CN106611702A - 使用自组装单层形成ald抑制层的方法 - Google Patents

使用自组装单层形成ald抑制层的方法 Download PDF

Info

Publication number
CN106611702A
CN106611702A CN201610919979.1A CN201610919979A CN106611702A CN 106611702 A CN106611702 A CN 106611702A CN 201610919979 A CN201610919979 A CN 201610919979A CN 106611702 A CN106611702 A CN 106611702A
Authority
CN
China
Prior art keywords
layer
ald
metal
sam
methods according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610919979.1A
Other languages
English (en)
Inventor
L·莱克蒂尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Veeco Instruments Inc
Original Assignee
Ultratech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ultratech Corp filed Critical Ultratech Corp
Publication of CN106611702A publication Critical patent/CN106611702A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/12Dry methods smelting of sulfides or formation of mattes by gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02304Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment formation of intermediate layers, e.g. buffer layers, layers to improve adhesion, lattice match or diffusion barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28194Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation by deposition, e.g. evaporation, ALD, CVD, sputtering, laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76834Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers formation of thin insulating films on the sidewalls or on top of conductors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明提供了使用自组装单层形成ALD抑制层的方法。具体地,使用SAM分子层形成ALD抑制层的方法包括提供具有金属M和该金属M的氧化物层的金属化衬底。使用包括金属Q的还原气体来还原该金属M的氧化物层,在该金属M的顶部留下呈M+MQyOx形式的层。以蒸气形式提供该SAM分子并在该M+MQyOx层上形成ALD抑制的SAM层。还公开了使用该ALD抑制的SAM层进行S‑ALD的方法。

Description

使用自组装单层形成ALD抑制层的方法
技术领域
本公开涉及原子层沉积(ALD),且特别是涉及使用自组装单层(SAM)形成ALD抑制层的方法。
通过引用将本文提及的任何出版物或专利文件的全部公开内容并入本文中。
背景技术
ALD是一种以极受控制的方式在衬底上沉积薄膜的方法。使用两种或更多种呈蒸气形式的化学品(即“工艺气体”)和;顺序地且以自限制方式使其在该衬底(例如硅晶片)表面上反应来控制该沉积工艺。重复该顺序工艺以一层接一层地建构该薄膜层,其中所述层是原子等级。
使用ALD以形成各式各样的膜,例如用于先进栅极和电容器电介质的二元、三元和四元氧化物,以及用于互连屏障和电容器电极的金属基化合物。
该典型ALD工艺将第一工艺气体引入单一工艺室内。在此环境中置放该衬底持续短时间周期以将该表面暴露至第一工艺气体。一旦该衬底表面饱和有该第一工艺气体,就将该第一工艺气体泵送出该室。接着使惰性或清洗气体流经该室。然后将第二工艺气体引入该室内。该第二工艺气体与被该第一工艺气体饱和的该衬底表面反应。在第二工艺气体流入该室内之前使该惰性或清洗气体流经该室的目的是确保移除所有初始未反应的第一工艺气体。第二工艺气体与饱和有第一工艺气体的该衬底表面反应。
一旦完成此第二反应工艺,就移除该第二工艺气体且再次用惰性或清洗气体清洗该室。接着,将该第一工艺气体引入该室内并重复全部反应顺序直至获得所需厚度的ALD膜。
在一种类型的ALD工艺中,该ALD膜覆盖该衬底的整个表面。然而,当形成半导体器件时,通常优选在界定3D半导体器件结构的工艺中在该衬底的选择区域中形成ALD膜。尽管这可使用物理掩蔽方法(例如光致抗蚀剂型掩蔽)进行,但是这样的掩蔽方法是工艺密集且耗时的。
发明内容
本文公开的方法可用于在包括天然金属氧化物(MOx)的金属M层上形成ALD抑制层。该方法包括使用包含金属Q的还原气体来进行天然金属氧化物MOX的原位还原,以形成M+MQyOx形式的“金属+金属氧化物”层。接着将M+MQyOx层暴露至呈蒸气相的SAM分子以在该M+MQyOx层上形成SAM层。示例性SAM分子是硫醇,其是含有结合碳的巯基团的有机硫化合物。
本公开的一个方面是一种在覆盖有该金属M的氧化物层(下文称为“金属氧化物层”)的金属M上形成ALD抑制层的方法。该方法包括:a)通过将该金属氧化物层暴露至包括金属Q的还原气体来还原该金属氧化物层,以在该金属M上形成M+MQxOy层;和b)将该M+MQxOy层暴露至呈蒸气相的自组装单层(下文称为“SAM”)分子,其中该SAM分子在该M+MQxOy层上形成SAM层,该SAM层为ALD抑制的。
本公开的另一方面是上述的方法,其中该金属M是Cu、Ni、Fe或Co,和该金属Q是Al、Hf、Zr、Si、Ti或Zn。
本公开的另一方面是上述的方法,其中该SAM分子是硫醇分子。
本公开的另一方面是上述的方法,其中该金属M是铜,该金属氧化物层由氧化铜制成,该还原气体包含三甲基铝(TMA),该SAM分子是硫醇分子,和M+MQxOy层是Cu+CuAlO2层。
本公开的另一方面是上述的方法,其中步骤a)在120℃和250℃间的温度下进行。
本公开的另一方面是上述的方法,其中步骤a)和b)在小于1乇的真空条件下进行。
本公开的另一方面是上述的方法,其中该金属氧化物层具有范围在1nm至5nm的厚度。
本公开的另一方面是上述的方法,其中该ALD抑制层基本上抑制其上的ALD膜的形成持续至少100次ALD循环。
本公开的另一方面是上述的方法,其中该ALD抑制层基本上抑制其上的ALD膜的形成持续至少150次ALD循环。
本公开的另一方面是上述的方法,该方法进一步包括在半导体衬底上形成金属M作为图案化金属层。
本公开的另一方面是上述的方法,将该金属M在半导体衬底的介电层上形成为图案。并且该方法进一步包括通过在该介电层以及覆盖该金属M的SAM层上进行ALD工艺来进行选择性区域ALD,由此在该介电层上但不在SAM层上形成ALD膜。
本公开的另一方面是上述的方法,其中该介电层是氧化物层。
本公开的另一方面是上述的方法,该方法进一步包括移除该SAM层。
本公开的另一方面是上述的方法,其中在少于720秒内进行步骤a)。
本文公开的方法使得能够通过例如在半导体器件的金属电极上选择性形成该ALD抑制层来进行选择性区域ALD(S-ALD)。该方法减少在制造集成电路期间所需的加工步骤数目,因为其消除对于通常与常规S-ALD方法相关的多个光刻、蚀刻和沉积步骤的需要。
本公开的一个方面是一种进行选择性区域原子层沉积(以下称为“S-ALD”)的方法。该方法包括a)在由半导体衬底支撑的介电层上界定金属M层(下文称为“金属层”),其中该金属层界定图案,且其中用该金属M的氧化物层(下文称为“金属氧化物层”)覆盖该金属层;b)通过将该金属氧化物层暴露至包括金属Q的还原气体来还原该金属氧化物层以在该金属层上形成M+MQxOy层;c)将M+MQxOy层与介电层暴露至呈蒸气相的自组装单层(SAM)分子,其中该SAM分子在该M+MQxOy层上形成SAM层以界定ALD抑制层,和其中在该介电层上不形成SAM层;和d)进行ALD工艺以沉积ALD膜,其中该ALD膜在该介电层上但不在该SAM层上形成。
本公开的另一方面是上述的方法,其中该金属M是Cu、Ni、Fe或Co,和该金属Q是Al、Hf、Zr、Si、Ti或Zn。
本公开的另一方面是上述的方法,该方法进一步包括移除该SAM层的步骤e)。
本公开的另一方面是上述的方法,其中在720秒内进行步骤b)。
本公开的另一方面是上述的方法,其中该SAM分子由硫醇分子组成。
本公开的另一方面是上述的方法,其中该介电层包含SiO2层。
本公开的另一方面是上述的方法,其中该金属M是铜,该金属氧化物层由氧化铜制成,该还原气体包含三甲基铝(TMA),该SAM分子是硫醇分子,和M+MQxOy层是Cu+CuAlO2层。
本公开的另一方面是上述的方法,其中该SAM层基本上抑制其上的ALD膜的形成持续至少100次ALD循环。
本公开的另一方面是上述的方法,其中该SAM层基本上抑制其上的ALD膜的形成持续至少150次ALD循环。
本公开的另一方面是上述的方法,其中步骤b)在120℃和250℃之间的温度下进行。
本公开的另一方面是上述的方法,其中步骤b)和c)在小于1乇的真空条件下进行。
本公开的另一方面是上述的方法,其中该金属氧化物层具有范围在1nm至5nm的厚度。
本公开的另一方面是上述的方法,其中该还原气体包含三甲基铝(TMA)或烷基酰胺。
本公开的另一方面是上述的方法,其中步骤b)、c)和d)在单一ALD室中进行。
在以下的详细说明中提出额外的特征和优点,且本领域技术人员将自该描述而易于得知部分特征和优点,或通过实践如所撰写的其说明书和权利要求书以及附图中所述的实施方案来认知部分特征和优点。应了解的是,以上的一般描述和以下的详细说明两者仅是示例性的,且旨在提供用于了解权利要求的属性和特性的概述或框架。
附图说明
包括附图以提供进一步的理解,并将其结合至本说明书中并构成说明书的一部分。附图描述了一种或多种实施方案,并与详细说明一起用于解释各种不同实施方案的原理和操作。如此,将根据下文结合附图的详细说明而更加全面地理解本公开,其中:
图1至图4是示例性金属化衬底的横截面视图,其显示在该金属化衬底上形成ALD抑制的SAM层的方法的不同步骤;
图5是Cu2O层的厚度对时间t(s)的曲线图,如由原位光谱椭圆偏振计在20个连续脉冲的还原气体下以60s的脉冲间间隔观察到,其中该还原气体呈TMA(曲线A)、TDMAHf(曲线B)和TDMAZr(曲线C)的形式,其说明了所给的还原气体如何减少Cu2O层的厚度。
图6是该ALD膜HfNx的所测厚度对ALD循环数目N的曲线图,其是针对在具有天然氧化铜Cu2O的现有铜衬底上(曲线A)、在具有硫醇但无还原预处理的铜上(曲线B)、和在具有TMA还原预处理并使用硫醇SAM分子的铜上(曲线C)沉积的ALD膜,后者显示ALD抑制性质,其中该ALD膜生长被有效地延迟超过150次ALD循环;
图7是ALD膜HfNx的所测厚度对ALD循环数目N的曲线图,其显示该ALD膜在SiO2+SAM层上(曲线A)、在未还原的铜+SAM层上(曲线B)和在还原的铜+SAM层上(曲线C)的生长,说明了该ALD抑制的SAM层相对于还原的铜(大于150次ALD循环)如何在SiO2上几乎无抑制(约5次ALD循环)。
图8A是俯视图且图8B是沿图8A的线A-A的横截面视图,其显示具有SiO2层的示例性金属化衬底,其中图案化金属层在该SiO2层上形成;和
图9A至图9D是类似图8B的横截面视图,其说明了用于在图8A和图8B的金属化衬底上进行S-ALD的示例性方法步骤,其中ALD抑制层在该图案化金属层区段上形成,使得该ALD膜可在该SiO2层上且不在该图案化金属层上形成。
具体实施方式
现在详细参考本公开的各个不同的实施方案,在附图中说明了其实例。只要可能,在所有图式中相同或相似的标记数字和符号用于意指相同或相似的部件。图式并非按比例绘示,且本领域技术人员将理解图式已经被简化以说明本公开的重要方面。
以下所提出的权利要求被纳入并构成该详细说明的一部分。
在一些图式中为了参考而示出卡式坐标,其并不旨在关于方向或取向进行限制。
在以下讨论中,“SAM层”意指自组装分子层,即自组装单层。
并且在以下讨论中,术语“SAM分子”意指能够形成具有其它SAM分子的SAM层的分子。以下讨论的SAM分子的实例是1-十八烷硫醇。
现在关于图1至4的横截面视图来描述进行选择性区域原子层沉积(S-ALD)的方法的实例。在第一步骤中,提供具有上表面12的衬底10。在一个实例中,衬底10是Si晶片。衬底10的上表面12用金属层20覆盖,该金属层20用天然金属氧化物的层22(下文称为“金属氧化物层”)覆盖。在一个实例中,金属层20的金属是铜(Cu),而金属氧化物层22中的天然金属氧化物是氧化铜(Cu2O)。在此点,具有金属层20和金属氧化物层22的衬底10构成金属化衬底10M。金属层20的金属在此称为“M”。金属氧化物层22的厚度可非常薄,例如在1nm至5nm厚的范围中。金属M的实例是铜、镍、铁和钴。
参考图2,在第二步骤中,将图1的金属化衬底10M置于ALD反应器系统的ALD室30的内部32中。接着将ALD腔室30的内部32带至真空条件(例如小于1乇的压力)且加热金属化衬底10M至120℃或高于120℃(例如至150℃或170℃或最高至250℃)的温度。真空条件限制残留氧量,其可导致正在形成的金属氧化物的更多量。增加的温度有助于在如下所述的后续步骤中的化学反应。
参考图3,在第三步骤中,将金属化晶片10M且特别是其上的金属氧化物层22暴露于含有金属Q的还原气体40。在一个实例中,还原气体40是三甲基铝(TMA)或包括三甲基铝,其中金属Q是铝。在另一个实例中,还原气体40是金属烷基酰胺或包括金属烷基酰胺,其中金属Q是Hf、Zr、Si或Ti。并且在一个实例中,其它烷基金属有机前体例如二乙基锌可用作还原气体40。
还原气体40还原金属氧化物层22,由此移除金属氧化物层22。所需还原气体40的暴露长度和数量是待移除的天然金属氧化物的属性、其厚度、金属化衬底10M的温度及所用还原气体40的类型的函数。此氧化-还原步骤的结果是在金属层20上形成的M+MQyOx形式的“金属+金属氧化物”层50。金属+金属氧化物层50具有表面52。在其中还原气体40的金属Q是铝且其中金属层20的金属M是铜的一个实例中,金属+金属氧化物层50可具有Cu+CuAlO2形式。
进行实验,其中使用M=铜的金属层20及具有1nm至3nm厚度的氧化铜的金属氧化物层22形成金属化衬底10M。将铜基金属化衬底10M在真空(0.1乇)下加热到150℃至170℃且采用10至20个连续脉冲的TMA作为还原气体40来移除天然氧化铜层22,其中TMA脉冲是0.015s长及2s至60s分隔。原位观察氧化铜层22的还原且在10次TMA暴露后其厚度逐渐减少至约1nm的厚度。还注意到采用呈TDMAHf(其中金属Q=Hf)及TDMAZr(其中Q=Zr)形式的还原气体40的脉冲还观察到由该铜还原引起的视厚度(apparent thickness)减少,还原气体40是常用于通过ALD来沉积HfO2和ZrO2的反应气体。
来自这个铜基实例的金属+金属氧化物层50包括金属Cu且金属-氧化铝具有前述的CuAlO2形式。
图5是氧化铜层22的厚度对时间(s)的曲线图,如由原位光谱椭圆偏振计在20个连续脉冲的还原气体40以60s的脉冲间间隔观察到,还原气体40呈TMA(曲线A)、TDMAHf(曲线B)和TDMAZr(曲线C)的形式,说明了所给的还原气体40如何减少Cu2O层22的厚度。
参考图4,在第四步骤中将金属+金属氧化物层50立即暴露至包括SAM分子60的SAM蒸气。示例性SAM蒸气是硫醇,例如1-十八烷硫醇。该SAM分子60可有效地沉积在金属+金属氧化物层50的不含氧化物的表面52上以提供由SAM分子60(例如硫醇分子)界定的高度堆积的自组装单层(“SAM层”)60L。在该工艺中的此点,金属化衬底10M称为SAM涂覆的衬底(“SAMS”)10S。
在一个实例中,氧化-还原步骤和SAMS沉积步骤可各在相同ALD室30中进行,但还原步骤可在不同ALD室30中进行,优选反应表面未暴露于空气(例如使用密封的转移箱)。
SAM蒸气暴露步骤可由几秒至数小时变化,但在实验中证明600s的暴露时间足以达到在铜基金属化衬底10M上硫醇分子60的良好SAM层60L。
堆积SAM分子60的SAM层60L(能够由金属化衬底10M的还原预处理实现)构成ALD抑制层,即对沉积ALD膜的有效屏障层。SAM层60L延迟ALD膜的成核和生长持续相对大数目(例如N>100)的ALD循环。
在方法的一个实例中,原位还原步骤可使用含Q还原气体40在两个步骤中(例如金属氧化物层22的ALD形成(例如10-30nm),接着金属氧化物层22的原位还原)进行以获得金属+金属氧化物层50。
实验
还在衬底10上进行实验,使用物理气相沉积(PVD)用铜层20金属化该衬底10,天然氧化铜的顶部金属氧化物层22具有在1nm和3nm之间的厚度。金属化衬底10M是原样(即无预清洁)装载在ALD反应器中。所用的特定ALD反应器是Ul tratech Cambr idge NanotechSavannahTM反应器。快速地将金属化衬底10M带至真空(0.1乇)且在150℃至170℃之间的温度下加热。
将连续脉冲的TMA引入ALD室30中且通过原位光谱椭圆偏振法实时观察天然氧化铜的还原。发现10至20个0.015s持续时间的TMA脉冲足以完成天然氧化铜层22的还原。在图5的实例中脉冲是60s间隔,但该脉冲可具有其它周期,例如5秒间隔或更短。还可以用TMA或其它还原气体40的连续流替代脉冲。因此,在一个实例中,金属氧化物层22的还原在600秒(s),即10分钟内进行。在另一个实例中,金属氧化物层22的还原可在720s,即12分钟内进行。还证实了少于2分钟的还原。
接着将所还原的金属表面在真空下暴露于1-十八烷硫醇蒸气持续600s以获得在还原的铜的顶部上的致密SAM层60L。通过在经由ALD在铜/SAMS衬底顶部上沉积HfNx金属氮化物期间监控该成核抑制而原位表征SAM层60L的品质(即堆积密度)。金属氮化物的生长成功地被延迟至针对硫醇涂覆的铜样品的最高达150次ALD循环相对于针对裸铜/氧化铜的0次ALD循环,以及针对具有硫醇但无TMA预处理的铜/氧化铜的10次ALD循环。在暴露至硫醇处理的SiO2表面上也没有观察到显著抑制。因此可实行此原位还原方法以促进铜表面上的选择性区域ALD。
通过光谱椭圆偏振法原位监控暴露至ALD中常用的其它化学品的铜/氧化铜表面,该化学品例如是金属烷基酰胺,即四(二甲氨基)铪(TDMAHf)或四(二甲氨基)锆(TDMAZr),指出还可以用这些前体还原氧化铜。可有效地使用的其它还原气体40包括钛烷基酰胺、硅烷基酰胺和二乙基锌。
图6是ALD膜HfNx的所测厚度对ALD循环数目N的曲线图,其是针对在具有天然氧化铜的原样铜衬底上(曲线A)、具有硫醇SAM层60L但无还原预处理的铜上(曲线B)、和在具有TMA预处理的硫醇的铜上(曲线C)沉积的ALD膜,后一曲线显示ALD抑制性质,其中ALD膜的生长有效地被延迟N>150次ALD循环。图6的数据表明需要金属氧化物层22的还原预处理以移除金属氧化物层22从而能够形成ALD抑制的SAM层60L。
在一个实例中,使SAM涂覆的衬底10S经受ALD工艺,以意图使用在170℃的温度下沉积的TDMAHf和氨(NH3)在SAM层60L上生长HfNx的ALD膜。图7是ALD膜HfNx的所测厚度()对ALD循环数目N的曲线图。该曲线图显示ALD膜在SiO2+SAM层上(曲线A)、在未还原的铜+SAM层上(曲线B)和还原的铜+SAM层上(曲线C)的生长。这三个曲线说明了ALD抑制的SAM层60L如何相对于还原的铜(生长仅发生在N>150次ALD循环)在SiO2上几乎不抑制(生长发生开始在N=5次ALD循环)。还观察到该TMA预处理和后续硫醇SAM沉积是选择性的,当使用相同方法时有效硫醇SAM层60L沉积在Cu+CuAlO2层50上但不在SiO2上。这表明在该预处理的二氧化硅表面上的ALD工艺期间不存在显著成核抑制。
S-ALD方法实例
本公开的一个方面包括进行S-ALD,其作为在半导体器件的制造中形成半导体结构的工艺的一部分。
图8A是俯视图且图8B是示例性金属化衬底10M的横截面视图(沿线A-A),该金属化衬底10M包括在衬底10的上表面12上的介电层100(例如氧化物,例如SiO2膜)和在氧化物膜上的金属层20。金属层20经图案化且界定电极。金属图案20包括金属氧化物层22。氧化物膜可为用于半导体加工的任何氧化物,其中SiO2是一个示例性氧化物。
图9A至9D是当使衬底10经受提供ALD抑制的SAM层60L的上述方法时沿线A-A取得的金属化衬底10M的横截面视图。参考图9A,使图案化金属层20的金属氧化物层22经受上述还原工艺,其在图案化金属层20上形成金属+金属氧化物层50。如上所述,金属+金属氧化物层50可容纳SAM分子60。
参考图9B,接着将SAM分子60引入ALD室30的内部32中以在由图案化金属层20界定的金属+金属氧化物层50的区段顶部上形成ALD抑制的SAM层60L。SAM分子60不在介电层100上自组装以使得此层100保持可用于ALD涂覆。
参考图9C和图9D,进行ALD工艺110,其在介电层100上但不在ALD抑制的SAM层60L的区段上沉积ALD膜120。一旦完成ALD工艺且在S iO2层100上形成ALD膜120,就使用温和的蚀刻剂移除ALD抑制的SAM层60L,留下具有金属+金属氧化物层50和ALD涂覆的介电层100的金属电极。
对于本领域技术人员来说将明显的是,可以在不背离如在所附权利要求中限定的本公开的精神或范围的情况下做出对于本文描述的本公开的优选实施方案的各种不同的改变。因此,本公开覆盖改变和变化,只要它们落入所附权利要求及其等价物的范围内。

Claims (28)

1.一种在覆盖有金属M的氧化物层(“金属氧化物层”)的金属M上形成ALD抑制层的方法,包含:
a)通过将该金属氧化物层暴露于包括金属Q的还原气体来还原该金属氧化物层,以在该金属M上形成M+MQxOy层;和
b)将该M+MQxOy层暴露至呈蒸气相的自组装单层(“SAM”)分子,其中该SAM分子在该M+MQxOy层上形成SAM层,该SAM层为ALD抑制的。
2.根据权利要求1的方法,其中:
该金属M是Cu、Ni、Fe或Co;和
该金属Q是Al、Hf、Zr、Si、Ti或Zn。
3.根据权利要求1的方法,其中该SAM分子是硫醇分子。
4.根据权利要求1的方法,其中:
该金属M是铜;
该金属氧化物层由氧化铜制成;
该还原气体包含三甲基铝(TMA);
该SAM分子是硫醇分子;和
该M+MQxOy层是Cu+CuAlO2层。
5.根据权利要求1的方法,其中步骤a)在120℃和250℃之间的温度下进行。
6.根据权利要求1的方法,其中步骤a)和b)在小于1乇的真空条件下进行。
7.根据权利要求1的方法,其中该金属氧化物层具有范围在1nm至5nm的厚度。
8.根据权利要求1的方法,其中该ALD抑制层基本上抑制其上的ALD膜的形成持续至少100次ALD循环。
9.根据权利要求8的方法,其中该ALD抑制层基本上抑制其上的ALD膜的形成持续至少150次ALD循环。
10.根据权利要求1的方法,其进一步包含在半导体衬底上形成该金属M作为图案化金属层。
11.根据权利要求1的方法,其中将该金属M形成为在半导体衬底的介电层上的图案,且进一步包含通过以下进行选择性区域ALD:
在该介电层以及覆盖该金属M的该SAM层上进行ALD工艺,由此在该介电层上但不在该SAM层上形成ALD膜。
12.根据权利要求11的方法,其中该介电层是氧化物层。
13.根据权利要求11的方法,其进一步包含移除该SAM层。
14.根据权利要求1的方法,其中步骤a)在少于720秒内进行。
15.一种进行选择性区域原子层沉积(“S-ALD”)的方法,其包含:
a)在由半导体衬底支撑的介电层上界定金属M的层(“金属层”),其中该金属层界定图案,且其中该金属层被金属M的氧化物层(“金属氧化物层”)覆盖;
b)通过将该金属氧化物层暴露于包括金属Q的还原气体来还原该金属氧化物层,以在该金属层上形成M+MQxOy层;
c)将该M+MQxOy层和该介电层暴露至呈蒸气相的自组装单层(SAM)分子,其中该SAM分子在该M+MQxOy层上形成SAM层以界定ALD抑制层,且其中在该介电层上没有形成SAM层;和
d)进行ALD工艺以沉积ALD膜,其中该ALD膜在该介电层上但不在该SAM层上形成。
16.根据权利要求15的方法,其中:
该金属M是Cu、Ni、Fe或Co;和
该金属Q是Al、Hf、Zr、Si、Ti或Zn。
17.根据权利要求15的方法,其进一步包含移除该SAM层的步骤e)。
18.根据权利要求15的方法,其中步骤b)在720秒内进行。
19.根据权利要求15的方法,其中该SAM分子由硫醇分子组成。
20.根据权利要求15的方法,其中该介电层包含SiO2层。
21.根据权利要求15的方法,其中:
该金属M是铜;
该金属氧化物层由氧化铜制成;
该还原气体包含三甲基铝(TMA);
该SAM分子是硫醇分子;和
该M+MQxOy层是Cu+CuAlO2层。
22.根据权利要求15的方法,其中该SAM层基本上抑制其上的ALD膜的形成持续至少100次ALD循环。
23.根据权利要求22的方法,其中该SAM层基本上抑制其上的ALD膜的形成持续至少150次ALD循环。
24.根据权利要求15的方法,其中步骤b)在120℃和250℃之间的温度下进行。
25.根据权利要求15的方法,其中步骤b)和c)在小于1乇的真空条件下进行。
26.根据权利要求15的方法,其中该金属氧化物层具有范围在1nm至5nm的厚度。
27.根据权利要求15的方法,其中该还原气体包含三甲基铝(TMA)或烷基酰胺。
28.根据权利要求15的方法,其中步骤b)、c)和d)在单一ALD室中进行。
CN201610919979.1A 2015-10-21 2016-10-21 使用自组装单层形成ald抑制层的方法 Pending CN106611702A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562244467P 2015-10-21 2015-10-21
US62/244,467 2015-10-21

Publications (1)

Publication Number Publication Date
CN106611702A true CN106611702A (zh) 2017-05-03

Family

ID=58558431

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610919979.1A Pending CN106611702A (zh) 2015-10-21 2016-10-21 使用自组装单层形成ald抑制层的方法

Country Status (6)

Country Link
US (1) US10316406B2 (zh)
JP (1) JP6306661B2 (zh)
KR (1) KR20170046591A (zh)
CN (1) CN106611702A (zh)
SG (1) SG10201608841VA (zh)
TW (1) TWI598457B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109712868A (zh) * 2018-12-20 2019-05-03 西安电子科技大学 基于氧化铝材料内嵌纳米晶结构的铁电薄膜制备方法
US10961624B2 (en) 2019-04-02 2021-03-30 Gelest Technologies, Inc. Process for pulsed thin film deposition

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI627192B (zh) * 2015-03-13 2018-06-21 村田製作所股份有限公司 Atomic layer deposition inhibiting material
US10695794B2 (en) 2015-10-09 2020-06-30 Asm Ip Holding B.V. Vapor phase deposition of organic films
US10814349B2 (en) 2015-10-09 2020-10-27 Asm Ip Holding B.V. Vapor phase deposition of organic films
US10453701B2 (en) 2016-06-01 2019-10-22 Asm Ip Holding B.V. Deposition of organic films
US10373820B2 (en) 2016-06-01 2019-08-06 Asm Ip Holding B.V. Deposition of organic films
US11094535B2 (en) * 2017-02-14 2021-08-17 Asm Ip Holding B.V. Selective passivation and selective deposition
TW202401527A (zh) * 2017-06-14 2024-01-01 美商應用材料股份有限公司 用於達成無缺陷自組裝單層的晶圓處理
US10586734B2 (en) * 2017-11-20 2020-03-10 Tokyo Electron Limited Method of selective film deposition for forming fully self-aligned vias
KR102604652B1 (ko) 2018-01-10 2023-11-22 제이에스알 가부시끼가이샤 패턴 형성 방법
JP7146690B2 (ja) * 2018-05-02 2022-10-04 エーエスエム アイピー ホールディング ビー.ブイ. 堆積および除去を使用した選択的層形成
JP7110468B2 (ja) * 2018-05-28 2022-08-01 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置、プログラム及び基板処理方法。
KR20230137501A (ko) * 2018-05-28 2023-10-04 가부시키가이샤 코쿠사이 엘렉트릭 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램
JP7059810B2 (ja) * 2018-05-30 2022-04-26 株式会社デンソー 表面被覆部材及びその製造方法
US10643889B2 (en) * 2018-08-06 2020-05-05 Lam Rasearch Corporation Pre-treatment method to improve selectivity in a selective deposition process
JP7262354B2 (ja) * 2019-09-24 2023-04-21 東京エレクトロン株式会社 成膜方法
JP7195239B2 (ja) * 2019-09-24 2022-12-23 東京エレクトロン株式会社 成膜方法及び成膜装置
JP2021052070A (ja) * 2019-09-24 2021-04-01 東京エレクトロン株式会社 成膜方法
JP2023505992A (ja) * 2019-12-10 2023-02-14 東京エレクトロン株式会社 犠牲キャッピング層としての自己組織化単分子層

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270278A (ja) * 2006-03-31 2007-10-18 Shizuoka Prefecture 固体表面の改質方法および改質された固体表面
JP2009158691A (ja) * 2007-12-26 2009-07-16 Sharp Corp 有機デバイスおよびその製造方法
JP2010518644A (ja) * 2007-02-14 2010-05-27 本田技研工業株式会社 原子層堆積法によりサイズ制御され空間的に分散されるナノ構造の製造方法
JP2012049202A (ja) * 2010-08-24 2012-03-08 Japan Science & Technology Agency トンネル接合素子の製造方法
JP2013143424A (ja) * 2012-01-10 2013-07-22 Elpida Memory Inc 半導体装置及びその製造方法
CN104733288A (zh) * 2013-12-23 2015-06-24 英飞凌科技股份有限公司 用于加工半导体器件的方法
US20150217330A1 (en) * 2014-02-04 2015-08-06 Asm Ip Holding B.V. Selective deposition of metals, metal oxides, and dielectrics
US20150294863A1 (en) * 2014-04-10 2015-10-15 Applied Materials Selective atomic layer deposition process utilizing patterned self assembled monolayers for 3d structure semiconductor applications

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3998746B2 (ja) 1996-11-28 2007-10-31 財団法人川村理化学研究所 オキソチタニウムフタロシアニン配向膜及びその製造方法
WO2008008319A2 (en) 2006-07-10 2008-01-17 President And Fellows Of Harvard College Selective sealing of porous dielectric materials
US8293658B2 (en) 2010-02-17 2012-10-23 Asm America, Inc. Reactive site deactivation against vapor deposition
JP5642317B2 (ja) 2012-03-19 2014-12-17 三菱電機株式会社 半導体装置の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270278A (ja) * 2006-03-31 2007-10-18 Shizuoka Prefecture 固体表面の改質方法および改質された固体表面
JP2010518644A (ja) * 2007-02-14 2010-05-27 本田技研工業株式会社 原子層堆積法によりサイズ制御され空間的に分散されるナノ構造の製造方法
JP2009158691A (ja) * 2007-12-26 2009-07-16 Sharp Corp 有機デバイスおよびその製造方法
JP2012049202A (ja) * 2010-08-24 2012-03-08 Japan Science & Technology Agency トンネル接合素子の製造方法
JP2013143424A (ja) * 2012-01-10 2013-07-22 Elpida Memory Inc 半導体装置及びその製造方法
CN104733288A (zh) * 2013-12-23 2015-06-24 英飞凌科技股份有限公司 用于加工半导体器件的方法
US20150217330A1 (en) * 2014-02-04 2015-08-06 Asm Ip Holding B.V. Selective deposition of metals, metal oxides, and dielectrics
US20150294863A1 (en) * 2014-04-10 2015-10-15 Applied Materials Selective atomic layer deposition process utilizing patterned self assembled monolayers for 3d structure semiconductor applications

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109712868A (zh) * 2018-12-20 2019-05-03 西安电子科技大学 基于氧化铝材料内嵌纳米晶结构的铁电薄膜制备方法
US10961624B2 (en) 2019-04-02 2021-03-30 Gelest Technologies, Inc. Process for pulsed thin film deposition
TWI809262B (zh) * 2019-04-02 2023-07-21 美商蓋列斯特股份有限公司 用於脈衝薄膜沉積的方法

Also Published As

Publication number Publication date
KR20170046591A (ko) 2017-05-02
TW201716617A (zh) 2017-05-16
US20170114451A1 (en) 2017-04-27
JP2017098539A (ja) 2017-06-01
US10316406B2 (en) 2019-06-11
SG10201608841VA (en) 2017-05-30
JP6306661B2 (ja) 2018-04-04
TWI598457B (zh) 2017-09-11

Similar Documents

Publication Publication Date Title
CN106611702A (zh) 使用自组装单层形成ald抑制层的方法
US11624112B2 (en) Synthesis and use of precursors for ALD of molybdenum or tungsten containing thin films
US20220025513A1 (en) Selective deposition on metal or metallic surfaces relative to dielectric surfaces
US10767263B2 (en) Thin metal-organic framework film
JP3798248B2 (ja) ラジカルを利用した連続cvd
US11393681B2 (en) Methods to deposit and etch controlled thin layers of transition metal dichalcogenides
Lee et al. Low‐temperature atomic layer deposition of copper metal thin films: Self‐limiting surface reaction of copper dimethylamino‐2‐propoxide with diethylzinc
JP6116849B2 (ja) 金属/金属窒化物基板上に貴金属を選択的に堆積させるための方法
US7595270B2 (en) Passivated stoichiometric metal nitride films
US20120219824A1 (en) Atomic layer deposition of super-conducting niobium silicide
TW200411923A (en) In-situ formation of metal insulator metal capacitors
TW201809333A (zh) 相對於基板的第二表面選擇性沈積在基板的第一表面上的製程與方法
US10875774B2 (en) Tritertbutyl aluminum reactants for vapor deposition
CN109563621A (zh) 二氮杂二烯络合物与胺的反应
US11447862B2 (en) Methods to deposit controlled thin layers of transition metal dichalcogenides
KR20190008143A (ko) 자기 조립 단층을 제조하는 방법
JP2022523612A (ja) パルス薄膜蒸着のプロセス
US20220177364A1 (en) Adhesion promoting layer, method for depositing conductive layer on inorganic or organic-inorganic hybrid substrate, and conductive structure
TWI789848B (zh) 釕薄膜之形成方法
CN209216958U (zh) 一种半导体结构
US9460932B2 (en) Surface poisoning using ALD for high selectivity deposition of high aspect ratio features
Wan et al. Atomic layer deposition of CoxOy films: Oxidants versus composition
KR101184924B1 (ko) 금속층 형성 방법
CN114921767A (zh) 含过渡金属材料的沉积
Roozeboom et al. Atomic Layer Deposition Applications 10

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20200410

Address after: New York, USA

Applicant after: VEECO INSTRUMENTS Inc.

Address before: California, USA

Applicant before: Ultratech, Inc.

TA01 Transfer of patent application right
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170503

WD01 Invention patent application deemed withdrawn after publication