CN106104274A - 生物分子测序装置、系统和方法 - Google Patents

生物分子测序装置、系统和方法 Download PDF

Info

Publication number
CN106104274A
CN106104274A CN201480057175.4A CN201480057175A CN106104274A CN 106104274 A CN106104274 A CN 106104274A CN 201480057175 A CN201480057175 A CN 201480057175A CN 106104274 A CN106104274 A CN 106104274A
Authority
CN
China
Prior art keywords
electrode
nano
gap
monomer
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201480057175.4A
Other languages
English (en)
Other versions
CN106104274B (zh
Inventor
川合知二
谷口正辉
大城敬人
马克·奥尔德姆
埃里克·S·诺德曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Original Assignee
Quantum Biosystems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013193498A external-priority patent/JP6334115B2/ja
Priority claimed from JP2013197443A external-priority patent/JP6334118B2/ja
Application filed by Quantum Biosystems Inc filed Critical Quantum Biosystems Inc
Publication of CN106104274A publication Critical patent/CN106104274A/zh
Application granted granted Critical
Publication of CN106104274B publication Critical patent/CN106104274B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/48707Physical analysis of biological material of liquid biological material by electrical means
    • G01N33/48721Investigating individual macromolecules, e.g. by translocation through nanopores
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B30/00ICT specially adapted for sequence analysis involving nucleotides or amino acids
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B30/00ICT specially adapted for sequence analysis involving nucleotides or amino acids
    • G16B30/20Sequence assembly
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2563/00Nucleic acid detection characterized by the use of physical, structural and functional properties
    • C12Q2563/116Nucleic acid detection characterized by the use of physical, structural and functional properties electrical properties of nucleic acids, e.g. impedance, conductivity or resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2565/00Nucleic acid analysis characterised by mode or means of detection
    • C12Q2565/60Detection means characterised by use of a special device
    • C12Q2565/631Detection means characterised by use of a special device being a biochannel or pore

Abstract

本发明提供了用于对蛋白质样品进行测序的装置、系统和方法。在某些实例中,对于几个不同距离中的每个距离,测量当单体在纳米间隙电极对的电极之间通过时产生的电流,以便在与已知单体的参比物理量相比时并在从隧道电流获得的检测物理量的基础上鉴定单体,所述参比物理量可以从使用相似电极间距测量的电流获得,在所述电极间距下可以以预定的准确度鉴定多种单体中的每一种并确定其次序,所述检测物理量可以使用一种或多种参比物质进一步归一化。

Description

生物分子测序装置、系统和方法
交叉引用
本申请要求2013年9月18日提交的日本专利申请系列号JP2013-193498和2013年9月24日提交的JP 2013-197443的优先权,每个所述申请整体通过参考并入本文。
背景技术
目前存在着可用于鉴定生物分子的一种或多种单体的方法。单体可以包括生物分子的元件,例如蛋白质中包含的氨基酸单体、核酸中包含的核苷酸单体以及糖链中包含的单糖单体。作为单体鉴定方法,存在着使用例如利用光或电作为探针信号的单体测量的鉴定方法。在使用单体测量的单体鉴定方法中,可以通过用荧光分子或具有电活性的探针分子修饰靶样品来检测特定单体。例如,蛋白质序列已通过使用各种不同方法来测定,例如基于酶降解的高效液相色谱法(HPLC)、质谱、X-射线晶体结构分析和Edman降解。
然而,上述通过用探针分子修饰样品来检测单体的方法,由于可能需要化学修饰以及任何这种修饰的效率可能不足而存在问题。此外,上述方法只能检测特定化学物质,并且可能不适用于使用含有各种不同分子物质的生物样品进行的生物分子测序过程。
发明内容
在使用利用纳米间隙电极对的纳电流测量例如隧道电流测量的单体鉴定方法中,由于测量结果可能随着测量方法和/或测量条件而变,可能必需将实测信号标准化。因此,通过将例如在整体通过参考并入本文的JP2011-163934A和JP2008-32529A中所描述的标准化方法应用于其中将利用样品分子本身的相对电导用作内部参比物质(或参比样品)的使用隧道电流测量的生物分子测序系统,可以进行实测信号的间接标准化。
然而,为了充分测量内部参比物质,用于测量的时间被拉长。此外,上述标准化可能不适用于含有未知分子的样品。因此,当测量或检测含有未知分子的样品时,可能使用分离步骤、精制步骤等。当将常规的标准化方法应用于使用纳米间隙电极装置的纳电流测量时,样品和条件可能受限。
本公开提供了可能对生物分子(例如生物分子聚合物)中单体的鉴定和生物分子的测序有用的方法、装置和计算机程序。某些实施方式包括提供标准化生物分子测序的方法、装置和计算机程序(“程序”),其对于含有未知分子的样品来说,能够利用使用纳米间隙电极的纳电流测量法来鉴定单体,而不需诸如分离步骤、精制步骤等的步骤。
本文中提供的装置、系统和方法能够使用可以被标准化的高度灵敏的测量信号来鉴定各种不同类型的单体。
在某些情况下,生物分子测序方法可以包括测量对应于当参比物质和可能包含在样品中的至少一种或多种待鉴定的单体可能被分别通过纳米间隙电极对的电极之间时流过的纳电流(例如隧道电流)的信号。样品可以包含添加到其中的参比物质和一种或多种待鉴定的单体,其中参比物质的信号幅度是已知的,所述参比物质的信号对应于当参比物质通过纳米间隙电极对的电极之间时在纳米间隙电极对的电极之间流过的纳电流,并且所述信号幅度的变差落于预定的变差范围之内;并且通过使用可能包含在多个测量信号中的指示参比物质的信号作为参比进行鉴定,单体的种类可以由多个信号中包含的附加信号来指示。
因此,即使在其中测量结果可能随着测量方法和测量条件而变的使用纳米间隙电极对的纳电流测量方法的情况下,也可以获得指示参比物质的稳定信号。因此,可以进行标准化,使得对于含有未知分子的样品来说,可以进行使用纳米间隙电极对的利用纳电流测量的生物分子测序,而不需诸如分离步骤、精制步骤等的步骤。
此外,参比物质可以具有导电性,参比物质可以不必与待鉴定的单体合并,并且参比物质可以由不论何种取向的相同形状的化合物构成。因此,可以获得能够与指示待鉴定单体的信号容易地区分开的指示参比物质的信号。
此外,参比物质可以由当参比物质通过纳米间隙电极对的电极之间时相对于纳米间隙电极对的电极之间的空间具有相同位置取向的物质构成。因此,对于不同测量来说,可以使指示参比物质的信号的幅度显得均一。
此外,参比物质可以由具有球形形状的化合物构成。因此,不论电极的结构如何,对于不同测量来说,可以使指示参比物质的信号的幅度显得均一。
此外,参比物质可以包含金属纳米粒子或富勒烯。
此外,参比物质相对于样品的浓度可以被优化,使得指示参比物质的信号相对于所述多个信号的比率落于预定的比率范围之内。因此,可以稳定地检测指示参比物质的信号,并且可以防止指示参比物质的信号产生噪音。
此外,当鉴定单体种类时,可以根据所述多个信号相对于指示参比物质的信号的相对值和所述单体种类与所述信号的相对值之间的预定关系,鉴定由其他信号指示的单体的种类。
此外,当测量对应于纳电流的信号时,对于含有可能可以使用纳米间隙电极对的电极之间的多个不同距离来鉴定的多种不同参比物质的样品来说,对于多种条件中的每种条件可以使用纳米间隙电极对的电极之间的不同距离来测量对应于纳电流的信号;并且当鉴定单体种类时,对于每种条件,可以将对应于相关条件的指示参比物质的信号与可能包含在多个测量信号中的附加信号进行相互比较,并且可以在从每种条件获得的比较的基础上鉴定由所述附加信号指示的单体的种类。因此,可以进行更精确的鉴定。
此外,本文中所描述的生物分子测序装置可以包含:纳米间隙电极对的一对电极,其被放置成使得当样品通过纳米间隙电极对的电极之间时纳电流流过,所述样品可以包含向其添加的参比物质并且可以包含至少一种或更多种待鉴定的单体,其中与参比物质相关的信号幅度是已知的,所述参比物质的信号对应于当参比物质可以通过纳米间隙电极对的电极之间时可以在纳米间隙电极对的电极之间流过的纳电流,并且信号幅度的变差落于预定的变差范围之内;测量单元,其被构造以测量对应于当参比物质和可能包含在样品中的待鉴定单体可能被分别通过纳米间隙电极对的电极之间时流过的纳电流的信号;以及鉴定单元,其被构造以使用可能包含在由测量单元测量的多个测量信号中的指示参比物质的信号作为参比,鉴定由多个信号中包含的附加信号所指示的单体的种类。
此外,可以由计算机执行生物分子测序程序,以进行:对应于当参比物质和可能包含在样品中的至少一种或更多种待鉴定单体可能被分别通过纳米间隙电极对的电极之间时流过的纳电流的信号的测量,样品可以包含向其添加的参比物质并且可以包含一种或更多种待鉴定的单体,其中参比物质的信号幅度是已知的,所述参比物质的信号对应于当参比物质可以通过纳米间隙电极对的电极之间时在纳米间隙电极对的电极之间流过的纳电流,并且信号幅度的变差落于预定的变差范围之内;以及通过使用可能包含在多个测量信号中的指示参比物质的信号作为参比,鉴定由所述多个信号中包含的其他信号所指示的单体的种类。
在某些实施方式中,生物分子测序装置包括电极对,其被配置成使得当包含结合在一起以便形成生物分子的至少一种或更多种单体的生物分子通过电极对的电极之间时隧道电流可以流过;测量单元,其被构造以测量当生物分子多次通过纳米间隙电极对的电极之间时产生的隧道电流,其中纳米间隙电极对的电极之间的不同通道可以具有纳米间隙电极对的电极的不同间隔;以及鉴定单元,其在从使用可以以预定准确度鉴定多种单体中的每一种单体的电极间距测量的隧道电流获得的至少一种已知单体的参比物理量的基础上,并在从通过测量单元使用对应于参比物理量的电极间距所测量的隧道电流获得的检测物理量的基础上,鉴定构成生物分子的至少一种单体。
在某些实施方式中,电极对可以被配置成使得当包含结合在一起以便形成生物分子的至少一种或更多种单体的生物分子通过纳米间隙电极对的电极之间时隧道电流可以流过。测量单元可以测量当生物分子通过电极对的电极之间时产生的隧道电流,其中所述纳米间隙对可以随时间变化具有多个电极间隙间隔。
鉴定单元可以在从使用可以以预定准确度鉴定多种单体的电极间距测量的隧道电流获得的至少一种已知单体的参比物理量的基础上,并在从通过测量单元使用对应于所述参比物理量的电极间距所测量的隧道电流获得的检测物理量的基础上,鉴定构成生物分子的至少一种单体。
正如上面提到的,通过使用多个电极间距测量当生物分子多次通过电极对之间时产生的隧道电流,并通过使用从使用可以以预定准确度鉴定多种单体中的每一种单体的电极间距测量的隧道电流获得的至少一种已知单体的参比物理量,可以使用简单的构造并以高准确度鉴定构成生物分子的单体。
生物分子可以包括生物聚合物例如蛋白质、肽、核酸和糖链。此外,构成生物分子的单体可以包括构成蛋白质或肽的氨基酸、构成核酸的核苷酸、构成核糖核酸的核糖核苷酸和构成糖链的单糖。
生物分子测序装置还可以包括控制单元,其被构造成控制电极对,以便通过改变电极对的电极间距可以更好地检测生物分子。因此,通过使用单个电极对,可以测量使用多个不同电极间距的隧道电流并将其用于表征生物分子。
生物分子测序装置可以利用各自具有不同电极间距的多个电极对。因此,来自于不同电极的隧道电流提供了不同信息,其中每个电极可以具有不同的电极间距,允许同时测量不同的电极间距。
此外,鉴定单元可以在从使用与预定电极间距不同的电极间距测量的隧道电流获得的检测物理量的基础上,来鉴定不能在从使用预定电极间距测量的隧道电流获得的检测物理量的基础上鉴定的单体种类。
对于检测物理量和参比物理量来说,可以使用隧道电流的各种不同值,例如电流值和电导。如果施加到电极对的电压是恒定的,则与隧道电流相关的电流值和电导两者可以同等地使用。
生物分子测序方法可以包括测量当具有至少一种或更多种相连的单体的生物分子通过电极对的电极之间时产生的隧道电流,所述电极对的电极被配置成当生物分子多次通过电极对的电极之间时隧道电流可以流过,其中对于电极对来说,不同次中的至少一些次具有不同的电极间距;并且在从使用可以以预定的准确度鉴定多种单体中的每种单体的电极间距所测量的隧道电流获得的至少一种已知单体的参比物理量的基础上,并在从通过测量单元利用对应于参比物理量的电极间距测量的隧道电流获得的检测物理量的基础上,鉴定构成生物分子的至少一种单体。
生物分子测序程序可以由计算机执行,以测量当具有至少一种或更多种相连的单体的生物分子通过电极对的电极之间时产生的隧道电流,所述电极对的电极可以被配置成当生物分子多次通过纳米间隙电极对的电极之间时隧道电流可以流过,其中对于电极对来说,当纳米间隙电极对被设定成具有不同电极间距时,发生纳米间隙电极对之间的不同通过中的至少一些通过;并且在从使用可以以预定的准确度鉴定多种单体中的每种单体的电极间距所测量的隧道电流获得的至少一种已知单体的参比物理量的基础上,并在从通过测量单元利用对应于参比物理量的电极间距测量的隧道电流获得的检测物理量的基础上,鉴定构成生物分子的至少一种单体。
在某些实施方式中,通过使用多种不同的电极间距测量当生物分子通过电极对的电极之间时产生的隧道电流,并通过使用从利用可以以预定的准确度鉴定多种单体中的每种单体的电极间距所测量的隧道电流获得的至少一种已知单体的参比物理量,生物分子测序装置、方法和计算机程序可用于使用简单的构造并以高准确性鉴定构成生物分子的单体。
本公开的一个方面提供了一种用于对具有多个单体的生物分子进行测序的方法,所述方法包括:(a)提供包含多组纳米间隙电极的通道,其中所述多组纳米间隙电极中的每一组包括两个纳米间隙电极,并且其中至少一部分所述多组纳米间隙电极具有不同的电极间距;(b)将所述生物分子引导通过所述通道;(c)使用所述多组纳米间隙电极测量对应于当所述生物分子被引导通过所述通道时的纳电流的信号,所述信号对应于所述生物分子的多个单体;以及(d)使用计算机处理器,通过将在(c)中测量到的信号与一个或多个参比进行比较,鉴定所述多个单体。
在一个实施方式中,所述鉴定包括使用所述信号的相对值与所述一个或多个参比之间的给定或预定的关系。在另一个实施方式中,所述多组纳米间隙电极包含具有不同电极间间距的第一组纳米间隙电极和第二组纳米间隙电极。在另一个实施方式中,所述方法还包括使用给定的纳米间隙电极组的电极间距来内推另一个电极间间距的纳电流。在另一个实施方式中,所述方法还包括使用来自于利用所述多组纳米间隙电极的多次测量的数据,使用单个单体质量调用(quality calls)来产生所述生物分子的共有序列。在另一个实施方式中,所述方法还包括测量对应于所述多组纳米间隙电极在不同电极间距下的纳电流的信号。在另一个实施方式中,所述方法还包括测量来自于至多一部分所述多组纳米间隙电极的信号,并使用利用所述至多一部分所述多组纳米间隙电极测量的所述信号来鉴定所述多个单体中的给定单体。在另一个实施方式中,所述纳电流包括隧道电流。
在一个实施方式中,所述生物分子是肽样品。在另一个实施方式中,所述方法还包括在(b)之前将所述肽样品变性和/或切开。
在一个实施方式中,所述多组纳米间隙电极的每一组具有适合于检测所述生物分子的至多一部分所述多个单体的电极间距。在另一个实施方式中,所述生物分子是核酸分子。
在本公开的另一方面,一种用于对具有多个单体的生物分子进行测序的系统包含:通道,其包括多组纳米间隙电极,其中所述多组纳米间隙电极的每一组包括两个纳米间隙电极,并且其中至少一部分所述多组纳米间隙电极具有不同的电极间距;流体流动单元,用于引导所述生物分子通过所述通道;以及计算机处理器,其被偶联到所述纳米间隙电极并被编程,以:(a)使用所述多组纳米间隙电极测量对应于当所述生物分子被引导通过所述通道时的纳电流的信号,所述信号对应于所述生物分子的所述多个单体;并且(b)通过将所述在(a)中测量的信号与一个或多个参比进行比较来鉴定所述多个单体。
在一个实施方式中,所述计算机处理器被编程,以使用所述信号的相对值与所述一个或多个参比之间的预定关系来鉴定所述多个单体。在另一个实施方式中,所述多组纳米间隙电极包括具有不同的电极间间距的第一组纳米间隙电极和第二组纳米间隙电极。在另一个实施方式中,所述计算机处理器被编程,以使用给定纳米间隙电极组的电极间距来内推另一个电极间距的纳电流。在另一个实施方式中,所述计算机处理器被编程,以使用来自于利用所述多组纳米间隙电极的多次测量的数据,使用单个单体质量调用来产生所述生物分子的共有序列。在另一个实施方式中,所述多组纳米间隙电极的每一组具有适合于检测所述生物分子的至多一部分所述多个单体的电极间距。在另一个实施方式中,所述计算机处理器被编程,以测量对应于所述多组纳米间隙电极在不同电极间距下的纳电流的信号。在另一个实施方式中,所述计算机处理器被编程,以测量来自于至多一部分所述多组纳米间隙电极的信号,并使用利用所述至多一部分所述多组纳米间隙电极测量的所述信号来鉴定所述多个单体中的给定单体。
本公开的另一方面提供了一种用于对具有一个或多个单体的肽样品进行测序的方法,所述方法包括:(a)提供包含至少一组具有可变电极间距的纳米间隙电极的通道;(b)引导所述肽样品和至少一个参比样品通过所述通道,其中所述参比样品具有与通过所述纳米间隙电极测量的纳电流相对应的预定的信号特性(profile);(c)使用所述纳米间隙电极,以不同的电极间距测量对应于当所述蛋白质样品和参比样品被引导通过所述通道时的纳电流的信号,所述信号包括与所述参比样品相关的参比信号;以及(d)使用计算机处理器,通过将在(c)中测量的所述信号与所述参比信号进行比较来鉴定所述一个或多个单体。
在一个实施方式中,将所述参比样品与所述肽样品分开。在另一个实施方式中,所述参比样品是具有一个或多个单体的预定序列的参比肽样品。在另一个实施方式中,所述参比样品包含当将所述参比样品在所述纳米间隙电极之间通过时在所述纳米间隙电极之间在空间方面具有相同取向的亚基。在另一个实施方式中,所述参比样品具有基本上球形的形状。在另一个实施方式中,所述参比样品包含金属纳米粒子或富勒烯。在另一个实施方式中,所述鉴定包括使用所述信号的相对值与所述参比信号之间的预定关系。
在一个实施方式中,所述通道包含多组纳米间隙电极,每组包含至少两个纳米间隙电极。在另一个实施方式中,所述多组纳米间隙电极包含具有不同电极间间距的第一组纳米间隙电极和第二组纳米间隙电极。
在一个实施方式中,所述方法还包括使用来自于利用所述纳米间隙电极的多次测量的数据,使用单个单体质量调用来产生所述肽样品的共有序列。在另一个实施方式中,所述方法还包括提供对应于所述纳米间隙电极之间的至少一部分所述多个不同距离的多个不同参比样品。在另一个实施方式中,所述方法还包括在(b)之前将所述肽样品变性和/或切开。在另一个实施方式中,所述参比样品与第一脉冲持续时间相关,并且所述肽样品与不同于所述第一脉冲持续时间的第二脉冲持续时间相关。
在一个实施方式中,所述信号特性包括信号幅度。在另一个实施方式中,所述信号的所述幅度是预定的幅度。在另一个实施方式中,所述肽样品和所述至少一种参比样品被交替并顺序地引导通过所述通道。在另一个实施方式中,(c)还包括(i)改变所述纳米间隙电极的所述电极间距,以及(ii)在所述不同电极间距下进行所述信号的分开的测量。在另一个实施方式中,所述纳电流包括隧道电流。
在本公开的另一方面,一种用于对具有一个或多个单体的肽样品进行测序的系统包含:通道,其包括具有可变电极间距的至少一组纳米间隙电极;流体流动单元,用于引导所述肽样品和至少一种参比样品通过所述通道,其中所述参比样品具有与使用所述纳米间隙电极测量的纳电流相对应的预定的信号特性;以及计算机处理器,其被偶联到所述纳米间隙电极并被编程,以(i)使用所述纳米间隙电极以可变的电极间距测量对应于当所述肽样品和参比样品被引导通过所述通道时的纳电流的信号,并且(ii)通过将所述在(i)中测量的信号与所述参比信号进行比较来鉴定所述一个或多个单体。
在一个实施方式中,所述参比样品是具有一个或多个单体的预定序列的参比肽样品。在另一个实施方式中,所述计算机处理器被编程,以使用所述信号的相对值与所述参比信号之间的预定关系来鉴定所述一个或多个单体。
在一个实施方式中,所述通道包含多组纳米间隙电极,每组包含至少两个纳米间隙电极。在另一个实施方式中,所述多组纳米间隙电极包含具有不同的电极间间距的第一组纳米间隙电极和第二组纳米间隙电极。在另一个实施方式中,所述计算机处理器被编程,以使用来自于利用所述纳米间隙电极的多次测量的数据,使用单个单体质量调用来产生所述肽样品的共有序列。在另一个实施方式中,所述流体流动系统以第一脉冲持续时间提供所述参比样品,并以不同于所述第一脉冲持续时间的第二脉冲持续时间提供所述蛋白质样品。在另一个实施方式中,所述计算机处理器被编程,以(i)改变所述纳米间隙电极的所述电极间距,并(ii)在所述不同电极间距下进行所述信号的分开的测量。
本公开的另一方面提供了一种计算机可读介质,其包含可执行的机器码,所述机器码在被一个或多个计算机处理器执行后,实施上文或本文中别处的任何方法。
在某些实施方式中,计算机可读介质包含可执行的机器码,所述机器码在被一个或多个计算机处理器执行后,实施对具有一个或多个氨基酸单体的蛋白质样品进行测序的方法,所述方法包括:(a)引导所述生物分子通过包括多组纳米间隙电极的通道,其中所述多组纳米间隙电极的每一组包括两个纳米间隙电极,并且其中至少一部分所述多组纳米间隙电极具有不同的电极间距;(b)使用所述多组纳米间隙电极测量对应于当所述生物分子被引导通过所述通道时的纳电流的信号,所述信号对应于所述生物分子的所述多个单体;并且(c)通过将在(b)中测量的所述信号与一个或多个参比进行比较来鉴定所述多个单体。
在某些实施方式中,计算机可读介质包含可执行的机器码,所述机器码在被一个或多个计算机处理器执行后,实施对具有一个或多个氨基酸单体的蛋白质样品进行测序的方法,所述方法包括:(a)引导所述肽样品和至少一个参比样品通过通道,所述通道包括具有可变电极间距的至少一组纳米间隙电极,其中所述参比样品具有与通过所述纳米间隙电极测量的纳电流相对应的预定的信号特性;(b)使用所述纳米间隙电极,以不同的电极间距测量对应于当所述蛋白质样品和参比样品被引导通过所述通道时的纳电流的信号,所述信号包括与所述参比样品相关的参比信号;以及(c)通过将在(b)中测量的所述信号与所述参比信号进行比较来鉴定所述一个或多个单体。
对于本领域技术人员来说,本公开的其他方面和优点将从下面的详细描述变得显而易见,在所述详细描述中只示出并描述了本公开的说明性实施方式。正如将被认识到的,本公开可以包括其他和不同的实施方式,并且它的几个细节可以在各种不同的明显方面进行修改,而都不背离本公开。因此,附图和描述被视为在本质上是说明性而不是限制性的。
通过参考并入
在本说明书中提到的所有出版物、专利和专利申请通过参考并入本文,其程度等同于每个单独的出版物、专利或专利申请被具体且单个地指明通过参考并入。
附图说明
在权利要求书中伴随着特殊性陈述了本发明的新特点。参考下面陈述了利用本发明原理的说明性实施方式的详细描述和附图,将获得本发明的特点和优点的更好的理解,在所述附图中:
图1是示出了生物分子测序装置的结构的示意图;
图2是示出了控制单元的功能性结构的框图;
图3是示出了电导-时间曲线的示意性实例的图;
图4是示出了相对电导表的实例的图;
图5是示出了生物分子测序的图;
图6是示出了电导直方图的实例的图;
图7是示出了电导直方图的实例的图;
图8是示出了参比物质(或参比样品)的浓度的优化的图;
图9是示出了生物分子测序过程的流程图;
图10是示出了生物分子测序装置的结构的示意图;
图11是示出了控制单元的功能性结构的框图;
图12是示出了对于不同的电极间距来说氨基酸的电导的图;
图13是示出了相对电导表的实例的图;
图14是用于解释生物分子测序方法的图;
图15是示出了单体鉴定过程的流程图;
图16是示出了生物分子测序装置的构造的示意图;
图17是示出了控制单元的功能性构造的框图;
图18是示出了电导和脉冲的脉冲持续时间的图;
图19是示出了最大电导的直方图的一个实例的图;
图20是示出了脉冲持续时间的直方图的一个实例的图;
图21是示出了电导的直方图的一个实例的图;
图22是示出了对于不同的电极间距来说参比物理量的图;
图23A-23C是示出了前期准备的程序的图;
图24是示出了生物分子测序过程的流程图;
图25是示出了鉴定过程的流程图;
图26是示出了用于解释一种氨基酸的概率密度函数的计算的电导直方图的图;
图27是用于解释鉴定到的氨基酸种类的指派的图;
图28是示出了对于不同电极间距来说不同类型氨基酸的鉴定的图;
图29是示出了生物分子测序装置的构造的示意图;
图30是示出了控制单元的功能性构造的框图;
图31是示出了生物分子测序过程的流程图;
图32是示出了修饰的氨基酸的电导分离的图;并且
图33示出了计算机控制系统,其被编程或以其他方式配置以实现本公开的装置、系统和方法。
详细描述
尽管在本文中示出并描述了本发明的各种不同实施方式,但对于本领域技术人员来说,显然这些实施方式仅仅被提供作为示例。本领域技术人员可以在不背离本发明的情况下做出大量变动、改变和替代。应该理解,可以使用本文中描述的本发明的实施方式的各种不同的替代方式。
当在本文中使用时,术语“间隙”一般是指形成或以其他方式提供在材料中的孔眼、通道或通路。所述材料可以是固态材料例如基材。间隙可以被配置成与传感电路或偶联到传感电路的电极相邻或接近。在某些实例中,间隙具有0.1纳米(nm)至约1000nm量级的特征性宽度或直径。具有纳米量级的宽度的间隙可以被称为“纳米间隙”(在本文中也称为“纳米通道”)。在某些情况下,纳米间隙具有约0.1纳米(nm)至50nm、0.5nm至30nm或0.5nm至10nm、0.5nm至5nm或0.5nm至2nm或不超过2nm、1nm、0.9nm、0.8nm、0.7nm、0.6nm或0.5nm的宽度。在某些情况下,纳米间隙具有至少约0.5nm、0.6nm、0.7nm、0.8nm、0.9nm、1nm、2nm、3nm、4nm或5nm的宽度。在某些情况下,纳米间隙的宽度可以小于生物分子或所述生物分子的亚基(例如单体)的直径。
当在本文中使用时,术语“电流”一般是指电流。微安培或纳安培量级上的电流可以被称为“纳电流”。在某些实例中,电流是或包括隧道电流。
当在本文中使用时,术语“电极”一般是指可用于测量电流的材料。电极可用于测量通往或来自于另一个电极的电流。在某些情况下,电极可以被配置在通道(例如纳米间隙)中并用于测量横跨所述通道的电流。所述电流可以是隧道电流。这种电流可以在生物分子(例如蛋白质)流过纳米间隙后检测。在某些情况下,偶联到电极的传感电路提供跨过电极的施加电压以产生电流。作为可替选方式或除此之外,电极可用于测量和/或鉴定与生物分子(例如蛋白质的氨基酸亚基或单体)相关的电导。在这种情况下,可以将隧道电流与所述电导相关联。
位于纳米间隙中的电极可以被称为“纳米间隙电极”。纳米间隙电极可以包括至少两个电极,它们在不存在将电极电偶联在一起的实体例如生物分子或导电体(例如金属纳米粒子)的情况下可以彼此电绝缘。
当在本文中使用时,术语“蛋白质”一般是指具有一个或多个氨基酸单体、亚基或残基的生物分子或大分子。含有例如50个或更少氨基酸的蛋白质可以被称为“肽”。氨基酸单体可以选自任何天然存在和/或合成的氨基酸单体,例如20、21或22种天然存在的氨基酸。在某些情况下,20种氨基酸在受试者的遗传密码中编码。某些蛋白质可以包括选自约500种天然和非天然存在的氨基酸的氨基酸。在某些情况下,蛋白质可以包括选自异亮氨酸、亮氨酸、赖氨酸、甲硫氨酸、苯丙氨酸、苏氨酸、色氨酸和缬氨酸、精氨酸、组氨酸、丙氨酸、天冬酰胺、天冬氨酸、半胱氨酸、谷氨酰胺、谷氨酸、甘氨酸、脯氨酸、丝氨酸和酪氨酸的一种或多种氨基酸。
当在本文中使用时,术语“核酸”一般是指包含一个或多个核酸亚基或单体的分子。核酸可以包括选自腺嘌呤(A)、胞嘧啶(C)、鸟嘌呤(G)、胸腺嘧啶(T)和尿嘧啶(U)或其变体的一个或多个亚基。核苷酸可以包括A、C、G、T或U或其变体。核苷酸可以包括可以并入到生长的核酸链中的任何亚基。这样的亚基可以是A、C、G、T或U,或特异性针对一个或多个互补的A、C、G、T或U或与嘌呤(即A或G或其变体)或嘧啶(即C、T或U或其变体)互补的任何其他亚基。亚基可以分辨单个核酸碱基或成组碱基(例如AA、TA、AT、GC、CG、CT、TC、GT、TG、AC、CA或尿嘧啶-其对应物)。在某些实例中,核酸是脱氧核糖核酸(DNA)或核糖核酸(RNA)或其衍生物。核酸可以是单链或双链的。
本公开提供了用于鉴定生物分子例如肽、核酸分子和糖的装置、系统和方法。核酸分子可以包括脱氧核糖核酸(DNA)、核糖核酸(RNA)及其变体。核酸分子可以是单链或双链的。本公开的生物分子可以包括单体或单个亚基。单体的实例包括氨基酸和核苷酸。
在某些实施方式中,隧道电流可以在单体可能通过电极之间时流过,并且可以作为纳电流被测量。在某些实施方式中,可以鉴定构成的氨基酸以便确定一个或多个肽的序列,其中所述氨基酸可以构成所述一个或多个肽,其可能从一个或多个蛋白质的降解产生。
如图1中所示,符合第一实施方式的生物分子测序装置10可以包括纳米间隙电极对12、测量电源18、电泳电极对20、电泳电源22、安培计24和控制单元26。这些结构在本文中描述。
纳米间隙电极对12可以包含两个电极,每个电极可以形成在电介质14上。纳米间隙电极对的两个电极可以彼此隔开,使得当可能包含在样品50中的单体52或参比物质(或参比样品)54(在本文中别处详细描述)可能通过纳米间隙电极对的电极之间时隧道电流可以流过。对制造纳米间隙电极对12的方法没有特别限制。
测量电源18可以被构造成向纳米间隙电极对12的电极施加电压。对可以由测量电源18向纳米间隙电极对12的电极施加的电压的幅度没有特别限制,并且可以在0.1V至2V、0.1V至1.5V、0.1V至1.4V、0.1V至1.3V、0.1V至1.2V、0.1V至1.1V、0.25至1.1V、0.25V至1V、0.25V至0.75V或0.6V至0.85V之间。在某些情况下,所述电压可以为至少约0.1V、0.2V、0.3V、0.4V、0.5V、0.6V、0.7V、0.8V、0.9V、I V、1.1V、1.2V、1.3V、1.4V、1.5V或2V。作为可替选方案,所述电压可以低于或等于约2V、1.5V、1.4V、1.3V、1.2V、1.1V、1V、0.9V、0.8V、0.7V、0.6V、0.5V、0.4V、0.3V、0.2V或0.1V。对测量电源18的结构没有特别限制,并且可以适合地使用任何已知的电源装置。
电泳电极对20可以被放置成在可能包含在样品50中的单体52和参比物质54可以移动的方向上(在图1中用框箭头A示出)形成电场。当电场可能在一对电泳电极20之间形成时,取决于单体52和/或参比物质54的电荷,单体52和/或参比物质54可能在所述电场的方向上电泳移动;或者,取决于单体52和/或参比物质54的电荷,单体52和/或参比物质可能与电泳电极对产生的电泳场相反移动。单体52和/或参比物质54可以移动以便通过纳米间隙电极对12的电极之间。
电泳电源22可以被构造成向电泳电极对20施加电压。对可以由电泳电源22向电泳电极对20施加的电压的幅度没有特别限制。可能可以适合地设定电压,以便可以控制单体52和/或参比物质54可能通过纳米间隙电极对12的电极之间的速度。对电泳电源22的结构没有特别限制,并且可以适合地使用任何已知的电源装置。
安培计24可以被构造成测量当单体52和/或参比物质54可以通过可能由测量电源18施加有电压的纳米间隙电极对12的电极之间时可能产生的隧道电流。对安培计24的结构没有特别限制,并且可以适合地使用任何已知的电流测量装置。
控制单元26可以被构造成控制生物分子测序装置10的相应结构,并且可以被构造成在与测量到的隧道电流相对应的信号的基础上鉴定单体52的种类。
控制单元26可以包含计算机,其包括中央处理器(CPU)和存储器例如随机存取存储器(RAM)或只读存储器(ROM)等,所述存储器可以储存本文中所描述的生物分子测序程序。如图2中所示,就功能而言,控制单元26可以包括电泳控制单元30、测量控制单元32和鉴定单元34。相应的单元在下文中详细描述。
电泳控制单元30可以被构造成控制电泳电源22的电压施加,使得单体52和/或参比物质54可以通过纳米间隙电极对12的电极之间。
测量控制单元32可以被构造成控制安培计24,使得安培计24可以测量在纳米间隙电极对12的电极之间流过的隧道电流。尽管对用于测量隧道电流的时间没有限制,但所使用的时间可以是例如小于1分钟、1至2分钟、2至4分钟、4至10分钟、10至20分钟、20至30分钟、30至40分钟、40至50分钟或50分钟至1小时、1至2小时、2至3小时、3至5小时、5至10小时或超过10小时。在某些情况下,所述时间可以是至少约1秒、10秒、30秒、1分钟、2分钟、3分钟、4分钟、5分钟、6分钟、7分钟、8分钟、9分钟、10分钟、30分钟、1小时、2小时、3小时、4小时、5小时、6小时或12小时。作为可替选方案,所述时间可以短于或等于约12小时、6小时、5小时、4小时、3小时、2小时、1小时、30分钟、20分钟、10分钟、9分钟、8分钟、7分钟、6分钟、5分钟、4分钟、3分钟、2分钟、1分钟、30秒、10秒或1秒。此外,测量控制单元32可以被构造成获得由安培计24测量的隧道电流的电流值,并从获得的电流值确定电导以便产生电导-时间曲线。电导可以通过用隧道电流的电流值除以当测量隧道电流时可能被施加到纳米间隙电极对12的电极的电压V来计算。使用电导,即使在不同测量之间施加到纳米间隙电极对12的电极之间的电压值不同的情况下,也可以获得具有统一参比的曲线。当在不同测量之间施加在纳米间隙电极对12的电极之间的电压值不变时,隧道电流的电流值和电导可以同等地使用。
可替选地,测量控制单元32可以使用电流放大器放大由安培计24测量的隧道电流,然后获得被放大的电流的测量。使用电流放大器可以放大隧道纳电流的值,由此可以以高灵敏度测量隧道电流。例如,可以使用可商购的可变高速电流放大器(由Femto GmbH制造,目录号DHPCA-100)作为电流放大器。
鉴定单元34可以被构造成使用可能包含在由测量控制单元32产生的电导-时间曲线中看到的多个信号中指示参比物质54的信号作为参比进行鉴定,由此可以通过附加信号指示单体的种类。
图3示出了电导-时间曲线的示意性示例。如图3中所示,在电导-时间曲线中看到的多个信号可以是具有峰值的时间区间。每个峰以及每个峰值可能对应于一个信号。因此,在图3中示出的实例中,在由箭头“A”指向的时间区间中存在一个信号,并且在由箭头“B”指向的时间区间中存在4个信号。
此外,在图3中示出的实例中,由箭头“A”指向的时间区间的信号可以是指示参比物质54的信号,并且包含在由箭头“B”指向的时间区间的信号组中的相应信号可以是指示几种不同单体52的信号。在某些实施方式中,当指示参比物质54的信号的电导和待鉴定的每种单体52相对于指示参比物质54的电导信号的相对电导可能是已知时,可以鉴定由每个信号所指示的单体的种类。
具体来说,可以将待鉴定的单体52相对于参比物质54特有的电导的相对电导预先储存在相对电导表36中。图4示出了相对电导表36的实例。如图5中所示,鉴定单元34可以将可能在电导-时间曲线中看到的指示参比物质54的信号之外的信号的电导与可能储存在相对电导表36中的待鉴定单体52的相对电导进行比较,并鉴定具有与信号电导相一致的相对电导的单体种类,允许鉴定由信号指示的单体的种类。不仅当相对电导和信号电导彼此完全相一致时,而且当它们之间的差不超过阈值时,相对电导可以被认为与信号电导相一致。
为了使用相对电导值鉴定由信号指示的单体52的种类,参比物质54优选具有下述性质。
当可能使用间隙电极测量纳电流例如隧道电流时,电极之间的距离和通过纳米间隙电极对的电极之间的分子对待测量的纳电流的幅度有影响。因此,每次当单体通过电极之间时单体改变它相对于纳米间隙电极对的电极的位置时,每次测量的实测电导(例如信号的幅度)可能变化。例如,如图6中所示,在所述图6中产生了通过多次测量获得的电导的直方图,在直方图中具有大的方差的物质不适合用作参比物质54。因此,每次测量时电导不如此显著变化的物质可以被更有效地用作参比物质54。例如,如图7中所示,在通过多次测量获得的电导的直方图中具有小的方差的物质,适合用作参比物质54。
为了降低测量之间电导的变化性,对于参比物质54来说,利用其中参比物质的取向变化在参比物质54可能在电极之间通过的纳米间隙电极对的电极之间的空间方面具有相对小的影响的组合物,可能是理想的。例如,可以使用当化合物通过纳米间隙电极对的电极之间时,由于纳米间隙电极对的电极之间的空间与化合物的形状之间的关系,在所述关系中可以排除化合物在纳米间隙电极对的电极之间的变体取向,因此可以独一无二地确定其取向的化合物;或者,对于参比物质54来说,可以使用其取向可以被电泳控制以便当它们通过纳米间隙电极对的电极之间时所述取向不改变的化合物。此外,当可以用作参比物质54的化合物的形状可能是球形或足够球形的形状,使得用作参比物质54的化合物的取向可能对与用作参比物质54的化合物相关的测量电导没有显著影响时,用作参比物质54的化合物在通过电极之间时,它们相对于纳米间隙电极对的电极的取向可以被有效地保持不变,并且不需考虑用作参比物质54的化合物与电极之间的关系。
此外,由于指示参比物质54的信号可以被用作参比,因此优选地,所述信号可以明显地与指示待鉴定的单体52的信号区分开。因此,优选地,参比物质54具有导电性,并且可以具有不会与待鉴定单体相混淆的导电性。此外,为了使作为参比的与参比物质54相关的信号稳定,可能包含在样品50中的参比物质优选地可以由具有相同形状的化合物构成。此外,如图3中所示,由于指示参比物质的信号优选地与指示单体52的信号显著不同,因此与待鉴定的单体52相比,参比物质优选地具有大的电导。
考虑到上述条件,金属纳米粒子或富勒烯可以用作参比物质54。金属纳米粒子可以是例如金纳米粒子、银纳米粒子、铜纳米粒子、铝纳米粒子等。当待鉴定的单体52的尺寸可能为约0.5nm至2nm时,可以适合地使用富勒烯作为参比物质54。另一方面,当待鉴定的单体52的尺寸为2nm或更大时,可以适合地使用金属纳米粒子例如金纳米粒子作为参比物质54。
接下来,描述根据第一实施方式使用生物分子测序装置10进行的单体鉴定方法。
可以将至少一种或多种单体52溶解在溶液中。对所述溶液没有特别限制。例如,可以使用超纯水。超纯水可以例如使用由Millipore Co.制造的Milli-Q Integral目录号3/5/10/15的Milli-Q Integral 3来制造。对溶液中单体52的浓度没有特别限制,并且可以为约0.01μΜ至1.0μΜ或0.01μΜ至0.5μΜ。在某些情况下,溶液中单体52的浓度低于约5μΜ、4μΜ、3μΜ、2μΜ、1.5μΜ、1μΜ、0.5μΜ、0.1μΜ或0.01μΜ。作为可替选方案,溶液中单体52的浓度高于约0.01μΜ、0.1μΜ、0.5μΜ、1μΜ、1.5μΜ、2μΜ、3μΜ、4μΜ或5μΜ。
然后,可以向可能溶解有单体52的溶液添加上述参比物质54。所述溶液中参比物质54的浓度可以被优化,以使指示参比物质54的信号相对于在电导-时间曲线中看到的多个信号的比率落于预定的比率范围之内。如图8中所示,当参比物质54的浓度低时,由于电导-时间曲线中指示参比物质54的信号(在图8中由“A”指示)的数目小,因此指示参比物质54的信号常常不能被检测到,潜在地阻止了单体52信号变动的有效补偿。同时,当参比物质54的浓度可能过高时,由于电导-时间曲线中指示参比物质54的信号的数目大,因此参比物质54的信号可能产生噪音,并可能干扰单体52的通过。因此,可以定义预定的范围,以便考虑到鉴定稳定性与噪音降低之间的平衡提供最适的信号数目。在一定时间段内需要的参比物质信号的数目可能随着生物分子测序装置的稳定性而变,其中如果生物分子测序装置高度稳定,具有很小的温度依赖性和稳定的纳米间隙电极对电极头,则可以允许相当长的时间段而不需来自于参比物质的信号。如果例如生物分子测序装置是温度依赖性的,则从参比物质获得更频繁的信号可能是理想的。例如,每当电导可能作为系统性变化例如温度的结果而相对于在以前的系统性条件下测量的电导改变超过2%、超过5%、超过10%、超过20%或超过30%时从参比物质获得信号,可能是理想的。可能必需使用来自于参比物质的多个信号来确定系统性变化;参比信号不是均匀分布的,而是可能服从泊松分布;因此从参比物质获得信号的频率可能需要更频繁地进行,以便对于生物分子测序系统系统性改变超过所需量的可能性、确定和/或补偿这种变化所需的参比物质信号的数目以及参比物质信号的分布,可以获得预定的统计置信度。
然后,纳米间隙电极对12的电极可以使样品50被放置在其上,并且可以通过测量电源18向纳米间隙电极对12的电极施加电压,并且可以通过电泳电源22向电泳电极对20施加电压。随后,可以包含控制单元26的计算机的CPU可以检索可能储存在ROM中的生物分子测序程序以便执行它,使得可以通过生物分子测序装置10进行如图9中所示的生物分子测序过程。
在图9中所示的生物分子测序过程的步骤S10中,测量控制单元32可以控制安培计24,使得隧道电流可以在单体52和参比物质54可能通过纳米间隙电极对12的电极之间时产生,并且可以进行预定时间段的测量。
然后,在步骤S12中,测量控制单元32可以获得测量的隧道电流的电流值,并且可以计算测量点的电导,以便产生例如在图3中所示的电导-时间曲线。然后,在步骤S14中,鉴定单元34可以从相对电导表36获得待鉴定的单体52的相对电导。
然后,在步骤S16中,鉴定单元34可以将在步骤S12中产生的电导-时间曲线与在步骤S14中获得的相对电导进行比较,以鉴定由每个信号指示的单体的种类。然后,在步骤S18中,鉴定单元34输出鉴定结果,并且生物分子测序过程可以完成。
如本文中所述,鉴定装置可以利用在流过纳米间隙电极对的电极之间的隧道电流的基础上产生的电导-时间曲线中具有小的电导变化性的物质作为参比物质。通过使用电导-时间曲线中指示参比物质的信号的电导作为参比,可以鉴定由其他信号所指示的单体的种类。因此,参比物质可以用作标准品,使得对于包含未知分子的样品来说,可以进行使用纳米间隙电极对并利用纳电流测量的生物分子测序,而不需附加步骤例如分离步骤、精制步骤等。
在下文图10的描述中,同样使用在图1中的那些指称数字指称与图1相同的部件,并且其详细描述被省略。
生物分子测序装置可以包括多组纳米间隙电极,每组包含至少两个电极。在图10中,生物分子测序装置210可以包括多个纳米间隙电极对12A、12B和12C、测量电源18、一对电泳电极20、电泳电源22、安培计24和控制单元226。每个纳米间隙电极对12A、12B和12C是一组纳米间隙电极。控制单元226可以与本文中别处描述的控制单元26相似或相同。
纳米间隙电极对12A、12B和12C的结构可以与结合图1描述的纳米间隙电极对12的结构相同。纳米间隙电极对12A、12B和12C可以形成在电介质14上,使得电极之间的中心可以在同一个轴上对齐。单体52和参比物质54可以通过的通路,可以被定义在纳米间隙电极对12A、12B和12C的每个电极之间。纳米间隙电极对12A的电极之间的距离可以图示为d1,纳米间隙电极对12B的电极之间的间隙可以图示为d2,纳米间隙电极对12C的成对电极之间的间隙可以图示为d3。距离d1、d2和d3可以彼此不同。在图10中所示的实例中,d1>d2>d3。例如,距离d1可以为1.0nm,距离d2可以为0.7nm,并且距离d3可以为0.5nm。
如图11中所示,控制单元226可以包括电泳控制单元30、测量控制单元232和鉴定单元234。
测量控制单元232可以被构造成控制安培计24,以便可以分开测量在纳米间隙电极对12A、12B和12C的电极之间产生的隧道电流。此外,测量控制单元232可以被构造成对于纳米间隙电极对的电极之间的每个距离,获得通过安培计24测量的隧道电流的电流值并计算电导,以便为纳米间隙电极对的电极之间的每个距离产生电导-时间曲线。
鉴定单元234可以被构造成鉴定包含在每个电极间距的电导-时间曲线中看到的多个信号中,对应于纳米间隙电极对的电极之间的距离的指示参比物质54的信号,并且在鉴定到的参比物质54的信号的基础上对其他信号进行归一化。然后,在对与纳米间隙电极对的电极之间的不同距离相关的每个距离进行的比较的基础上,鉴定单元234可以被构造成鉴定由归一化的其他信号所指示的单体的种类。
图12示出了对于纳米间隙电极对的电极之间的不同距离d来说,多种单体(在图12中示出的实例中的氨基酸)的相对电导。本文中的相对电导可以意味着当与单体种类(图12中的氨基酸种类)中的一种单体(氨基酸)相关的最大电导可以被归一化至1时对于每种单体(氨基酸)的电导。在图12中示出的实例中,电极间距d1为1.0nm,电极间距d2为0.7nm,电极间距d3为0.4nm。如图12中所示,当电极间距d为0.4nm时,His、Thr、Tyr和Trp的相对电导彼此近似相等。当电极间距d为0.7nm时,Cys和Pro的相对电导被显示为彼此近似相等,并且Tyr和Trp的相对电导被显示为彼此近似相等。当电极间距d为1.0nm时,Cys、Pro和Phe的相对电导被显示为彼此近似相等。当相对电导彼此近似相等时,被鉴定的单体(氨基酸)种类的鉴定精确度可能低。
与一种单体相关的直方图可能不同于与其他单体相关的直方图,或者可能与用于一种或多种其他单体的直方图相似或相同。此外,对于不同电极间距d来说,与单体相相关的直方图也可能不同。源自于直方图的函数可以产生曲线,其可以是连续曲线或不连续曲线,其中所述曲线可用于通过解卷积来确定单体的种类。在某些实施方式中,对于单体类型和电极间距d,可以从标准品产生解卷积矩阵。在某些实施方式中,可以使用解卷积来确定可能的单体种类。用于解卷积的数学对于算法开发者来说是公知的。在某些实施方式中,可以将矩阵数学或线性代数用于解卷积。
对于给定单体确定来说,可能存在许多不同测量。这些测量中的一些可以使用不同电极间距d做出。在某些实施方式中,由于某些电极间距更适合于确定目标单体的单体类型,因此对于某些电极间距来说,数据的质量可能比对于其他电极间距来说更好。在其他实施方式中,在确定单体时使用所有可用数据,可能是理想的。在某些实施方式中,在进行共有单体确定时可以使用质量评价标准来权重每个测量。这对于其中可能的单体的数目大的样品例如对于蛋白质测序来说可能更加有用,但是也可用于具有较少单体的样品例如用于DNA测序。
蛋白质或糖的电泳速度(速率和方向)可能取决于单体组成。蛋白质的电荷可以是正、负或中性的。电荷水平和符号可能取决于pH和/或离子浓度。在某些实施方式中,电泳速度可以从聚合物序列的电流-时间曲线来确定,因为对于许多单体来说荷质比可能是不同的。在某些实施方式中,电泳速度可用于产生单体组成值,并且可用于检查或权重共有序列确定,或者可用于单体确定,其中可以在聚合物通过纳米间隙电极对的速度的基础上修改可能源自于表格或计算的与单体种类相关的脉冲持续时间。
在某些实施方式中,质量评价标准可以从解卷积后剩余的残差来产生。在某些实施方式中,质量评价标准可以从物理测量值例如隧道电流水平、噪音水平、事件持续时间或隧道电流的模式来产生。
由于对某些生物聚合物来说在聚合物内不同单体位置处电荷可能不同,因此相关的电泳速度可能协调地变化。对于中性分子来说,除非作为电渗流的结果,否则预期可能没有移动。流动速度可能依赖于溶液的温度,并且因此在系统的可能具有不同溶液温度的不同区域中可能变化。在某些实施方式中,生物聚合物可能利用电泳、电渗透、压力驱动流之一或其组合移动通过纳米间隙电极对的电极。在某些实施方式中,可以改变样品的温度、pH或离子浓度以改变流动特性。
因此,对于纳米间隙电极对的每个电极间距,可以预先设定可能能够被确定的单体种类。同时,对于纳米间隙电极对的每个电极间距,可以预先选择对应于不同电极间距的可以被容易地鉴定的参比物质54,这可能导致使用多种参比物质,其中不同参比物质可以作为标准品用于与不同纳米间隙电极对的电极相关的不同电极间距。此外,可能可以利用一个或多个电极间距鉴定的待鉴定单体52相对于参比物质54对应于所述电极间距的特定电导的相对电导,可以被预先储存在相对电导表236中。图13示出了相对电导表236的实例。
图14示意示出了可以由鉴定单元234执行的鉴定过程。如图14中所示,鉴定单元234可以将对于纳米间隙电极对的每个电极间距来说可以在电导-时间曲线中看到的对应于所述纳米间隙电极对的电极间距的指示参比物质54的信号之外的信号的电导,与可以储存在相对电导表236中的对于纳米间隙电极对的电极间距来说可能可以鉴定的待鉴定单体52的相对电导进行比较,以便鉴定由每个信号指示的单体的种类。不能在纳米间隙电极对的一种电极间距的电导-时间曲线的基础上鉴定的信号(在图14中由“X”描绘的信号),鉴定单元234可以在纳米间隙电极对的另一种电极间距的另一个电导-时间曲线的基础上鉴定单体种类。
在某些实施方式中,生物分子测序方法使用生物分子测序装置210来进行,这种实施方式可以采取与结合图10描述的实施方式相似的方式,可以将至少一种或多种单体52溶解在溶液中。然后,可以向可能溶解有单体52的溶液加入前文描述的参比物质54。在某些实施方式中,可以添加可以提供可用作对应于纳米间隙电极对12A、12B和12C的电极间距(d1、d2和d3)的参比物质的信号的参比物质54。
然后,可以向纳米间隙电极对12A、12B和12C导入样品50。可以通过测量电源18向相应的纳米间隙电极对12A、12B和12C施加电压,并且可以通过电泳电源22向电泳电极对20施加电压。随后,包含控制单元226的计算机的CPU可以检索可能储存在ROM、RAM、FLASH或其他储存介质中的生物分子测序程序以便执行它,使得可以通过生物分子测序装置210执行图15中所示的生物分子测序过程。
在如图15中所示的生物分子测序过程的步骤S20中,测量控制单元232可以控制安培计24以便当单体52和参比物质54可能通过由纳米间隙电极对12A、12B和12C的电极形成的通路时,可以产生隧道电流,其中测量可以进行预定的时间段。
然后,在步骤S22中,测量控制单元232可以获得测量到的隧道电流的电流值,并且可以为每个测量点计算电导,以便为纳米间隙电极对的每个电极间距产生例如在图3中所示的电导-时间曲线。然后,在步骤S24中,鉴定单元234可以将变量i设定到1的值。
然后,在步骤S26中,鉴定单元234可以从相对电导表236获得对应于电极间距di的单体52的相对电导,即对于纳米间隙电极对的电极间距di来说可以鉴定的待鉴定单体52的相对电导。
然后,在步骤S28中,鉴定单元234可以将可能在步骤S22中产生的纳米间隙电极对的电极间距di的电导-时间曲线,与可能在步骤S26中获得的相对电导进行比较,以便鉴定由每个信号所指示的单体的种类。
然后,在步骤S30中,可以确定鉴定单元234是否已为纳米间隙电极对的所有电极间距di完成过程。当存在未处理的纳米间隙电极对的电极间距di时,程序可以前进到步骤S32,其中i增加1,并且程序返回到步骤S26。当为纳米间隙电极对的所有电极间距di完成过程时,程序可以前进到步骤S34,其中鉴定单元234可以输出鉴定结果,并且可以完成单体鉴定过程。
正如本文中所述,生物分子测序装置和方法可以利用从在纳米间隙电极对的电极之间产生的隧道电流获得的电导,其中可以使用纳米间隙电极对的不同电极间距,这与可能使用单一纳米间隙电极对的生物分子测序系统和方法相比,允许进行更精确和快速的鉴定。
在某些实施方式中,纳米间隙电极对可以被竖直堆叠以提供几个纳米间隙电极对的电极之间的对齐,使得相应的成对的纳米间隙电极对12A、12B和12C可以彼此堆叠,以便电极之间的中心可以在单一轴上对齐;在其他实施方式中,纳米间隙电极对可以在平面上水平排列以允许几个纳米间隙电极对的电极之间的对齐,使得相应的纳米间隙电极12A、12B和12C可以排列在同一平面上。在其他实施方式中,纳米间隙电极对可以使用多个共同轴进行排列,允许进行并行测量。在某些实施方式中,通过例如提供相应的纳米间隙电极对12A、12B和12C和电泳电极,可以控制单体52和参比物质54以便顺序通过纳米间隙电极对12A、12B和12C的相应电极之间。
在某些实施方式中,除了本文中描述的纳米间隙电极对的电极的电极间距可以具有不同的电极间距离的实施方式之外,在其他实施方式中,可以提供用于改变纳米间隙电极对的电极间距的机构。例如,可以利用杠杆原理。在某些实施方式中,通过调整供电点、支撑点和作用点的几何排列,可以改变纳米间隙电极对的电极间距。更具体来说,通过利用压电元件向上推举纳米间隙电极对的一部分,可以移动纳米间隙电极对的起到作用点作用的电极末端,使得可以改变纳米间隙电极对的电极间距。在某些实施方式中,在压电元件移动距离与纳米间隙电极对的电极间距之间的相应关系的基础上,可以设定纳米间隙电极对的所需电极间距。
在某些实施方式中,可以测量隧道电流并且可以使用本文中描述的可以利用纳米间隙电极的使用纳电流测量的任何生物分子测序方法进行单体的鉴定。在某些实施方式中,在测量之前可能不需要处理步骤例如分离处理或纯化处理,并且可以进行对于广泛的实验条件来说可能具有高选择性的高度精确的生物分子测序。
例如,当本文中描述的生物分子测序系统和/或方法可能被用于测量典型生物聚合物核酸碱基链时,基因序列和基因表达分析可以被更精确并且以提高的选择性做出。此外,本文中描述的生物分子测序系统和/或方法可以以较低成本应用于快速、高灵敏度的过敏原检查和疾病诊断,其可用于公共卫生、安全和环境领域。在如图16中所示的某些实施方式中,生物分子测序装置10可以包括纳米间隙电极对12、电极间距改变单元16、测量电源18、电泳电极对20、电泳电源22、安培计24和控制单元26。在下文中将解释相应的结构。
纳米间隙电极对12具有两个电极,其被提供在电介质14上并被配置成以电极间距d彼此面对,当肽50通过纳米间隙电极对12时隧道电流可以在所述电极间距处流过。如果电极间距d显著长于构成肽50的氨基酸(它们在图16中用椭圆示出)的分子直径,则非常少的隧道电流可以流过纳米间隙电极对12的电极之间,并且两个或更多个氨基酸可能同时进入纳米间隙电极对12的电极之间。相反,如果与氨基酸的分子直径相比电极间距d过短,肽50可能不进入纳米间隙电极对12的电极之间。
如果与构成肽50的氨基酸的分子直径相比电极间距d过长或过短,为包含氨基酸的肽50的每个氨基酸检测隧道电流可能是困难的。因此,电极间距d可以长于、短于或等于构成肽50的氨基酸的分子直径。例如,电极间距可以为构成肽的氨基酸的分子直径的0.5至2倍,构成肽的氨基酸的分子直径的1至1.5倍,或构成肽的氨基酸的分子直径的0.8至1.0倍,或构成肽的氨基酸的分子直径的1至1.2倍,或单体的分子直径与电极间距之间的相应比率。
在本文中,取决于氨基酸的种类,氨基酸的分子直径可能不同。隧道电流可能受到电极间距和待测量的分子影响。因此,在电极间距固定的情况下,源自于多种氨基酸的每种氨基酸的隧道电流可能不允许以高准确度确定待测量的单个氨基酸。在某些实施方式中,可以通过电极间距改变单元16改变电极间距d,使得可以调整纳米间隙电极对12以便在不同时间具有几种不同的电极间距。
电极间距改变单元16可以由将在后面讨论的控制单元26控制,以改变纳米间隙电极对12的电极间距d。例如,电极间距改变单元16可以具有可以通过使用杠杆原理进行调整来改变电极间距d的构造。例如,纳米制造机械可控断结(MCBJ)可用于以适合的机械稳定性和亚皮米分辨率控制电极间距。使用纳米制造机械可控断结方法制造电极对的方法可以在例如J.M.van Ruitenbeek,A.Alvarez,I.Pineyro,C.Grahmann,P.Joyez,M.H.Devoret,D.Esteve和C.Urbina,Rev.Sci.Instrum.,67,108(1996)中找到,所述文献整体通过参考并入本文。在某些情况下,可以通过压电元件将纳米间隙电极对12的一部分向上推以移动电极边缘部分,以便获得可以改变电极间距d的构造。在这种情况下,在压电元件的上推距离与电极间距之间的关系的基础上,可以设定目标电极间距。例如,在可以通过将压电元件上推1μm以将电极间距d移远0.1nm的构造中使用MCBJ设置,为了将电极间距拓宽0.1nm,控制单元26可以控制电极间距改变单元16,以便可以将压电元件上推1μm。这种MCBJ设置实例具有1/10000的机械转化率。正如上面讨论的,在使用压电元件的构造中,根据压电元件动作的下限,可以将距离控制在例如约0.1皮米(pm)、0.5pm、1pm、10pm、100pm或1000pm之内。
氨基酸的直径可以为约0.5nm至2nm或0.7nm至1nm(例如0.8nm)。在某些情况下,氨基酸的直径可以为至少约0.5nm、0.6nm、0.7nm、0.8nm、0.9nm、1nm或2nm。或者,氨基酸的直径可以小于或等于约2nm、1nm、0.9nm、0.8nm、0.7nm、0.6nm或0.5nm。由于氨基酸的直径对于本领域技术人员来说是已知的,因此可以根据氨基酸的分子直径使用电极间距改变单元16来选择多个电极间距。
对用于制造纳米间隙电极对12的具体方法没有限制。下文中将示出其制造方法的一个实例。
纳米间隙电极对12可以使用已知的纳米制造机械可控断结方法来制造。纳米制造机械可控断结方法是一种控制电极间距的出色方法,具有出色的机械稳定性和亚皮米分辨率。使用纳米制造机械可控断结方法制造电极的方法可以在文章中找到,例如“J.M.vanRuitenbeek,A.Alvarez,I.Pineyro,C.Grahmann,P.Joyez,M.H.Devoret,D.Esteve和C.Urbina,Rev.Sci.Instrum.,67,108(1996)”或“M.Tsutsui,K.Shoji,M.Taniguchi和T.Kawai,Nano Lett.,8,345(2008)”。至于电极的材料,可以使用各种不同金属例如金。
在某些实施方式中,纳米间隙电极对12可以通过下文中描述的程序来制造。首先,可以使用电子束绘制装置JSM 6500F(目录号;由JEOL Ltd.制造)将纳米尺度的金结造型在聚酰亚胺涂层的柔性金属衬底上,所述绘制装置可以利用已知的电子束光刻和剥离技术。然后,可以通过基于已知蚀刻方法(例如反应性离子蚀刻方法)的蚀刻,使用反应性离子蚀刻装置10NR(目录号;由SAMCO Inc.制造)来除去该结下的聚酰亚胺。
接下来,通过将衬底弯曲,可以获得具有三点弯曲结构的可能包含金的纳米尺度的桥。在某些实施方式中,通过使用压电致动器APA150M(目录号;由CEDRAT Technologies制造)精确控制衬底的弯曲,可以以亚皮米分辨率控制与电极对相关的电极间距。
接下来,可以牵拉制造的桥的末端以便部分断裂所述桥。可以进一步牵拉制造的桥的末端,以便将间隙长度(电极间距)设定到与目标氨基酸的直径相关的长度,其可以为约1nm。在某些实施方式中,将桥牵拉开以形成电极对可以使用自断裂技术来调整,以便可以精确地控制电极对的电极间距(参见“M.Tsutsui,K.Shoji,M.Taniguchi和T.Kawai,NanoLett.,8,345(2008)”和“M.Tsutsui,M.Taniguchi和T.Kawai,Appl.Phys.Lett,93,163115(2008)”)。
具体来说,通过使用数据采集板NIPCIe-6321(目录号;由National InstrumentsCorp.制造)和电阻反馈方法(参见“M.Tsutsui,K.Shoji,M.Taniguchi和T.Kawai,NanoLett.,8,345(2008)”和“M.Tsutsui,M.Taniguchi和T.Kawai,Appl.Phys.Lett.,93,163115(2008)”),可以通过使用串联的10kΩ电阻,在向桥施加0.1V DC偏压(Vb)的同时,使用程序化结牵拉速度来牵拉金纳米结以断裂所述桥,并测量桥中的断裂出现的位置。然后,可以将桥进一步牵拉,以便可以将由桥的断裂形成的间隙长度(电极间距)设定在目标长度。因此,可以形成纳米间隙电极对12。
测量电源18可以向纳米间隙电极对12施加电压。对由测量电源18向纳米间隙电极对12施加的电压没有特别限制,例如可以施加0.25至0.75V范围内的电压。对测量电源18的具体构造没有特别限制,并且可以适合地使用任何已知的电源装置。
可以配置电泳电极对20以便形成与肽50的移动方向(图16中的箭头“A”)对齐的电场。当电场在电泳电极对20的电极之间形成时,取决于肽50的净电荷,肽50可能通过电泳在电场方向上移动,或者可能在与电场方向相反的方向上移动,其中肽的净电荷可以是正或负的。也就是说,肽50可以移动以便通过纳米间隙电极对12的电极之间。
电泳电源22可以向电泳电极对20施加电压。对使用电泳电源22向电泳电极对20施加的电压可能没有特别限制,因此可以适合地设定可以控制肽50在纳米间隙电极对12的电极之间的通过速率的电压。由电泳电源22向电泳电极对22施加的电压可以随着肽50的预期荷质比和肽50的净电荷而变。电泳电源22可以向电泳电极对20施加电压,使得在电泳电极对20的电极之间形成的电场的方向可以逆转,使得肽50的移动方向可以直接与由电泳电源20施加的电场的逆转相关联而逆转,允许一个或多个肽50被多次测量,其中对于不同测量来说可以使用不同的间隙间隔。因此,可能在电泳电极对20的电极之间移动的肽50的移动方向可以被逆转,以允许多次测量特定的肽。对电泳电源22的具体构造没有特别限制,并且可以使用任何适合的电源装置。
在某些实施方式中,可以利用流体压力将肽50或其他聚合物移动到并通过纳米间隙电极对的电极之间,其中所述纳米间隙电极对可以被放置在密封通道中。可以施加压力差以便诱导肽或聚合物相对于纳米间隙电极对在一个方向上移动,并且压力差可以被逆转以便诱导肽50或其他聚合物相对于纳米间隙电极对反向流动。
安培计24可以测量当肽50通过使用测量电源18施加有电压的纳米间隙电极对12的电极之间时可能产生的电流(例如隧道电流)。正如上面讨论的,可以通过电极间距改变单元16改变纳米间隙电极对12的电极间距d。安培计24可以利用不同的电极间距测量隧道电流。对安培计24的具体构造没有特别限制,因此可以适合地使用任何已知的电流测量装置。
控制单元26可以控制构成生物分子测序装置10的每个组件,并且也可以在测量到的隧道电流的基础上鉴定构成肽50的氨基酸。
在如图17中所示的某些实施方式中,控制单元26可以用装备有CPU(中央处理器)、RAM(随机存取存储器)、ROM(只读存储器)、GPU(图形处理器)的可以容纳将在后文中描述的生物分子测序程序等的计算机来构造。在某些实施方式中,与计算机相关的控制单元26在功能上可以用包括电极间距控制单元30、测量控制单元32和鉴定单元34的构造来表示。在后文中将详细解释每个单元。
为了使肽50多次通过纳米间隙电极对12的电极之间,其中纳米间隙电极对12的电极间距d可以被改变以便可以使用各种不同的电极间间隙间隔d来进行肽50的不同测量,其中纳米间隙电极对12的电极间距d是d1,电极间距控制单元30可以使用电泳电源22来控制施加的电压,使得电泳电极对20的电极之间的电场的方向可以被逆转,以便可以逆转肽50的移动,允许进行另外的测量。在肽50完成以不同方向通过电极之间预定的次数后,电极间距控制单元30可以激活电极间距改变单元16,以便使纳米间隙电极对12的电极间距d变成d2(d2≠d1),并且可以使用电泳电源22控制施加的电压,以使肽50再次以不同方向通过纳米间隙电极对12的电极之间预定的次数。电极间距控制单元30可以利用各种不同的电极间距,允许通过具有多种电极间距d(d=d1、d2、d3....)的纳米间隙电极对12进行测量。例如,距离可以被设定到d1=1.0nm,d2=0.7nm和d3=0.5nm。
如图17中所示,测量控制单元32可以控制安培计24以便为各种不同的电极间距测量隧道电流。对隧道电流的测量时间没有特别限制,并且可以使用例如10分钟、20分钟、30分钟、40分钟、50分钟和1小时的时间。测量时间可以根据肽50的长度适合地设定。测量控制单元32可以确定由安培计24测量的隧道电流的电流值,由此可以从确定的电流值计算电导,以便可以制作电导-时间曲线。电导可以通过用隧道电流的电流值除以在测量隧道电流时施加到纳米间隙电极对12的电压V来计算。通过使用计算的电导值,即使对于不同测量来说施加到纳米间隙电极对12的电压可能不同,也可以获得基于统一标准的曲线。在对于每次测量来说可以使施加到纳米间隙电极对12的电压的值恒定的某些实施方式中,电流值和与隧道电流相关的电导可以等同地处理。
或者,测量控制单元32可以在通过电流放大器将隧道电流放大一次后确定由安培计24测量的隧道电流。通过使用电流放大器,可以将非常弱的隧道电流的值放大,以便可以以高灵敏度测量隧道电流。就电流放大器而言,可以使用例如可商购的高速可变电流放大器DHPCA-100(目录号;由FEMTO messtechnik GmbH制造)。
鉴定单元34可以通过将从测量控制单元32制作的电导-时间曲线获得的检测物理量与可能储存在参比物理量表36中的已知种类的氨基酸的参比物理量进行比较,来鉴定氨基酸。在某些实施方式中,检测物理量可以是由测量控制单元32制作的电导-时间曲线在每个测量点的电导。
下面将解释储存在参比物理量表36中的参比物理量。在某些实施方式中,对于每种氨基酸和每个电极间距d来说相对于已知种类的氨基酸计算的相对电导,可以用作参比物理量。相对电导可以通过下述程序预先计算。
首先,在生物分子测序装置10中,可以通过电极间距控制单元30控制电极间距改变单元16,以便可以将电极间距d设定在d1(例如d1=1.0nm)。然后,在将纳米间隙电极对12配置在可能溶解有20或更多种已知氨基酸中的一种氨基酸的溶液中之后,可以使用电泳电源22向电泳电极对20施加电压,并使用测量电源18向纳米间隙电极对12施加电压,以使氨基酸通过纳米间隙电极对12的电极之间。然后,可以通过安培计24对当氨基酸通过纳米间隙电极对12的电极之间时产生的隧道电流的电流值进行预定时间长度(例如50分钟)的测量。该测量到的电流值可以通过测量控制单元32确定,以产生电导-时间曲线。对在纳米间隙电极对12的电极之间施加的电压没有特别限制,并且可以在例如0.25至0.75V的范围内。
接下来,鉴定单元34可以从测量控制单元32制作的电导-时间曲线检测多个脉冲,并且对于检测到的多种脉冲中的每个脉冲来说,可以在同时检测最大电导ip和脉冲持续时间td(参见图18)。对检测到的脉冲的数目没有限制。用于表征氨基酸的脉冲越多,参比物理量可以被计算的越准确。此外,可以例如通过增加隧道电流的测量时间和增加使用单一纳米间隙距离时可以使氨基酸来回通过纳米间隙电极对12的电极的次数,来增加脉冲的数目。
下面将更具体地解释用于检测最大电导ip和脉冲持续时间td的方法。首先,为了解释从电导-脉冲曲线检测多个脉冲的方法,将对隧道电流产生的机制进行解释。
当肽50进入到纳米间隙电极对12的电极之间时,一开始,构成肽50的任一氨基酸可能被捕获在纳米间隙电极对12的电极之间(在后文中,这被称为第一氨基酸)。在第一氨基酸被捕获在电极之间时,可以在电极对12的电极之间产生源自于第一氨基酸的隧道电流。
然后,在第一氨基酸已完全通过电极之间后,另一个氨基酸可能被捕获在电极对12的电极之间(在后文中,这被称为第二氨基酸)。在第二氨基酸可能被捕获在电极之间时,可能在电极对12的电极之间产生源自于第二氨基酸的隧道电流。在这里,第二氨基酸可能是与第一氨基酸位置相邻的氨基酸,或者可能是不与第一氨基酸相邻的氨基酸。
正如上面提到的,可以在纳米间隙电极对12的电极之间产生源自于构成肽50的氨基酸的隧道电流。当氨基酸已通过电极之间时(当构成肽50的最后氨基酸从电极之间释放时),在电极之间产生的隧道电流可能消失或可能减小到背景水平。
此外,鉴定单元34可以通过在电导-时间曲线中对应于隧道电流的电流值的电导高于基线水平的区域中鉴定电导上升时间和电导下降时间,从电导-时间曲线检测脉冲。基线水平可以预先设定,或者可以通过用示波器证实电导-时间曲线,或通过将基线水平拟合到电导-时间曲线以最佳拟合特定的电导-时间曲线等来设定。
在某些实施方式中,在整个运行中可以调整用于确定电导上升和电导下降事件的基线水平,用预期电流水平、基线水平和捕获时间区间的协调变化潜在地补偿纳米间隙电极对的电极头的变化或补偿温度变化引起的间隙间隔变化。
此外,对于每个检测到的脉冲来说,鉴定单元34检测脉冲持续时间td,即电导上升时间与电导下降时间之间的时间,其可以被鉴定以检测脉冲,并且也可以检测最大电导ip,即与每个脉冲相关的电导的最大值。
在某些实施方式中,并且如图18的由测量控制单元32制作的电导-时间曲线中以及也在图13中示出的电导-时间曲线的放大图中所示,示出了由鉴定单元34检测的脉冲、最大电导ip和脉冲持续时间td的一个实例。
在这里,可以检测源自于一种氨基酸的脉冲。然而,在可以为每个脉冲检测的最大电导ip和脉冲持续时间td中可能存在差异。隧道电流中的脉冲可以产生自由氨基酸在电极之间的移动引起的电极与氨基酸之间的距离的变化。也就是说,如果电极与氨基酸之间的距离变短,隧道电流可能更容易地产生,并且作为结果,隧道电流的电流值可能增加(电导可能增加)。如果电极与氨基酸之间的距离变大,隧道电流的产生可能降低(电导可能降低)。由于电导可能以本文中描述的方式增加或降低,脉冲的最大电导ip和脉冲持续时间td可能发生变化。
因此,可以使用统计分析来计算每个脉冲的最大电导ip和脉冲持续时间td的众数值。例如,可以形成示出了最大电导ip的值与具有该值的脉冲的数目之间的关系的直方图。例如,可以形成如图19中所示的直方图。在图19中,将多种氨基酸的直方图重叠。可以将预定的函数拟合到形成的直方图,并且可以从拟合函数的峰值计算众数值。最大电导ip的众数值可以被取作峰值电导Ip。
同样地,对于脉冲持续时间td来说,可以形成示出了脉冲持续时间td的值与具有该值的脉冲的数目之间的关系的直方图。例如,可以形成图20中所示的直方图。可以将预定的函数拟合到形成的直方图,并且可以从该拟合函数的峰值计算众数值。该脉冲持续时间td的众数值可以被取作峰值脉冲持续时间tp。
对于用于拟合的函数来说,可以使用高斯函数和泊松函数和/或其组合,但高斯函数可能是优选的,因为当使用高斯函数时,存在着由数据处理速度提高带来的优势。
对用于统计分析以计算众数值的脉冲的数目没有特别限制,并且例如数目可以在500至1000或100至1000或10至10,000的范围内。在某些情况下,使用的脉冲的数目为至少约10、20、30、40、50、60、70、80、90、100、200、300、400、500、1000、5000或10000。或者,使用的脉冲的数目小于或等于约10000、5000、1000、500、400、300、200、100、90、80、70、60、50、40、30、20或10。如果在统计分析中使用特定的脉冲数目,则可以计算众数值的统计显著性。众数值对于每种氨基酸来说是固有的,因此该众数值可用作鉴定氨基酸种类的指示物。
接下来,通过使用计算的峰值电导Ip和基线电导Ib,可以通过下列等式(1)计算单个氨基酸分子的电导:单个氨基酸分子的电导=(Ip-Ib)。
基线电导Ib可以是与在对测量点的电导形成的直方图、例如图21中示出的直方图中出现的峰中电导最低的峰相对应的电导的值,其可用于确定基线电导Ib。在某些实施方式中,可能是由于使用了与用于产生预定基线电导的条件不同的缓冲液、不同的温度或其他可能的差异,基线电导可能不同于预定的基线电导,在这些实施方式中,可以如下产生基线电导:在序列测量开始之前,引入与可以溶解待测量的一组肽或其他聚合物的缓冲液相一致的缓冲液,并产生新的预定基线电导。在其他实施方式中,基线电导可以从在获得单体鉴定数据时获取的数据来确定,其可以利用来自于肽50或其他聚合物之间的数据来设定基线电导水平。在其他实施方式中,基线电导可能不稳定,例如纳米间隙电极对的操作温度可能不稳定或缓冲液的离子浓度可能由于蒸发而不稳定,在这些实施方式中,可以在肽或其他聚合物测序过程中在几个时间确定基线电导。在其他实施方式中,可以将基线电导拟合到产生的数据以便可以利用连续曲线,其中所述连续曲线可能在肽或其他测序过程中随时间变化。
正如本文中提到的,可以通过将电极间距d改变到d1、d2、d3等,对不同电极间距d进行计算单一氨基酸分子的电导的过程。此外,对于每个电极间距d,可以为所有20或更多种氨基酸计算单一氨基酸分子的电导。
对于每个电极间距d,通过用于每种单一氨基酸分子相关的电导除以所有20或更多种氨基酸的单一氨基酸分子的电导的最大值,可以计算与每种单一氨基酸分子相关的相对电导G。
在图12中,示出了对于不同电极间距d来说一些氨基酸的相对电导G。在如图12中所示的非限制性实例中,电极间距d可以为d1=1.0nm、d2=0.7nm和d3=0.4nm。如图12中所示,当电极间距d可以为0.4nm时,His、Thr、Tyr和Trp的相对电导G可能彼此接近。同样地,当电极间距d可以为0.7nm时,Cys和Pro的相对电导G以及Tyr和Trp的相对电导可能彼此接近。同样地,当电极间距d可以为1.0nm时,Cys、Pro和Phe的相对电导G可能彼此接近。如果这些接近的相对电导G被用作鉴定氨基酸的种类的指示物,则存在着鉴定准确度可能低的风险。
因此,在可以从为不同纳米间隙电极对测量的隧道电流计算的相对电导G中,每个纳米间隙电极对可以具有不同的电极间距,并且可以具有与每个不同电极间距相关的不同相对电导G,由此可能可以以与每个电极间距相关的不同的预定准确度鉴定不同种类的氨基酸。
氨基酸的种类是否可以通过特定的相对电导以预定的准确度鉴定,可以例如通过下述程序来判断。
如图22的上方部分中的图中所示,相对电导G的值可以从使用d1的电极间距d测量的隧道电流来计算,并且可以将峰值脉冲持续时间tp的值作图在tp-G空间中。可以使用簇分析将作图的点分类成不同类别。对于簇分析来说,可以使用已知方法,其中如果每一类中包含的每个点都可以与其他点分开,并且同时每一类中包含的所有点中的至少一个点出现在噪音区(图22中的阴影区域)之外,则由属于该类别的点示出的相对电导G被判断为可以以预定准确度鉴定氨基酸种类的相对电导。每一类中包含的每个点都可以与其他点分开的情况,描述了其中例如点之间的所有距离都大于以前确定的阈值的情况。
在图22的上方部分的图中,显示了对应于被分类成类别0的氨基酸K、R、E和D的所有点和对应于被分类为类别1的氨基酸W、Y、F和H的所有点可以被分开。此外,包含在类别0中的所有点和包含在类别1中的所有点可能出现在噪音区之外。因此,可以判断,使用由包含在类别0和类别1中的每个点示出的相对电导G,可以以预定的准确度鉴定对应于相应点的氨基酸种类。因此,对应于包含在类别0和类别1中的相应点的氨基酸种类和由相应点示出的相对电导G,可以与电极间距d(在图22的上方部分的图的实例中d=d1)相关储存在参比物理量表中。
图22的上方部分的图显示,包含在类别0和类别1之外的类别中的所有点或者不能完全分开,或者包含在所述类别中的点可能出现在噪音区中。因此,如图22的中间部分中的图中所示,不被判断为可以以预定准确度鉴定的氨基酸,从使用可以为d2的电极间距d测量的隧道电流计算的相对电导G的值和峰值脉冲持续时间tp的值,可以被作图在tp-G空间中。作图的点可以被分类到每个类别中。在图22的中间部分的图中,显示了对应于氨基酸P、C、L和N的所有点可以被分类到类别2中,并且可以分开。此外,包含在类别2中的所有点可以出现在噪音区之外。因此,可以判断,通过由包含在类别2中的每个点示出的相对电导G,可以以预定的准确度鉴定对应于相应点的氨基酸。因此,对应于包含在类别2中的相应点的氨基酸和由相应点示出的相对电导G,可以与电极间距d(在图22的中间部分的图的实例中d=d2)相关储存在参比物理量表中。
图22的中间部分中的图显示,包含在类别2之外的类别中的所有点或者不能分开,或者包含在所述类别中的点可能出现在噪音区中。因此,如图22的下方部分中的图中所示,不被判断为可以以预定准确度鉴定的氨基酸,从使用可以为d3的电极间距d测量的隧道电流计算的相对电导G的值和峰值脉冲持续时间tp的值,可以被作图在tp-G空间中;并且作图的点可以被分类到每个类别中。在图22的下方部分的图中,显示了对应于可以被分类到类别3中的氨基酸M、I、T、S、A和V的所有点以及对应于被分类到类别4中的氨基酸G和Q的所有点,并且可以分开。此外,包含在类别3中的所有点和包含在类别4中的所有点可以出现在噪音区之外。因此,可以判断,通过由包含在类别3和类别4中的点示出的相对电导G,可以以预定的准确度鉴定对应于相应类别的氨基酸。因此,对应于包含在类别3和类别4中的相应点的氨基酸和由相应点示出的相对电导G,可以与电极间距d(在图22的下方部分的图的实例中d=d3)相关储存在参比物理量表中。
因此,在上面的实例中,对于属于类别0和类别1的氨基酸来说,可以从使用可以为d1的电极间距d测量的隧道电流计算的相对电导G,可以被用作参比物理量。对于属于类别2的氨基酸来说,从使用可以为d2的电极间距d测量的隧道电流计算的相对电导G,可以被用作参比物理量。并且对于属于类别3和类别4的氨基酸来说,可以从使用可以为d3的电极间距d测量的隧道电流计算的相对电导G,可以被用作参比物理量。
正如上面讨论的,在可以从使用不同组纳米间隙电极对测量的电流(例如隧道电流)计算的相对电导G中,其中每个纳米间隙电极对可以具有不同的电极间距,对于每个电极间距来说,可以选择可用于以预定的准确度(例如高于80%、90%、95%或99%的准确度)鉴定氨基酸种类的相对电导G,并将其储存在参比物理量表或矩阵中。这可以为中间距离进行计算(例如内推)。来自于距离的可能在噪音区中或不能完全确定的数据,可用于提供更好的确定性。
在内推下,给定的函数,其可以是多项式函数、对数函数、指数函数或任何其他函数或函数的组合,可以在对现有数据进行最佳拟合的基础上进行确定,以表示曲线,并且可以使用新的数据点与所述曲线之间的关系来确定与所述新数据点相关的相应值。在实例中,可以在例如参比物质的隧道电流与电极间距之间确定函数。所述函数可以基于测量和隧道电流理论的组合,并且可以在电极间距与例如氨基酸或核酸分子(或其他生物分子)的隧道电流之间确定其他函数,其中所述函数可以同样源自于测量和隧道电流理论的组合。基于与参比物质相关的实测隧道电流,可以为例如氨基酸确定预期的隧道电流。隧道电流理论分析可以包括分子的最高占据分子轨道和最低未占分子轨道的分析。
鉴定单元可以通过将可能基于测量待鉴定的肽的隧道电流的电流值的电导-时间曲线的每个测量点处的电导(检测物理量)与可以如本文中所述计算并储存在参比物理量表中的已知种类的氨基酸的相对电导G(参比物理量)进行比较来鉴定氨基酸,以便可以确定构成肽的氨基酸的序列。鉴定程序的详细情况将在晚些时候讨论。
接下来将解释生物分子测序装置的操作。开始时,如图23A中所示,可以从样品源取出样品,并且可以进行蛋白质提取和纯化。然后,如图23B中所示,可以向由此提取并纯化的蛋白质加入变性剂(氢键抑制剂),以便将蛋白质从三维结构变性成线性结构。随后,如图23C中所示,可能被变性成线性结构的蛋白质,可以通过使用酶例如蛋白酶如胰蛋白酶、胃蛋白酶、弹性蛋白酶、二乙酰氧基碘苯或胰凝乳蛋白酶选择性断裂链或通过化学切割试剂例如2-亚碘酰苯甲酸或溴化氰切割成肽,或者可以使用超声方法或暴露于UV光来切割;切割可以通过温度的选择来辅助,其中所选的温度通常可以高于室温。
接下来,可以将由此获得的肽溶解在溶液中。对溶液没有特别限制,并且可以使用与溶解氨基酸以测量参比物理量的溶液相同的溶液。例如,可以使用超纯水。超纯水可以使用例如Milli-Q Integral 3/5/10/15(目录号,装置名称为Milli-Q Integral 3;由MerckKGaA制造)来制备。对溶液中肽50的浓度没有特别限制,并且可以使用例如0.01至1.0μΜ范围内的浓度。溶液中肽50的浓度可以为约0.01μΜ至1.0μΜ或0.01μΜ至0.5μΜ。在某些情况下,溶液中肽50的浓度低于约5μΜ、4μΜ、3μΜ、2μΜ、1.5μΜ、1μΜ、0.5μΜ、0.1μΜ或0.01μΜ。作为可替选方案,溶液中肽50的浓度高于约0.01μΜ、0.1μΜ、0.5μΜ、1μΜ、1.5μΜ、2μΜ、3μΜ、4μΜ或5μΜ。
在将纳米间隙电极对配置在溶解有肽的溶液中之后,可以使用测量电源向纳米间隙电极对施加电压,并且可以使用电泳电源向电泳电极对施加电压。然后,可以包含一部分控制单元的计算机的CPU可以读取并执行可以储存在ROM、RAM、FLASH或其他适合的数字存储介质中的生物分子测序程序,并且由此可以使用生物分子测序装置执行如图24中所示的生物分子测序过程。在某些实施方式中,生物分子测序过程可以由生物分子测序装置来执行。
在如图24中所示的生物分子测序过程的步骤S110中,电极间距控制单元可以将变量i设定到1的值。然后在步骤S112中,电极间距控制单元可以控制电极间距改变单元,以便可以将电极间距d调整到距离di。可以将电压施加到电泳电极对20的电极之间,使得肽可以通过其电极间距d可能已被设定到距离di的纳米间隙电极对的电极之间。
接下来,在步骤S114中,测量控制单元可以控制安培计,并开始测量在肽可能通过其电极间距d可以具有距离di的纳米间隙电极对的电极之间时可能产生的隧道电流的电流值。测量控制单元可以获取测量到的电流值并将它们与每个测量点的测量时间相关联储存在预定存储区域中。
然后,在步骤S116中,电极间距控制单元可以确定肽是否在电极间距d可能为距离di的纳米间隙电极对的电极之间引起规定次数的方向逆转。这种确定可以通过使用电泳电源做出的电泳电压极化反转的次数来做出。当电泳电压极化反转的次数没有达到预定次数时,重复电泳电压极化反转步骤。当电泳电压极化反转的次数达到预定次数时,操作移向步骤S118,并且测量控制单元可以结束使用可能为距离di的电极间距d的隧道电流测量,并且可以从获得的电流值和测量时间形成例如图18的上图中所示的电导-时间曲线,然后可以将其与电极间距di相关联储存在预定存储区域中。
接下来,在步骤S120中,电极间距控制单元可以确定测量隧道电流的过程是否已完成所有预定电极间距di的测量。如果存在任何未处理的电极间距di,操作移向步骤S122,在那里电极间距控制单元可以将变量i增加1,并且可以将操作移向步骤S112。如果已对所有电极间距di进行了测量隧道电流的过程,则操作可以移向步骤S124,以执行如图25中所示的鉴定过程。
在如图25中所示的鉴定过程的步骤S240中,鉴定单元可以将变量i设定到1的值。然后,在步骤S242中,鉴定单元可以检索储存在预定存储区域中的与可能具有距离di的电极间距d相关联的电导-时间曲线。
接下来,在步骤S244中,在由测量控制单元确定的电导-时间曲线的基础上,鉴定单元可以形成示出了每个测量点的电导值与具有该值的测量点的数目之间的关系的直方图。然后,鉴定单元可以通过将预定函数拟合于形成的直方图来检测直方图的峰。例如,如图26中所示,鉴定单元可以检测出现在直方图中的多个峰,并且可以计算与每个峰相关的峰值。然后,鉴定单元可以通过将计算的峰值与对应于电极间距di的相对电导G进行比较来鉴定包含在肽中的氨基酸的顺序和类型,所述相对电导G可以是可能储存在参比物理值表中的相应氨基酸的相对电导G。
在某些实施方式中,在步骤S244中进行的鉴定可以在产生数据集时进行,或者可以作为后处理步骤进行,或者可以作为数据流步骤的一部分进行,在所述数据流步骤中在正获取更多数据的同时进行数据处理。在某些实施方式中,鉴定可以使用来自于单一纳米间隙电极间隔的数据来进行,其中所述单一纳米间隙电极间隔可以是与来自于其他可用纳米间隙电极对的其他电极间纳米间隙电极对间隔或数据所用于的同一纳米间隙电极对的其他电极间间隙间隔相比,已产生在辨别被鉴定的单体方面更好的数据的电极间纳米间隙电极对间隔。在其他实施方式中,鉴定可以使用提供最高鉴定确定性的单一纳米间隙电极对间隔,即使所使用的数据不是来自于名义上应该是优选的电极间纳米间隙电极对间隔的纳米间隙电极对间隔。
在其他实施方式中,可以使用来自于具有相同或不同的电极间间隙间隔的多个电极间纳米间隙电极对间隔的数据,并且所述数据可以由一个或几个纳米间隙电极对产生。在某些实施方式中,可以使用的纳米间隙电极对数据可以包括具有可能部分或完全在结合图22所描述的噪音带内的电极间纳米间隙间隔的电极间纳米间隙电极对间隔。可以使用电极间纳米间隙电极对间隔的多种不同组合中的任一种,以便可以产生最高的质量分值;在其他实施方式中,可以使用有限数目的电极间纳米间隙电极对间隔,以便减少所需的计算机处理量,同时相对于使用单一电极间纳米间隙电极对间隔仍提供改进的质量分值。在某些实施方式中,可以使用固定数目的电极间纳米间隙电极间隔,而在其他实施方式中,电极间纳米间隙电极间隙间隔的数目可能是可变的,并且可以改变以便为提供预定质量分值提供所需的最少数目的电极间纳米间隙电极间隔。
在本文中所述的某些实施方式中,可以假定制造标称的固定电极间纳米间隙对间隔并将其用于一个或多个纳米间隙电极对,而不补偿可能的制造公差或在使用期间可能发生的尖头改变。在其他实施方式中,可以作为测量参比物质和/或单体的结果确定电极间纳米间隙电极对间隔,其中在确定和指派电极间纳米间隙电极对间隔之前可以获取一组数据,其中确定的电极间纳米间隙电极对间隔可以在其后使用。在其他实施方式中,可以在整个测序过程中定期或连续地不断重新评估电极间纳米间隙间隔,并且可以将来自于表的分立的值或内推或以其他方式计算的预期电流值用于与不同纳米间隙电极对相关的指派,以与所述纳米间隙电极对的测量值相符,与参比物质和/或单体的测量值相符。在其他实施方式中,可以与单体的指派相结合确定电极间距,其中电极间距可以作为单体指派的一部分进行指派,由此可以在一段时间内调整电极间纳米间隙电极对间隔与单体的组合,以便提供具有最适分值的最佳拟合标准。
在某些实施方式中,可以如本文中所述获取固定量的数据;在其他实施方式中,可以获取可变量的数据,其中反转和协调的横越的数目可能随着质量评价标准而变,所述质量评价标准可以是用于单体鉴定的质量评价标准,或者可以是更简单的评价标准,例如信噪比评价标准或可能不与单体鉴定直接相关的其他评价标准。
在某些实施方式中,可以预先确定测序测定的时间长度,或者其中可以对单个或成组聚合物进行重复测量的固定数目的测序循环可以构成单个测序循环,使得多个测序循环可以允许使用多个反向横越潜在地多次测量多组单个或成组的聚合物。在其他实施方式中,多个测序周期的时间长度可以作为在测序过程中测量的数据的函数来确定,其中可能包括数据质量、数据的信噪比、可能与被测序单体的数目相关联的纳米间隙电极对的占据频率或占空比的测量结果可以被单独或组合使用,以便确定何时应该停止测序过程。
在某些实施方式中,序列指派和相关的质量评价标准或分值可以为每个聚合物确定,并且可以为纳米间隙电极对的每次横越分开地确定。在其他实施方式中,作为几次横越和通过纳米间隙电极对的相关测量的函数,可以为聚合物确定序列指派和相关的质量评价标准或分值。在其他实施方式中,序列指派可以作为序列作图或组装过程的一部分做出或重新评估,其中单体的指派可以重新评估,并且可以重新指派。特别是在与聚合物的单体指派相关的质量分值与其他聚合物中相同位置中的其他单体不一致的情况下,可以改变单体指派以便允许在其他方面可能明显良好地对齐的不同聚合物的作图或组装。
在某些实施方式中,在进行指派时,可以为聚合物中特定单体相对于任何其他单体的可能性给出相等的概率。在其他实施方式中,特别是当重新测序聚合物时,可以使用概率分布,它可以是随后应用于所有单体指派的总体概率分布,或者可以是局部概率分布,其中局部单体指派的背景可以是概率分布的一部分。
接下来,在步骤S246中,鉴定单元可以计算与相对电导G可以被储存在参比物理量表中的相应氨基酸相对应的概率密度函数。例如,概率密度函数可以使用由下列方程(2)所示的高斯函数来计算:
p ( x ) = 1 σ 2 π exp ( - ( x - μ ) 2 2 σ 2 )
在这里,μ表示氨基酸的相对电导G,σ表示标准偏差。可以使用其他概率密度函数例如吉布斯分布、Conway-Maxwell-Poisson分布、Zipf分布或任何其他分布或分布的组合。
接下来,在步骤S248中,通过使用电导-时间曲线的每个测量点处的电导值和每种氨基酸的概率密度函数,其可以是在步骤S246中计算的概率密度函数,鉴定单元可以确定测量点处的电导值与一种氨基酸相关联的概率,并且可以指派对于特定测量点来说概率可能被最大化的氨基酸种类。
接下来,在步骤S250中,鉴定单元可以检测与所指派的氨基酸种类相关的电导在电导-时间曲线中变化的转变点,并且可以在每个检测到的转变点处将电导-时间曲线分成多个区间。也就是说,对于每个区间来说,将测量点作图到具有相似的数据特征的氨基酸。通过使用Q-值,鉴定单元可以为每个区间确定每个氨基酸指派的准确度。Q-值或Phred质量分值可以例如由下述方程(3)来表示:Q=-10log10P。在这里,P可以是为测量点指派的氨基酸的错误概率。指派的氨基酸的概率值P*(=1-P)可以使用每个区间的指派的氨基酸的概率的时间积分值S1和每个区间的其他氨基酸的概率的时间积分值S2表示成P*=S1/(S1+S2)。在这种情况下,如果Q-值为6或更大,则可以被指派到区间的氨基酸的概率值P*可以具有75%或更高的准确度。
Q-值或其他质量评价标准可以与指派的单体(氨基酸)序列一起储存,并且可以使用无损或有损存储方法例如FastQ格式来储存,或者可以使用SCALCE、Fastqz、Qualcomp或其他类似算法来储存。
在某些实施方式中,对于每个电极间距di来说,可以鉴定的氨基酸种类可能不同,使得对于每个区间来说,由电导所示的氨基酸种类可能不一定对应于特定电极间距di可以鉴定的氨基酸种类。因此,如果氨基酸的指派可能不具有预定准确度(其中Q-值可能大于或等于以前确定的阈值),则鉴定单元可以确定氨基酸种类的指派可能不明确,并且不能为特定测量点具体指派氨基酸。
接下来,在步骤S252中,鉴定单元可以通过将指派给区间的氨基酸的通过时间(区间的时间长度)与以前为一种氨基酸确定的通过时间参数进行比较,来确定指派给区间的氨基酸种类是否正确。
在这里,通过时间参数可以例如如下所述在以前确定,其中可以测量在已知种类的氨基酸的单个分子可以通过纳米间隙电极对的电极之间时可能产生的隧道电流,并且可以制作电导-时间曲线。然后,从电导值的变化,可以测量所述氨基酸的通过时间。通过改变氨基酸的通过方向,可以多次测量隧道电流。然后可以将每次测量的通过时间平均,并且可以将包括平均值的指定范围内的值取作特定氨基酸的通过时间。
如果区间的时间长度被包括在指派给区间的氨基酸种类的通过时间参数中,则鉴定单元可以确定指派给区间的氨基酸种类是否可能是正确的。如果区间的时间长度不包括在通过时间参数中,则可以做出“不明确”确定而不对区间中包含的所有测量点指派任何氨基酸种类。
接下来,在步骤S254中,在例如来自于步骤S248至S252的指派和确定结果的基础上,如图27中所示,单字母表示法示出了指派给电导-时间曲线中每个区间的氨基酸种类,并伴有对应于区间的鉴定结果。当氨基酸未被鉴定时,可以显示示出了对应于区间的氨基酸种类可能不明确的字母(例如字母“X”;在后文中被称为“不明确字母X”)。在图27中,“B”示出了基线。
接下来,在步骤S256中,鉴定单元可以除去任何双重读取的序列。例如,对于具有氨基酸序列KRED的肽的情况来说,正确读数是KRED;然而,如果肽的移动可以在R处逆转,存在着可能读出重复序列例如KRKRED的可能性。因此,具有重复序列部分的鉴定结果可能被确定为鉴定错误,因此鉴定结果可以被改变成“不明确”。也就是说,在步骤S254中可能已被不适当地鉴定的与电导时间曲线相关的字母,可以用不明确字母X替代。
具体来说,鉴定单元可以计算Q-值,这可以利用与方程(3)类似的计算,其中具有在步骤S254中指派的字母序列的每个部分序列,可以在基线“B处”分开。在这里,P可以是特定部分序列的错误概率。特定部分序列的概率值P*(=l-P)可以使用部分序列具有与部分序列本身相同的鉴定结果的次数S1和部分序列具有另一种鉴定结果的次数S2,表示成P*=S1/(S1+S2)。例如,对于所有分开的部分序列来说,如果部分序列1(XXXAXXXX)出现5次并且部分序列2(XXXLXXXX)出现1次,则部分序列1的Q-值可以是7.78。如果该Q-值不低于以前确定的阈值,则部分序列1可以被确定是正确的。另一方面,部分序列2可以被确定是误导。
接下来,在步骤S258中,鉴定单元可以组装(或作图)序列片段。具体地对于重测序(已知序列)的情况来说,已通过过程中(如本文中所述)直至步骤S254的步骤鉴定(读取)的序列可以被作图到参比序列,并且这种操作可以在达到一定覆盖深度(每个氨基酸的重叠读取的数目)时终止。在从头序列鉴定的情况下,可以通过拼合协调的序列来组装叠连群。
接下来,在步骤S260中,鉴定单元可以使用对应于不同电极间距di的相对电导来确定鉴定氨基酸的过程是否完成。在存在未处理的电极间距di的情况下,操作可以前进到步骤S262,并且可以将变量i增加1,并且可以将操作返回到步骤S242。因此,如图28中所示,可以使用可以用不同电极间距di鉴定的氨基酸的相对电导,连续地鉴定对应于每个区间的氨基酸的种类。当对于所有电极间距di来说所述过程结束后,可以输出构成肽的氨基酸的序列结果,并且图24中所示的生物分子测序过程可以结束生物分子测序过程。
正如本文中讨论的,在某些实施方式中,对于纳米间隙电极对的电极可以设置的每个距离,生物分子测序装置可以在生物分子通过纳米间隙电极对之间时产生并测量隧道电流,其中纳米间隙电极对的电极之间的每个距离可以具有不同的电极间距,并且可以使用与电极间距相符的可以以预定准确度鉴定的氨基酸的物理量作为参比物理量,可以用简单的构造并以高准确度鉴定构成生物分子的单体。
在某些实施方式中,一些部件可能与本文中所描述的图1的生物分子测序装置的部分相同,那些相同的部件的详细解释通过使用相同的数字指称而被省略。
在如图29中所示的某些实施方式中,生物分子测序装置210可以包括纳米间隙电极对12A、12B和12C、测量电源18、电泳电极对20、电泳电源22、安培计24和控制单元226。电极对12A、12B和12C可以具有不同的间隙尺寸,其可用于询问不同物质(参见例如图12)。
纳米间隙电极对12A、12B和12C的构造可以与本文中别处描述的纳米间隙电极对12相同。纳米间隙电极对12A、12B和12C可以通过电介质14层叠,使得电极间中间可以排列在同一个轴上。也就是说,可以在纳米间隙电极对12A、12B和12C的电极之间形成肽50可以通过的一个通路。纳米间隙电极对12A的电极间距可以是d1,纳米间隙电极对12B的电极间距可以是d2,纳米间隙电极对12C的电极间距可以是d3,因此电极间间隙对的距离可以彼此不同。在图29的实例中,它们可以是d1>d2>d3。例如,它们可以被设置到d1=l.0nm,d2=0.7nm和d3=0.5nm。
在其他实施方式中,以足够的精度控制电极间间距可能是困难的,一组纳米间隙电极对可以被制造成具有一定范围的电极间距,所述范围可以跨越所需或预定范围,并且可以具有等于对应于以所需Q-值分辨一组单体(例如氨基酸)所需的电极间距数目的最小数目的纳米间隙电极对数目,或者可以具有大于电极间距的最小数目的纳米间隙电极对数目,其中电极间距可以在足够的电极间距范围内提供足够数目的不同电极间距,以便以所需Q-值分辨一组单体(氨基酸)。在使用中,可以使用参比物质以便测量一组纳米间隙电极对中不同纳米间隙电极对的真实电极间距。
在某些情况下,纳米间隙可以包括至少1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、30、40或50个电极对。在某些情况下,至少一些电极对具有与其他电极对不同的间隙尺寸。在某些实例中,电极对具有不同的间隙尺寸。
如图30中所示,控制单元226可以由包括电泳控制单元231、测量控制单元232、鉴定单元34和参比物理量表36的构造构成。
为了使肽50多次逆转重复地通过在每个纳米间隙电极对12A、12B和12C的电极之间形成的一个通路,电泳控制单元231可以使用电泳电源22控制施加的电压,使得在电泳电极对20的电极之间形成的电场的方向可以切换,以便引起电场的极化反转。
测量控制单元232可以控制安培计24,使得安培计24可以测量在每个纳米间隙电极对12A、12B和12C的电极之间产生的隧道电流,然后可以利用可以通过安培计24测量的不同电极间距的隧道电流的电流值来计算电导,并且可以为每个电极间距产生电导-时间曲线。
在某些实施方式中,可以如下使用生物分子测序装置210:可以制备肽50可以溶解在其中的溶液;在纳米间隙电极对12A、12B和12C被配置在溶液中之后,可以使用测量电源18向纳米间隙电极对12A、12B和12C施加电压,并在同时可以使用电泳电源22向电泳电极对20施加电压。然后,可以将肽50通过在纳米间隙电极对12A、12B和12C的电极之间形成的通路。
然后,包含控制单元226的计算机的计算机处理器(例如CPU)可以检索并执行可能储存在ROM、RAM、FLASH或其他存储介质中的生物分子测序程序,并且可以利用生物分子测序装置210执行如图31中所示的生物分子测序过程。在某些实施方式中,生物分子测序过程可以由生物分子测序装置210执行。
在图31中所示的与生物分子测序过程相关的步骤S214中,测量控制单元232可以控制安培计24并开始测量当肽50通过在纳米间隙电极对12A、12B和12C的电极之间形成的通路时,可能在每个纳米间隙电极对12A、12B和12C的电极之间产生的隧道电流的电流值。测量控制单元232可以使用测量到的电流值,并将它们与每个测量点的测量时间相关联,与指示哪个测量到的电流值数据得自于哪个纳米间隙电极对12A、12B和12C以及与每个纳米间隙电极对相关的距离(例如,指示电极间距的d1、d2和d3)的信息相关联,储存在预定的存储区域中。
接下来,在步骤S16中,电泳控制单元231可以确定肽50是否已在每个纳米间隙电极对12A、12B和12C的电极之间形成的通路中横越了规定次数。当横越次数没有达到预定次数时,可以执行由电泳控制单元231施加的电压的附加的极化反转,以便能够获得附加的横越。当横越次数达到预定次数时,操作可以移动到步骤S218,测量控制单元232可以终止隧道电流的测量,并且从获得的电流值和测量次数,可以为不同的电极间距形成如图18的上图中所示的电导-时间曲线,并且可以将其储存在规定的存储区域中。
接下来,在步骤S24中,可以进行与图25相结合示出并描述的鉴定过程。由于鉴定过程可以与本文中所描述的鉴定过程相同,因此该步骤的解释被省略。
在某些实施方式中,不是使用肽50或其他聚合物可以由电泳控制单元231控制所进行的测量横越的固定次数,可以在肽50或其他聚合物的移动过程中分析数据,直至达到所需的质量评价标准,其可以是Q-分值或其他适合的评价标准。因此,肽50或其他聚合物可以在纳米间隙电极对的电极之间横越的可变横越次数,可以大于或小于为了提供名义上的所需质量分值而选择的次数。
在某些实施方式中,正如上面解释的,可以使用具有多个纳米间隙电极对的生物分子测序装置,其使用方式类似于可以使用具有各种调整的纳米间隙电极对间隙间隔的可调节纳米间隙电极对的生物分子测序装置,以便使用简单的构造并以高准确度鉴定构成生物分子的单体。此外,由于可以同时测量不同纳米间隙电极对间隔的隧道电流,因此与纳米间隙距离可能需要调整的生物分子测序装置相比,隧道电流的测量时间可以缩短。
正如本文中所述,对于纳米间隙电极对12A、12B和12C可以被层叠以使每个电极间中心可以排列在同一个轴上的构造进行了解释,但是在其他实施方式中,可以例如将不同的电极间隙间隔与不同的通道相关联。例如,可以将纳米间隙电极对12A、12B和12C配置在同一平面上。在这种情况下,可以例如与纳米间隙电极对12A、12B和12C相结合使用附加的电泳电极,以便控制系统以使肽50可以连续通过每个纳米间隙电极对12A、12B和12C的电极之间。
正如本文中所述,涉及了可能构成可以被鉴定的肽的20或更多种氨基酸;然而,可能也可以鉴定其他种类的氨基酸,包括修饰的氨基酸。修饰的氨基酸可能具有扩大的分子直径。因此,从利用被设置到接近分子直径的电极间距d测量的隧道电流和峰值脉冲持续时间计算的相对电导可以被作图的tp-G空间中的点,可以从其他氨基酸的点容易地鉴定;因此,正如在图32中粗略示出的,修饰的氨基酸可以被清楚地分类,以便可以获得能够鉴定氨基酸种类的指示物。因此,也可以使用简单的构造并以高准确度鉴定修饰的氨基酸,而不需预备处理例如化学修饰。这样的修饰的氨基酸可以控制蛋白质的活性或失活状态,因此,这可能是疾病诊断的非常重要的靶点,例如与各种癌症形式相关的N-端乙酰化。
在某些实施方式中,可以使用单一类型的参比物质,其中单一类型的参比物质可能适合于各种不同的电极间纳米间隙电极对间隔,潜在地可用作所有不同电极间纳米间隙电极对间隔的本文中所述的参比物质。在其他实施方式中,可以利用多种参比物质,其中一种或多种参比物质可能更好地适合于与一定范围的电极间纳米间隙电极对间隔距离一起使用,而不同的一种或多种参比物质可能更好地适合于不同范围的电极间纳米间隙电极对间隔距离。可以随着参比物质尺寸的变化或随着参比物质上的活性电活性位点之间的记录的变化,为不同电极间纳米间隙电极对间隔选择参比物质。
在本文中所述的某些实施方式中,参比物质通常可能是球形的,使得参比物质在电极间纳米间隙电极对间隔内的取向可能不对由参比物质产生的隧道电流具有实质性影响。在其他实施方式中,可以使用下述的参比物质,即其中取向可能对由此产生的隧道电流具有显著影响,但是其中所述参比物质可以具有空间位阻从而防止以允许隧道电流显著变化的方式与纳米间隙电极对相互作用,从而允许化合物起到参比物质作用的参比物质。在其他实施方式中,可以使用下述的参比物质,即其中取向可能对由此产生的隧道电流具有显著影响,但是其中所述参比物质可以通过与参比物质相关的电荷而取向,以便防止参比物质以允许隧道电流显著变化的方式与纳米间隙电极对相互作用,从而允许化合物起到参比物质作用的参比物质。
在某些实施方式中,参比物质可以具有与正在测序的聚合物的单体相关的脉冲持续时间相近的脉冲持续时间。在其他实施方式中,参比物质可以具有可能显著长于或短于与正在测序的聚合物的单体相关的脉冲持续时间的脉冲持续时间,允许将参比物质的脉冲持续时间作为附加因子用于确定脉冲是否与参比物质或正在测序的聚合物的单体相关。
在某些情况下,涉及了作为示例性生物聚合物(生物分子)的肽(蛋白质)和作为构成生物分子的单体的氨基酸,但本公开不限于此。例如,在某些实施方式中,生物分子测序装置可用于鉴定构成核酸的核苷酸和鉴定构成糖链的单糖。
程序可以事先安装,但是应该认识到,本公开的装置、系统和方法可以在下述情况下执行,即其中程序被储存在外部存储装置、存储介质等中,其可以通过互联网、内联网或其他网络读入或下载。可替选地,也可以在将该程序储存在可以被计算机读取的存储介质中之后提供该程序。
在程序可以被描述成被事先安装的某些实施方式中,可以将程序储存在外部储存装置或储存介质中并可以在需要时读取,或者可以通过互联网连接下载程序。此外,程序可以被储存在分开提供的计算机可读储存介质中。
可以使用流体流动单元将样品和试剂递送到纳米间隙电极和成组电极,所述流体流动单元可以包括一个或多个泵。流体流动单元可以包括单个泵或一系列泵。在某些实例中,所述泵是微量泵,例如芯片上的泵。流体流动单元可以包括用于引导流体流动的一个或多个阀。流体流动单元的泵和阀可以由本文中别处描述的控制单元和计算机控制系统来控制。
计算机控制系统
本公开提供了被编程以执行本公开的方法的计算机控制系统。图33示出了被编程或以其他方式配置以测序生物分子例如蛋白质的计算机系统3301。计算机系统3301可以是本文中别处描述的控制单元26和226。计算机系统3301包括中央处理器(CPU,在本文中也称为“处理器”和“计算机处理器”)3305,其可以是单核或多核处理器,或包括多个处理器用于并行处理。计算机系统3301还包括存储器或存储位置3310(例如随机存取存储器、只读存储器、闪存)、电子储存单元3315(例如硬盘)、用于与一个或多个其他系统通讯的通讯接口3320(例如网络适配器)和周边装置3325例如高度缓存、其他存储器、数据储存和/或电子显示适配器。存储器3310、储存单元3315、接口3320和周边装置3325通过通信总线(实线)例如主板与CPU 3305连通。储存单元3315可以是用于储存数据的数据储存单元(或数据储存库)。计算机系统3301可以在通讯接口3320的帮助下操作偶联到计算机网络(“网络”)3330。网络3330可以是互联网、互联网和/或外联网或与互联网连通的内联网和/或外联网。在某些情况下,网络3330是电信和/或数据网络。网络3330可以包括一个或多个计算机服务器,其可以进行分配计算例如云计算。在某些情况下,网络3330在计算机系统3301的帮助下可以实施点对点网络,其可以将装置偶联到计算机系统3301以充当客户端或服务器。
CPU 3305可以执行一串机器可读指令,其可以体现在程序或软件中。所述指令可以储存在存储位置例如存储器3310中。所述指令可以被导向CPU 3305,其随后可以对CPU3305进行编程或其他配置,以执行本公开的方法。由CPU 3305执行的操作的实例可以包括提取、解码、执行和回写。
CPU 3305可以是电路例如集成电路的一部分。系统3301的一个或多个其他部件可以包括在所述电路中。在某些情况下,所述电路是专用集成电路(ASIC)。
储存单元3315可以储存文件例如驱动程序、文库和保存的程序。储存单元3315可以储存用户数据例如用户的偏好和用户程序。在某些情况下,计算机系统3301可以包括在计算机系统3301外部,例如位于通过内联网或互联网与计算机系统3301保持通讯的远端服务器上的一个或多个附加数据储存单元。
计算机系统3301可以通过网络3330与一个或多个远端计算机系统通讯。例如,计算机系统3301可以与用户的远端计算机系统通讯。用户可以通过网络3330接入计算机系统3301。
本文中所描述的方法可以利用储存在计算机系统3301的电子储存位置、例如存储器3310或电子储存单元3315上的机器(例如计算机处理器)可执行码来进行。机器可执行或机器可读码可以以软件的形式提供。在使用期间,所述码可以由处理器3305执行。在某些情况下,所述码可以从储存单元3315检索并储存在存储器3310上,用于被处理器3305迅速存取。在某些情况下,电子储存单元3315可以被排除,并且机器可执行指令储存在存储器3310上。
所述码可以预先编译并配置以便与具有适应于执行所述码的处理器的机器一起使用,或者可以在运行时间中编译。所述码可以以编程语言提供,可以选择所述编程语言以使所述码以预先编译或即时编译的方式执行。
本文中提供的系统和方法例如计算机系统3301的各个方面,可以体现在编程中。所述技术的各个不同方面可以被当作“产品”或“制品”,其通常采取携带在一种类型的机器可读介质上或体现在其中的机器(或处理器)可执行码和/或相关数据的形式。机器可执行码可以储存在电子储存单元例如存储器(例如只读存储器、随机存取存储器、闪存)或硬盘上。“储存”类型的介质可以包括计算机、处理器等或其相关模块的任何或所有实体存储器,例如各种半导体存储器、磁带驱动器、磁盘驱动器等,其可以在任何时间为软件编程提供永久储存。软件的全部或部分有时可以通过互联网或各种其他电信网络进行通讯。这样的通讯可以例如将软件从一个计算机或处理器装载到另一个计算机或处理器中,例如从管理服务器或主计算机装载到应用服务器的计算机平台中。因此,可以携带软件要素的另一种类型的介质包括光、电和电磁波,例如跨过本地装置之间的物理接口、通过有线和光固话网络和越过各种不同的空中连接来使用。携带这些波的物理元件例如有线或无线连接、光连接等,也可以被当作带有软件的介质。当在本文中使用时,除非限制到永久的实体“储存”介质,否则诸如计算机或机器“可读介质”的术语是指参与向处理器提供指令以备执行的任何介质。
因此,机器(或计算机)可读介质例如计算机可执行码(或计算机程序)可以采取多种形式,包括但不限于实体储存介质、载波介质或物理传输介质。非易失储存介质包括例如光盘或磁盘,例如任何计算机等中可用于例如执行图中所示的数据库等的任何储存装置。易失性储存介质包括动态存储器,例如这种计算机平台的主存储器。实体传输介质包括同轴电缆、铜线和光学纤维,包括计算机系统内包含总线的缆线。载波传输介质可以采取电或电磁信号、声波或光波例如在射频(RF)和红外(IR)数据通讯期间产生的声波或光波的形式。因此,计算机可读介质的常见形式包括例如软盘、柔性盘、硬盘、磁带、任何其他磁介质、CD-ROM、DVD或DVD-ROM、任何其他光介质、穿孔卡片纸带、具有孔图案的任何其他物理储存介质、RAM、ROM、PROM和EPROM、FLASH-EPROM、任何其他存储芯片或存储匣、传输数据或指令的载波、传输这种载波的缆线或连接,或计算机可以从其读取程序码和/或数据的任何其他介质。许多这些形式的计算机可读介质可以参与将一个或多个指令的一个或多个序列携带到处理器以备执行。
本公开的装置、系统和方法可以与其他装置、系统或方法组合或用其改良,所述其他装置、系统或方法例如描述在例如JP 2013-36865A、US 2012/0322055A、US 2013/0001082A、US 2012/0193237A、US 2010/0025249A、JP 2011-163934A、JP 2005-257687A、JP2011-163934A和JP 2008-32529A中,其各自整体通过参考并入本文。
尽管在本文中已示出并描述了本发明的优选实施方式,但对于本领域技术人员来说,显然这些实施方式仅仅作为实例被提供。本发明不打算受说明书中提供的具体实例限制。尽管本发明已参考上述说明书进行描述,但本文中的实施方式的描述和说明不意味着以限制性的意义解释。本领域技术人员可以做出大量的变化、改变和替代而不背离本发明。此外,应该理解,本发明的所有情况不限于本文中提出的取决于各种不同条件和变量的具体描写、构造或相对比例。应该理解,在实践本发明中,可以使用本文中描述的本发明的实施方式的各种不同的可替选方式。因此,设想了本发明还应该覆盖任何这类可替选方式、改良、变化或等同物。权利要求书旨在定义本发明的范围,因此覆盖了在这些权利要求书范围之内的方法和结构以及它们的等同物。

Claims (48)

1.一种用于对具有多个单体的生物分子进行测序的方法,所述方法包括:
(a)引导所述生物分子通过包括多组纳米间隙电极的通道,其中所述多组纳米间隙电极的每一组包括两个纳米间隙电极,并且其中至少一部分所述多组纳米间隙电极具有不同的电极间距;
(b)使用所述多组纳米间隙电极测量对应于当所述生物分子被引导通过所述通道时的纳电流的信号,所述信号对应于所述生物分子的所述多个单体;以及
(c)使用计算机处理器,通过将在(b)中测量的所述信号与一个或多个参比进行比较来鉴定所述多个单体。
2.权利要求1的方法,其中所述鉴定包括使用所述信号的相对值与所述一个或多个参比之间的预定关系。
3.权利要求1的方法,其中所述多组纳米间隙电极包括具有不同的电极间间距的第一组纳米间隙电极和第二组纳米间隙电极。
4.权利要求1的方法,其还包括使用给定纳米间隙电极组的电极间距来内推另一个电极间距的纳电流。
5.权利要求1的方法,其还包括使用来自于利用所述多组纳米间隙电极的多次测量的数据,使用单个单体质量调用来产生所述生物分子的共有序列。
6.权利要求1的方法,其中所述生物分子是肽样品。
7.权利要求6的方法,其还包括在(a)之前将所述肽样品变性和/或切开。
8.权利要求1的方法,其中所述多组纳米间隙电极的每一组具有适合于检测所述生物分子的至多一部分所述多个单体的电极间距。
9.权利要求1的方法,其中所述生物分子是核酸分子。
10.权利要求1的方法,其还包括测量对应于所述多组纳米间隙电极在不同电极间距下的纳电流的信号。
11.权利要求1的方法,其还包括测量来自于至多一部分所述多组纳米间隙电极的信号,并使用利用所述至多一部分所述多组纳米间隙电极测量的所述信号来鉴定所述多个单体中的给定单体。
12.权利要求1的方法,其中所述纳电流包括隧道电流。
13.一种用于对具有多个单体的生物分子进行测序的系统,所述系统包含:
通道,其包括多组纳米间隙电极,其中所述多组纳米间隙电极的每一组包括两个纳米间隙电极,并且其中至少一部分所述多组纳米间隙电极具有不同的电极间距;
流体流动单元,用于引导所述生物分子通过所述通道;以及
计算机处理器,其被偶联到所述纳米间隙电极并被编程,以:
(a)使用所述多组纳米间隙电极测量对应于当所述生物分子被引导通过所述通道时的纳电流的信号,所述信号对应于所述生物分子的所述多个单体;并且
(b)通过将在(a)中测量的所述信号与一个或多个参比进行比较来鉴定所述多个单体。
14.权利要求13的系统,其中所述计算机处理器被编程,以使用所述信号的相对值与所述一个或多个参比之间的预定关系来鉴定所述多个单体。
15.权利要求13的系统,其中所述多组纳米间隙电极包括具有不同的电极间间距的第一组纳米间隙电极和第二组纳米间隙电极。
16.权利要求13的系统,其中所述计算机处理器被编程,以使用给定纳米间隙电极组的电极间距来内推另一个电极间距的纳电流。
17.权利要求13的系统,其中所述计算机处理器被编程,以使用来自于利用所述多组纳米间隙电极的多次测量的数据,使用单个单体质量调用来产生所述生物分子的共有序列。
18.权利要求13的系统,其中所述多组纳米间隙电极的每一组具有适合于检测所述生物分子的至多一部分所述多个单体的电极间距。
19.权利要求13的系统,其中所述计算机处理器被编程,以测量对应于所述多组纳米间隙电极在不同电极间距下的纳电流的信号。
20.权利要求13的系统,其中所述计算机处理器被编程,以测量来自于至多一部分所述多组纳米间隙电极的信号,并使用利用所述至多一部分所述多组纳米间隙电极测量的所述信号来鉴定所述多个单体中的给定单体。
21.一种用于对具有一个或多个单体的肽样品进行测序的方法,所述方法包括:
(a)引导所述肽样品和至少一个参比样品通过通道,所述通道包括具有可变电极间距的至少一组纳米间隙电极,其中所述参比样品具有与通过所述纳米间隙电极测量的纳电流相对应的预定的信号特性;
(b)使用所述纳米间隙电极,以不同的电极间距测量对应于当所述蛋白质样品和参比样品被引导通过所述通道时的纳电流的信号,所述信号包括与所述参比样品相关的参比信号;以及
(c)使用计算机处理器,通过将在(b)中测量的所述信号与所述参比信号进行比较来鉴定所述一个或多个单体。
22.权利要求21的方法,其中将所述参比样品与所述肽样品分开。
23.权利要求21的方法,其中所述参比样品是具有一个或多个单体的预定序列的参比肽样品。
24.权利要求21的方法,其中所述参比样品包含当将所述参比样品在所述纳米间隙电极之间通过时在所述纳米间隙电极之间在空间方面具有相同取向的亚基。
25.权利要求21的方法,其中所述参比样品具有基本上球形的形状。
26.权利要求25的方法,其中所述参比样品包含金属纳米粒子或富勒烯。
27.权利要求21的方法,其中所述鉴定包括使用所述信号的相对值与所述参比信号之间的预定关系。
28.权利要求21的方法,其中所述通道包含多组纳米间隙电极,每组包含至少两个纳米间隙电极。
29.权利要求28的方法,其中所述多组纳米间隙电极包含具有不同电极间间距的第一组纳米间隙电极和第二组纳米间隙电极。
30.权利要求21的方法,其还包括使用来自于利用所述纳米间隙电极的多次测量的数据,使用单个单体质量调用来产生所述肽样品的共有序列。
31.权利要求21的方法,其还包括提供对应于所述纳米间隙电极之间的至少一部分所述多个不同距离的多个不同参比样品。
32.权利要求21的方法,其还包括在(a)之前将所述肽样品变性和/或切开。
33.权利要求21的方法,其中所述参比样品与第一脉冲持续时间相关,并且所述肽样品与不同于所述第一脉冲持续时间的第二脉冲持续时间相关。
34.权利要求21的方法,其中所述信号特性包括信号幅度。
35.权利要求34的方法,其中所述信号的所述幅度是预定的幅度。
36.权利要求21的方法,其中所述肽样品和所述至少一种参比样品被交替并顺序地引导通过所述通道。
37.权利要求21的方法,其中(b)还包括(i)改变所述纳米间隙电极的所述电极间距,以及(ii)在所述不同电极间距下进行所述信号的分开的测量。
38.权利要求21的方法,其中所述纳电流包括隧道电流。
39.一种用于对具有一个或多个单体的肽样品进行测序的系统,所述系统包含:
通道,其包括具有可变电极间距的至少一组纳米间隙电极;
流体流动单元,用于引导所述肽样品和至少一种参比样品通过所述通道,其中所述参比样品具有与使用所述纳米间隙电极测量的纳电流相对应的预定的信号特性;以及
计算机处理器,其被偶联到所述纳米间隙电极并被编程,以(i)使用所述纳米间隙电极以可变的电极间距测量对应于当所述肽样品和参比样品被引导通过所述通道时的纳电流的信号,并且(ii)通过将在(i)中测量的所述信号与所述参比信号进行比较来鉴定所述一个或多个单体。
40.权利要求39的系统,其中所述参比样品是具有一个或多个单体的预定序列的参比肽样品。
41.权利要求39的系统,其中所述计算机处理器被编程,以使用所述信号的相对值与所述参比信号之间的预定关系来鉴定所述一个或多个单体。
42.权利要求39的系统,其中所述通道包含多组纳米间隙电极,每组包含至少两个纳米间隙电极。
43.权利要求42的系统,其中所述多组纳米间隙电极包含具有不同的电极间间距的第一组纳米间隙电极和第二组纳米间隙电极。
44.权利要求39的系统,其中所述计算机处理器被编程,以使用来自于利用所述纳米间隙电极的多次测量的数据,使用单个单体质量调用来产生所述肽样品的共有序列。
45.权利要求39的系统,其中所述流体流动系统以第一脉冲持续时间提供所述参比样品,并以不同于所述第一脉冲持续时间的第二脉冲持续时间提供所述蛋白质样品。
46.权利要求39的系统,其中所述计算机处理器被编程,以(i)改变所述纳米间隙电极的所述电极间距,并(ii)在所述不同电极间距下进行所述信号的分开的测量。
47.一种计算机可读介质,其包含可执行的机器码,所述机器码在被一个或多个计算机处理器执行后,实施对具有一个或多个氨基酸单体的蛋白质样品进行测序的方法,所述方法包括:
(a)引导所述生物分子通过包括多组纳米间隙电极的通道,其中所述多组纳米间隙电极的每一组包括两个纳米间隙电极,并且其中至少一部分所述多组纳米间隙电极具有不同的电极间距;
(b)使用所述多组纳米间隙电极测量对应于当所述生物分子被引导通过所述通道时的纳电流的信号,所述信号对应于所述生物分子的所述多个单体;以及
(c)通过将在(b)中测量的所述信号与一个或多个参比进行比较来鉴定所述多个单体。
48.一种计算机可读介质,其包含可执行的机器码,所述机器码在被一个或多个计算机处理器执行后,实施对具有一个或多个氨基酸单体的蛋白质样品进行测序的方法,所述方法包括:
(a)引导所述肽样品和至少一个参比样品通过通道,所述通道包括具有可变电极间距的至少一组纳米间隙电极,其中所述参比样品具有与通过所述纳米间隙电极测量的纳电流相对应的预定的信号特性;
(b)使用所述纳米间隙电极,以不同的电极间距测量对应于当所述蛋白质样品和参比样品被引导通过所述通道时的纳电流的信号,所述信号包括与所述参比样品相关的参比信号;以及
(c)通过将在(b)中测量的所述信号与所述参比信号进行比较来鉴定所述一个或多个单体。
CN201480057175.4A 2013-09-18 2014-09-17 生物分子测序装置、系统和方法 Active CN106104274B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2013-193498 2013-09-18
JP2013193498A JP6334115B2 (ja) 2013-09-18 2013-09-18 生体分子シーケンシング装置、方法、及びプログラム
JP2013-197443 2013-09-24
JP2013197443A JP6334118B2 (ja) 2013-09-24 2013-09-24 単分子識別方法、装置、及びプログラム
PCT/US2014/056173 WO2015042200A1 (en) 2013-09-18 2014-09-17 Biomolecule sequencing devices, systems and methods

Publications (2)

Publication Number Publication Date
CN106104274A true CN106104274A (zh) 2016-11-09
CN106104274B CN106104274B (zh) 2018-05-22

Family

ID=52689363

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480057175.4A Active CN106104274B (zh) 2013-09-18 2014-09-17 生物分子测序装置、系统和方法

Country Status (6)

Country Link
US (2) US9644236B2 (zh)
EP (2) EP3578987A1 (zh)
KR (1) KR20160079780A (zh)
CN (1) CN106104274B (zh)
CA (1) CA2929929A1 (zh)
WO (1) WO2015042200A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114127556A (zh) * 2019-02-08 2022-03-01 通用测序技术公司 用于生物聚合物传感的肽纳米结构

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108540A1 (ja) 2010-03-03 2011-09-09 国立大学法人大阪大学 ヌクレオチドを識別する方法および装置、ならびにポリヌクレオチドのヌクレオチド配列を決定する方法および装置
EP3578987A1 (en) 2013-09-18 2019-12-11 Quantum Biosystems Inc. Biomolecule sequencing devices, systems and methods
JP2015077652A (ja) 2013-10-16 2015-04-23 クオンタムバイオシステムズ株式会社 ナノギャップ電極およびその製造方法
US10438811B1 (en) 2014-04-15 2019-10-08 Quantum Biosystems Inc. Methods for forming nano-gap electrodes for use in nanosensors
WO2015170782A1 (en) 2014-05-08 2015-11-12 Osaka University Devices, systems and methods for linearization of polymers
GB201510322D0 (en) * 2015-06-12 2015-07-29 Imp Innovations Ltd Apparatus and method
JP7080489B2 (ja) 2016-01-28 2022-06-06 ロズウェル バイオテクノロジーズ,インコーポレイテッド 超パラレルdna配列決定装置
US11624725B2 (en) 2016-01-28 2023-04-11 Roswell Blotechnologies, Inc. Methods and apparatus for measuring analytes using polymerase in large scale molecular electronics sensor arrays
CA3053103A1 (en) 2016-02-09 2017-08-17 Roswell Biotechnologies, Inc. Electronic label-free dna and genome sequencing
US10597767B2 (en) 2016-02-22 2020-03-24 Roswell Biotechnologies, Inc. Nanoparticle fabrication
US9829456B1 (en) 2016-07-26 2017-11-28 Roswell Biotechnologies, Inc. Method of making a multi-electrode structure usable in molecular sensing devices
KR102622275B1 (ko) 2017-01-10 2024-01-05 로스웰 바이오테크놀로지스 인코포레이티드 Dna 데이터 저장을 위한 방법들 및 시스템들
CN110520517A (zh) 2017-01-19 2019-11-29 罗斯威尔生命技术公司 包括二维层材料的固态测序装置
US10889857B2 (en) * 2017-02-01 2021-01-12 Seagate Technology Llc Method to fabricate a nanochannel for DNA sequencing based on narrow trench patterning process
US10640827B2 (en) 2017-02-01 2020-05-05 Seagate Technology Llc Fabrication of wedge shaped electrode for enhanced DNA sequencing using tunneling current
US10641726B2 (en) 2017-02-01 2020-05-05 Seagate Technology Llc Fabrication of a nanochannel for DNA sequencing using electrical plating to achieve tunneling electrode gap
US10731210B2 (en) 2017-02-01 2020-08-04 Seagate Technology Llc Fabrication of nanochannel with integrated electrodes for DNA sequencing using tunneling current
US20180245149A1 (en) * 2017-02-01 2018-08-30 Seagate Technology Llc Fabrication of a device for single-molecule dna sequencing using sidewall lithography
US10761058B2 (en) 2017-02-01 2020-09-01 Seagate Technology Llc Nanostructures to control DNA strand orientation and position location for transverse DNA sequencing
US10844431B2 (en) * 2017-02-01 2020-11-24 Seagate Technology Llc Nanofluidic channel opening size control using actuation
US10752947B2 (en) 2017-03-09 2020-08-25 Seagate Technology Llc Method to amplify transverse tunneling current discrimination of DNA nucleotides via nucleotide site specific attachment of dye-peptide
US20180259475A1 (en) * 2017-03-09 2018-09-13 Seagate Technology Llc Vertical nanopore coupled with a pair of transverse electrodes having a uniform ultrasmall nanogap for dna sequencing
US10508296B2 (en) 2017-04-25 2019-12-17 Roswell Biotechnologies, Inc. Enzymatic circuits for molecular sensors
EP3615685A4 (en) 2017-04-25 2021-01-20 Roswell Biotechnologies, Inc ENZYMATIC CIRCUITS FOR MOLECULAR SENSORS
EP4023764A3 (en) 2017-05-09 2022-09-21 Roswell Biotechnologies, Inc. Binding probe circuits for molecular sensors
EP3676389A4 (en) 2017-08-30 2021-06-02 Roswell Biotechnologies, Inc PROCESSIVE ENZYMATIC MOLECULAR ELECTRONIC SENSORS FOR STORING DNA DATA
EP3694990A4 (en) 2017-10-10 2022-06-15 Roswell Biotechnologies, Inc. METHODS, APPARATUS AND SYSTEMS FOR NON-AMPLIFICATION DNA DATA STORAGE
US11740226B2 (en) 2017-10-13 2023-08-29 Analog Devices International Unlimited Company Designs and fabrication of nanogap sensors
EP3851855A1 (en) * 2020-01-17 2021-07-21 Technische Universität München Sensing of molecules by electrochemical detection of nanoparticles
WO2023114990A1 (en) * 2021-12-17 2023-06-22 The Regents Of The University Of California Combined raman/single molecule junction system for chemical and biological analysis

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030141189A1 (en) * 2002-01-28 2003-07-31 Lee James W. DNA and RNA sequencing by nanoscale reading through programmable electrophoresis and nanoelectrode-gated tunneling and dielectric detection
CN100368796C (zh) * 2004-03-10 2008-02-13 安捷伦科技有限公司 通过隧道电导变化检测来对聚合物测序的方法和装置
US20100084276A1 (en) * 2007-04-06 2010-04-08 Stuart Lindsay Devices and Methods for Target Molecule Characterization
WO2010111605A2 (en) * 2009-03-27 2010-09-30 Nabsys, Inc. Devices and methods for analyzing biomolecules and probes bound thereto
CN102384934A (zh) * 2011-09-23 2012-03-21 东南大学 在纳米孔表面制备纳米间隙电极的方法
CN102445480A (zh) * 2011-09-23 2012-05-09 东南大学 在纳米孔表面和孔内制备纳米间隙电极的方法
US20120199485A1 (en) * 2000-04-24 2012-08-09 Life Technologies Corporation Ultra-fast nucleic acid sequencing device and a method for making and using the same
WO2013116509A1 (en) * 2012-02-01 2013-08-08 Arizona Board Of Regents Acting For And On Behalf Of Arizona State University Systems, apparatuses and methods for reading an amino acid sequence

Family Cites Families (185)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62194673A (ja) 1986-02-20 1987-08-27 Fujitsu Ltd 半導体装置の製造方法
JPS6437640A (en) 1987-08-03 1989-02-08 Mitsubishi Electric Corp Control system for cache memory
US5151164A (en) 1990-02-09 1992-09-29 The University Of Maryland Enhanced capillary zone electrophoresis and apparatus for performance thereof
US5122248A (en) 1990-05-18 1992-06-16 Northeastern University Pulsed field capillary electrophoresis
US5092972A (en) 1990-07-12 1992-03-03 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Field-effect electroosmosis
JPH04302151A (ja) 1991-03-29 1992-10-26 Toshiba Corp 電荷結合装置の製造方法
US5262031A (en) 1991-06-21 1993-11-16 Hewlett-Packard Company Electroosmotic flow control apparatus for capillary electrophoresis
JPH05281276A (ja) 1991-07-31 1993-10-29 Toshiba Corp 液中静電力検出装置
JP3560990B2 (ja) 1993-06-30 2004-09-02 株式会社東芝 固体撮像装置
US5585069A (en) 1994-11-10 1996-12-17 David Sarnoff Research Center, Inc. Partitioned microelectronic and fluidic device array for clinical diagnostics and chemical synthesis
US5885470A (en) 1997-04-14 1999-03-23 Caliper Technologies Corporation Controlled fluid transport in microfabricated polymeric substrates
US5906723A (en) 1996-08-26 1999-05-25 The Regents Of The University Of California Electrochemical detector integrated on microfabricated capillary electrophoresis chips
WO1998022625A1 (en) 1996-11-20 1998-05-28 The Regents Of The University Of Michigan Microfabricated isothermal nucleic acid amplification devices and methods
JPH10283230A (ja) 1997-03-31 1998-10-23 Nec Corp ファイルデータ格納装置およびプログラムを記録した機械読み取り可能な記録媒体
WO1998049549A1 (en) 1997-04-30 1998-11-05 Orion Research, Inc. Capillary electrophoretic separation system
ATE508200T1 (de) 1999-02-23 2011-05-15 Caliper Life Sciences Inc Sequenzierung durch inkorporation
US6521428B1 (en) 1999-04-21 2003-02-18 Genome Technologies, Llc Shot-gun sequencing and amplification without cloning
US6635163B1 (en) 1999-06-01 2003-10-21 Cornell Research Foundation, Inc. Entropic trapping and sieving of molecules
AU6771100A (en) 1999-08-13 2001-03-13 U.S. Genomics, Inc. Methods and apparatuses for stretching polymers
US6762059B2 (en) 1999-08-13 2004-07-13 U.S. Genomics, Inc. Methods and apparatuses for characterization of single polymers
WO2001063273A2 (en) * 2000-02-22 2001-08-30 California Institute Of Technology Development of a gel-free molecular sieve based on self-assembled nano-arrays
US6491805B1 (en) 2000-05-23 2002-12-10 Agilent Technologies, Inc. Sample-analysis system with antisynchronously driven contactless conductivity detector
AU2001259128A1 (en) 2000-04-24 2001-11-07 Eagle Research And Development, Llc An ultra-fast nucleic acid sequencing device and a method for making and using the same
US6413792B1 (en) 2000-04-24 2002-07-02 Eagle Research Development, Llc Ultra-fast nucleic acid sequencing device and a method for making and using the same
US6447663B1 (en) 2000-08-01 2002-09-10 Ut-Battelle, Llc Programmable nanometer-scale electrolytic metal deposition and depletion
US6755956B2 (en) 2000-10-24 2004-06-29 Ut-Battelle, Llc Catalyst-induced growth of carbon nanotubes on tips of cantilevers and nanowires
WO2002080262A1 (en) 2001-03-30 2002-10-10 The Penn State Research Foundation Lateral nanostructures by vertical processing
CA2450109A1 (en) 2001-06-11 2003-05-22 Genorx, Inc. Electronic detection of biological molecules using thin layers
US20030104428A1 (en) 2001-06-21 2003-06-05 President And Fellows Of Harvard College Method for characterization of nucleic acid molecules
US6890409B2 (en) 2001-08-24 2005-05-10 Applera Corporation Bubble-free and pressure-generating electrodes for electrophoretic and electroosmotic devices
JP2003090815A (ja) 2001-09-18 2003-03-28 Japan Science & Technology Corp 遺伝子の電気化学的検出方法と核酸チップ
KR100438828B1 (ko) 2001-11-08 2004-07-05 삼성전자주식회사 칩 상의 전기적 미세 검출기
AU2003269813A1 (en) 2002-04-16 2003-12-31 Princeton University Gradient structures interfacing microfluidics and nanofluidics, methods for fabrication and uses thereof
US7744816B2 (en) 2002-05-01 2010-06-29 Intel Corporation Methods and device for biomolecule characterization
JP2003332555A (ja) 2002-05-09 2003-11-21 Fuji Film Microdevices Co Ltd 固体撮像素子およびその製造方法
JP4075765B2 (ja) 2002-10-30 2008-04-16 日本電気株式会社 分離装置およびその製造方法、ならびに分析システム
US7033476B2 (en) 2002-12-31 2006-04-25 Ut-Battelle, Llc Separation and counting of single molecules through nanofluidics, programmable electrophoresis, and nanoelectrode-gated tunneling and dielectric detection
US7410564B2 (en) 2003-01-27 2008-08-12 Agilent Technologies, Inc. Apparatus and method for biopolymer identification during translocation through a nanopore
JP3787630B2 (ja) 2003-02-14 2006-06-21 独立行政法人情報通信研究機構 ナノギャップ電極の製造方法
WO2004085609A2 (en) 2003-02-28 2004-10-07 Brown University Nanopores, methods for using same, methods for making same and methods for characterizing biomolecules using same
WO2005008450A2 (en) * 2003-03-28 2005-01-27 The Regents Of The University Of California Method and apparatus for nanogap device and array
JP4259902B2 (ja) 2003-04-01 2009-04-30 日立オムロンターミナルソリューションズ株式会社 情報読み取り装置、情報読み取り装置用プログラム
US20120254715A1 (en) 2003-07-10 2012-10-04 David Charles Schwartz Visualizer and editor for single molecule analysis
JP4289938B2 (ja) 2003-07-11 2009-07-01 富士通テン株式会社 盗難防止装置、及び盗難防止方法
US20050048513A1 (en) 2003-08-28 2005-03-03 Alex Harwit Rapid hybridization based on cyclical electric fields
KR100549227B1 (ko) 2003-09-06 2006-02-03 한국전자통신연구원 유기분자 소자의 제작 방법
US7390622B2 (en) 2003-10-16 2008-06-24 Hai Kang Life Corporation Limited Apparatus and methods for detecting nucleic acid in biological samples
KR100565174B1 (ko) 2003-11-20 2006-03-30 한국전자통신연구원 나노갭 전극소자의 제작 방법
US20050202446A1 (en) 2004-03-11 2005-09-15 Yang Dan-Hui D. Methods for biopolymer sequencing using metal inclusions
EP1720119A4 (en) 2004-03-31 2008-01-23 Matsushita Electric Ind Co Ltd MEMORY CARD AND MEMORY CARD SYSTEM
US20050227239A1 (en) 2004-04-08 2005-10-13 Joyce Timothy H Microarray based affinity purification and analysis device coupled with solid state nanopore electrodes
US8105471B1 (en) 2004-07-19 2012-01-31 Han Sang M Nanofluidics for bioseparation and analysis
US20060057585A1 (en) 2004-09-10 2006-03-16 Mcallister William H Nanostepper/sensor systems and methods of use thereof
US8563237B2 (en) 2004-09-30 2013-10-22 Agilent Technologies, Inc. Biopolymer resonant tunneling with a gate voltage source
WO2006052242A1 (en) 2004-11-08 2006-05-18 Seirad, Inc. Methods and systems for compressing and comparing genomic data
US7892414B1 (en) 2004-11-19 2011-02-22 The United States Of America As Represented By The Secretary Of Army Electrochemical biosensors, applications and methods of making biosensors
TWI273237B (en) 2004-12-13 2007-02-11 Nat Applied Res Laboratories Coulomb blockade device operated under room temperature
EP1841883A4 (en) 2004-12-28 2009-02-25 Japan Science & Tech Agency METHOD FOR THE ANALYSIS OF NUCLEOBASES TO SINGLE MOLECULAR BASIS
KR100679704B1 (ko) 2005-01-10 2007-02-06 한국과학기술원 분자소자와 바이오 센서를 위한 나노갭 또는 나노 전계효과 트랜지스터 제작방법
US20060210995A1 (en) 2005-03-15 2006-09-21 Joyce Timothy H Nanopore analysis systems and methods of using nanopore devices
EP2348300A3 (en) 2005-04-06 2011-10-12 The President and Fellows of Harvard College Molecular characterization with carbon nanotube control
JP4804028B2 (ja) 2005-04-25 2011-10-26 東京応化工業株式会社 ナノ構造体の製造方法
TWI287041B (en) 2005-04-27 2007-09-21 Jung-Tang Huang An ultra-rapid DNA sequencing method with nano-transistors array based devices
US20060275911A1 (en) 2005-06-03 2006-12-07 Shih-Yuan Wang Method and apparatus for moleclular analysis using nanostructure-enhanced Raman spectroscopy
US7326328B2 (en) 2005-07-19 2008-02-05 General Electric Company Gated nanorod field emitter structures and associated methods of fabrication
US20080215252A1 (en) 2005-07-25 2008-09-04 Tomoji Kawai Method of Determining Base Sequence of Nucleic Acid and Apparatus Therefor
US20070048745A1 (en) * 2005-08-30 2007-03-01 Joyce Timothy H Systems and methods for partitioned nanopore analysis of polymers
KR100849384B1 (ko) * 2005-10-21 2008-07-31 한국생명공학연구원 나노갭 및 나노갭 센서의 제조방법
JP2009516388A (ja) 2005-11-18 2009-04-16 レプリソールス テクノロジーズ アーベー 多層構造の形成方法
US8055979B2 (en) 2006-01-20 2011-11-08 Marvell World Trade Ltd. Flash memory with coding and signal processing
JP5808515B2 (ja) 2006-02-16 2015-11-10 454 ライフ サイエンシーズ コーポレイション 核酸配列データのプライマー伸長誤差を補正するためのシステムおよび方法
JP4869985B2 (ja) 2006-03-06 2012-02-08 株式会社Jvcケンウッド 液晶表示装置及びその製造方法
CN100535649C (zh) 2006-03-30 2009-09-02 中国科学院电子学研究所 三维纳隙网格阵列微电极生物传感芯片
US20080202931A1 (en) 2006-06-15 2008-08-28 Dimiter Nikolov Petsev Ion Specific Control of the Transport of Fluid and Current in Fluidic Nanochannels
CN103203256B (zh) 2006-07-19 2015-09-23 博纳基因技术有限公司 纳米口装置阵列:它们的制备以及在大分子分析中的应用
JP4765813B2 (ja) 2006-07-28 2011-09-07 三菱瓦斯化学株式会社 二重鎖dna量の電気化学的測定方法
EP2049436B1 (en) 2006-08-11 2012-10-17 Agency for Science, Technology and Research Nanowire sensor, nanowire sensor array and method of fabricating the same
US7638034B2 (en) 2006-09-21 2009-12-29 Los Alamos National Security, Llc Electrochemical detection of single molecules using abiotic nanopores having electrically tunable dimensions
JP2008146538A (ja) 2006-12-13 2008-06-26 Intec Web & Genome Informatics Corp マイクロrna検出装置、方法およびプログラム
GB0625070D0 (en) 2006-12-15 2007-01-24 Imp Innovations Ltd Characterization of molecules
JP2008186975A (ja) 2007-01-30 2008-08-14 Renesas Technology Corp 半導体装置の製造方法
US8003319B2 (en) 2007-02-02 2011-08-23 International Business Machines Corporation Systems and methods for controlling position of charged polymer inside nanopore
US9034637B2 (en) 2007-04-25 2015-05-19 Nxp, B.V. Apparatus and method for molecule detection using nanopores
EP2014761B1 (en) 2007-06-22 2016-09-28 Sony Deutschland GmbH A device for processing an analyte and a method of processing and/or detecting an analyte using said device
AT505495A1 (de) * 2007-07-04 2009-01-15 Arc Austrian Res Centers Gmbh Verfahren zur identifizierung und quantifizierung von organischen und biochemischen substanzen
US8273532B2 (en) 2007-10-02 2012-09-25 President And Fellows Of Harvard College Capture, recapture, and trapping of molecules with a nanopore
CA2702276C (en) 2007-10-09 2019-04-02 Hsueh-Chia Chang Microfluidic platforms for multi-target detection
US20090242429A1 (en) 2008-01-07 2009-10-01 Ravil Sitdikov Electrochemical Biosensor
GB0801142D0 (en) 2008-01-22 2008-02-27 Imp Innovations Ltd Label-free molecule detection and measurement
WO2009131724A2 (en) 2008-01-24 2009-10-29 Massachusetts Institute Of Technology Insulated nanogap devices and methods of use thereof
JP5142763B2 (ja) 2008-02-29 2013-02-13 日本電信電話株式会社 分子分析方法および分子分析素子
US8440063B2 (en) 2008-03-26 2013-05-14 Massachusetts Institute Of Technology Electrokinetic concentration devices
US20090246788A1 (en) 2008-04-01 2009-10-01 Roche Nimblegen, Inc. Methods and Assays for Capture of Nucleic Acids
JP5360528B2 (ja) 2008-05-07 2013-12-04 国立大学法人北陸先端科学技術大学院大学 ギャップで分断された薄膜の製造方法、およびこれを用いたデバイスの製造方法
WO2009158141A1 (en) 2008-05-30 2009-12-30 The Trustees Of The University Of Pennsylvania Piezoelectric aln rf mem switches monolithically integrated with aln contour-mode resonators
CN104359874B (zh) 2008-06-06 2018-07-06 生物纳米基因公司 集成分析装置及相关制造方法和分析技术
EP2664677B1 (en) 2008-06-30 2018-05-30 BioNano Genomics, Inc. Methods for single-molecule whole genome analysis
TWI383144B (zh) 2008-09-23 2013-01-21 Univ Nat Chiao Tung 感測元件、製造方法及其生物檢測系統
WO2010075570A2 (en) 2008-12-24 2010-07-01 New York University Methods, computer-accessible medium, and systems for score-driven whole-genome shotgun sequence assemble
JP2010227735A (ja) 2009-03-25 2010-10-14 Tohoku Univ マイクロ流路デバイス
JP5372570B2 (ja) 2009-03-30 2013-12-18 株式会社日立ハイテクノロジーズ ナノポアを用いたバイオポリマー決定方法、システム、及びキット
WO2010117470A2 (en) 2009-04-10 2010-10-14 Pacific Biosciences Of California, Inc. Nanopore sequencing devices and methods
US9810680B2 (en) 2009-04-16 2017-11-07 Nanonex Corporation Nanogap electronic detector for measuring properties of a biomolecule stretched in a nanochannel, and method thereof
US8926904B2 (en) 2009-05-12 2015-01-06 Daniel Wai-Cheong So Method and apparatus for the analysis and identification of molecules
CN101920932A (zh) 2009-06-10 2010-12-22 中国科学院半导体研究所 制作纳米尺寸间距的电极的方法
TWI424160B (zh) 2009-06-17 2014-01-21 Univ Nat Chiao Tung 結合矽奈米線閘極二極體之感測元件、製造方法及其檢測系統
US8110410B2 (en) 2009-06-29 2012-02-07 International Business Machines Corporation Nanofludic field effect transistor based on surface charge modulated nanochannel
US8313633B2 (en) 2009-07-28 2012-11-20 Polestar Technologies, Inc. Molecular imprinted nanosensors and process for producing same
JP5413892B2 (ja) 2009-08-31 2014-02-12 オリヱント化学工業株式会社 有機・ナノ炭素複合系薄膜太陽電池
EP2483669A1 (en) 2009-09-30 2012-08-08 GE Healthcare Bio-Sciences AB Nanoplasmonic device
WO2011067961A1 (ja) 2009-12-02 2011-06-09 独立行政法人科学技術振興機構 流路デバイス及びそれを含むサンプル処理装置
US8969090B2 (en) 2010-01-04 2015-03-03 Life Technologies Corporation DNA sequencing methods and detectors and systems for carrying out the same
US8438903B2 (en) 2010-01-27 2013-05-14 International Business Machines Corporation Molecule detection device formed in a semiconductor structure
CN102687027B (zh) 2010-02-02 2016-05-25 阿利桑那卅评议会 用于测序聚合物的受控的隧道间隙设备
JP5336402B2 (ja) 2010-02-10 2013-11-06 有限会社バイオデバイステクノロジー サンプル採取量の補正方法とそれを用いた測定方法
WO2011108540A1 (ja) 2010-03-03 2011-09-09 国立大学法人大阪大学 ヌクレオチドを識別する方法および装置、ならびにポリヌクレオチドのヌクレオチド配列を決定する方法および装置
JP5764296B2 (ja) 2010-03-31 2015-08-19 株式会社日立ハイテクノロジーズ 生体ポリマーの特性解析法
US8940663B2 (en) * 2010-04-07 2015-01-27 Board Of Regents, The University Of Texas System Nano-scale biosensors
US8568878B2 (en) 2010-04-08 2013-10-29 The Board Of Trustees Of The Leland Stanford Junior University Directly fabricated nanoparticles for raman scattering
US8652779B2 (en) 2010-04-09 2014-02-18 Pacific Biosciences Of California, Inc. Nanopore sequencing using charge blockade labels
WO2012009578A2 (en) 2010-07-14 2012-01-19 The Curators Of The University Of Missouri Nanopore-facilitated single molecule detection of nucleic acids
US8518227B2 (en) 2010-09-16 2013-08-27 Old Dominion University Research Foundation Nanopore-based nanoparticle translocation devices
JP2012110258A (ja) 2010-11-22 2012-06-14 Nippon Steel Chem Co Ltd 塩基配列の決定方法及び塩基配列の決定方法に用いる測定用デバイス
JP2012118709A (ja) 2010-11-30 2012-06-21 Brother Ind Ltd 配信システム、ストレージ容量決定プログラム、及びストレージ容量決定方法
CN103282518B (zh) 2010-12-17 2016-11-16 纽约哥伦比亚大学理事会 使用经修饰的核苷酸和纳米孔检测的dna边合成边测序
US8986524B2 (en) 2011-01-28 2015-03-24 International Business Machines Corporation DNA sequence using multiple metal layer structure with different organic coatings forming different transient bondings to DNA
US20120193231A1 (en) 2011-01-28 2012-08-02 International Business Machines Corporation Dna sequencing using multiple metal layer structure with organic coatings forming transient bonding to dna bases
WO2012120387A1 (en) 2011-03-09 2012-09-13 Abionic Sa Rapid quantification of biomolecules in a selectively functionalized nanofluidic biosensor and method thereof
CN102180440A (zh) 2011-04-06 2011-09-14 北京大学 一种微纳机电器件中纳米间隙电极的制备方法
JP6126083B2 (ja) 2011-05-17 2017-05-10 キヤノン ユー.エス. ライフ サイエンシズ, インコーポレイテッドCanon U.S. Life Sciences, Inc. マイクロ流体デバイス内で外部ヒータ・システムを使用するシステムおよび方法
ITRM20110252A1 (it) 2011-05-23 2012-11-24 Istituto Naz Per La Ricerca S Ul Cancro Metodo di analisi di singola molecola mediante rilevazione delle collisioni di una molecola target su nanopori funzionalizzati.
WO2012164679A1 (ja) 2011-05-31 2012-12-06 株式会社日立製作所 生体分子情報解析装置
US9926552B2 (en) 2011-06-06 2018-03-27 Cornell University Microfluidic device for extracting, isolating, and analyzing DNA from cells
US8546080B2 (en) 2011-06-17 2013-10-01 International Business Machines Corporation Molecular dispensers
EP2737536B1 (en) 2011-07-27 2018-05-09 The Board of Trustees of the University of Illionis Nanopore sensors for biomolecular characterization
WO2013066456A2 (en) 2011-08-03 2013-05-10 The Johns Hopkins University Articles comprising templated crosslinked polymer films for electronic detection of nitroaromatic explosives
JP5670278B2 (ja) 2011-08-09 2015-02-18 株式会社日立ハイテクノロジーズ ナノポア式分析装置
EP2573554A1 (en) 2011-09-21 2013-03-27 Nxp B.V. Apparatus and method for bead detection
JP2013090576A (ja) 2011-10-24 2013-05-16 Hitachi Ltd 核酸分析デバイス及びそれを用いた核酸分析装置
WO2013074546A1 (en) 2011-11-14 2013-05-23 The Regents Of The University Of California Two- chamber dual-pore device
US20140231274A1 (en) 2011-11-22 2014-08-21 Panasonic Corporation Single molecule detection method and single molecule detection apparatus for biological molecule, and disease marker testing apparatus
US20130186758A1 (en) 2011-12-09 2013-07-25 University Of Delaware Current-carrying nanowire having a nanopore for high-sensitivity detection and analysis of biomolecules
JP5985654B2 (ja) 2011-12-28 2016-09-06 インテル コーポレイション 選択的表面固定化部位を有するナノギャップ・トランスデューサ
JP2013156167A (ja) 2012-01-30 2013-08-15 Osaka Univ 物質の移動速度の制御方法および制御装置、並びに、これらの利用
KR20140138526A (ko) 2012-03-29 2014-12-04 오사카 유니버시티 폴리뉴클레오티드의 염기 서열을 결정하는 방법, 및 폴리뉴클레오티드의 염기 서열을 결정하는 장치
WO2013154999A2 (en) 2012-04-09 2013-10-17 The Trustees Of Columbia University In The City Of New York Method of preparation of nanopore and uses thereof
US9310326B2 (en) 2012-06-14 2016-04-12 Samsung Electronics Co., Ltd. Device for determining a monomer molecule sequence of a polymer comprising different electrodes and use thereof
US9551682B2 (en) 2012-06-29 2017-01-24 Intel Corporation High throughput biochemical detection using single molecule fingerprinting arrays
TWI498520B (zh) 2012-06-29 2015-09-01 Ibm 從一安裝表面分離一元件的裝置及方法
KR101882865B1 (ko) 2012-07-03 2018-07-27 삼성전자주식회사 핵산의 염기 서열을 결정하는 방법
US9535033B2 (en) 2012-08-17 2017-01-03 Quantum Biosystems Inc. Sample analysis method
KR20140031559A (ko) 2012-09-04 2014-03-13 전홍석 그래핀을 이용한 핵산 염기서열결정 장치
JP6063693B2 (ja) 2012-10-03 2017-01-18 株式会社日立ハイテクノロジーズ 分析装置及び分析方法
US20140103945A1 (en) 2012-10-05 2014-04-17 Miami University Apparatus and method for demonstrating quantized conductance
CN102914395B (zh) 2012-11-06 2015-04-08 苏州新锐博纳米科技有限公司 基于金属纳米间隙的纳米应力传感器及其制备方法
US8906215B2 (en) 2012-11-30 2014-12-09 International Business Machines Corporation Field effect based nanosensor for biopolymer manipulation and detection
JP6282036B2 (ja) 2012-12-27 2018-02-21 クオンタムバイオシステムズ株式会社 物質の移動速度の制御方法および制御装置
JP5951527B2 (ja) 2013-03-07 2016-07-13 株式会社東芝 検体検出装置及び検出方法
US9222130B2 (en) 2013-03-15 2015-12-29 Keith Oxenrider Method and apparatus for sequencing molecules
JP6054790B2 (ja) 2013-03-28 2016-12-27 三菱スペース・ソフトウエア株式会社 遺伝子情報記憶装置、遺伝子情報検索装置、遺伝子情報記憶プログラム、遺伝子情報検索プログラム、遺伝子情報記憶方法、遺伝子情報検索方法及び遺伝子情報検索システム
US9012329B2 (en) 2013-04-04 2015-04-21 International Business Machines Corporation Nanogap in-between noble metals
US9188578B2 (en) 2013-06-19 2015-11-17 Globalfoundries Inc. Nanogap device with capped nanowire structures
JP2018027018A (ja) 2013-08-27 2018-02-22 クオンタムバイオシステムズ株式会社 生体分子熱変性装置及びその製造方法
JP2016536599A (ja) 2013-08-27 2016-11-24 クオンタムバイオシステムズ株式会社 ナノギャップ電極およびその製造方法
JP6334115B2 (ja) 2013-09-18 2018-05-30 クオンタムバイオシステムズ株式会社 生体分子シーケンシング装置、方法、及びプログラム
EP3578987A1 (en) * 2013-09-18 2019-12-11 Quantum Biosystems Inc. Biomolecule sequencing devices, systems and methods
JP2015077652A (ja) 2013-10-16 2015-04-23 クオンタムバイオシステムズ株式会社 ナノギャップ電極およびその製造方法
US9551697B2 (en) 2013-10-17 2017-01-24 Genia Technologies, Inc. Non-faradaic, capacitively coupled measurement in a nanopore cell array
US9546398B2 (en) 2013-11-14 2017-01-17 Agilent Technologies, Inc. Polymerase idling method for single molecule DNA sequencing
KR20160130380A (ko) 2014-01-24 2016-11-11 퀀텀 바이오시스템즈 가부시키가이샤 생체분자를 서열화하기 위한 디바이스, 시스템 및 방법
JP2015154750A (ja) 2014-02-20 2015-08-27 国立大学法人大阪大学 生体分子シーケンシング装置用電極、生体分子シーケンシング装置、方法、及びプログラム
CN106537400B (zh) 2014-02-26 2019-04-09 南托米克斯公司 安全的移动基因组浏览设备及用于其的方法
US10438811B1 (en) 2014-04-15 2019-10-08 Quantum Biosystems Inc. Methods for forming nano-gap electrodes for use in nanosensors
TW201602355A (zh) 2014-04-28 2016-01-16 量子生物系統公司 奈米間隙電極裝置、系統及其形成方法
US9658184B2 (en) 2014-05-07 2017-05-23 International Business Machines Corporation Increasing the capture zone by nanostructure patterns
WO2015170784A1 (en) * 2014-05-08 2015-11-12 Osaka University Nanogap electrodes with dissimilar materials
JP2017517749A (ja) 2014-05-08 2017-06-29 クオンタムバイオシステムズ株式会社 調節可能なナノギャップ電極用のデバイス及び方法
WO2015170782A1 (en) 2014-05-08 2015-11-12 Osaka University Devices, systems and methods for linearization of polymers
US9362162B2 (en) 2014-08-14 2016-06-07 Globalfoundries Inc. Methods of fabricating BEOL interlayer structures
EP3315461B1 (en) 2015-06-23 2021-07-07 BGI Shenzhen Micro-porous electrode and method for analysis of chemical substances
JP2018533935A (ja) 2015-10-08 2018-11-22 クオンタムバイオシステムズ株式会社 核酸配列決定の装置、システム、及び方法
WO2017179581A1 (en) 2016-04-11 2017-10-19 Quantum Biosystems Inc. Systems and methods for biological data management
KR20190075010A (ko) 2016-04-27 2019-06-28 퀀텀 바이오시스템즈 가부시키가이샤 생체분자의 측정 및 시퀀싱을 위한 시스템 및 방법
WO2018025887A1 (en) * 2016-08-02 2018-02-08 Quantum Biosystems Inc. Devices and methods for creation and calibration of a nanoelectrode pair
TW201928340A (zh) 2017-09-27 2019-07-16 日商量子生物系統公司 奈米電極裝置及其製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120199485A1 (en) * 2000-04-24 2012-08-09 Life Technologies Corporation Ultra-fast nucleic acid sequencing device and a method for making and using the same
US20030141189A1 (en) * 2002-01-28 2003-07-31 Lee James W. DNA and RNA sequencing by nanoscale reading through programmable electrophoresis and nanoelectrode-gated tunneling and dielectric detection
CN100368796C (zh) * 2004-03-10 2008-02-13 安捷伦科技有限公司 通过隧道电导变化检测来对聚合物测序的方法和装置
US20100084276A1 (en) * 2007-04-06 2010-04-08 Stuart Lindsay Devices and Methods for Target Molecule Characterization
WO2010111605A2 (en) * 2009-03-27 2010-09-30 Nabsys, Inc. Devices and methods for analyzing biomolecules and probes bound thereto
CN102384934A (zh) * 2011-09-23 2012-03-21 东南大学 在纳米孔表面制备纳米间隙电极的方法
CN102445480A (zh) * 2011-09-23 2012-05-09 东南大学 在纳米孔表面和孔内制备纳米间隙电极的方法
WO2013116509A1 (en) * 2012-02-01 2013-08-08 Arizona Board Of Regents Acting For And On Behalf Of Arizona State University Systems, apparatuses and methods for reading an amino acid sequence

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
TAKAHITO OHSHIRO等: "A Single-Molecule Electrical Random Resequencing of DNA and RNA", 《NATURE》 *
TAKAHITO OHSHIRO等: "Detection of post-translational modifications in single peptides using electron tunnelling currents", 《NATURE NANOTECHNOLOGY》 *
V.M.K. BAGCI等: "Recognizing nucleotides by cross-tunneling currents for DNA sequencing", 《PHYSICAL REVIEW E》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114127556A (zh) * 2019-02-08 2022-03-01 通用测序技术公司 用于生物聚合物传感的肽纳米结构

Also Published As

Publication number Publication date
KR20160079780A (ko) 2016-07-06
CA2929929A1 (en) 2015-03-26
EP3047282A4 (en) 2017-05-03
EP3578987A1 (en) 2019-12-11
US20180023132A1 (en) 2018-01-25
US9644236B2 (en) 2017-05-09
CN106104274B (zh) 2018-05-22
EP3047282A1 (en) 2016-07-27
US10557167B2 (en) 2020-02-11
WO2015042200A1 (en) 2015-03-26
EP3047282B1 (en) 2019-05-15
US20160319342A1 (en) 2016-11-03

Similar Documents

Publication Publication Date Title
CN106104274B (zh) 生物分子测序装置、系统和方法
US20160377591A1 (en) Devices, systems and methods for sequencing biomolecules
US20190071720A1 (en) Devices, systems and methods for nucleic acid sequencing
Hadzic et al. Reliable state identification and state transition detection in fluorescence intensity-based single-molecule Forster resonance energy-transfer data
Taniguchi et al. High-precision single-molecule identification based on single-molecule information within a noisy matrix
US20190367977A1 (en) High speed molecular sensing with nanopores
JP2015059824A (ja) 生体分子シーケンシング装置、方法、及びプログラム
Shah et al. Programming temporal DNA barcodes for single-molecule fingerprinting
Wanunu et al. Methods for studying nucleic acid/drug interactions
US20160169801A1 (en) Target Characterization Based on Persistent Collocation of Multiple Specks of Light in Time Series Imagery
Bryan et al. Sparse recovery of imaging transcriptomics data
US11850587B2 (en) High density resonant tunneling
Chen et al. Nanotechnology for genomic signal processing in cancer research-A focus on the genomic signal processing hardware design of the nanotools for cancer ressearch
Joshi et al. iMAX FRET (Information Maximized FRET) for multipoint single-molecule structural analysis
Taniguchi Single-molecule sequencing
Liu et al. Quantification of Rare Single-Molecule Species Based on Fluorescence Lifetime
Shamaiah Algorithms and analysis for next generation biosensing and sequencing systems

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210112

Address after: Osaka, Japan

Patentee after: OSAKA University

Address before: Osaka, Japan

Patentee before: QUANTUM BIOSYSTEMS Inc.

CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: Osaka, Japan

Patentee after: National University Corporation Osaka University

Address before: Osaka, Japan

Patentee before: OSAKA University