TWI627192B - Atomic layer deposition inhibiting material - Google Patents

Atomic layer deposition inhibiting material Download PDF

Info

Publication number
TWI627192B
TWI627192B TW105105714A TW105105714A TWI627192B TW I627192 B TWI627192 B TW I627192B TW 105105714 A TW105105714 A TW 105105714A TW 105105714 A TW105105714 A TW 105105714A TW I627192 B TWI627192 B TW I627192B
Authority
TW
Taiwan
Prior art keywords
atomic layer
layer deposition
fluorine
resin
containing resin
Prior art date
Application number
TW105105714A
Other languages
English (en)
Other versions
TW201638128A (zh
Inventor
岩地直樹
Original Assignee
村田製作所股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 村田製作所股份有限公司 filed Critical 村田製作所股份有限公司
Publication of TW201638128A publication Critical patent/TW201638128A/zh
Application granted granted Critical
Publication of TWI627192B publication Critical patent/TWI627192B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/02Halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45534Use of auxiliary reactants other than used for contributing to the composition of the main film, e.g. catalysts, activators or scavengers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/008Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/085Vapour deposited
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/14Organic dielectrics
    • H01G4/18Organic dielectrics of synthetic material, e.g. derivatives of cellulose
    • H01G4/186Organic dielectrics of synthetic material, e.g. derivatives of cellulose halogenated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
    • H01L21/0212Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC the material being fluoro carbon compounds, e.g.(CFx) n, (CHxFy) n or polytetrafluoroethylene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physical Vapour Deposition (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)
  • Ceramic Capacitors (AREA)

Abstract

本發明提供一種即便於高溫條件下亦可使用、且抑制效果高之原子層堆積抑制材料。
本發明之原子層堆積抑制材料包含氟含量為30at%以上,具有至少1個三級碳或四級碳,且不具有酯基、羥基、羧基及醯亞胺基之含氟樹脂。

Description

原子層堆積抑制材料
本發明係關於一種使用原子層堆積法之於基板上之選擇性成膜方法。
原子層堆積法(ALD:Atomic layer deposition)被用於各種電子零件、例如電容器、半導體元件等之製造,例如,作為電極或配線之導電性薄膜、或作為介電層之絕緣性薄膜係藉由ALD而形成。於形成此種薄膜、尤其是作為電極或配線之導電性薄膜之情形時,必需用以於基板上之特定位置形成特定形狀之薄膜的圖案化技術。作為使用ALD之薄膜形成中之圖案化技術,有若干報告。例如,於非專利文獻1中記載有於由異丙醇鈦(TiIP)與水蒸氣(H2O)之組合藉由ALD將TiO2成膜之情形時,不於聚甲基丙烯酸甲酯(PMMA)上形成TiO2膜,而將其作為原子層堆積抑制材料於基材上進行圖案化,藉此可選擇性地將TiO2膜成膜。又,於專利文獻1及2中揭示有使用丙烯酸系樹脂所代表之各種聚合物及有機矽氧烷作為原子層堆積抑制材料,藉此可實現選擇性之成膜。
[先前技術文獻] [專利文獻]
[專利文獻1]日本專利特表2010-540773號公報
[專利文獻2]日本專利特表2011-501779號公報
[非專利文獻]
[非專利文獻1]Area selective atomic layer deposition of titanium dioxide:Effect of precursor chemistry,J.Vac.Sci.technol.B 24(6)
如上所述之圖案化技術對ALD條件、尤其是溫度有限制,例如,非專利文獻1之方法於超過200℃之條件下PMMA發生熱分解而無法使用,引用文獻1及2之方法亦出於相同之理由,於超過250℃之條件下無法使用。又,根據本發明者等人之研究發現,於先前之圖案化技術中,有抑制效果不充分之情形。
因此,本發明之目的在於提供一種即便於高溫條件下亦可使用、且抑制效果較高之原子層堆積抑制材料。
本發明者等人為了解決上述問題而進行努力研究,結果發現,藉由使用特定之含氟樹脂,尤其是氟含量較高、具有三級碳或四級碳、且不具有官能基之含氟樹脂,即便於高溫條件下亦可充分地獲得原子層堆積之抑制效果,從而完成了本發明。
根據本發明之第1主旨,提供一種原子層堆積抑制材料,其包含氟含量為30at%以上,具有至少1個三級碳或四級碳,且不具有酯基、羥基、羧基及醯亞胺基之含氟樹脂。
根據本發明之第2主旨,提供一種原子層堆積抑制材料,其包含氟含量為30at%以上,且暴露於250℃之原子層堆積條件下之情形時之氟含量之減少率為50%以下的含氟樹脂。
根據本發明之第3主旨,提供一種原子層堆積抑制材料,其包含暴露於250℃之原子層堆積條件下後之氟含量為25at%以上之含氟樹脂。
根據本發明之第4主旨,提供一種原子層堆積抑制材料,其包含 下述式(I):X-[(CR1 2)p-CR4R5-(CR2 2)r-CR6R7-(CR3 2)q]n-Y...(I)
[式中:X及Y分別獨立地為H、F或CR11 3;R11分別獨立地為H或F;R1、R2及R3分別獨立地為H或F;R4及R6分別獨立地為H、F、或可經氟取代之碳數1~6個之烷基;R5及R7分別獨立地為可經氟取代之碳數1~6個之烷基,或者R5及R7可一起形成-(O)s-(CR12 2)t-
(式中,R12為H、F、或可經氟取代之碳數1~6個之烷基,s為0~2之整數,t為1~6之整數,式中,O及CR12 2之存在順序並不限定於記載之順序,為任意)所表示之基;p、q及r分別獨立地為0~6之整數;n為任意之自然數]
所表示之含氟樹脂。
根據本發明之第5主旨,提供一種於基板上藉由原子層堆積法形成無機材料之薄膜之圖案的方法,且其包括:於基板上,使用上述原子層堆積抑制材料形成原子層堆積抑制層之圖案;及繼而,藉由原子層堆積法,於不存在原子層堆積抑制層之區域中形成無機材料之層。
根據本發明之第6主旨,提供一種電子零件,其特徵在於:其係具有基板、氟含量為25at%以上之含氟樹脂層、及藉由原子層堆積法 所形成之無機材料之層而成者,且上述含氟樹脂層與上述無機材料之層係位於鄰接之位置。
根據本發明之第7主旨,提供一種電子零件,其特徵在於:其係具有基板、氟含量為25at%以上之含氟樹脂層、及氮化物之層而成者,且 上述含氟樹脂層與上述氮化物之層係位於鄰接之位置。
根據本發明,藉由使用特定之含氟樹脂,尤其是氟含量較高、具有三級碳或四級碳、且不具有官能基之含氟樹脂作為原子層堆積抑制材料,即便為高溫條件下之原子層堆積法,亦可適宜地獲得原子層堆積抑制效果,可形成所需之圖案之薄膜。
1‧‧‧電容器
2‧‧‧基板(下部電極)
4‧‧‧原子層堆積抑制層
6‧‧‧介電層
8‧‧‧上部電極
10、10'‧‧‧端子電極
12‧‧‧鋁基板
14‧‧‧AlOx
16‧‧‧TiO層
18‧‧‧樹脂層
20‧‧‧測定區域
圖1係使用本發明而製造之電容器1之剖視圖。
圖2(a)~(c)係用以說明使用本發明而製造之電容器1之製造步驟之圖。
圖2(d)~(e)係用以說明使用本發明而製造之電容器1之製造步驟之圖。
圖3係表示測定原子層堆積法後之含氟樹脂中之氟含量之區域的圖。
本發明之原子層堆積抑制材料包含含氟樹脂。
於一態樣中,上述含氟樹脂之氟含量為30at%以上,較佳為40at%以上,更佳為50at%以上。藉由將含氟樹脂之氟含量設為30at%以上,原子層堆積抑制效果變得更高。又,氟含量之上限並無特別限定,可為該樹脂之結構上可取之最大氟含量、即進行全氟化之情形時之氟含量。
氟樹脂中之氟含量可藉由該領域中公知之方法進行測定,例如,可藉由掃描穿透式電子顯微鏡-能量分散型X射線分析(STEM-EDS:Scanning Transmission Electron Microscope-Energy Dispersive Spectroscopy)、X射線光電子光譜法(XPS:X-ray Photoelectron Spectrometry)等測定樹脂之剖面。
於該態樣中,含氟樹脂不具有官能基。所謂官能基係與其他分子具有反應性之基,例如可列舉:酯基、羥基、羧基、醯亞胺基、醯胺基、磺基、胺基、硫醇基、硝基、苯基。於本發明中,所謂「不具有官能基」意指於含氟樹脂中實質上不存在官能基,無須完全為零。所謂實質上不存在,意指於置於ALD環境中之情形時亦不會對樹脂整體造成影響之量,例如,並無特別限定,相對於樹脂整體,樹脂中存在之官能基之量只要為1mmol%以下即可。含氟樹脂不具有官能基,藉此於高溫(例如250℃以上)下之ALD中亦可發揮更高之原子層堆積抑制效果。本發明並不受限於任何理論,但可認為於高溫之ALD條件下,官能基經活化,以該部分為基點而促進樹脂之分解,故而若存在官能基,則原子層堆積抑制效果降低。
含氟樹脂中之官能基之存在可藉由該領域中公知之方法進行確認,例如,可藉由紅外線光譜進行確認。
於該態樣中,含氟樹脂具有至少1個三級碳或四級碳。較佳為三級碳或四級碳於含氟樹脂之單體單元中存在至少1個。含氟樹脂具有三級碳或四級碳,藉此於高溫下之ALD中亦可發揮更高之原子層堆積抑制效果。
含氟樹脂中之三級碳或四級碳之存在可藉由該領域中公知之方法進行確認,例如,可藉由13C-NMR(DEPT法:Distortionless Enhancement by Polarization Transfer,利用極化轉移之無扭曲加強)進行確認。
於另一態樣中,上述含氟樹脂於暴露於250℃之原子層堆積條件下之情形時之氟含量的減少率為50%以下,較佳為30%以下。藉由將置於原子層堆積之條件下之情形時之氟含量的減少率設為50%以下,可保持含氟樹脂之作為原子層堆積抑制材料之功能,獲得更高之原子層堆積效果。
與上述態樣同樣地,含氟樹脂之氟含量較佳為30at%以上,更佳為50at%以上。藉由將含氟樹脂之氟含量設為30at%以上,原子層堆積抑制效果變得更高。
於該態樣中,上述氟含量之減少率越低,越可減少含氟樹脂之氟含量。然而,當然較佳為氟含量之減少率低,且氟含量高。
於該態樣中,較佳為與上述態樣同樣地,含氟樹脂不具有官能基,且/或可具有三級碳或四級碳。
於又一態樣中,上述含氟樹脂於暴露於250℃之原子層堆積條件下後之氟含量為25at%以上,較佳為40at%以上,進而較佳為50at%以上。含氟樹脂係於置於此種原子層堆積之條件下後具有25at%以上之氟含量,藉此可發揮更高之原子層堆積效果。
於該態樣中,較佳為與上述態樣同樣地,氟含量為30at%以上,更佳為50at%以上。又,較佳為含氟樹脂不具有官能基,且/或可具有三級碳或四級碳。
於又一態樣中,上述含氟樹脂係下述式(I):X-[(CR1 2)p-CR4R5-(CR2 2)r-CR6R7-(CR3 2)q]n-Y...(I)
所表示之含氟樹脂。
上述式中,X及Y分別獨立地為H、F或CR11 3。上述R11分別獨立地為H或F。較佳為X及Y分別獨立地為F或CF3
上述式中,R1、R2及R3分別獨立地為H或F,較佳為所有R1、R2及R3為F。
上述式中,R4及R6分別獨立地為H、F、或可經氟取代之碳數1~6個(1個以上且6個以下)之烷基。上述碳數1~6個之烷基可為直鏈亦可為分支鏈,較佳為碳數1~3個之烷基,尤佳為甲基。上述烷基較佳為經氟完全取代,即較佳為全氟烷基。較佳之全氟烷基為三氟甲基。R4及R6較佳為F或碳數1~6個之全氟烷基,更佳為F或三氟甲基。
上述式中,R5及R7分別獨立地為可經氟取代之碳數1~6個之烷基。該可經氟取代之碳數1~6個之烷基較佳為全氟烷基,更佳為碳數1~3個之全氟烷基。
又,R5及R7可一起形成-(O)s-(CR12 2)t-
(式中,R12為H、F、或可經氟取代之碳數1~6個之烷基,s為0以上且2以下之整數,t為1以上且6以下之整數,式中,O及CR12 2之存在順序並不限定於記載之順序,為任意)
所表示之基。
於此情形時,R5及R7與該等所鍵結之碳原子及-(CR2 2)r-基形成具有下述結構之環。
式中,標註s或t且以括弧括起來之各單元(O及CR12 2)之存在順序於式中為任意。例如,於s為1、t為2之情形時,可為-O-CR12 2-CR12 2-、-CR12 2-O-CR12 2-、-CR12 2-CR12 2-O-中之任一者。
R12較佳為F或碳數1~6個之全氟烷基,更佳為F或三氟甲基。
較佳之-(O)s-(CR12 2)t-為-O-CR12 2-O-或-(CF2)a-O-(CF2)b-(CFR12)c-(式中,a為0以上且5以下之整數,b為0以上且4以下之整數,c為0或1)。更佳之-(O)s-(CR12 2)t-為-O-C(CF3)2-O-或-O-CF2-CF2-。
上述式中,p、q及r分別獨立地為0以上且6以下之整數。較佳為p及q為0以上且2以下之整數,r為0或1。
上述式中,n為任意之自然數。n並無特別限定,例如可為5以上且10000以下之範圍。
作為較佳之氟樹脂之例,例如可列舉具有下述結構:
之氟樹脂。該等可分別自杜邦股份有限公司作為商品名「Teflon(註冊商標)AF」、及自旭硝子股份有限公司作為商品名「Cytop(註冊商標)」而獲取。
藉由使用上述式(I)所表示之含氟樹脂,可獲得更高之原子層堆積抑制效果。
於較佳之態樣中,上述含氟樹脂不含氫原子。即,上述含氟樹脂包含碳原子、氟原子及視需要之氧原子。
上述含氟樹脂之數量平均分子量並無特別限定,較佳為1萬以上,例如可為1萬以上且100萬以下、較佳為2萬以上且50萬以下。
藉由使用包含上述含氟樹脂之原子層堆積抑制材料,即便為高溫(例如250℃以上或300℃以上)條件等嚴格之條件下,亦可於基板上良好地形成薄膜之圖案。
因此,本發明亦提供一種於基板上藉由原子層堆積法形成無機 材料之薄膜之圖案的方法,且其包括:於基板上,使用包含上述含氟樹脂之原子層堆積抑制材料形成原子層堆積抑制層之圖案;及繼而,藉由原子層堆積法,於不存在原子層堆積抑制層之區域中形成無機材料之層。
以下,以將本發明之方法用於圖1所示之電容器之製造的情形為例,一面參照圖式一面進行說明。但是,請注意本發明並不限定於以下之實施態樣。
如圖1所示,概略而言,本實施態樣中所製造之電容器1係具有作為基板之下部電極2、形成於其上之原子層堆積抑制層4、與原子層堆積抑制層4鄰接而於基板2上依序形成之介電層6及上部電極8、以及形成於該等之端部之端子電極10、10'而成。一端子電極10係與下部電極2電性連接,且與上部電極8電性隔離。另一方面,另一端子電極10'係與上部電極8電性連接,且與下部電極2電性隔離。
首先,最初準備基板(下部電極2)。繼而,於基板2上,於特定之部位利用網版印刷、噴墨印刷等印刷技術,將包含上述含氟樹脂之原子層堆積抑制材料形成原子層堆積抑制層4(圖2(a))。又,形成該原子層堆積抑制層4之方法並不限定於上述印刷技術,只要為可將原子層堆積抑制材料應用於基板之特定位置而形成原子層堆積抑制層之方法,則並無特別限定。
繼而,於形成有原子層堆積抑制層4之基板2上,使用原子層堆積法形成介電層6。此時,於原子層堆積抑制層4之上不形成介電層6(圖2(b))。作為形成介電層6之材料,只要為絕緣性則並無特別限定,例如可列舉:AlOx(例如Al2O3)、SiOx(例如SiO2)、AlTiOx、SiTiOx、HfOx、TaOx、ZrOx、HfSiOx、ZrSiOx、TiZrOx、TiZrWOx、TiOx、SrTiOx、PbTiOx、BaTiOx、BaSrTiOx、BaCaTiOx、SiAlOx等金屬氧化 物;AlNx、SiNx、AlScNx等金屬氮化物;或AlOxNy、SiOxNy、HfSiOxNy、SiCxOyNz等(x及y為任意之數字)之金屬氮氧化物。
繼而,於介電層6之上使用原子層堆積法形成上部電極8。此時,於原子層堆積抑制層4之上不形成上部電極8(圖2(c))。構成上部電極之材料只要為導電性則並無特別限定,可列舉:Ni、Cu、Al、W、Ti、Ag、Au、Pt、Zn、Sn、Pb、Fe、Cr、Mo、Ru、Pd、Ta及該等之合金層、例如CuNi、AuNi、AuSn;以及TiN、TiAlN、TiON、TiAlON、TaN等金屬氧化物、金屬氮氧化物等,較佳為TiN、TiON。
將以上述之方式所獲得之積層體於原子層堆積抑制層4之中間位置進行切斷(圖2(d)),最後藉由鍍敷而形成端子電極10、10'(圖2(e)),藉此製造本實施形態之電容器1。
根據本發明之方法,於介電層6及上部電極8之形成中,可不於原子層堆積抑制層4上形成該等膜之下,形成所需之圖案之層。於上述實施態樣中,若於形成上部電極8時導電性物質附著於原子層堆積抑制層4上,則可能端子電極10與上部電極8之絕緣性降低,經由端子電極10而上部電極10與下部電極2短路。本發明於可實質上消除此種可能性之方面而言較為有利。尤其於使用氮化物(例如TiN)作為形成上部電極之材料之情形時,由於在更嚴格之條件下進行原子層堆積,故而本發明非常有利。
再者,於上述實施形態中,使用下部電極作為基板,但本發明並不限定於此,可使用各種基板、例如其他導電性基板、絕緣性基板、半導體基板等。又,本發明並不限定於在基板之上直接形成原子層堆積抑制層之態樣,亦可於基板之上形成其他層。例如,於上述實施形態中,可於下部電極2之上形成緩衝層,於其上形成原子層堆積抑制層。
關於使用本發明之方法所形成之電子零件,通常,於基板上包 含含氟樹脂之原子層堆積抑制層與藉由原子層堆積法所形成之無機材料之層係位於鄰接之位置。
因此,本發明亦提供一種電子零件,其特徵在於:其係具有基板、氟含量為25at%以上之含氟樹脂層、及藉由原子層堆積法所形成之無機材料之層而成者,且上述含氟樹脂層與上述無機材料之層係位於鄰接之位置。
再者,上述所謂鄰接意指含氟樹脂層與無機材料之層相鄰且實質上接觸之狀態。所謂實質上接觸,不僅是指完全密接之狀態,亦包含存在極小之例如藉由ALD進行成膜時之氣體無法滲入之程度(數nm)之間隙的狀態。
如上所述,於藉由原子層堆積法形成氮化物之情形時,必需嚴格之條件、例如250℃以上之條件,故而本發明之原子層堆積抑制材料之使用非常有利。
因此,於另一態樣中,本發明提供一種電子零件,其特徵在於:其係具有基板、氟含量為25at%以上之含氟樹脂層、及氮化物之層而成者,且上述含氟樹脂層與上述氮化物之層係位於鄰接之位置。
於本發明中,於原子層堆積抑制層之上表面(與基板側之面相對向之面)上實質上不存在上述無機材料或氮化物之層。
於上述電子零件之發明中,關於含氟樹脂層之氟含量,較佳為氟含量為40at%以上。又,上述含氟樹脂層較佳為不存在酯基、羥基、羧基及醯亞胺基。
上述無機材料較佳為氮化物。作為氮化物,例如可列舉TiN、AlN或SiN。
再者,上述含氟樹脂層中之氟含量係自含氟樹脂層與無機材料(或氮化物)之層之界面朝含氟樹脂之內部100nm之區域(例如圖3所示 之區域)之氟含量的平均值。
上述電子零件並不限定於上述電容器,可為其他電子零件、例如電晶體、電路基板、半導體元件等。
以上,對本發明進行了說明,但本發明並不限定於此,可進行各種變更。
[實施例]
於約10cm見方之Al基板上,使用分配器,採用下述表1所示之材料A~E,分別藉由網版印刷而形成下述表1所示之膜厚、6mm間距且線寬1mm之格子狀圖案。繼而,於形成有圖案之基板上,使用原子層堆積法,將作為絕緣層之AlOx(原料:三甲基鋁;條件:180個循環;250℃)、及作為電極層之TiN膜(原料:四-二甲胺基鈦及氨;條件:100個循環;250℃)成膜。再者,材料D及E為實施例。材料A為不含氟之樹脂,材料B係分子中具有酯鍵之含氟樹脂,材料C係末端具有-Si(OH)3之含氟樹脂,該等為比較例。
(評價)
‧樹脂塗佈部之電阻值
藉由二端子法測定成膜後之樹脂塗佈部之電阻值(樹脂塗佈部之藉由格子所形成之鄰接之單元間的電阻值)。將結果示於下述表2。
‧樹脂塗佈部之X射線光電子光譜(XPS:X-ray Photoelectron Spectroscopy)分析
又,針對上述電阻值較高之材料B、D及E,於ALD前後,藉由X射線光電子光譜裝置對樹脂塗佈部進行表面分析。將結果一併示於下述表2。測定部位設為格子相交之部位之中心附近之直徑2nm的點。
‧ALD後之氟含量
藉由聚焦離子束(FIB:Focused Ion Beam)對ALD後之試樣進行加工,使剖面露出。藉由STEM-EDS測定裝置(STEM:日本電子股份有限公司(JEM-2200FS)、EDS檢測器:日本電子股份有限公司(Dry SD60GV)、EDS系統:Thermo Fisher Scientific股份有限公司(Noran system7)),測定剖面之距TiN膜與樹脂層之界面100nm之區域(參照圖3)之平均氟量。
結果,樹脂D及E之氟含量為30at%以上。另一方面,樹脂B之氟 含量較少(3at%以下),樹脂C幾乎不存在氟(定量下限以下)。
如由上述結果所表明,於使用氟含量為30at%以上且不具有官能基之材料D及E之情形時,於ALD後亦於樹脂塗佈部中維持較高之電阻值,又,於樹脂上幾乎不存在Ti。另一方面,於使用作為不含氟之樹脂之材料A及末端具有官能基之材料C的情形時,於ALD後,樹脂塗佈部之電阻值明顯降低,又,於樹脂上存在大量之Ti。於使用具有酯鍵之材料B之情形時,雖電阻值較高,但於樹脂上存在Ti,ALD抑制效果不充分。根據以上情況確認到,處於本發明之範圍內之ALD抑制材料具有非常良好之ALD抑制效果。又,確認到具有較高之ALD抑制效果之樹脂於ALD後亦氟含量較高。再者,此處雖未記載,但確認到ZrOx、SiOx、AlN、SiN、Al、Cu及Zr亦獲得相同之效果。
實施例2
於約10cm見方之Al基板上,使用ALD法並採用分配器將AlOx(原料:三甲基鋁;條件:180個循環;250℃)成膜。繼而,以與實施例1相同之方式,使用樹脂D、及使樹脂D之末端為COOH之樹脂D',藉由網版印刷法形成格子狀圖案。繼而,使用ALD法將TiN膜成膜(原料:四-二甲胺基鈦及氨;條件:100個循環;310℃)。
(評價)
以與實施例1相同之方式,於ALD前後,藉由X射線光電子光譜裝置對樹脂塗佈部進行表面分析。將結果示於下述表3。
根據上述結果可知,處於本發明之範圍內之樹脂D即便為310℃下之成膜亦具有良好之ALD抑制效果。另一方面,關於末端具有COOH基之樹脂D',於ALD後之樹脂表面存在大量之Ti。本發明並不限定於任何理論,但認為其係於樹脂D'中末端之COOH成為活性部位,進行樹脂之劣化或分解,從而無法獲得充分之ALD抑制效果。
比較例
使用氟含量為約50at%之聚四氟乙烯(PTFE)作為ALD抑制材料,改變ALD法之溫度條件(低溫:約235℃;高溫:約280℃),除此以外,以與實施例1相同之方式將AlOx及TiN連續成膜。
於ALD後實施樹脂上之XPS分析,結果為僅於低溫(約235℃)之情形時可確認到ALD抑制效果。於高溫(約280℃)之情形時,於PTFE上觀察到Ti,確認到ALD膜之抑制效果消失。
本發明並不限定於任何理論,但認為其原因在於,PTFE雖氟含量較高,但僅包含一級碳及二級碳,故而於ALD中容易產生解聚合。
[產業上之可利用性]
本發明之原子層堆積抑制材料可適宜地用於各種電子零件之製造。

Claims (4)

  1. 一種原子層堆積抑制材料,其包含下述式(I):X-[(CR1 2)p-CR4R5-(CR2 2)r-CR6R7-(CR3 2)q]n-Y (I)[式中:X及Y分別獨立地為H、F或CR11 3;R11分別獨立地為H或F;R1、R2及R3分別獨立地為H或F;R4及R6分別獨立地為H、F、或可經氟取代之碳數1~6個之烷基;R5及R7分別獨立地為可經氟取代之碳數1~6個之烷基,或者R5及R7可一起形成-(O)s-(CR12 2)t-(式中,R12為H、F、或可經氟取代之碳數1~6個之烷基,s為0~2之整數,t為1~6之整數,式中,O及CR12 2之存在順序並不限定於記載之順序,為任意)所表示之基;p、q及r分別獨立地為0~6之整數;n為任意之自然數]所表示之含氟樹脂。
  2. 如請求項1之原子層堆積抑制材料,其中含氟樹脂係R1及R3為F,p為1或2,R4及R6為F,R5及R7一起形成-O-CF2-CF2-或-O-CF(CF3)2-O-,q為0或1,r為0之式(I)所表示之樹脂。
  3. 如請求項1或2之原子層堆積抑制材料,其中含氟樹脂不含氫原子。
  4. 一種於基板上藉由原子層堆積法形成無機材料之薄膜之圖案的方法,且其包括:於基板上,使用如請求項1至3中任一項之原子層堆積抑制材料形成原子層堆積抑制層之圖案;及繼而,藉由原子層堆積法,於不存在原子層堆積抑制層之區域中形成無機材料之層。
TW105105714A 2015-03-13 2016-02-25 Atomic layer deposition inhibiting material TWI627192B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015051240 2015-03-13

Publications (2)

Publication Number Publication Date
TW201638128A TW201638128A (zh) 2016-11-01
TWI627192B true TWI627192B (zh) 2018-06-21

Family

ID=56919823

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105105714A TWI627192B (zh) 2015-03-13 2016-02-25 Atomic layer deposition inhibiting material

Country Status (6)

Country Link
US (1) US10508337B2 (zh)
JP (2) JP6493513B2 (zh)
KR (1) KR102053509B1 (zh)
CN (1) CN107406975B (zh)
TW (1) TWI627192B (zh)
WO (1) WO2016147941A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10453701B2 (en) 2016-06-01 2019-10-22 Asm Ip Holding B.V. Deposition of organic films
US11430656B2 (en) * 2016-11-29 2022-08-30 Asm Ip Holding B.V. Deposition of oxide thin films
KR102112705B1 (ko) * 2016-12-09 2020-05-21 주식회사 원익아이피에스 박막 증착 방법
JP7146690B2 (ja) 2018-05-02 2022-10-04 エーエスエム アイピー ホールディング ビー.ブイ. 堆積および除去を使用した選択的層形成
KR20210029142A (ko) 2018-07-02 2021-03-15 샌트랄 글래스 컴퍼니 리미티드 기판, 기판의 금속표면영역에 대한 선택적인 막 퇴적방법, 유기물의 퇴적막 및 유기물
JPWO2020145269A1 (ja) 2019-01-10 2021-11-25 セントラル硝子株式会社 基板、選択的膜堆積方法、有機物の堆積膜及び有機物
JP7118099B2 (ja) * 2020-01-15 2022-08-15 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置およびプログラム
CN112175220B (zh) * 2020-09-03 2023-01-03 广东以色列理工学院 耐高温的改性聚丙烯薄膜及其制备方法和应用
KR20230136177A (ko) 2021-02-01 2023-09-26 샌트랄 글래스 컴퍼니 리미티드 기판, 선택적 막 퇴적 방법, 유기물의 퇴적막 및 유기물

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200923122A (en) * 2007-09-26 2009-06-01 Eastman Kodak Co Process for selective area deposition of inorganic materials
TW201244090A (en) * 2010-10-07 2012-11-01 Georgia Tech Res Inst Field-effect transistor and manufacturing process thereof

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG53005A1 (en) * 1996-07-03 1998-09-28 Novellus Systems Inc Method for depositing substituted fluorcarbon polymeric layers
WO1998008906A1 (en) * 1996-08-26 1998-03-05 Minnesota Mining And Manufacturing Company Fluoropolymer-epoxy resin semi-interpenetrating network composition
JP3645682B2 (ja) * 1997-03-18 2005-05-11 三菱電機株式会社 Cu成膜用CVD装置
US7074862B2 (en) * 2001-05-02 2006-07-11 3M Innovative Properties Company Emulsifier free aqueous emulsion polymerization process for making fluoropolymers
JP5023413B2 (ja) * 2001-05-11 2012-09-12 ソニー株式会社 半導体装置およびその製造方法
AU2003233400A1 (en) * 2002-03-15 2003-09-29 The Penn State Research Foundation Method for control of temperature-sensitivity of polymers in solution
US6887927B2 (en) * 2002-08-27 2005-05-03 3M Innovative Properties Company Fluoropolymer compositions containing a nitrogen cure site monomer and a sulfone or sulfoxide compound
JP2004259661A (ja) * 2003-02-27 2004-09-16 Asahi Glass Co Ltd 膜・電極接合体及びその製造方法
ITMI20042554A1 (it) * 2004-12-30 2005-03-30 Solvay Solexis Spa Procedimento per la preparazione di dispersioni di fluoropolimeri
JP5074059B2 (ja) * 2007-02-28 2012-11-14 東京エレクトロン株式会社 層間絶縁膜および配線構造と、それらの製造方法
US8017183B2 (en) 2007-09-26 2011-09-13 Eastman Kodak Company Organosiloxane materials for selective area deposition of inorganic materials
US20100069554A1 (en) * 2008-09-18 2010-03-18 Dupont Performance Elastomers L.L.C. Curable fluoropolymer compositions
US8753933B2 (en) * 2008-11-19 2014-06-17 Micron Technology, Inc. Methods for forming a conductive material, methods for selectively forming a conductive material, methods for forming platinum, and methods for forming conductive structures
JP5429078B2 (ja) * 2010-06-28 2014-02-26 東京エレクトロン株式会社 成膜方法及び処理システム
US8945305B2 (en) * 2010-08-31 2015-02-03 Micron Technology, Inc. Methods of selectively forming a material using parylene coating
JP5700513B2 (ja) * 2010-10-08 2015-04-15 国立大学法人東北大学 半導体装置の製造方法および半導体装置
JP2013254874A (ja) * 2012-06-07 2013-12-19 National Institute For Materials Science 自己形成2層分離による有機半導体薄膜形成方法、有機半導体薄膜、及び有機半導体デバイス
US9171960B2 (en) * 2013-01-25 2015-10-27 Qualcomm Mems Technologies, Inc. Metal oxide layer composition control by atomic layer deposition for thin film transistor
US8921236B1 (en) * 2013-06-21 2014-12-30 Eastman Kodak Company Patterning for selective area deposition
US8937016B2 (en) * 2013-06-21 2015-01-20 Eastman Kodak Company Substrate preparation for selective area deposition
US10316406B2 (en) * 2015-10-21 2019-06-11 Ultratech, Inc. Methods of forming an ALD-inhibiting layer using a self-assembled monolayer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200923122A (en) * 2007-09-26 2009-06-01 Eastman Kodak Co Process for selective area deposition of inorganic materials
TW201244090A (en) * 2010-10-07 2012-11-01 Georgia Tech Res Inst Field-effect transistor and manufacturing process thereof

Also Published As

Publication number Publication date
KR102053509B1 (ko) 2019-12-06
US10508337B2 (en) 2019-12-17
KR20170117531A (ko) 2017-10-23
JP6756388B2 (ja) 2020-09-16
JPWO2016147941A1 (ja) 2017-12-21
CN107406975A (zh) 2017-11-28
US20170356086A1 (en) 2017-12-14
WO2016147941A1 (ja) 2016-09-22
CN107406975B (zh) 2019-07-05
JP2019135325A (ja) 2019-08-15
TW201638128A (zh) 2016-11-01
JP6493513B2 (ja) 2019-04-03

Similar Documents

Publication Publication Date Title
TWI627192B (zh) Atomic layer deposition inhibiting material
TWI527231B (zh) Electronic device, laminated structure and manufacturing method thereof
JP6213579B2 (ja) コンデンサ
TWI360138B (zh)
Dutta et al. Electrical properties of ultrathin titanium dioxide films on silicon
JP6423952B2 (ja) コンデンサおよびその製造方法
JP6070930B2 (ja) 電子部品
KR20160034899A (ko) 서미스터용 금속 질화물 재료 및 그 제조 방법 그리고 필름형 서미스터 센서
CN111687022A (zh) 组合不同类型的耐湿性材料
JP2017022176A (ja) 薄膜抵抗器及びその製造方法
TWI600150B (zh) 記憶體結構及其製造方法
KR102118492B1 (ko) 적층 세라믹 커패시터 및 그의 제조 방법
TW201839038A (zh) 微影組合物及其使用方法
JP6332272B2 (ja) 金属酸化物膜の製造方法、及びトランジスタの製造方法
JP2007059583A (ja) 誘電体膜キャパシタおよびその製造方法
JP6375669B2 (ja) 電子部品の製造方法
JP5422942B2 (ja) 金属酸化物膜の形成方法
Peng et al. The development of low-temperature atomic layer deposition of HfO2 for TEM sample preparation on soft photo-resist substrate
JP7197311B2 (ja) キャパシタおよびキャパシタの製造方法
JP2020526046A5 (zh)
EP4059044A1 (en) Transfer material layers for graphene fabrication process
JP6892459B2 (ja) 酸化物誘電体及びその製造方法、並びに固体電子装置及びその製造方法
Lee et al. High‐Performance Nanostructured Flexible Capacitor by Plasma‐Induced Low‐Temperature Atomic Layer Annealing
JP2017130551A (ja) 電極形成方法及び弾性波装置
Sundaram et al. Solid State Topics General Session