
4900‧‧‧電路

Claims (45)

  1. 一種用於讀取聚合物中所儲存的數據的方法,包括:i)提供具有有效阻抗的LC諧振器;ii)提供單元,該單元具有奈米孔或奈米通道以及可藉由該奈米孔或奈米通道移位的聚合物,此等移位影響該有效阻抗,該LC諧振器在探針頻率具有AC輸出電壓諧振頻率響應,其係基於該有效阻抗,響應在該探針頻率的AC輸入電壓;iii)提供具有至少該探針頻率的該AC輸入電壓;以及iv)監控至少在該探針頻率的該AC輸出電壓,在該探針頻率的該AC輸出電壓標示在監控時在該聚合物中所儲存的該數據;其中,該LC諧振器為橫向諧振器,其中,該單元包括一個或多個添加室以及一個或多個去保護室,該一個或多個添加室包含緩衝溶液及試劑,該緩衝溶液及試劑用於以保護形式向該聚合物添加一個或多個單體或寡聚體,從而在一個反應循環中僅能添加單個單體或寡聚體;以及該一個或多個去保護室包含緩衝溶液及試劑,用於自該聚合物移除保護基團,其中,該添加室藉由包括一個或多個奈米孔的一個或多個膜與該去保護室隔開。
  2. 如申請專利範圍第1項所述的方法,其中,該聚合物包括至少兩種類型單體或寡聚體,其具有不同的屬性,從而引起不同的諧振頻率響應。
  3. 如申請專利範圍第2項所述的方法,其中,該至少兩種類型單體或寡聚體包括:至少第一單體或寡聚體,其具有第一屬性,以於該第一單體或寡聚體在該奈米孔中時引起第一諧振頻率響應;以及第二單體或寡聚體,其具有第二屬性,以於該第二單體或寡聚體在該奈米孔中時引起第二諧振頻率響應。
  4. 如申請專利範圍第3項所述的方法,其中,在該探針頻率的該第一頻率響應的特性不同於在該探針頻率的該第二頻率響應的同一特性。
  5. 如申請專利範圍第4項所述的方法,其中,該第一及第二頻率響應的該特性包括幅度及相位響應的至少其中之一。
  6. 如申請專利範圍第3項所述的方法,其中,該單體的該第一屬性及該第二屬性包括介電屬性。
  7. 如申請專利範圍第1項所述的方法,其中,該單元包括至少一組橫向電極,該橫向電極橫跨該奈米孔或奈米通道設置,且該單元在其中具有流體,以及其中,該橫向電極、該奈米孔或奈米通道以及該流體具有於該聚合物經過該奈米孔或奈米通道時變化的有效電容。
  8. 如申請專利範圍第7項所述的方法,其中,該有效阻抗包括電感器,與該有效電容串聯連接以創建該LC諧振 器,該電感器與該有效電容的組合與該諧振頻率響應相關。
  9. 如申請專利範圍第7項所述的方法,其中,該單元係包括至少頂部電極及底部電極,且藉由施加於該頂部及底部電極的DC引導電壓使該聚合物經過該奈米孔。
  10. 如申請專利範圍第7項所述的方法,其中,該單元具有至少三個室、至少兩個奈米孔,以及至少三個電極,以使該聚合物經過該奈米孔。
  11. 如申請專利範圍第2項所述的方法,其中,該聚合物中的該至少兩種類型單體或寡聚體的序列的至少部分以電腦可讀代碼的形式儲存數據。
  12. 如申請專利範圍第1項所述的方法,其中,該聚合物包括DNA,以及其中,該DNA包括至少兩種類型核苷酸,每種類型核苷酸在該探針頻率提供獨特的頻率響應。
  13. 如申請專利範圍第1項所述的方法,其中,該探針頻率為約1MHz至100GHz。
  14. 如申請專利範圍第1項所述的方法,其中,該至少兩種不同類型單體或寡聚體具有介電屬性,其影響該LC諧振器的該頻率響應,以在該探針頻率產生至少兩種不同的頻率響應。
  15. 如申請專利範圍第1項所述的方法,還包括提供具有第二有效阻抗的第二LC諧振器,其中,該第二LC諧振器為縱向諧振器,該聚合物的該移位影響該第二有效阻抗,該第二諧振器在第二探針頻率具有第二AC輸出 電壓諧振頻率響應,其係基於該第二有效阻抗,響應在該第二探針頻率的第二AC輸入電壓;向該第二諧振器提供具有至少該第二探針頻率的該第二AC輸入電壓;以及監控至少在該第二探針頻率的該第二諧振器的該第二AC輸出電壓,在該第二探針頻率的該第二諧振器的該第二AC輸出電壓標示在監控時在該聚合物中所儲存的該數據。
  16. 如申請專利範圍第1項所述的方法,其中,該LC諧振器包括開口環諧振器,在該開口環諧振器的間隙中設置該奈米孔或奈米通道。
  17. 如申請專利範圍第1項所述的方法,其中,該奈米通道具有允許該聚合物基本上線性流動而不會自行折疊的尺寸。
  18. 如申請專利範圍第1項所述的方法,還包括在該單元中的多個該LC諧振器,各該LC諧振器由共同的AC輸入電壓驅動並自共同的AC輸出電壓監控。
  19. 如申請專利範圍第15項所述的方法,其中,該LC諧振器及該第二LC諧振器分別由共同的AC輸入電壓驅動並自共同的AC輸出電壓監控。
  20. 如申請專利範圍第15項所述的方法,其中,同時監控該LC諧振器及該第二LC諧振器的該頻率響應。
  21. 如申請專利範圍第1所述的方法,還包括多個單元,各單元具有調諧至不同諧振頻帶的該LC諧振器,該些單 元由共同的AC輸入電壓驅動並藉由共同的AC輸出電壓測量。
  22. 一種用於讀取聚合物中所儲存的數據的基於奈米孔的裝置,包括:i)LC諧振器,具有有效阻抗;ii)單元,該單元具有奈米孔或奈米通道以及可藉由該奈米孔或奈米通道移位的聚合物,此等移位影響該有效阻抗,該LC諧振器在探針頻率具有AC輸出電壓諧振頻率響應,其基於該有效阻抗,響應在該探針頻率的AC輸入電壓;iii)AC輸入電壓源,經配置以提供具有至少該探針頻率的AC輸入電壓;以及iv)監控裝置,經配置以監控至少在該探針頻率的該AC輸出電壓,在該探針頻率的該AC輸出電壓標示在監控時在該聚合物中所儲存的該數據;其中,該LC諧振器為橫向諧振器,其中,該單元包括一個或多個添加室以及一個或多個去保護室,該一個或多個添加室包含緩衝溶液及試劑,該緩衝溶液及試劑用於以保護形式向該聚合物添加一個或多個單體或寡聚體,從而在一個反應循環中僅能添加單個單體或寡聚體;以及該一個或多個去保護室包含緩衝溶液及試劑,用於自該聚合物移除保護基團, 其中,該添加室藉由包括一個或多個奈米孔的一個或多個膜與該去保護室隔開。
  23. 如申請專利範圍第22項所述的裝置,其中,該聚合物包括至少兩種單體或寡聚體,其具有不同的屬性,從而在該探針頻率引起不同的諧振頻率響應,該響應標示至少兩個不同的數據位元。
  24. 一種用於讀取聚合物所儲存的數據的方法,包括:i)提供具有電感器及單元的諧振器,該單元具有奈米孔以及可穿過該奈米孔的聚合物,該諧振器在探針頻率具有AC輸出電壓頻率響應,響應在該探針頻率的AC輸入電壓;ii)提供具有至少該探針頻率的該AC輸入電壓;以及iii)監控至少在該探針頻率的該AC輸出電壓,在該探針頻率的該AC輸出電壓標示在監控時在該聚合物中所儲存的該數據,其中,該單元包括一個或多個添加室以及一個或多個去保護室,該一個或多個添加室包含緩衝溶液及試劑,該緩衝溶液及試劑用於以保護形式向該聚合物添加一個或多個單體或寡聚體,從而在一個反應循環中僅能添加單個單體或寡聚體;以及該一個或多個去保護室包含緩衝溶液及試劑,用於自該聚合物移除保護基團, 其中,該添加室藉由包括一個或多個奈米孔的一個或多個膜與該去保護室隔開。
  25. 如申請專利範圍第24項所述的方法,其中,該聚合物包括至少兩種類型單體或寡聚體,其具有不同的屬性,從而引起不同的諧振頻率響應。
  26. 如申請專利範圍第25項所述的方法,其中,該至少兩種類型單體或寡聚體包括:至少第一單體或寡聚體,其具有第一屬性,以於該第一單體或寡聚體在該奈米孔中時引起第一諧振頻率響應;以及第二單體或寡聚體,其具有第二屬性,以於該第二單體或寡聚體在該奈米孔中時引起第二諧振頻率響應。
  27. 如申請專利範圍第26項所述的方法,其中,在該探針頻率的該第一頻率響應的特性不同於在該探針頻率的該第二頻率響應的同一特性。
  28. 如申請專利範圍第27項所述的方法,其中,該第一及第二頻率響應的該特性包括幅度及相位響應的至少其中之一。
  29. 如申請專利範圍第26項所述的方法,其中,該單體的該第一屬性及該第二屬性包括介電屬性。
  30. 如申請專利範圍第24項所述的方法,其中,該單元包括至少頂部及底部電極,該奈米孔設於該電極之間,且該單元在其中具有流體,以及其中,該電極、該奈米孔及該流體具有於該聚合物經過該奈米孔時變化的有效單元電容。
  31. 如申請專利範圍第24項所述的方法,其中,該電感器與該有效電容串聯連接以創建該LC諧振器,該電感器與該有效電容的組合與該諧振頻率響應相關。
  32. 如申請專利範圍第24項所述的方法,其中,藉由施加於該電極的DC引導電壓使該聚合物經過該奈米孔。
  33. 如申請專利範圍第24項所述的方法,其中,該單元具有至少三個室、至少兩個奈米孔,以及至少三個電極,以使該聚合物經過該奈米孔。
  34. 如申請專利範圍第24項所述的方法,其中,該聚合物包括至少兩種類型單體或寡聚體,其具有不同的屬性,從而引起不同的諧振頻率響應,以及其中,在該聚合物中的該至少兩種類型單體或寡聚體的序列的至少部分以電腦可讀代碼的形式儲存數據。
  35. 如申請專利範圍第24項所述的方法,其中,該聚合物包括DNA,以及其中,該DNA包括至少兩種類型核苷酸,每種類型核苷酸在該探針頻率提供獨特的頻率響應。
  36. 如申請專利範圍第35項所述的方法,其中,該探針頻率為約1MHz至1GHz。
  37. 如申請專利範圍第24項所述的方法,其中,該聚合物包括至少兩種不同類型單體或寡聚體,每種類型具有不同的介電屬性,其影響該諧振器的該頻率響應,以在該探針頻率產生至少兩種不同的頻率響應。
  38. 一種用於讀取聚合物中所儲存的數據的基於奈米孔的裝置,包括: i)諧振器,具有電感器及單元,該單元具有奈米孔以及可穿過該奈米孔的聚合物,該諧振器在探針頻率具有AC輸出電壓頻率響應,響應在該探針頻率的AC輸入電壓;ii)AC輸入電壓源,經配置以提供至少該探針頻率的AC輸入電壓;以及iii)監控裝置,經配置以監控至少在該探針頻率的該AC輸出電壓,在該探針頻率的該AC輸出電壓標示在監控時在該聚合物中所儲存的該數據,其中,該單元包括一個或多個添加室以及一個或多個去保護室,該一個或多個添加室包含緩衝溶液及試劑,該緩衝溶液及試劑用於以保護形式向該聚合物添加一個或多個單體或寡聚體,從而在一個反應循環中僅能添加單個單體或寡聚體;以及該一個或多個去保護室包含緩衝溶液及試劑,用於自該聚合物移除保護基團,其中,該添加室藉由包括一個或多個奈米孔的一個或多個膜與該去保護室隔開。
  39. 如申請專利範圍第38項所述的裝置,其中,該聚合物包括至少兩種單體或寡聚體,其具有不同的屬性,從而在該探針頻率引起不同的諧振頻率響應,該響應標示至少兩個不同的數據位元。
  40. 如申請專利範圍第38項所述的裝置,其中,該電感器 與有效電容串聯連接以創建該諧振器,該電感器與有效電容的組合與在該探針頻率的該諧振頻率響應相關。
  41. 一種用於在基於奈米孔的裝置中合成包括至少兩種不同單體或寡聚體的荷電聚合物的方法,該基於奈米孔的裝置包括一個或多個添加室或通道,包含緩衝溶液及試劑,用於以保護形式向該荷電聚合物添加一個或多個單體或寡聚體,從而在一個反應循環中僅可添加單個單體或寡聚體;以及一個或多個去保護室或通道,包含緩衝溶液及試劑,用於自該荷電聚合物移除保護基團,其中,該添加室或通道藉由包括一個或多個奈米孔的一個或多個膜與該去保護室或通道隔開,以及其中,該荷電聚合物可經過奈米孔且用於添加一個或多個單體或寡聚體的該試劑的至少其中之一不能經過奈米孔,該方法包括a)藉由電性吸引使具有第一端及第二端的荷電聚合物的該第一端進入添加室或通道,從而以保護形式將單體或寡聚體添加至該第一端,b)使具有保護形式的該添加單體或寡聚體的該荷電聚合物的該第一端進入去保護室或通道,從而自該添加單體或寡聚體移除該保護基團;c)重複步驟a)及b),其中,在步驟a)中所添加的 該單體或寡聚體是相同的或不同的,直至獲得所需聚合物序列;以及d)在已添加一個或多個單體或寡聚體以後,驗證該聚合物中的單體或寡聚體的該序列,其中,藉由使用依據申請專利範圍第24項所述的方法驗證該序列。
  42. 如申請專利範圍第41項所述的方法,其中,該荷電聚合物為DNA。
  43. 如申請專利範圍第41項所述的方法,其中,該聚合物的該第二端結合於表面。
  44. 如申請專利範圍第41項所述的方法,其中,該裝置包括:一個或多個第一添加室或通道,包含適於添加第一類型單體或寡聚體的試劑;以及一個或多個第二添加室,包含適於添加第二類型單體或寡聚體的試劑,以及其中,在步驟a)中,依據想要添加第一類型單體或寡聚體還是第二類型單體或寡聚體,使該荷電聚合物的該第一端進入該第一添加室或該第二添加室。
  45. 如申請專利範圍第42項所述的方法,其中,用於向該荷電聚合物添加一個或多個單體或寡聚體的該試劑包括選自拓撲異構酶、DNA聚合酶或其組合的試劑。
TW107138371A 2017-10-30 2018-10-30 用於寫入、讀出以及控制儲存在聚合物中之數據之系統及方法 TWI827559B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
PCT/US2017/059100 WO2018081745A1 (en) 2016-10-31 2017-10-30 Methods, compositions, and devices for information storage
??PCT/US17/059100 2017-10-30
WOPCT/US17/059100 2017-10-30
US15/969,745 US10640822B2 (en) 2016-02-29 2018-05-02 Systems and methods for writing, reading, and controlling data stored in a polymer
US15/969,745 2018-05-02

Publications (2)

Publication Number Publication Date
TW201930601A TW201930601A (zh) 2019-08-01
TWI827559B true TWI827559B (zh) 2024-01-01

Family

ID=68315884

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107138371A TWI827559B (zh) 2017-10-30 2018-10-30 用於寫入、讀出以及控制儲存在聚合物中之數據之系統及方法

Country Status (2)

Country Link
TW (1) TWI827559B (zh)
WO (1) WO2019213437A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3847649A4 (en) 2018-09-07 2022-08-31 Iridia, Inc. IMPROVED SYSTEMS AND METHODS FOR WRITING AND READING DATA STORED IN A POLYMER
US11655465B1 (en) 2019-05-02 2023-05-23 Iridia, Inc. Enzymes and systems for synthesizing DNA
CN111019814B (zh) * 2019-12-26 2022-12-09 中国科学院苏州生物医学工程技术研究所 一种基于纳米孔的核酸测序装置、核酸测序方法
CN111489791B (zh) * 2020-04-07 2023-05-26 中国科学院重庆绿色智能技术研究院 固态纳米孔高密度编码dna数字存储读取方法
US11837302B1 (en) 2020-08-07 2023-12-05 Iridia, Inc. Systems and methods for writing and reading data stored in a polymer using nano-channels
WO2023081031A1 (en) * 2021-11-08 2023-05-11 Illumina, Inc. Identifying nucleotides using changes in impedance between electrodes
CN114676064B (zh) * 2022-04-08 2024-08-23 浙江大学 一种面向硬件语言代码的通用测试系统和方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010034030A1 (en) * 1998-02-02 2001-10-25 John Hefti Method for detecting and classifying nucleic acid hybridization
US20090203000A1 (en) * 2007-02-16 2009-08-13 Drexel University Detection of nucleic acids using a cantilever sensor
TWI470224B (zh) * 2011-12-22 2015-01-21 Univ Chang Gung 檢測系統及檢測方法
US20160223538A1 (en) * 2010-06-28 2016-08-04 The Trustees Of Princeton University Use and making of biosensors utilizing antimicrobial peptides for highly sensitive biological monitoring
US20170275678A1 (en) * 2006-03-12 2017-09-28 Applied Biosystems, Llc Methods of detecting target nucleic acids

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2641871T3 (es) * 2010-12-17 2017-11-14 The Trustees Of Columbia University In The City Of New York Secuenciación de ADN mediante síntesis usando nucleótidos modificados y detección con nanoporos

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010034030A1 (en) * 1998-02-02 2001-10-25 John Hefti Method for detecting and classifying nucleic acid hybridization
US20170275678A1 (en) * 2006-03-12 2017-09-28 Applied Biosystems, Llc Methods of detecting target nucleic acids
US20090203000A1 (en) * 2007-02-16 2009-08-13 Drexel University Detection of nucleic acids using a cantilever sensor
US20160223538A1 (en) * 2010-06-28 2016-08-04 The Trustees Of Princeton University Use and making of biosensors utilizing antimicrobial peptides for highly sensitive biological monitoring
TWI470224B (zh) * 2011-12-22 2015-01-21 Univ Chang Gung 檢測系統及檢測方法

Also Published As

Publication number Publication date
WO2019213437A1 (en) 2019-11-07
TW201930601A (zh) 2019-08-01

Similar Documents

Publication Publication Date Title
US11505825B2 (en) Methods of synthesizing DNA
JP7112394B2 (ja) 情報の記憶のための方法、組成物、およびデバイス
TWI827559B (zh) 用於寫入、讀出以及控制儲存在聚合物中之數據之系統及方法
JP7546345B2 (ja) 情報保存のための方法、組成物およびデバイス
US10859562B2 (en) Methods, compositions, and devices for information storage
ES2779699T3 (es) Secuenciación de ácidos nucleicos mediante detección en nanoporos de moléculas de etiqueta
JP6456816B2 (ja) ナノ細孔の調製方法およびその使用
CN113767177A (zh) 生成用于空间分析的捕获探针
CN103282518B (zh) 使用经修饰的核苷酸和纳米孔检测的dna边合成边测序
CN109312401A (zh) 连接的核酸的纳米孔测序方法
CN112189054A (zh) 方法
TW201606149A (zh) 重新合成之基因庫
CN109196116A (zh) 方法