CN106353365A - 气体传感器元件及气体传感器 - Google Patents

气体传感器元件及气体传感器 Download PDF

Info

Publication number
CN106353365A
CN106353365A CN201610551101.7A CN201610551101A CN106353365A CN 106353365 A CN106353365 A CN 106353365A CN 201610551101 A CN201610551101 A CN 201610551101A CN 106353365 A CN106353365 A CN 106353365A
Authority
CN
China
Prior art keywords
layer
gas sensor
sensor element
oxide layer
electroconductive oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610551101.7A
Other languages
English (en)
Other versions
CN106353365B (zh
Inventor
大冢茂弘
西智広
中川恵介
伊藤和真
加藤平
加藤一平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Publication of CN106353365A publication Critical patent/CN106353365A/zh
Application granted granted Critical
Publication of CN106353365B publication Critical patent/CN106353365B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4075Composition or fabrication of the electrodes and coatings thereon, e.g. catalysts
    • G01N27/4076Reference electrodes or reference mixtures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D11/00Component parts of measuring arrangements not specially adapted for a specific variable
    • G01D11/30Supports specially adapted for an instrument; Supports specially adapted for a set of instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4073Composition or fabrication of the solid electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/417Systems using cells, i.e. more than one cell and probes with solid electrolytes
    • G01N27/419Measuring voltages or currents with a combination of oxygen pumping cells and oxygen concentration cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

提供一种具有充分的耐冲击性的气体传感器元件及气体传感器。气体传感器元件的内侧引线部在导电性氧化物层与固体电解质体之间具有锆酸镧层。另一方面,气体传感器元件的内侧检测电极部(i)在导电性氧化物层与固体电解质体之间未形成锆酸镧层,或者(ii)在导电性氧化物层与固体电解质体之间形成比内侧引线部的锆酸镧层薄的锆酸镧层。

Description

气体传感器元件及气体传感器
技术领域
本发明涉及使用了由导电性氧化物形成的电极的导电气体传感器元件、及气体传感器。
背景技术
以往,作为气体传感器,已知具备根据被测定气体中的特定气体成分的浓度而电特性发生变化的气体传感器元件的传感器。例如,专利文献1公开了一种气体传感器元件,具备:前端密闭的有底筒状的固体电解质体;形成在该固体电解质体的内表面上的内侧电极(基准电极);形成在固体电解质体的外表面的前端部的外侧电极(检测电极)。这样的气体传感器适合使用于例如从燃烧器或内燃机排出的废气中包含的特定气体的气体浓度的检测。而且,专利文献2、3公开了各种导电性氧化物。这些导电性氧化物可以被利用作为气体传感器元件的电极材料。
然而,伴随着近年来的废气限制的强化,对于气体传感器的要求逐年升高。作为其要求项目,可列举(i)提高气体检测精度的情况、(ii)耐热性优异的情况、(iii)廉价的情况等。若利用专利文献2、3公开的导电性氧化物作为气体传感器元件的电极材料,则能得到电阻值充分低的电极,由此,不仅气体检测精度提高,而且比仅使用贵金属作为电极材料的情况廉价,而且,能得到即使在耐热性的方面也优异的气体传感器元件。
【现有技术文献】
【专利文献】
【专利文献1】日本特开2009-63330号公报
【专利文献2】日本专利第3417090号公报
【专利文献3】国际公开第2013/150779号公报
发明内容
然而,关于气体传感器元件的电极,不仅需要小的电阻值、耐热性,而且也需要对于机械性的冲击的耐性(耐冲击性)。尤其是气体传感器元件的电极具备使用于气体的检测的检测电极部和用于将由检测电极部检测到的输出信号向外部电路输出的引线部。其中,引线部存在和与外部电路电连接的连接端子进行接触的情况,在这种情况下,特别需要耐冲击性。相对于此,导电性氧化物比贵金属材料脆且耐冲击性低,因此仅使用导电性氧化物作为气体传感器元件的电极材料的话,无法得到充分的耐冲击性,会产生无法满足对于气体传感器元件或气体传感器的要求性能这样的问题。
本发明为了解决上述的课题而作出,能够作为以下的方式来实现。
(1)根据本发明的一方式,提供一种气体传感器元件,具有:固体电解质体,沿轴线方向延伸,且包含具有氧离子传导性的ZrO2;外侧电极,设置在所述固体电解质体的一侧表面而与被测定气体相接触;及内侧电极,设置在所述固体电解质体的另一侧表面而与基准气体相接触,并且所述内侧电极包括:内侧检测电极部,配置在所述轴线方向的前端侧,被用于检测被测定气体中的特定气体;及内侧引线部,配置在比所述内侧检测电极部靠后端侧处,与所述内侧检测电极部连接,且与用于进行外部输出的连接端子接触。所述内侧电极包含导电性氧化物层,该导电性氧化物层以由组成式:LaaMbNicOx(M为Co和Fe中的一种以上,a+b+c=1,1.25≤x≤1.75)表示且具有钙钛矿型结晶构造的钙钛矿相为主成分,所述a、b、c满足0.459≤a≤0.535,0.200≤b≤0.475,0.025≤c≤0.350。所述气体传感器元件具有如下特征:所述内侧引线部在所述导电性氧化物层与所述固体电解质体之间具有锆酸镧层,所述内侧检测电极部(i)在所述导电性氧化物层与所述固体电解质体之间未形成锆酸镧层,或者(ii)在所述导电性氧化物层与所述固体电解质体之间形成的锆酸镧层比所述内侧引线部的所述锆酸镧层薄。
根据该气体传感器元件,由于在内侧引线部的导电性氧化物层与固体电解质体之间具有锆酸镧层,因此从两侧夹持锆酸镧层的导电性氧化物层与固体电解质体的紧贴性变得良好,内侧引线部的耐冲击性提高。另一方面,在内侧检测电极部中,在导电性氧化物层与固体电解质体之间未形成锆酸镧层,或者锆酸镧层形成得比内侧引线部的锆酸镧层薄。这能够抑制由于锆酸镧层为高电阻层而内侧检测电极部与固体电解质体之间的界面电阻过度上升的情况。
(2)在上述气体传感器元件中,可以是,在所述内侧检测电极部与所述固体电解质体之间具有反应防止层,该反应防止层包含添加有稀土类的氧化铈作为主成分而成。
根据该结构,反应防止层使导电性氧化物层的La与固体电解质体的ZrO2的反应难以发生,因此即便是假设在没有反应防止层的情况下形成锆酸镧层那样的气体传感器元件,通过设置反应防止层,也能够防止锆酸镧层的形成,或者减薄锆酸镧层的形成。需要说明的是,“包含添加有稀土类的氧化铈作为主成分而成”是指反应防止层包含添加有稀土类的氧化铈最多。
(3)在上述气体传感器元件中,可以是,所述反应防止层仅设置在比保持部件的位置靠所述气体传感器元件的所述前端侧的位置,所述保持部件在所述气体传感器元件向气体传感器装入时对所述气体传感器元件进行保持。
气体传感器元件在向气体传感器装入时,向主体配件等的壳体插入,存在由配置在壳体与气体传感器元件之间的滑石等保持部件保持的情况。这种情况下,在气体传感器元件中,由于保持部件而相当大的压缩应力作用于固体电解质体中的配置保持部件的部分的外表面。另一方面,由于该压缩应力的影响,而拉伸应力作用于固体电解质体中的配置保持部件的部分的内表面,其结果是,在反应防止层有时会产生裂纹。因此,若将反应防止层仅设置在比保持部件的位置靠气体传感器元件的前端侧的位置,则反应防止层不受该拉伸应力的影响,能够抑制反应防止层产生裂纹。
(4)在上述气体传感器元件中,可以是,所述内侧检测电极部具有形成在所述反应防止层与所述导电性氧化物层之间的中间导电层,所述导电性氧化物层不包含添加有稀土类的氧化铈,而通过由所述组成式表示的钙钛矿相形成,所述中间导电层包含由所述组成式表示的钙钛矿相和添加有稀土类的氧化铈。
根据该结构,由于导电性氧化物层不包含添加有稀土类的氧化铈,因此室温下的导电性氧化物层的电子传导性升高,能够降低电阻值。另一方面,由于导电性氧化物层不含有添加有稀土类的氧化铈,因此与反应防止层的紧贴性有时会降低,但是通过将包含钙钛矿相和添加有稀土类的氧化铈的中间导电层形成在反应防止层与导电性氧化物层之间,能够提高反应防止层与导电性氧化物层的紧贴性。而且,由于内侧检测电极部的中间导电层包含钙钛矿相和添加有稀土类的氧化铈,因此能够抑制气体浓度的测定时的内侧检测电极部与固体电解质体之间的界面电阻的过度上升。
(5)在上述气体传感器元件中,可以是,所述导电性氧化物层包含构成所述内侧引线部的第一导电性氧化物层和构成所述内侧检测电极部的第二导电性氧化物层,所述第一导电性氧化物层和所述第二导电性氧化物层都包含所述钙钛矿相和添加有稀土类的氧化铈,所述第二导电性氧化物层中的添加有稀土类的氧化铈的含有比例为所述第一导电性氧化物层中的添加有稀土类的氧化铈的含有比例以上。
根据该结构,在构成内侧检测电极部的导电性氧化物层中增加添加有稀土类的氧化铈的含有比例,由此,内侧检测电极部的组织成为多孔,三相界面增加而能够减小界面电阻。而且,在内侧引线部中,通过减少添加有稀土类的氧化铈的含有比例,内侧引线部的组织变得致密,电子传导性提高,并且内侧引线部自身的强度增加而耐冲击性进一步提高。
本发明能够以各种方式实现,例如,能够以气体传感器元件、及具备气体传感器元件的气体传感器、以及它们的制造方法等方式实现。
附图说明
图1是表示气体传感器的构造的剖视图。
图2是表示一实施方式的气体传感器元件的结构的说明图。
图3是表示另一实施方式的气体传感器元件的结构的说明图。
图4是表示又一实施方式的气体传感器元件的结构的说明图。
图5是表示图2的气体传感器元件的制造方法的流程图。
图6是表示图3的气体传感器元件的制造方法的流程图。
图7是表示图4的气体传感器元件的制造方法的流程图。
图8是表示机械冲击耐性试验的试验结果的图。
图9是表示机械冲击耐性试验用的样品的剖面SEM像的图。
图10是表示电极界面电阻测定的试验结果的图。
图11是表示电极界面电阻的测定结果的坐标图。
具体实施方式
A.气体传感器的结构
图1是表示作为本发明的第一实施方式的气体传感器300的结构的剖视图。气体传感器300具有沿着轴线O伸长的细长形状。在以下的说明中,将图1的下方侧称为前端侧,将上方侧称为后端侧。而且,将与轴线O垂直的方向且从轴线O朝向外部的方向称为“径向”。该气体传感器300是氧浓度传感器,可以使用于例如机动车的废气中的氧浓度的检测。气体传感器300具备气体传感器元件10、主体配件20、保护器62、外筒40、保护外筒38、后述的电极布线构造(电极及引线)。
气体传感器元件10是在离子传导性(氧离子传导性)的固体电解质体11的两面设有一对电极的氧传感器元件,作为氧浓淡电池发挥功能而输出与氧分压对应的检测值。该气体传感器元件10具备:外径朝向前端呈锥状地缩径的有底筒状的固体电解质体11;形成在固体电解质体11的前端部的外表面上的外侧电极100;形成在固体电解质体11的内表面上的内侧电极200(基准参照电极)。在使用时,将气体传感器元件10的内部空间设为基准气体气氛,在使被检测气体与气体传感器元件10的外表面接触的状态下,进行气体的检测。从气体传感器300的后端引出引线60,该引线60用于取出来自内侧电极200的检测信号。在气体传感器元件10的轴线方向的大约中部,沿径向突出的突缘部12遍及整周地形成。
主体配件20是将气体传感器元件10包围的金属(例如不锈钢)制的部件,气体传感器元件10的前端部从主体配件20的前端部突出。在主体配件20的内表面设有内径朝向前端方向缩径的台阶部20b。而且,在主体配件20的中央附近,为了使六角扳手等安装工具卡合而设有向径向外侧突出的多边形形状的突缘部20c。此外,在比突缘部20c靠前端侧处的外表面形成有外螺纹部20d。将主体配件20的外螺纹部20d安装于例如内燃机的排气管的螺纹孔,并将气体传感器元件10的前端配置在排气管内,由此能够进行被检测气体(废气)中的氧浓度的检测。在突缘部20c的前端侧的面与外螺纹部20d的后端之间的台阶部还嵌插有防止将气体传感器300安装于排气管时的漏气的衬垫29。
保护器62是金属(例如不锈钢)制的筒状的部件,覆盖从主体配件20的前端部突出的气体传感器元件10的前端部。保护器62的后端部朝向径向外侧弯折。该后端部由气体传感器元件10的突缘部12的前端侧的面与主体配件20的台阶部20b夹持,由此将保护器62固定。在将主体配件20和气体传感器元件10组装时,首先,从主体配件20的后端侧将保护器62插入到主体配件20内,使保护器62的后端部与主体配件20的台阶部20b抵接。并且,从主体配件20的后端侧将气体传感器元件10进一步插入,使突缘部12的前端侧的面与保护器62的后端部抵接。如后所述,在气体传感器元件10的突缘部12的前端侧的面上设有外侧电极100的环状引线部115,经由该环状引线部115和保护器62,外侧电极100与主体配件20导通。需要说明的是,在保护器62形成有用于将废气向保护器62的内部取入的多个孔部。从这多个孔部流入到保护器62内的废气作为被检测气体向外侧电极100供给。
在气体传感器元件10的突缘部12的后端侧与主体配件20之间的空隙配置压缩填充有包含滑石粉末的粉体材料的粉体填充部31(相当于权利要求书的保持部件),气体传感器元件10与主体配件20的间隙被密封。并且,在粉体填充部31的后端侧配置筒状的绝缘部件(陶瓷套筒)32。
外筒40是由不锈钢等金属材料形成的部件,以覆盖气体传感器元件10的后端部的方式接合于主体配件20的后端部。在主体配件20的后端部的内表面与外筒40的前端部的外表面之间配置由不锈钢等金属材料形成的金属环33。并且,外筒40的前端部在主体配件20的后端部被敛缝,由此将主体配件20和外筒40固定。通过进行该敛缝,而在突缘部20c的后端侧形成弯折部20a。通过在主体配件20的后端部形成弯折部20a,将绝缘部件32按压于前端侧而将粉体填充部31压扁,将绝缘部件32及粉体填充部31敛缝固定,并将气体传感器元件10与主体配件20的间隙密封。
在外筒40的内侧配置大致圆筒形状且绝缘性的分隔件34。在分隔件34形成有沿轴线O方向贯通分隔件34且供引线60插通的插通孔35。引线60与连接端子70电连接。连接端子70是用于将传感器输出向外部取出的部件,以与内侧电极200接触的方式配置。在外筒40的内侧还配置有与分隔件34的后端相接触的大致圆柱状的垫圈36。在垫圈36形成有沿着轴线O供引线60插通的插通孔。垫圈36可以由例如硅橡胶或氟橡胶等橡胶材料形成。
在外筒40的侧面中的比配置垫圈36的位置靠前端侧处的位置,沿周向并列开设有多个第一通气孔41。并且,在外筒40的后端部的径向外侧,以覆盖第一通气孔41的方式覆盖环状的通气性的过滤器37,而且,金属制筒状的保护外筒38从径向外侧包围过滤器37。该保护外筒38可以有例如不锈钢形成。在保护外筒38的侧面,沿周向并列开设有多个第二通气孔39。其结果是,经由保护外筒38的第二通气孔39、过滤器37、外筒40的第一通气孔41,能够向外筒40内部以及气体传感器元件10的内侧电极200导入外气。需要说明的是,在第二通气孔39的前端侧和后端侧将外筒40及保护外筒38敛缝,由此在外筒40与保护外筒38之间保持过滤器37。过滤器37可以由例如氟系树脂等疏水性树脂的多孔质构造体构成,由于具有疏水性,因此不使外部的水通过而能够向气体传感器元件10的内部空间导入基准气体(大气)。
图2(A)示出一实施方式的气体传感器元件10的外观。气体传感器元件10的固体电解质体11具有突缘部12、设置在突缘部12的前端侧(图2的左侧)的有底部13、设置在突缘部12的后端侧的基体部18。有底部13朝向前端侧逐渐缩径,其前端部被闭塞。基体部18是后端具有开口的大致中空圆筒状的部分。在固体电解质体11的外表面形成有外侧电极100。
外侧电极100具有外侧引线部110和外侧检测电极部120。外侧检测电极部120以覆盖固体电解质体11的有底部13的前端侧的一部分的外表面的方式形成。外侧检测电极部120设置在与被测定气体相接触的位置,与内侧电极200的内侧电极检测部(后述)及固体电解质体11一起构成氧浓淡电池,产生与被测定气体的气体浓度对应的电动势(电压)。
外侧引线部110与外侧检测电极部120的后端侧连接。外侧引线部110具备纵引线部114和环状引线部115。环状引线部115在突缘部12的前端侧的面(突缘部12与有底部13之间的台阶部),遍及气体传感器元件10的整周呈环状地形成。该环状引线部115与保护器62(图1)相接触而电连接。纵引线部114以将外侧检测电极部120的后端与环状引线部115连接的方式沿着轴线O方向形成为线状。需要说明的是,在外侧检测电极部120的表面上可以形成用于保护外侧检测电极部120的电极保护层(图示省略)。需要说明的是,外侧电极100的形状或配置只不过是一例,也可以采用除此以外的各种形状或配置。
固体电解质体11由包含具有氧离子传导性的ZrO2的固体电解质形成。作为该固体电解质,通常使用添加了稳定化剂的稳定化氧化锆。作为稳定化剂,可以利用从氧化钇(Y2O3)、氧化钙(CaO)、氧化镁(MgO)、氧化铈(CeO2)、氧化镱(Yb2O3)、氧化钪(Sc2O3)等中选择的氧化物。
图2(B)是气体传感器元件10的纵剖视图。如前所述,在固体电解质体11的内表面设有内侧电极200(基准参照电极)。该内侧电极200具有内侧引线部210和内侧检测电极部220。
内侧检测电极部220以覆盖固体电解质体11的前端侧的一部分的内表面的方式形成。内侧引线部210与内侧检测电极部220的后端侧连接,与连接端子70(图1)接触而进行电连接。内侧检测电极部220和内侧引线部210整体上以覆盖固体电解质体11的内表面的大致整面的方式形成。如后所述,内侧引线部210具有比内侧检测电极部220高的耐冲击性。在图2(B)的例子中,内侧检测电极部220与内侧引线部210的交界处于固体电解质体11的突缘部12的位置。如图1中说明那样,在突缘部12的后端侧配置保持部件(粉体填充部31)。配置粉体填充部31的突缘部12的后端侧的内表面优选不形成内侧检测电极部220而形成内侧引线部210。其理由是,由于敛缝而相当大的压缩应力作用于配置粉体填充部31的突缘部12的后端侧的部位的外表面。由此,拉伸应力作用于突缘部12的后端侧的部位的内表面,其结果是,如后所述在设于内侧检测电极部220的反应防止层BL上有时会产生裂纹。相对于此,若在突缘部12的后端侧的部位的内表面设置内侧引线部210,则反应防止层BL不受该拉伸应力的影响,能够抑制在反应防止层BL产生裂纹的情况。
内侧检测电极部220和内侧引线部210优选使用由导电性氧化物形成的导电体氧化物层来形成。另一方面,外侧检测电极部120或外侧引线部110通过铂(Pt)等贵金属或铂合金等贵金属合金形成。
图2(C)是将内侧检测电极部220的剖面构造放大表示的说明图。该内侧检测电极部220由形成在固体电解质体11的内表面上的导电性氧化物层OCL2构成,具有单层构造。导电性氧化物层OCL2优选包含具有满足以下的组成式的钙钛矿型氧化物结晶构造的结晶相(钙钛矿相)作为主成分。
LaaMbNicOx…(1)
在此,元素M表示Co和Fe中的一种以上,a+b+c=1,1.25≤x≤1.75。系数a、b、c优选满足以下的关系。
0.459≤a≤0.535…(2a)
0.200≤b≤0.475…(2b)
0.025≤c≤0.350…(2c)
具有由上述组成式表示的组成的钙钛矿型导电性氧化物由于室温(25℃)下的导电率为250S/cm以上且B常数为600K以下,与不满足这些关系的情况相比,具有导电率高且B常数小这样良好的特性。而且,该钙钛矿型导电性氧化物与贵金属电极相比界面电阻的活性化能量小,因此即使在低温下也能够充分减小界面电阻。需要说明的是,在大气中放置于约600℃的环境时,Pt电极发生氧化而界面电阻上升,相对于此,在钙钛矿型导电性氧化物中具有难以发生这样的经时变化的优点。
关于系数b、c,更优选取代上述(2b)、(2b)而满足下述的(3b)、(3c)。
0.200≤b≤0.375…(3b)
0.125≤c≤0.300…(3c)
这样的话,能够进一步提高导电率,并能够进一步减小B常数。
关于上述(1)式的O(氧)的系数x,具有上述组成的导电性氧化物全部由钙钛矿相构成的情况下,在理论上成为x=1.5。但是,氧有时会从计量组成偏离,因此作为典型的例子,将x的范围规定为1.25≤x≤1.75。
需要说明的是,导电性氧化物层OCL2可以包含上述组成的钙钛矿相以外的其他的氧化物。例如,导电性氧化物层OCL2可以包含钙钛矿相和添加了氧化铈以外的稀土类氧化物的氧化铈(称为“添加有稀土类的氧化铈”)。需要说明的是,以下,将该添加有稀土类的氧化铈也称为“共坯料”。作为氧化铈以外的稀土类氧化物,可以利用La2O3或Gd2O3、Sm2O3、Y2O3等。这样的添加有稀土类的氧化铈中的稀土类元素RE的含有比例换算成铈与稀土类元素RE的摩尔分率{RE/(Ce+RE)},可以设为例如10mol%以上且50mol%以下的范围。而且,导电性氧化物层OCL2中的添加有稀土类的氧化铈的体积比例可以设为例如10vol%以上且40vol%以下的范围。这样的添加有稀土类的氧化铈在低温(室温)下是绝缘体,但是在高温(气体传感器300的使用温度)下作为具有氧离子传导性的固体电解质发挥功能。因此,若包含添加有稀土类的氧化铈,则在气体传感器300的使用时能够降低导电性氧化物层OCL2的界面电阻值。但是,为了降低室温下的电阻值,优选不包含添加有稀土类的氧化铈。
导电性氧化物层OCL2在不影响导电性的范围内容许含有极微量的碱土类金属元素,但是优选实质上不含有碱土类金属元素。这样的话,在气体传感器300的使用时,即使在导电性氧化物层OCL2曝露于从室温至900℃附近的大范围的温度的情况下,也难以产生导电性氧化物层OCL2的重量变化,即氧的吸收或放出。由此,能得到适合于高温环境下的使用的导电性氧化物层OCL2。需要说明的是,在本说明书中,“实质上不含有碱土类金属元素”是指即使通过荧光X线分析(XRF)也无法检测或辨别碱土类金属元素。
图2(D)是将内侧引线部210的剖面构造放大表示的说明图。该内侧引线部210具有多层构造,包括形成在固体电解质体11的内表面上的锆酸镧层LZL和形成在锆酸镧层LZL的内表面侧的导电性氧化物层OCL1。导电性氧化物层OCL1可以设为与上述的内侧检测电极部220的导电性氧化物层OCL2大致同样的组成。但是,构成内侧检测电极部220的导电性氧化物层OCL2中的添加有稀土类的氧化铈的含有比例优选等于或多于构成内侧引线部210的导电性氧化物层OCL1中的添加有稀土类的氧化铈的含有比例。其理由是因为,通过在内侧检测电极部220中增加添加有稀土类的氧化铈的含有比例,由此内侧检测电极部220的组织成为多孔,三相界面增加而界面电阻减小。而且是因为,通过在内侧引线部210中减少添加有稀土类的氧化铈的含有比例,内侧引线部210的组织变得致密,电子传导性提高,并且内侧引线部210自身的强度增加而耐冲击性进一步提高。
锆酸镧层LZL是在内侧引线部210的烧制时,导电性氧化物层OCL1包含的镧(La)与固体电解质体11包含的ZrO2发生反应而形成的层。以下,将这样的锆酸镧层LZL也称为“反应层LZL”。当锆酸镧层LZL形成时,锆酸镧层LZL与导电性氧化物层OCL1之间及锆酸镧层LZL与固体电解质体11之间的紧贴性提高,因此耐冲击性提高。因此,在内侧引线部210存在的部分,为了提高耐冲击性,优选在导电性氧化物层OCL1与固体电解质体11之间形成锆酸镧层LZL。
需要说明的是,由于锆酸镧层LZL不具有氧离子传导性,因此优选在内侧检测电极部220(图2(C))不形成锆酸镧层LZL。但是,氧离子传导性只要是在实用上能充分确保的程度即可,在内侧检测电极部220上也可以形成薄的锆酸镧层LZL。换言之,内侧检测电极部220优选(i)在导电性氧化物层OCL2与固体电解质体11之间不形成锆酸镧层LZL,或者(ii)形成在导电性氧化物层OCL2与固体电解质体11之间的锆酸镧层LZL比形成在内侧引线部210的导电性氧化物层OCL1与固体电解质体11之间的锆酸镧层LZL薄。这样的话,通过形成作为高电阻层的锆酸镧层,能够抑制导电性氧化物层OCL2与固体电解质体11的界面电阻的过度上升。
图3是表示另一实施方式的气体传感器元件10a的说明图。与图2的差异仅在于内侧检测电极部220a的位置处的剖面构造(图3(C))、及内侧检测电极部220a与内侧引线部210的交界位置(图3(B))这两点,其他的结构与图2相同。如图3(C)所示,内侧检测电极部220a具有多层构造,包括形成在固体电解质体11的内表面上的反应防止层BL及导电性氧化物层OCL2。该反应防止层BL是由添加有稀土类的氧化铈形成的氧化物层。如前所述,添加有稀土类的氧化铈在高温下作为具有氧离子传导性的固体电解质发挥功能。当考虑这样的反应防止层BL的性质时,可以考虑使内侧检测电极部220a为导电性氧化物层OCL2的单层构造,且在其内侧检测电极部220a(=OCL2)与固体电解质体11之间形成反应防止层BL。反应防止层BL具有使导电性氧化物层OCL2的La与固体电解质体11的ZrO2的反应难以发生的功能。若设置这样的反应防止层BL,则具有如下的优点:即使在假设没有反应防止层BL的情况下形成锆酸镧层LZL(反应层)那样的条件下进行烧制的情况下,也能够抑制锆酸镧层LZL的形成。
图4是表示又一实施方式的气体传感器元件10b的说明图。与图3的差异仅在于内侧检测电极部220b的位置处的剖面构造(图4(C))和导电性氧化物层OCL1b、OCL2b的组成这两点,其他的结构与图3相同。如图4(C)所示,内侧检测电极部220b具有多层构造,包括形成在固体电解质体11的内表面上的反应防止层BL、形成在反应防止层BL的内表面上的中间导电层ICL、及导电性氧化物层OCL2b。需要说明的是,也如图3中说明那样将反应防止层BL考虑作为与内侧检测电极部220b不同的层的情况下,该内侧检测电极部220b具有由中间导电层ICL和导电性氧化物层OCL2b构成的双层构造。该构造是向图3(C)的构造追加了中间导电层ICL的构造。该中间导电层ICL优选包含钙钛矿相作为主成分并包含添加有稀土类的氧化铈作为副成分。中间导电层ICL与图2及图3中使用的导电性氧化物层OCL1、OCL2同样,在高温下(气体传感器300的使用时)具有离子导电性和电子导电性这两方的性质,因此表现出充分低的界面电阻值。而且,在该构造中,可以不包含添加有稀土类的氧化铈,仅通过钙钛矿相形成导电性氧化物层OCL1b、OCL2b。这样的话,室温下的导电性氧化物层OCL1b、OCL2b的电子传导性升高,因此能够降低电阻值。
B.制造方法
图5是表示图2所示的气体传感器元件10的制造方法的流程图。在工序T210中,对固体电解质体11的材料(例如钇稳定化氧化锆粉末)进行冲压,并切削成图2所示的形状(筒状),得到未加工体(未烧结成形体)。在工序T230中,制作导电性氧化物的浆料。在该工序T230中,例如,在称量了导电性氧化物的原料粉末之后,进行湿式混合并进行干燥,由此来调整原料粉末混合物。作为钙钛矿相的原料粉末,可以使用例如La(OH)3或La2O3、以及Co3O4、Fe2O3及NiO。而且,作为添加有稀土类的氧化铈的原料粉末,除了CeO2之外,也可以利用La2O3、Gd2O3、Sm2O3、Y2O3等。将这些原料粉末混合物在大气气氛下,以700~1200℃预烧1~5小时来制作预烧粉末。并且,将该预烧粉末进行基于湿式球磨机等的粉碎而调整成预定的粒度之后,与乙基纤维素等粘合剂一起溶解于松油醇或丁基卡必醇等溶剂,来制作浆料。
在工序T240中,向外侧电极100(图2(A))的部分涂布Pt膏剂等的贵金属氧化物的浆料,向内侧引线部210的部分(图2(B))涂布导电性氧化物的浆料。此时,优选在内侧检测电极部220的部分预先涂布掩模部件进行掩模,以免被涂布导电性氧化物的浆料。在工序T250中,在进行了干燥之后,以例如1250℃以上且1450℃以下(优选为1350±50℃)的烧制温度进行烧制。此时,如图2(D)所示,在内侧引线部210的导电性氧化物层OCL1与固体电解质体11之间形成锆酸镧层LZL。如前所述,锆酸镧层LZL是导电性氧化物层OCL1包含的镧(La)与固体电解质体11包含的ZrO2发生反应而形成的层。需要说明的是,锆酸镧层LZL的厚度在烧制温度越高时越变厚,而且,在添加有稀土类的氧化铈的含有比例越低时越变厚。因此,通过调整这些参数,能够调整锆酸镧层LZL的厚度。
在工序T260中,将导电性氧化物的浆料向内侧检测电极部220的部分(图2(B))涂布。在工序T270中,在进行了干燥之后,例如以800℃以上且1050℃以下(优选为1000±50℃)的烧制温度进行烧制。若将工序T260中的烧制温度限制成1050℃以下,则锆酸镧层LZL完全未形成,或者即便形成也比形成于内侧引线部210的锆酸镧层薄。其结果是,如图2(C)所示,在内侧检测电极部220的导电性氧化物层OCL2与固体电解质体11之间几乎未形成锆酸镧层LZL。
图6是表示图3所示的气体传感器元件10a的制造方法的流程图。工序T310与图5的工序T210相同。在工序T330中,得到导电性氧化物的浆料和反应防止层BL(图3(C))的浆料。导电性氧化物的浆料与通过图5的工序T230制作的浆料相同。如前所述,反应防止层BL由添加有稀土类的氧化铈形成。因此,反应防止层BL用的浆料将通过固相法或共沉淀法而制作的市售的添加有稀土类(La2O3、Gd2O3、Sm2O3或Y2O3等)的氧化铈与乙基纤维素等粘合剂一起溶解于松油醇或丁基卡必醇等溶剂。在工序T340中,向外侧电极100(图3(A))的部分涂布Pt膏剂等的贵金属氧化物的浆料,向反应防止层BL的部分涂布添加有稀土类的氧化铈的浆料。而且,以覆盖反应防止层BL的内表面侧的内侧检测电极部220a(图3(C))的部分和内侧引线部210的部分(图3(B))的方式涂布导电性氧化物的浆料。这种情况下,内侧检测电极部220a和内侧引线部210由相同的导电性氧化物形成。需要说明的是,在使内侧检测电极部220a与内侧引线部210的导电性氧化物的组成不同的情况下,只要将不同的组成的浆料向各自的部分涂布即可。
在工序T350中,在进行了干燥之后,例如以1250℃以上且1450℃以下(优选为1350±50℃)的烧制温度进行烧制。此时,如图3(C)所示,在内侧检测电极部220a的导电性氧化物层OCL1与固体电解质体11之间形成反应防止层BL,因此未形成锆酸镧层LZL。图6的工序与图5的工序相比可以减少烧制工序,因此具有能够缩短整体的制造时间这样的优点。
图7是表示图4所示的气体传感器元件10b的制造方法的流程图。图7与图6不同的点仅在于两个工序T330a、T340a,其他的工序与图6相同。图7的工序T330a与图6的工序T330的不同之处在于制作包含添加有稀土类的氧化铈的浆料和不包含添加有稀土类的氧化铈的浆料这两种作为导电性氧化物的浆料的点。在图7的工序T340a中,与图6的工序T340的不同之处是在反应防止层BL的浆料的涂布之后,涂布中间导电层ICL(图4(C))的浆料,之后,涂布内侧检测电极部220b的导电性氧化物层OCL2b的浆料的点。如前所述,中间导电层ICL包含钙钛矿相和添加有稀土类的氧化铈。另一方面,导电性氧化物层OCL2b不包含添加有稀土类的氧化铈而仅由钙钛矿相构成。因此,在工序T340a中,使用通过工序T330a制作的两种导电性氧化物的浆料和反应防止层BL的浆料,来涂布适合于各自的部分的浆料。这样的话,在工序T350中,例如以1250℃以上且1450℃以下(优选为1350±50℃)的烧制温度进行烧制,由此得到图4所示的构造。
需要说明的是,上述的图5~图7的制造方法中的各种制造条件是一例,根据产品的用途等能够适当变更。
C.机械冲击耐性试验
图8是表示关于内侧引线部210的机械冲击耐性(耐冲击性)的试验结果的说明图。样品S01、S02是实施例,标注了“*”的样品S03、S04是比较例。作为各样品的固体电解质体11,使用添加了5mol%的钇的氧化锆(5YSZ)。在各样品的制作时,首先,向固体电解质体11的相当于内侧引线部210的部分涂布导电性氧化物层OCL1的浆料并使该浆料干燥。该浆料通过将具有上述(1)式的组成的钙钛矿型导电性氧化物的粉末、作为副成分的添加有钆的氧化铈(GDC)、粘合剂、有机溶剂混合来制作。作为导电性氧化物的粉末,如图8所示,使用了LaCo0.5Ni0.5O3(称为“LCN”)或LaFe0.5Ni0.5O3(称为“LFN”)。添加有钆的氧化铈添加了20mol%的钆。导电性氧化物层OCL1中的添加有钆的氧化铈的比例为30vol%。在样品S01、S02中,向固体电解质体11的未烧结成形体涂布浆料并使该浆料干燥,之后,以1350℃进行了1小时烧制。另一方面,在样品S03、S04中,将固体电解质体11的未烧结成形体以1350℃进行1小时烧制,并且,涂布浆料并使该浆料干燥,之后,以1000℃进行了1小时烧制。
图9关于样品S01~S04,示出内侧引线部210的导电性氧化物层OCL1与固体电解质体11之间的界面的剖面SEM像。可知在实施例的样品S01、S02中存在反应层LZL(锆酸镧层),相对于此,在比较例的样品S03、S04中不存在反应层LZL。其差异的起因是在样品S01、S02中,烧制温度为1350℃,相对于此,在样品S03、S04中,烧制温度为1000℃。即,若将烧制温度设定为超过1000℃的高值,则在导电性氧化物层OCL1与固体电解质体11之间能够形成反应层LZL(锆酸镧层)。需要说明的是,为了形成反应层LZL,将烧制温度优选设为1250℃以上且1450℃以下,更优选设为1350±50℃。
在机械冲击耐性试验中,使用SUS制的连接端子70(图1),反复进行了30次的其插入/抜去。之后,将各样品切断而形成为对开的状态,利用放大镜观察了连接端子70接触的内侧引线部210的部分。其结果是,在实施例的样品S01、S02中,在内侧引线部210未观察到损伤,相对于此,在比较例的样品S03、S04中,内侧引线部210发生剥落(参照图8的右端)。其理由可推定为,在实施例的样品S01、S02中,如图2(D)说明那样,反应层LZL作为导电性氧化物层OCL1与固体电解质体11之间的粘结层发挥功能,界面变得牢固。根据该试验结果可知,从提高内侧电极200的耐冲击性这样的观点出发,优选在内侧引线部210的导电性氧化物层OCL1与固体电解质体11之间形成反应层LZL(锆酸镧层)。
D.电极界面电阻测定
图10是表示关于具有图2及图3的构造的气体传感器元件,测定了电极界面电阻的试验结果的说明图。样品S11~S15是实施例,标注了“*”的样品S16是比较例。在图10中,关于各样品,示出了内侧检测电极部220的组成及烧制温度、内侧引线部210的组成及烧制温度、电极界面电阻的测定结果。组成的栏进行简化。例如,样品S11的内侧检测电极部220(即导电性氧化物层OCL2)的组成是向作为主成分的LCN(LaCo0.5Ni0.5O3)加入了30vol%的作为副成分的GDC(包含20mol%的钆的添加有钆的氧化铈)的组成。需要说明的是,在样品S14、S15的内侧检测电极部220设置反应防止层BL(图3(C)),但是在其他的样品S11~S13、S16未设置反应防止层BL。作为各样品的固体电解质体11,使用添加了5mol%的钇的钇稳定化氧化锆(5YSZ)。
样品11~S13按照图5所示的步骤进行制作。在图5的工序T240中,作为外侧电极100用的浆料,使用向铂粉末(Pt)混合了30vol%的钇稳定化氧化锆(5YSZ)的浆料。而且,作为内侧引线部210用的浆料,使用了图10所示的组成的浆料。在图5的工序T250中,以1350℃进行了烧制,在工序T270中,以1000℃进行了烧制。其结果是,作为样品S11~S13的气体传感器元件,都得到了图2所示的构造的元件。
样品14、S15按照图6所示的次序制作。作为外侧电极100用的浆料,使用向铂粉末(Pt)混合了30vol%的钇稳定化氧化锆(5YSZ)的浆料。作为其他的部分的浆料,使用了图10所示的组成的浆料。在图6的工序T350中,以1350℃进行了烧制。其结果是,作为样品S14、S15的气体传感器元件,都得到了图3所示的构造的元件。
比较例的样品S16也按照图6所示的次序制作。作为外侧电极100用的浆料,使用了向铂粉末(Pt)混合30vol%的钇稳定化氧化锆(5YSZ)。作为其他的部分的浆料,使用了图10所示的组成的浆料。但是,在样品S16中,未涂布反应防止层BL用的浆料。在图6的工序T350中,以1350℃进行了烧制。其结果是,作为样品S16的气体传感器元件,得到了在内侧检测电极部220和内侧引线部210这两方形成有反应层LZL(锆酸镧层)的元件。
关于上述的样品S11~S16,分别制作了2个元件。在得到的2个元件中,利用SEM(扫描型电子显微镜)观察1个元件的剖面,确认了内侧检测电极部220与固体电解质体11之间、及内侧引线部210与固体电解质体11之间的反应层LZL的状态。即,通过并用SEM的反射电子像的观察及EDS(能量分散型X线分析),研究了反应层LZL的有无及厚度。如图10所示,在样品S11~S15中,在内侧检测电极部220未形成反应层LZL,相对于此,在样品S16中,在内侧检测电极部220形成了反应层LZL。而,关于内侧引线部210,在全部的样品S11~S16形成了反应层LZL。
使用各样品S11~S16的2个元件中的另一个元件,测定了电极界面电阻。即,将各样品的元件设置在炉内,以使温度成为550℃,通过交流阻抗法,测定了电极界面电阻的测定。测定时的振幅电压为10mV。
图11是表示样品S11~S16的电极界面电阻的测定结果的坐标图。样品S11~S15的电极界面电阻为500Ω以下,在实用上充分小,相对于此,比较例的样品S16的电极界面电阻超过2000Ω,变得非常高。从这些结果可知,采用图2或图3的构造,在内侧检测电极部220未形成反应层LZL(锆酸镧层),由此能够充分减小电极界面电阻,能够将气体传感器元件的内部电阻抑制得较低。
·变形例:
需要说明的是,本发明并不局限于上述的实施例或实施方式,在不脱离其主旨的范围内能够以各种形态实施。
·变形例1:
在上述实施方式中,说明了氧浓度传感器的例子,但是在具备板型的气体传感器元件的氧传感器或者以氧以外的气体为被测定气体的气体传感器中也能够应用本发明。
【标号说明】
10、10a、10b…气体传感器元件
11…固体电解质体
12…突缘部
13…有底部
18…基体部
20…主体配件
20a…弯折部
20b…台阶部
20c…突缘部
20d…外螺纹部部
29…衬垫
31…粉体填充部(保持部件)
32…绝缘部件
33…金属环
34…分隔件
35…插通孔
36…垫圈
37…过滤器
38…保护外筒
39…第二通气孔
40…外筒
41…第一通气孔
60…引线
62…保护器
70…连接端子
100…外侧电极
110…外侧引线部
114…纵引线部
115…环状引线部
120…外侧检测电极部
200…内侧电极
210…内侧引线部
220、220a、220b…内侧检测电极部
300…气体传感器
BL…反应防止层
ICL…中间导电层
LZL…锆酸镧层(反应层)
OCL1、OCL1b、OCL2、OCL2b…导电性氧化物层。

Claims (6)

1.一种气体传感器元件,具有:
固体电解质体,沿轴线方向延伸,且包含具有氧离子传导性的ZrO2
外侧电极,设置在所述固体电解质体的一侧表面而与被测定气体相接触;及
内侧电极,设置在所述固体电解质体的另一侧表面而与基准气体相接触,
所述内侧电极包括:
内侧检测电极部,配置在所述轴线方向的前端侧,被用于检测被测定气体中的特定气体;及
内侧引线部,配置在比所述内侧检测电极部靠后端侧处,与所述内侧检测电极部连接,且与用于进行外部输出的连接端子接触,
所述气体传感器元件的特征在于,
所述内侧电极包含导电性氧化物层,该导电性氧化物层以由组成式LaaMbNicOx表示且具有钙钛矿型结晶构造的钙钛矿相为主成分,其中,M为Co和Fe中的一种以上,a+b+c=1,1.25≤x≤1.75,所述a、b、c满足0.459≤a≤0.535,0.200≤b≤0.475,0.025≤c≤0.350,
所述内侧引线部在所述导电性氧化物层与所述固体电解质体之间具有锆酸镧层,
所述内侧检测电极部(i)在所述导电性氧化物层与所述固体电解质体之间未形成锆酸镧层,或者(ii)在所述导电性氧化物层与所述固体电解质体之间形成的锆酸镧层比所述内侧引线部的所述锆酸镧层薄。
2.根据权利要求1所述的气体传感器元件,其特征在于,
在所述内侧检测电极部与所述固体电解质体之间具有反应防止层,该反应防止层包含添加有稀土类的氧化铈作为主成分而成。
3.根据权利要求2所述的气体传感器元件,其特征在于,
所述反应防止层仅设置在比保持部件的位置靠所述气体传感器元件的所述前端侧的位置,所述保持部件在所述气体传感器元件向气体传感器装入时对所述气体传感器元件进行保持。
4.根据权利要求1~3中任一项所述的气体传感器元件,其特征在于,
所述内侧检测电极部具有形成在所述反应防止层与所述导电性氧化物层之间的中间导电层,
所述导电性氧化物层不包含添加有稀土类的氧化铈,而通过由所述组成式表示的钙钛矿相形成,
所述中间导电层包含由所述组成式表示的钙钛矿相和添加有稀土类的氧化铈。
5.根据权利要求1~3中任一项所述的气体传感器元件,其特征在于,
所述导电性氧化物层包含构成所述内侧引线部的第一导电性氧化物层和构成所述内侧检测电极部的第二导电性氧化物层,
所述第一导电性氧化物层和所述第二导电性氧化物层都包含所述钙钛矿相和添加有稀土类的氧化铈,
所述第二导电性氧化物层中的添加有稀土类的氧化铈的含有比例为所述第一导电性氧化物层中的添加有稀土类的氧化铈的含有比例以上。
6.一种气体传感器,其特征在于,具备:
权利要求1~5中任一项所述的气体传感器元件;及
保持所述气体传感器元件的保持部件。
CN201610551101.7A 2015-07-13 2016-07-13 气体传感器元件及气体传感器 Active CN106353365B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-139520 2015-07-13
JP2015139520A JP6192689B2 (ja) 2015-07-13 2015-07-13 ガスセンサ素子、及び、ガスセンサ

Publications (2)

Publication Number Publication Date
CN106353365A true CN106353365A (zh) 2017-01-25
CN106353365B CN106353365B (zh) 2020-03-06

Family

ID=57630177

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610551101.7A Active CN106353365B (zh) 2015-07-13 2016-07-13 气体传感器元件及气体传感器

Country Status (4)

Country Link
US (1) US10012612B2 (zh)
JP (1) JP6192689B2 (zh)
CN (1) CN106353365B (zh)
DE (1) DE102016212638A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108693234A (zh) * 2017-03-31 2018-10-23 日本碍子株式会社 传感器元件
CN110006980A (zh) * 2017-12-12 2019-07-12 日本特殊陶业株式会社 气体传感器元件以及气体传感器
CN110006981A (zh) * 2017-12-12 2019-07-12 日本特殊陶业株式会社 气体传感器元件以及气体传感器
CN111656176A (zh) * 2018-01-31 2020-09-11 日本特殊陶业株式会社 气体传感器元件和气体传感器
CN112083045A (zh) * 2019-06-14 2020-12-15 富士电机株式会社 二氧化碳气体传感器

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6577408B2 (ja) * 2016-04-20 2019-09-18 日本特殊陶業株式会社 ガスセンサ素子およびガスセンサ
JP6809355B2 (ja) * 2017-04-18 2021-01-06 株式会社デンソー ガスセンサ
US10545064B2 (en) * 2017-05-04 2020-01-28 Sensata Technologies, Inc. Integrated pressure and temperature sensor
JP6966356B2 (ja) * 2018-03-02 2021-11-17 日本特殊陶業株式会社 ガスセンサ素子およびガスセンサ
JP7068138B2 (ja) * 2018-10-26 2022-05-16 日本特殊陶業株式会社 ガス検出素子およびガスセンサ
JP7348004B2 (ja) * 2019-09-10 2023-09-20 東京窯業株式会社 固体電解質センサ
US20220351595A1 (en) * 2020-04-23 2022-11-03 Brian A Ryznic Combination recessed light and smoke sensor and carbon monoxide sensor system
CN114813837A (zh) * 2021-07-09 2022-07-29 长城汽车股份有限公司 生物柴油品质传感器及其制作方法和车辆

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101008630A (zh) * 2006-01-23 2007-08-01 株式会社电装 用于气体传感器的气体检测元件及制造该元件的方法
CN101294929A (zh) * 2007-04-23 2008-10-29 日本特殊陶业株式会社 气体传感器
CN101413909A (zh) * 2007-10-17 2009-04-22 日本特殊陶业株式会社 气体传感器
KR20100110763A (ko) * 2006-06-27 2010-10-13 가부시키가이샤후지쿠라 한계 전류식 산소 센서
CN102201579A (zh) * 2010-03-25 2011-09-28 日本碍子株式会社 电极材料、含有该电极材料的燃料电池单电池及其制造方法
CN103998922A (zh) * 2011-12-14 2014-08-20 日本特殊陶业株式会社 气体传感器用电极及气体传感器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5116089A (zh) * 1974-07-31 1976-02-09 Hitachi Ltd
US5527633A (en) * 1992-09-17 1996-06-18 Ngk Insulators, Ltd. Solid oxide fuel cells, a process for producing solid electrolyte films and a process for producing solid oxide fuel cells
JP2880044B2 (ja) * 1993-05-26 1999-04-05 日立金属株式会社 磁気ヘッド用非磁性基板材料
JP3417090B2 (ja) * 1994-10-31 2003-06-16 日産自動車株式会社 固体電解質用電極材料
JP4936132B2 (ja) 2007-09-04 2012-05-23 日本特殊陶業株式会社 ガスセンサユニット
JP4989774B2 (ja) * 2010-07-21 2012-08-01 日本碍子株式会社 電極材料及びそれを含む固体酸化物型燃料電池セル
WO2013150779A1 (ja) * 2012-04-06 2013-10-10 日本特殊陶業株式会社 酸化物焼結体及びそれを用いた配線基板
JP6251059B2 (ja) 2014-01-28 2017-12-20 Hoya株式会社 電子内視鏡システム
CN107001145B (zh) * 2014-12-15 2020-05-19 日本特殊陶业株式会社 导电性氧化物烧结体、导电用构件、气体传感器、压电元件以及压电元件的制造方法
JP6571383B2 (ja) * 2015-05-13 2019-09-04 日本特殊陶業株式会社 ガスセンサ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101008630A (zh) * 2006-01-23 2007-08-01 株式会社电装 用于气体传感器的气体检测元件及制造该元件的方法
KR20100110763A (ko) * 2006-06-27 2010-10-13 가부시키가이샤후지쿠라 한계 전류식 산소 센서
CN101294929A (zh) * 2007-04-23 2008-10-29 日本特殊陶业株式会社 气体传感器
CN101413909A (zh) * 2007-10-17 2009-04-22 日本特殊陶业株式会社 气体传感器
CN102201579A (zh) * 2010-03-25 2011-09-28 日本碍子株式会社 电极材料、含有该电极材料的燃料电池单电池及其制造方法
CN103998922A (zh) * 2011-12-14 2014-08-20 日本特殊陶业株式会社 气体传感器用电极及气体传感器

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108693234A (zh) * 2017-03-31 2018-10-23 日本碍子株式会社 传感器元件
CN108693234B (zh) * 2017-03-31 2022-06-03 日本碍子株式会社 传感器元件
CN110006980A (zh) * 2017-12-12 2019-07-12 日本特殊陶业株式会社 气体传感器元件以及气体传感器
CN110006981A (zh) * 2017-12-12 2019-07-12 日本特殊陶业株式会社 气体传感器元件以及气体传感器
CN110006980B (zh) * 2017-12-12 2022-07-08 日本特殊陶业株式会社 气体传感器元件以及气体传感器
CN110006981B (zh) * 2017-12-12 2022-12-20 日本特殊陶业株式会社 气体传感器元件以及气体传感器
CN111656176A (zh) * 2018-01-31 2020-09-11 日本特殊陶业株式会社 气体传感器元件和气体传感器
CN111656176B (zh) * 2018-01-31 2022-07-26 日本特殊陶业株式会社 气体传感器元件和气体传感器
CN112083045A (zh) * 2019-06-14 2020-12-15 富士电机株式会社 二氧化碳气体传感器

Also Published As

Publication number Publication date
US10012612B2 (en) 2018-07-03
CN106353365B (zh) 2020-03-06
JP2017020928A (ja) 2017-01-26
US20170016849A1 (en) 2017-01-19
JP6192689B2 (ja) 2017-09-06
DE102016212638A1 (de) 2017-01-19

Similar Documents

Publication Publication Date Title
CN106353365A (zh) 气体传感器元件及气体传感器
JP6047103B2 (ja) ガスセンサ用電極及びガスセンサ
JP4578556B2 (ja) ガスセンサ及びその製造方法
DE102013215813B4 (de) Gassensor
JP3314426B2 (ja) 酸素センサ
DE102012217448A1 (de) Gasmessfühler, gassensor und herstellungsverfahren dafor
DE102017003832A1 (de) Gassensorelement und Gassensor
CN106770560A (zh) 以锶、铁掺杂的铬酸镧为敏感电极的电位型氢气传感器及其制作方法
JP5194051B2 (ja) ガスセンサ素子及びガスセンサ
DE102016010496A1 (de) Gassensorsteuerungsvorrichtung
WO2015193084A1 (de) Sensorelement zur erfassung mindestens einer eigenschaft eines messgases in einem messgasraum
DE102011084737A1 (de) Gassensor
CN102313762B (zh) 气体传感器元件和气体传感器
JP4216291B2 (ja) ガスセンサ素子およびガスセンサ
DE102014206958A1 (de) Sensorelement zur Erfassung mindestens einer Eigenschaft eines Messgases in einem Messgasraum und Verfahren zum Herstellen desselben
JP7009262B2 (ja) ガスセンサ素子及びガスセンサ
JP2000097905A (ja) NOxガス濃度測定装置及びNOxガス濃度測定方法
CN110006981A (zh) 气体传感器元件以及气体传感器
CN110006980A (zh) 气体传感器元件以及气体传感器
CN101893597A (zh) 用于调节处理传感器元件的方法
JP6718386B2 (ja) ガスセンサ素子およびガスセンサ
JP6804995B2 (ja) ガスセンサ素子及びガスセンサ
JP2018112483A (ja) ガスセンサ素子およびガスセンサ
DE102020109551A1 (de) NOx-Sensorelement und NOx-Sensor
EP0987547A2 (en) Gas sensor

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant