CN105473773A - 基因组工程 - Google Patents

基因组工程 Download PDF

Info

Publication number
CN105473773A
CN105473773A CN201480042306.1A CN201480042306A CN105473773A CN 105473773 A CN105473773 A CN 105473773A CN 201480042306 A CN201480042306 A CN 201480042306A CN 105473773 A CN105473773 A CN 105473773A
Authority
CN
China
Prior art keywords
cell
talen
tumor
longer
necrosis factor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201480042306.1A
Other languages
English (en)
Other versions
CN105473773B (zh
Inventor
乔治·M·丘奇
杨璐菡
马克·格尔·卡戈尔
乔伊斯·利奇·扬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harvard College
Original Assignee
Harvard College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harvard College filed Critical Harvard College
Priority to CN202410183863.0A priority Critical patent/CN118028379A/zh
Priority to CN202010094041.7A priority patent/CN111304230A/zh
Publication of CN105473773A publication Critical patent/CN105473773A/zh
Application granted granted Critical
Publication of CN105473773B publication Critical patent/CN105473773B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • C12N15/907Stable introduction of foreign DNA into chromosome using homologous recombination in mammalian cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0696Artificially induced pluripotent stem cells, e.g. iPS
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/02Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with ribosyl as saccharide radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/04Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with deoxyribosyl as saccharide radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/315Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Streptococcus (G), e.g. Enterococci
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/15011Lentivirus, not HIV, e.g. FIV, SIV
    • C12N2740/15041Use of virus, viral particle or viral elements as a vector
    • C12N2740/15043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/90Vectors containing a transposable element
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2830/00Vector systems having a special element relevant for transcription
    • C12N2830/001Vector systems having a special element relevant for transcription controllable enhancer/promoter combination
    • C12N2830/002Vector systems having a special element relevant for transcription controllable enhancer/promoter combination inducible enhancer/promoter combination, e.g. hypoxia, iron, transcription factor
    • C12N2830/003Vector systems having a special element relevant for transcription controllable enhancer/promoter combination inducible enhancer/promoter combination, e.g. hypoxia, iron, transcription factor tet inducible

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Mycology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Transplantation (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Saccharide Compounds (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Abstract

提供了使用缺少重复序列的TALEN或Cas9的细胞中基因组工程的方法。

Description

基因组工程
相关申请数据
本申请要求于2013年7月26日提交的美国临时专利申请号61/858,866的优先权,并且针对所有目的将该申请的全部内容通过引用结合于此。
政府权益声明
本发明在来自国家人类基因组研究中心的基因组科学卓越奖P50HG003170下获得政府支持。政府对本发明享有一定权利。
背景技术
已知通过序列特异性核酸酶的基因组编辑。参见参考文献1、2和3,通过引用将其全部内容结合于此。可以通过两种主要机制修复基因组中断裂的核酸酶介导的双链DNA(dsDNA):非同源性末端接合(Non-HomologousEndJoining,NHEJ),其通常导致引入非特异性的插入和缺失(插入缺失(indels)),或同源介导修复(HDR),其引入作为修复模板的同源链。参见参考文献4,通过引用将其全部内容结合于此。当序列特异性核酸酶与包含所希望突变的同源供体DNA构建体一同递送时,与仅单独的供体构建体相比,基因靶向效率增加了1000倍。参见参考文献5,通过引用将其全部内容结合于此。已经报告了将单链寡脱氧核糖核酸(“ssODN”)用作DNA供体。参见参考文献21和22,通过引用将其全部内容结合于此。
尽管基因编辑工具上有较大进步,但是对于在人类诱导多能干细胞(“hiPSC”)工程中使用定制设计的核酸酶存在许多挑战和问题。首先,尽管它们设计简化,但是转录激活因子样效应物核酸酶(TranscriptionActivator-LikeEffectorsNucleases,TALEN)通过重复可变二残基(RVD)结构域的串联拷贝靶向特定的DNA序列。参见参考文献6,通过引用将其全部内容结合于此。尽管RVD的模块化性质简化TALEN设计,但是它们的重复序列使用于合成它们的DNA构建体的方法复杂化(参见参考文献2、9和15-19,通过引用将其全部内容结合于此),而且削弱了它们伴随慢病毒基因递送载体的使用。参见参考文献13,通过引用将其全部内容结合于此。
在目前的实践中,通常使用独立的测定法评估NHEJ和HDR。往往使用错配敏感性核酸内切酶测定法(参见参考文献14,通过引用将其全部内容结合于此)测定NHEJ,但是该方法的定量准确度可变并且敏感度局限于NHEJ频率大于~3%。参见参考文献15,通过引用将其全部内容结合于此。通常通过克隆和测序评价HDR,克隆和测序是完全不同并往往是繁琐的程序。灵敏度仍是问题,因为通常针对诸如U2OS和K562(参见参考文献12和14,通过引用将其全部内容结合于此)的某些细胞类型报告50%数量级的高编辑频率,但是hiPSC中的频率一般较低。参见参考文献10,通过引用将其全部内容结合于此。近年来,报告了在hiPSC和hESC中使用TALEN的高编辑频率(参见参考文献9,通过引用将其全部内容结合于此),以及用CRISPRCas9-gRNA系统的甚至更高的频率(参见参考文献16-19,通过引用将其全部内容结合于此)。然而,不同位点处的编辑速率看起来变化广泛(参见参考文献17,通过引用将其全部内容结合于此),并且在一些位点处的编辑有时根本不可检测(参见参考文献20,通过引用将其全部内容结合于此)。
细菌和古细菌(archaeal)CRISPR-Cas系统凭借与Cas蛋白的复合物中的短向导RNA引导存在于侵略外源核酸内的互补序列的降解。参见Deltcheva,E.etal.CRISPRRNAmaturationbytrans-encodedsmallRNAandhostfactorRNaseIII.Nature471,602-607(2011);Gasiunas,G.,Barrangou,R.,Horvath,P.&Siksnys,V.Cas9-crRNAribonucleoproteincomplexmediatesspecificDNAcleavageforadaptiveimmunityinbacteria.ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica109,E2579-2586(2012);Jinek,M.etal.Aprogrammabledual-RNA-guidedDNAendonucleaseinadaptivebacterialimmunity.Science337,816-821(2012);Sapranauskas,R.etal.TheStreptococcusthermophilusCRISPR/CassystemprovidesimmunityinEscherichiacoli.Nucleicacidsresearch39,9275-9282(2011);和Bhaya,D.,Davison,M.&Barrangou,R.CRISPR-Cassystemsinbacteriaandarchaea:versatilesmallRNAsforadaptivedefenseandregulation.Annualreviewofgenetics45,273-297(2011)。最近化脓性链球菌(S.pyogenes)II型CRISPR系统的体外重构证实了融合至标准的反式编码tracrRNA(“反式激活的CRISPRRNA”)的crRNA(“CRISPRRNA”)足以引导Cas9蛋白序列特异性裂解匹配crRNA的靶DNA序列。表达与靶位点同源的gRNA导致Cas9的招募(recruitment)和靶DNA的降解。参见H.Deveauetal.,PhageresponsetoCRISPR-encodedresistanceinStreptococcusthermophilus.JournalofBacteriology190,1390(Feb,2008)。
发明内容
本公开的方面涉及使用修饰的转录激活因子样效应物核酸酶(TALEN)用于基因修饰(改造,modify)细胞,诸如体细胞或干细胞。已知TALEN包含重复序列。本公开的方面涉及在细胞中改变靶DNA的方法,包括将缺少100bp或更长重复序列的TALEN引入至细胞,其中,TALEN裂解靶DNA并且细胞经历非同源性末端接合以在细胞中产生改变的DNA。根据某些方面,已经从TALEN中除去了具有希望长度的重复序列。根据某些方面,TALEN缺乏具有某些希望长度的重复序列。根据某些方面,对TALEN提供了希望长度的重复序列的除去。根据某些方面,修饰TALEN以除去具有希望长度的重复序列。根据某些方面,工程化TALEN以除去具有希望长度的重复序列。
本公开的方面包括改变细胞中的靶DNA的方法,包括在细胞内结合缺少100bp或更长重复序列的TALEN和供体核酸序列,其中,TALEN裂解靶DNA并且将供体核酸序列插入至细胞中的DNA。本公开的方面涉及包含编码缺少100bp或更长重复序列的TALEN的核酸序列的病毒。本公开的方面涉及包含编码缺少100bp或更长重复序列的TALEN的核酸序列的细胞。根据本文描述的某些方面,TALEN缺少100bp或更长、90bp或更长、80bp或更长、70bp或更长、60bp或更长、50bp或更长、40bp或更长、30bp或更长、20bp或更长、19bp或更长、18bp或更长、17bp或更长、16bp或更长、15bp或更长、14bp或更长、13bp或更长、12bp或更长、11bp或更长或10bp或更长的重复序列。
本公开的方面涉及形成TALE,包括结合(混合,combine)核酸内切酶、DNA聚合酶、DNA连接酶、核酸外切酶、编码重复可变二残基结构域(repeatvariablediresiduedomains)的多个核酸二聚体嵌段(nucleicaciddimerblock)和包含核酸内切酶剪切位点的TALE-N/TF骨架载体(backbonevector),激活核酸内切酶以在核酸内切酶剪切位点剪切TALE-N/TF骨架载体以产生第一末端和第二末端,激活核酸外切酶以在TALE-N/TF骨架载体和多个核酸二聚体嵌段上形成3'和5'突出部分(overhang)以及以希望顺序退火TALE-N/TF骨架载体和多个核酸二聚体嵌段,激活DNA聚合酶和DNA连接酶以连接TALE-N/TF骨架载体和多个核酸二聚体嵌段。本领域的技术人员基于本公开将容易确定合适的核酸内切酶、DNA聚合酶、DNA连接酶、核酸外切酶、编码重复可变二残基结构域的核酸二聚体嵌段和TALE-N/TF骨架载体。
本公开的方面涉及改变干细胞中的靶DNA的方法,该干细胞表达与和靶DNA互补的RNA形成共定位复合物并以位点特异性方式裂解靶DNA的酶,所述方法包括(a)将编码与靶DNA互补并将酶引导至靶DNA的RNA的第一外来核酸(foreignnucleicacid)引入至干细胞中,其中,RNA和酶是用于靶DNA的共定位复合物的成员,将编码供体核酸序列的第二外来核酸引入至干细胞中,其中,RNA和供体核酸序列表达,其中,RNA和酶共定位至靶DNA,酶裂解靶DNA且供体核酸插入至靶DNA以在干细胞中产生改变的DNA。
本公开的方面涉及包含编码酶的第一外来核酸的干细胞,所述酶与和靶DNA互补的RNA形成共定位复合物并以位点特异性方式裂解靶DNA。
本公开的方面涉及包含编码酶的第一外来核酸并包含用于启动酶的表达的诱导型启动子的细胞,所述酶与和靶DNA互补的RNA形成共定位复合物并以位点特异性方式裂解靶DNA。以这种方式,可以调节表达,例如,可以开始它以及可以停止它。
本公开的方面涉及包含编码酶的第一外来核酸的细胞,所述酶与和靶DNA互补的RNA形成共定位复合物并以位点特异性方式裂解靶DNA,其中,使用诸如转座酶的清除酶(removalenzyme)可从细胞的基因组DNA中除去第一外来核酸。
本公开的方面涉及改变细胞中的靶DNA的方法,所述细胞表达与和靶DNA互补的RNA形成共定位复合物并以位点特异性方式裂解靶DNA的酶,所述方法包括(a)将编码供体核酸序列的第一外来核酸引入至细胞,从细胞周围的介质将与靶DNA互补并将酶引导至靶DNA的RNA引入至细胞中,其中,RNA和酶是用于靶DNA的共定位复合物的成员,其中,供体核酸序列表达,其中,RNA和酶共定位至靶DNA,酶裂解靶DNA且供体核酸插入至靶DNA以在细胞中产生改变的DNA。
本发明的方面涉及使用RNA向导的DNA结合蛋白用于基因修饰干细胞。一方面,已经基因修饰干细胞以包含编码RNA向导的DNA结合蛋白的核酸且该干细胞表达RNA向导的DNA结合蛋白。根据某些方面,使用修饰的TALEN或RNA向导的DNA结合蛋白优化供体核酸以引入特异性突变用于基因组编辑。
本公开的方面涉及使用一种或多种向导RNA(guideRNA)(核糖核酸)指引具有干细胞表达的核酸酶活性的酶,诸如具有核酸酶活性的DNA结合蛋白,至DNA(脱氧核糖核酸)上的靶位置来修饰DNA,诸如多重修饰(multiplexmodification)DNA,其中,酶剪切DNA并且诸如通过同源重组将外源供体核酸插入至DNA。本公开的方面包括在干细胞上循环或重复DNA修饰的步骤以在细胞内形成具有DNA的多重修饰的干细胞。修饰可以包括插入外源供体核酸。
通过引入至干细胞的单一步骤可以实现多次外源核酸插入,所述干细胞诸如通过共转化表达酶、编码多种RNA的核酸和多种外源供体核酸,其中,RNA表达并且其中,多种中的每种RNA将酶引导至DNA的特定位点,所述酶剪切DNA并且多种外源核酸中的一种在剪切位点处插入至DNA。根据该方面,在单个循环中创建细胞中DNA的许多改变或修饰。
通过重复将编码一个或多个RNA或多种RNA的一种或多种核酸和一种或多种外源核酸或多种外源核酸引入至表达酶的干细胞的步骤或循环可以实现多重外源核酸插入,其中,RNA表达并将酶引导至DNA的特定位点,酶剪切DNA且外源核酸在剪切位点处插入至DNA,从而导致在干细胞内具有多重改变或外源DNA插入至DNA的细胞。根据一方面,诸如通过将编码酶并且可由干细胞表达的核酸引入至细胞中,遗传改变了表达酶的干细胞以表达酶。以这种方式,本公开的方面包括循环进行以下步骤:将RNA引入至表达酶的干细胞中,将外源供体核酸引入至干细胞,表达RNA,形成RNA、酶和DNA的共定位复合物,通过酶进行酶促剪切DNA以及将供体核酸插入至DNA。循环或重复以上步骤产生干细胞在多个座位处的多重基因修饰,即,具有多重基因修饰的干细胞。
根据某些方面,本公开范围内的DNA结合蛋白或酶包括与向导RNA以及与将复合物引导至双链DNA序列的向导RNA形成复合物的蛋白,其中,复合物结合至DNA序列。根据一方面,酶可以是RNA向导的DNA结合蛋白,诸如结合至DNA并由RNA引导的II型CRISPR系统的RNA向导的DNA结合蛋白。根据一方面,RNA向导的DNA结合蛋白是Cas9蛋白。
本公开的该方面可以称为RNA和DNA结合蛋白共定位至双链DNA或与双链DNA共定位。以这种方式,DNA结合蛋白-向导RNA复合物可用于剪切双链DNA的多个位点,从而创建具有多重基因修饰,诸如外源供体DNA的多重插入的干细胞。
根据某些方面,提供了针对干细胞中的靶DNA形成多重改变的方法,所述干细胞表达与和靶DNA互补的RNA形成共定位复合物并以位点特异性方式裂解靶DNA的酶,所述方法包括(a)将编码与靶DNA互补并将酶引导至靶DNA的一种或多种RNA的第一外来核酸引入至干细胞中,其中,一种或多种RNA和酶是用于靶DNA的共定位复合物的成员,将编码一种或多种供体核酸序列的第二外来核酸引入至干细胞中,其中,一种或多种RNA和一种或多种供体核酸序列表达,其中,一种或多种RNA和酶共定位至靶DNA,酶裂解靶DNA且供体核酸插入至靶DNA以在干细胞中产生改变的DNA,以及重复步骤(a)多次以在干细胞中多次改变DNA。
根据一方面,RNA在约10至约500个核苷酸之间。根据一方面,RNA在约20至约100个核苷酸之间。
根据一方面,一个或多个RNA是向导RNA。根据一方面,一个或多个RNA是tracrRNA-crRNA融合体。
根据一方面,DNA是基因组DNA、线粒体DNA、病毒DNA或外源DNA。
根据一方面,可以使用载体将细胞基因修饰为可逆地包含编码DNA结合酶的核酸,使用酶可以容易地除去该载体。有用的载体方法是本领域技术人员已知的并且包括慢病毒、腺相关病毒、核酸酶和整合酶(integrase)介导的靶插入方法以及转座子介导的插入方法。根据一方面,例如可以与盒基因(基因盒,cassette)和载体一起全部清除诸如通过使用盒基因(cassette)或载体添加的编码DNA结合酶的核酸,并且例如不会在基因组DNA中留下一部分这种核酸、盒基因或载体。这种清除在本领域中称作“无痕”清除,因为基因组与添加核酸、盒基因或载体之前相同。插入和无痕清除的一个示例性实施方式是可购自SystemBiosciences的PiggyBac载体。
通过以下实施方式及其附图的描述和权利要求,本发明的某些实施方式的进一步特征和优势将变得更加充分地明显。
附图说明
通过以下结合附图的示例性实施方式的详细描述将更完全地理解本实施方式的上述及其他特征和优势,其中:
图1涉及对人类体细胞或干细胞中的re-TALEN的功能测试。
(a)用于测试基因组靶向效率的实验设计的图示。通过插入终止密码子和源自AAVS1座位(下)的68bp基因组片段破坏了基因组整合的GFP编码序列。用tGFP供体(上)通过核酸酶介导的同源重组恢复GFP序列产生可以由FACS定量的GFP+细胞。Re-TALEN和TALEN在AAVS1片段内靶向相同的序列。
(b)条形图描绘了通过FACS测量的仅通过tGFP供体、TALEN与tGFP供体以及re-TALEN与tGFP供体在靶座位处引入的GFP+细胞百分比。(N=3,误差条=SD)。下方示出了代表性FACS曲线图。
(c)描绘了用于天然AAVS1座位的靶向策略的示意图。描述了包含拼接受体(SA)-2A(自裂解肽)、耐嘌呤霉素基因(PURO)和GFP的供体质粒(参见参考文献10,通过引用将其全部内容结合于此)。将用于检测成功的编辑事件的PCR引物的位置描绘为蓝色箭头。(d)通过嘌呤霉素(0.5ug/mL)选择成功靶向的PGPlhiPSC克隆体2周。示出了三个代表性GFP+克隆体的显微镜图像。还染色细胞用于多能性标记TRA-1-60。比例尺:200um。
(e)在这些单克隆GFP+hiPSC克隆体上进行的PCR测定证实供体盒基因成功插入在AAVSl位点上(泳道1、2、3),而简单的hiPSC没有示出成功插入的证据(泳道C)。
图2涉及reTALEN和Cas9-gRNA在iPSC中CCR5上的基因组靶向效率的比较。
(a)基因组工程实验设计的图示。在re-TALEN对或Cas9-gRNA靶位点处,将携带针对基因组DNA2bp错配的90merssODN与reTALEN或Cas9-gRNA构建体一起递送至PGPlhiPSC。在图中将核酸酶的剪切位点描绘为红色箭头。
(b)HDR和NHEJ用于re-TALEN对(CCR5#3)和ssODN或Cas9-gRNA和ssODN的效率的深度测序分析。通过GEAS的高通量序列数据分析hiPSC的基因组中的改变。上:由包含建立至ssODN(蓝色)中心的2bp点突变的读取部分定量HDR,以及由基因组中每个特异性位置处的缺失(灰色)/插入(红色)部分定量NHEJ活性。对于reTALEN和ssODN曲线图,将绿色虚线绘制为标志re-TALEN对结合位点的外边界,其在相对于两个re-TALEN结合位点中心的-26bp和+26bp位置。对于Cas9-gRNA和ssODN曲线图,绿色虚线标志gRNA靶位点的外边界,其在相对于PAM序列的-20和-1bp位置。下:由通过以上所指出的处理的整个NHEJ群体分析hiPSC中的缺失/插入大小(尺寸)分布(sizedistribution)。
(c)re-TALEN和Cas9-gRNA靶向CCR5在PGP1hiPSC中的基因组编辑效率。
上:CCR5中的靶基因组编辑位点的图示。通过蓝色箭头在下方示出15个靶位点。对于每个位点,用一对reTALEN和它们对应的携带针对基因组DNA的2bp错配的ssODN供体共转染细胞。转染6天后,测定基因组编辑效率。类似地,将15种Cas9-gRNA用它们对应的ssODN单独转染至PGP1-hiPSC以靶向相同的15个位点以及转染6天后分析效率。下:re-TALEN和Cas9-gRNA靶向CCR5在PGP1hiPSC中的基因组编辑效率。画面1和2表示由reTALEN介导的NHEJ和HDR效率。画面3和4表示由Cas9-gRNA介导的NHEJ和HDR效率。通过靶区域携带缺失或插入的基因组等位基因的频率计算NHEJ比率(rate);通过携带2bp错配的基因组等位基因的频率计算HDR比率。画面5,来自ENCODE数据库(DukeDNaseHS,iPSΝΙΗi7DS)的hiPSC细胞系的DNaselHS曲线。值得注意的,不同画面的比例不同。
(f)来自三种靶hiPSC克隆体的PCR扩增的Sanger测序确认在基因组插入边界存在预期的DNA碱基。M:DNA梯度标记(DNAladder)。C:普通hiPSC基因组DNA的对照。
图3涉及通过PGP1hiPSC中的re-TALEN或Cas9-gRNA支配ssODN介导的HDR的功能参数的研究。
(a)用re-TALEN对(#3)和具有不同长度(50、70、90、110、130、150、170nt)的ssODN共转染PGP1hiPSC。所有ssODN在它们的序列当中都具有针对基因组DNA的相同的2bp错配。90merssODN实现了靶基因组中的最佳HDR。本文描述了HDR、NHEJ引起的缺失和插入效率的评价。
(b)将各自在中心包含2bp错配(A)和在偏离A的不同位置包含另外的2bp错配(B)的对应于re-TALEN对#3的90merssODN用于测试同源偏离ssODN的影响。在PGP1hiPSC中评价每个ssODN的基因组编辑效率。下条形图示出仅A、仅B以及A+B在靶基因组中的结合频率。随着同源偏差对中心的距离增加,HDR比率降低。
(c)测试靶向具有远离re-TALEN对#3的靶位点的变化距离(-620bp~480bp)的位点的ssODN来评价可以放置ssODN引入突变的最大距离。所有ssODN在它们序列当中携带2bp错配。当ssODN错配位于远离re-TALEN对的结合位点当中的40bp时,观察到最小HDR效率(<=0.06%)。
(d)用Cas9-gRNA(AAVS1)以及不同方向(Oc:与gRNA互补;On:与gRNA非互补)和不同长度(30、50、70、90、110nt)的ssODN共转染PGP1hiPSC。所有ssODN在它们序列当中针对基因组DNA具有相同的2bp错配。70merOc实现了靶基因组中的最佳HDR。
图4涉及在没有选择的情况下使用re-TALEN和ssODN来得到单克隆基因组编辑的hiPSC。
(a)实验的时间线。
(b)通过图2b中描述的NGS平台评定的re-TALEN对和ssODN(#3)的基因组工程效率。
(c)基因组编辑后单克隆hiPSC克隆体的Sanger测序结果。成功将2bp异种基因型(heterogeneousgenotype)(CT/CT->TA/CT)引入至PGP1-iPS-3-11、PGPl-iPS-3-13克隆体的基因组中。
(d)免疫荧光染色靶PGPl-iPS-3-11。染色细胞用于多能性标记Tra-1-60和SSEA4。
(e)苏木素(苏木精,hematoxylin)和曙红染色由单克隆PGPl-iPS-3-11细胞生成的畸胎瘤切片。
图5.reTALE的设计。(a)原始TALERVD单体与re-TALE-16.5(re-TALE-Ml→re-TALE-M17)中的单体的序列比对。用灰色突出标记了来自原始序列的核苷酸改变。(b)由PCR测试re-TALE的重复性。上画面示出了re-TALE/TALE的结构和PCR反应中引物的位置。下画面示出具有以上示出的条件的PCR条带。PCR阶梯与原始的TALE模板(右泳道)共存。
图6.设计和实践TALE单温育组装(TASA,Single-incubationAssembly)组装。(a)用于TASA组装的re-TALE二聚体嵌段的文库图示。存在编码两种RVD的10种re-TALE二聚体嵌段的文库。在每个嵌段内,所有16种二聚体共用除了RVD编码序列之外的相同的DNA序列;不同嵌段内的二聚体具有不同的序列但是将其设计为使它们与相邻嵌段共用32bp重叠部分。在右侧列出了一种二聚体(嵌段6_AC)的DNA和氨基酸序列。
(b)TASA组装的图示。左画面示出了TASA组装方法:用酶混合物/re-TALE嵌段/re-TALE-N/TF骨架载体进行一锅温育反应。可以将反应产物直接用于细菌转化。右画面示出了TASA的机制。在37℃下通过核酸内切酶线性化目的载体以切除ccdB逆选择盒基因;具有嵌段末端和线性化载体的核酸外切酶在片段的末端暴露ssDNA突出部分以允许嵌段和载体骨架以指定顺序退火。当温度升高至50℃时,聚合酶和连接酶一同工作来密封间隙,产生准备好转化的最终构建体。
(c)对具有不同单体长度的re-TALE的TASA组装效率。在左侧示出了用于组装的嵌段并在右侧呈现了组装效率。
图7.Lenti-reTALE(慢病毒-reTALE)的功能和序列完整性。
图8.GEAS的灵敏度和再现性。
(A)HDR检测限的基于信息的分析(information-basedanalysis)。给定re-TALEN(#10)/ssODN的数据集,确定包含预期编辑(HDR)的读取并系统地除去这些HDR读取(序列)以生成不同的人工数据集,具有“稀释的(diluted)”编辑信号。生成除去了100%、99.8%、99.9%、98.9%、97.8%、89.2%、78.4%、64.9%、21.6%、10.8%、2.2%、1.1%、0.2%、0.1%、0.02和0%HDR读取(序列)的数据集以生成HR效率在0-0.67%范围内的人工数据集。对于每个单独的数据集,评估背景信号(紫色)和靶位点得到的信号(绿色)的交互信息(MI,mutualinformation)。当HDR效率超过0.0014%时,靶位点处的MI显著高于背景。评估0.0014%和0.0071%之间的HDR检测限值。本文描述了MI计算。
(B)测试基因组编辑评价系统的再现性。成对曲线图(上和下)示出了以上指出的re-TALEN对和细胞类型的两种复制体的HDR和NHEJ评价结果。对于每个实验,单独进行核转染、靶基因组扩增、深度测序和数据分析。根据√2(|HDRl-HDR2|)/((HDR+HDR2)/2)=AHDR/HDR和√2(|NHEJ1-NHEJ2|)/((NHEJl+NHEJ2)/2)=ΔNHEJ/NHEJ计算重复体的基因组编辑评价变化以及在曲线图下列出了变化结果。系统的平均差是(19%+11%+4%+9%+10%+35%)/6=15%。可能导致变化的因素包括核转染下的细胞状态、核转染效率以及测序覆盖率和质量。
图9.通过CCR5上的reTALEN和Cas9-gRNA的NHEJ和HDR效率的统计分析。
(a)在iPSC中的相同位点处由reTALEN介导的HR和NHEJ效率的相关性(r=0.91,P<1×10-5)。
(b)在iPSC中的相同位点处由Cas9-gRNA介导的HR和NHEJ效率的相关性(r=0.74,P=0.002)。
(c)iPSC中由Cas9-gRNA介导的NHEJ效率和gRNA靶位点的Tm温度的相关性(r=0.52,P=0.04)。
图10.基因组编辑效率和表观遗传状态的相关分析。
将Pearson相关性用于研究DNaseI灵敏度和基因组工程效率(HR,NHEJ)之间可能的关联。将观察到的相关性与随机化组(N=100000)比较。认为观察到的模拟分布中高于95th百分位或低于5th百分位的相关性是潜在关联。没有观察到DNaseI灵敏度和NHEJ/HR效率之间的显著相关性。
图11.ssODN介导的基因组编辑中同源成对的影响。
(a)在图3b描述的实验中,随着二次错配B增加它们与A的距离(B与A的相对位置在-30→30bp变化),通过中间2b错配(A)结合的速率测量的整体HDR降低。在B仅是l0bp远离A(-10bp和+10bp)时,较高的结合速率可以反映相对紧邻dsDNA断裂的基因组DNA,更少需要对ssODN配对。
(b)基因转换长度沿ssODN的分布。对于B至A的每段距离,HDR事件的一部分仅结合A,同时另一部分结合A和B两者。这两事件可以由基因转换域(geneconversiontract)解释(Elliottetal.,1998),从而A+B事件表示延伸过B的长转换域以及仅A事件表示没有达到B的较短转换域。在该解释下,可以评估沿着寡核苷酸(寡聚物,oligo)的两个方向的基因转换长度的分布(将ssODN的中间定义为0,朝向ssODN的5'端的转换域为-方向,以及3'端为+方向)。由于它们的长度提高,基因转换域逐渐地变得不频繁,但是在数十个bp用于ssDNA寡核苷酸相比数百个碱基用于dsDNA供体的高度压缩的距离标度上,看出了具有dsDNA供体的一种与基因转换域分布非常相似的结果。
(c)使用包含一系列突变的单个ssODN并测量邻近的一系列结合用于基因转换域的测定。使用在中心2bp错配(上)的任一侧具有以10nt间隔的三对2bp错配(橙色)的ssODN供体。在该区域的>300,000个读取测序中,检测到很少携带由ssODN定义的>=1个错配的基因组测序读取(参见参考文献62,通过引用将其全部内容结合于此)。绘制所有这些读取序列(下)并用颜色标记读取的序列。橙色:定义的错配;绿色:野生型序列。利用这种ssODN的基因组编辑给出其中在该时间仅中间突变结合为85%(53/62)的模式,多个B错配在其他时间结合。尽管B结合事件的数目少得不能评估>10bp的域长度的分布,但是清楚的是-10–10bp的短域区域占优势。
图12.Cas9-gRNA核酸酶和切口酶(nickase)基因组编辑效率。
通过结合核酸酶(C2)(Cas9-gRNA)或切割酶(Cc)(Cas9D10A-gRNA)以及不同方向(Oc和On)的ssODN共转染PGP1iPSC。所有ssODN在它们序列当中具有针对基因组DNA相同的2bp错配。本文描述了HDR的评价。
图13.re-TALE序列的设计和优化。
以几个设计循环演变re-TALE序列以消除重复。在每个循环中,评估每个重复的同义序列。选择与演变DNA具有最大汉明距离(largesthammingdistance)的那些。最终序列为cai=0.59ΔG=-9.8kcal/mol。提供R程序包进行该一般框架用于合成的蛋白质设计。
图14是示出了在PGP1细胞中基因组插入Cas9的PCR验证的凝胶图像。线3、6、9、12是普通PGP1细胞系的PCR产物。
图15是在温育条件下Cas9mRNA的mRNA表达水平的图像。
图16是示出了不同RNA设计的基因组靶向效率的图像。
图17是示出了通过向导RNA-供体DNA融合体实现的44%同源重组的基因组靶向效率的图像。
图18是示出了由本文描述的系统生成的同基因PGP1细胞系的基因型的图表。PGPl-iPS-BTHH作为BTHH患者具有单个核苷酸缺失表型。PGP1-NHEJ具有以不同方式生成移码型突变的4bp缺失。
图19是示出了源自同基因PGP1iPS重演缺陷型ATP产生和患者特异性细胞中证实的FIFOATPase特异性活性的心肌细胞的图像。
具体实施方式
本发明的方面涉及例如通过剪切双链核酸使用缺少某些重复序列的TALEN用于核酸工程。使用TALEN剪切双链核酸可引起非同源性末端接合(NHEJ)或同源重组(HR)。本公开的方面还考虑使用缺少重复序列的TALEN用于核酸工程,例如通过在供体核酸的存在下剪切双链核酸以及诸如通过非同源性末端接合(NHEJ)或同源重组(HR),将供体核酸插入至双链核酸中。
转录激活因子样效应子核酸酶(TALEN)是本领域已知的并且包括通过将TAL效应子DNA结合结构域融合至DNA裂解结构域生成的人工限制酶。限制酶是在特定序列上剪切DNA链的酶。可将转录激活因子样效应物(TALE)工程设计为结合至希望的DNA序列。参见SeeBoch,Jens(February2011)."TALEsofgenometargeting".NatureBiotechnology29(2):135-6,通过引用将其全部内容结合于此。通过结合这种工程TALE与DNA裂解结构域(其剪切DNA链),产生对任何希望的DNA序列特异性的限制酶TALEN。根据某些方面,将TALEN引入至细胞用于原位的靶核酸编辑,诸如原位的基因组编辑。
根据一方面,来自Fokl核酸内切酶末端的非特异性DNA裂解结构域可用于构建在酵母细胞、植物细胞和动物细胞中具有活性的杂交核酸酶。Fokl结构域起二聚体的作用,需要两个构建体与独特的DNA结合结构域以正确方向和间隔用于靶向基因组中的位点。TALEDNA结合结构域和Fokl裂解结构域之间的氨基酸残基数目和两个单独TALEN结合位点之间的碱基数目都影响活性。
氨基酸序列和TALE结合结构域的DNA识别之间的关系可允许设计蛋白质。可将诸如DNAWorks的软件程序用于设计TALE构建体。设计TALE构建体的其他方法是本领域技术人员已知的。参见Cermak,T.;Doyle,E.L.;Christian,M.;Wang,L.;Zhang,Y.;Schmidt,C;Bailer,J.A.;Somia,N.V.etal.(2011)。"EfficientdesignandassemblyofcustomTALENandotherTALeffector-basedconstructsforDNAtargeting".NucleicAcidsResearch.doi:10.1093/nar/gkr218;Zhang,Feng;et.al.(February2011)。"Efficientconstructionofsequence-specificTALeffectorsformodulatingmammaliantranscription",NatureBiotechnology29(2):149-53;Morbitzer,R.;Elsaesser,J.;Hausner,J.;Lahaye,T.(2011)."AssemblyofcustomTALE-typeDNAbindingdomainsbymodularcloning".NucleicAcidsResearch.doi:10'1093/nar/gkrl51;Li,T.;Huang,S.;Zhao,X.;Wright,D.A.;Carpenter,S.;Spalding,M.H.;Weeks,D.P.;Yang,B.(2011)."ModularlyassembleddesignerTALeffectornucleasesfortargetedgeneknockoutandgenereplacementineukaryotes".NucleicAcidsResearch.doi"10.1093/nar/gkrl88;Geiier,R.;Scholze,H.;Hahn,S.;Streubel,J.;Bonas,U.;Behrens,S.E.;Boch,J.(2011)."TranscriptionalActivatorsofHumanGeneswithProgrammableDNA-Specificity".InShiu,Shin-Han.PLoSONE6(5):el9509;Weber,E.;Gruetzner,R.;Werner,S.;Engler,C;Marillonnet,S.(2011)."AssemblyofDesignerTALEffectorsbyGoldenGateCloning".InBendahmane,Mohammed.PLoSONE6(5):el9722,通过引用将其全部结合于此。
根据一个示例性方面,根据某些实施方式,一旦组装了TALEN基因,就可以将它们插入至质粒;然后质粒用于转染基因产物在其中表达的靶细胞并进入细胞核以接近基因组。根据示例性方面,通过诱导双链断裂(DSB,double-strandbreaks),本文所描述的TALEN可用于编辑靶核酸,诸如基因组,其细胞响应于修复机制。示例性的修复机制包括非同源性末端接合(NHEJ),其从存在非常少或没有用于退火的序列重叠的双链断裂的任一侧重新连接DNA。该修复机制通过插入或缺失(插入缺失)诱导基因组中的错误或诱导染色体重排;任何这种错误可以产生在无功能位置处编码的基因产物。参见Miller,Jeffrey;et.al.(February2011)."ATALEnucleasearchitectureforefficientgenomeediting".NatureBiotechnology29(2):143-8,通过引用将其全部内容结合于此。由于该行为可根据使用的物种、细胞类型、靶基因和核酸酶改变,所以可通过使用异源双链裂解测定(heteroduplexcleavageassay)监测该行为,该测定法检测通过PCR扩增的两个等位基因之间的任何差异。可在简单琼脂糖凝胶或平板凝胶系统(slabgelsystem)上可视化裂解产物。
可替代地,可在外源双链DNA片段存在下经由NHEJ将DNA引入至基因组中。由于转染的双链序列用作修复酶的模板,所以同源定向修复还可以在DSB处引入外来DNA。根据某些方面,本文描述的TALEN可用于生成稳定修饰的人类胚胎干细胞和诱导型多能干细胞(IPSC)克隆体。根据某些方面,本文描述的TALEN可用于生成敲除物种,诸如秀丽隐杆线虫(C.elegans)、敲除大鼠、敲除小鼠或敲除斑马鱼(zebrafish)。
根据本公开的一个方面,实施方式涉及使用外源DNA、诸如DNA结合蛋白的核酸酶以及引导RNA从而在干细胞内共定位至DNA以及通过插入外源DNA消化或剪切DNA。本领域技术人员很容易知道将这种DNA结合蛋白结合至DNA用于各种目的。这种DNA结合蛋白可以是天然存在的。包括在本公开范围内的DNA结合蛋白包括可由RNA(本文是指向导RNA)引导的那些。根据该方面,向导RNA和RNA向导的DNA结合蛋白在DNA上形成共定位复合物。具有核酸酶活性的这种DNA结合蛋白是本领域技术人员已知的,并且包括具有核酸酶活性的天然存在的DNA结合蛋白,诸如Cas9蛋白,存在于例如II型CRISPR系统中。这种Cas9蛋白和II型CRISPR系统在本领域是有据可查的。参见Makarovaetal.,NatureReviews,Microbiology,Vol.9,June2011,pp.467-477,包括所有补充信息,通过引用将其全部内容结合于此。
具有核酸酶活性的示例性DNA结合蛋白起切断(切口,nick)或剪切双链DNA的功能。这种核酸酶活性可起因于具有表现出核酸酶活性的一种或多种多肽序列的DNA结合蛋白。这种示例性DNA结合蛋白可以具有两个单独的核酸酶结构域,每个结构域负责剪切或切断双链DNA的特定链。本领域技术人员已知的具有核酸酶活性的示例性多肽序列包括McrA-HNH核酸酶相关结构域和RuvC样核酸酶结构域。因此,示例性的DNA结合蛋白是本质上包含一个或多个McrA-HNH核酸酶相关结构域和RuvC样核酸酶结构域的那些。
示例性的DNA结合蛋白是II型CRISPR系统的RNA向导的DNA结合蛋白。示例性的DNA结合蛋白是Cas9蛋白。
在化脓性链球菌(S.pyogenes)中,Cas9通过蛋白中的以下两种催化结构域介导的过程在前间区-邻近基序(PAM,protospacer-adjacentmotif)上游生成3bp钝端(平头,blunt-ended)双链断裂:裂解DNA的互补链的HNH结构域和裂解非互补链的RuvC样结构域。参见Jinkeetal.,Science337,816-821(2012),通过引用将其全部内容结合于此。已知Cas9蛋白存在于许多II型CRISPR系统中,该系统包括以下对Makarovaetal.,NatureReviews,Microbiology,Vol.9,June2011,pp.467-477的补充资料中所定义的:甲烷球菌属C7(MethanococcusmaripaludisC7);白喉棒杆菌(Corynebacteriumdiphtheriae);有效棒杆菌(Corynebacteriumefficiens)YS-314;谷氨酸棒杆菌(Corynebacteriumglutamicum)ATCC13032Kitasato;谷氨酸棒杆菌(Corynebacteriumglutamicum)ATCC13032Bielefeld;谷氨酸棒杆菌(Corynebacteriumglutamicum)R;kroppenstedtii棒杆菌(Corynebacteriumkroppenstedtii)DSM44385;脓肿分枝杆菌(Mycobacteriumadscessus)ATCC19977;诺卡菌(Nocardiafarcinica)IFM10152;红串红球菌(Rhodococcuserythropolis)PR4;jostii红球菌(Rhodococcusjostii)RHAl;混浊红球菌(Rhodococcusopacus)B4uid36573;解纤维热酸菌(Acidothermuscellulolyticus)11B;氯酚节杆菌(Arthrobacterchlorophenolicus)A6;KribbellaflavidaDSM17836uid43465;弯曲高温单孢菌(Thermomonosporacurvata)DSM43183;齿双歧杆菌(Bifidobacteriumdentium)Bdl;长双歧杆菌(Bifidobacteriumlongum)DJO10A;SlackiaheliotrinireducensDSM20476;PersephonellamarinaEXHI;脆弱拟杆菌(Bacteroidesfragilis)NCTC9434;黄褐二氧化碳嗜纤维菌(Capnocytophagaochracea)DSM7271;嗜冷黄杆菌(Flavobacteriumpsychrophilum)JIP0286;肠道细菌(Akkermansiamuciniphila)ATCCBAA835;castenholzii玫瑰弯菌(Roseiflexuscastenholzii)DSM13941;玫瑰弯菌(Roseiflexus)RSI;集胞藻属(Synechocystis)PCC6803;ElusimicrobiumminutumPei191;未培养的白蚁群1细菌种系型RsD17(Termitegroup1bacteriumphylotypeRsD17);产琥珀酸丝状杆菌(Fibrobactersuccinogenes)S85;蜡样芽孢杆菌(Bacilluscereus)ATCC10987;无害利斯特菌(Listeriainnocua);干酪乳杆菌(Lactobacilluscasei);鼠李糖乳杆菌(Lactobacillusrhamnosus)GG;唾液乳杆菌(Lactobacillussalivarius)UCC118;无乳链球菌(Streptococcusagalactiae)A909;无乳链球菌(Streptococcusagalactiae)NEM316;无乳链球菌(Streptococcusagalactiae)2603;似马停乳链球菌(Streptococcusdysgalactiaeequisimilis)GGS124;马链球菌兽疫亚种(Streptococcusequizooepidemicus)MGCS10565;解没食子酸链球菌(Streptococcusgallolyticus)UCN34uid46061;StreptococcusgordoniiChallissubstCH1;变异链球菌(Streptococcusmutans)NN2025uid46353;变异链球菌(Streptococcusmutans);酿脓链球菌(Streptococcuspyogenes)M1GAS;酿脓链球菌(Streptococcuspyogenes)MGAS5005;酿脓链球菌(Streptococcuspyogenes)MGAS2096;酿脓链球菌(Streptococcuspyogenes)MGAS9429;酿脓链球菌(Streptococcuspyogenes)MGAS10270;酿脓链球菌(Streptococcuspyogenes)MGAS6180;酿脓链球菌(Streptococcuspyogenes)MGAS315;酿脓链球菌(Streptococcuspyogenes)SSI-1;酿脓链球菌(Streptococcuspyogenes)MGAS10750;酿脓链球菌(Streptococcuspyogenes)NZ131;链球菌嗜热菌(Streptococcusthermophiles)CNRZ1066;链球菌嗜热菌(Streptococcusthermophiles)LMD-9;链球菌嗜热菌(Streptococcusthermophiles)LMG18311;肉毒杆菌(Clostridiumbotulinum)A3LochMaree;肉毒杆菌(Clostridiumbotulinum)BEklund17B;肉毒杆菌(Clostridiumbotulinum)Ba4657;肉毒杆菌(Clostridiumbotulinum)FLangeland;解纤维梭菌(Clostridiumcellulolyticum)H10;大芬戈尔德菌(Finegoldiamagna)ATCC29328;直肠真杆菌(Eubacteriumrectale)ATCC33656;鸡毒支原体(Mycoplasmagallisepticum);运动支原体(Mycoplasmamobile)163K;穿通支原体(Mycoplasmapenetrans);滑液囊支原体(Mycoplasmasynoviae)53;念珠状链杆菌(Streptobacillusmoniliformis)DSM12112;慢生根瘤菌(Bradyrhizobium)BTAil;汉氏硝化细菌(Nitrobacterhamburgensis)X14;沼泽红假单孢菌(Rhodopseudomonaspalustris)BisB18;沼泽红假单孢菌(Rhodopseudomonaspalustris)BisB5;食清洁剂细小棒菌(Parvibaculumlavamentivorans)DS-1;DinoroseobactershibaeDFL12;GluconacetobacterdiazotrophicusPal5FAPERJ;GluconacetobacterdiazotrophicusPal5JGI;固氮螺菌(Azospirillum)B510uid46085;深红红螺菌(Rhodospirillumrubrum)ATCC11170;双氯苯胺(Diaphorobacter)TPSYuid29975;VerminephrobactereiseniaeEF01-2;脑膜炎双球菌(Neisseriameningitides)053442;脑膜炎双球菌(Neisseriameningitides)αl4;脑膜炎双球菌(Neisseriameningitides)Z2491;需盐脱硫弧菌(Desulfovibriosalexigens)DSM2638;空肠弯曲杆菌德莱亚种(Campylobacterjejunidoylei)26997;空肠弯曲杆菌(Campylobacterjejuni)81116;空肠弯曲杆菌(Campylobacterjejuni);弯曲杆菌(Campylobacterlari)RM2100;肝螺杆菌(Helicobacterhepaticus);产琥珀酸沃廉菌(Wolinellasuccinogenes);TolumonasauensisDSM9187;假别单孢菌(Pseudoalteromonasatlantica)T6c;ShewanellapealeanaATCC700345;LegionellapneumophilaParis;产琥珀酸放线杆菌(Actinobacillussuccinogenes)130Z;多杀巴斯德菌(Pasteurellamultocida);FrancisellatularensisnovicidaU112;土拉杆菌欧亚变种(Francisellatularensisholarctica);土拉杆菌(Francisellatularensis)FSC198;土拉杆菌(Francisellatularensistularensis);土拉杆菌(Francisellatularensis)WY96-3418;和齿垢密螺旋体(Treponemadenticola)ATCC35405。因此,本公开的方面涉及II型CRISPR系统中存在的Cas9蛋白。
本领域的技术人员在文献中可以将Cas9蛋白称为Csnl。以下示出了化脓性链球菌Cas9蛋白。参见Deltchevaetal.,Nature471,602-607(2011),通过引用将其全部内容结合于此。
MDKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGFTAE
ATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFG
NIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSD
VDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGN
LIALSLGLTPNFKSNPDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAI
LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYA
GYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELH
AILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEE
VVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFL
SGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKI
IKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWG
RLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSL
HEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIHMARENQTTQKGQKNSRER
MKRIEFGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDH
IVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNL
TKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKS
KLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVR
K
MIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDF
ATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVA
YSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPK
YSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVE
QHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGA
PAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD-
根据一方面,RNA向导的DNA结合蛋白包括由RNA引导并剪切DNA的Cas9的同源物(homologs)和直系同源物(orthologs),其保留了蛋白结合至DNA的能力。根据一方面,Cas9蛋白包含针对来自化脓性链球菌的天然存在的Cas9阐述的序列和与其至少30%,、40%、50%、60%、70%、80%、90%、95%、98%或99%同源并且是DNA结合蛋白(诸如RNA向导的DNA结合蛋白)的序列。
根据一方面,提供了工程化的Cas9-gRNA系统,其使RNA向导的基因组能够在干细胞中以位点特异性方式剪切,如果希望,并且能够通过插入外源供体核酸修饰干细胞。向导RNA与DNA上的靶位点或靶座位互补。向导RNA可以是crRNA-tracrRNA嵌合体。可以从细胞周围的介质引入向导RNA。以这种方式,提供了连续修饰细胞的方法,在这个意义上,将多个向导RNA提供至周围介质,并且伴随细胞吸收向导RNA,以及向介质补充另外的向导RNA。补充可以是以连续的方式。Cas9在靶基因组DNA上或附近结合。一种或多种向导RNA结合在靶基因组DNA上或附近。Cas9剪切靶基因组DNA并且外源供体DNA在剪切位点处插入至该DNA中。
因此,方法涉及通过循环插入编码RNA的核酸(或从周围介质提供RNA)和外源供体核酸,表达RNA(或吸收RNA),以一定方式共定位RNA、Cas9和DNA以剪切DNA以及插入外源供体核酸,使用向导RNA与Cas9蛋白和外源供体核酸来多次插入外源供体核酸至表达Cas9的干细胞内的DNA中。可以以任何希望的数目循环该方法步骤以产生任何希望数目的DNA修饰。因此本公开的方法涉及使用本文所描述的Cas9蛋白和向导RNA编辑靶基因来提供干细胞的多重基因和表观遗传工程。
本发明的进一步方面总体上涉及使用DNA结合蛋白或系统(诸如本文描述的修饰TALENS或Cas9)用于多次插入外源供体核酸至诸如人类干细胞的干细胞的DNA,诸如基因组DNA。基于本公开,本领域的技术人员将容易确定示例性的DNA结合系统。
除非另外指出,否则本公开的细胞包括按照本文所描述的可以引入外来核酸并使其表达的任何细胞。应当理解的是,本文所描述的本公开的基本概念不受细胞类型的限制。根据本公开的细胞包括体细胞、干细胞、真核细胞、原核细胞、动物细胞、植物细胞、真菌细胞、古生物细胞、真细菌细胞等。细胞包括诸如酵母细胞、植物细胞、和动物细胞的真核细胞。特定的细胞包括哺乳动物细胞,诸如人类细胞。进一步地,细胞包括对修饰DNA有利的或希望的任何一种。
靶核酸包括具有本文所描述的核酸酶活性的TALEN或RNA向导DNA结合蛋白对其刻痕或剪切有用的任何核酸序列。靶核酸包括本文所描述的共定位复合物对其刻痕或剪切可以有用的任何核酸序列。靶核酸包括基因。出于本公开的目的,诸如双链DNA的DNA可以包含靶核酸以及可以结合或以其他方式与DNA共定位的共定位复合物,或在其他情况下可以在邻近或接近靶核酸处并以共定位复合物或TALEN在靶核酸上可以具有希望效应的方式与DNA结合的TALEN。这种靶核酸可以包括内源(或天然存在的)核酸和外源(或外来)核酸。基于本公开,本领域的技术人员将能够容易地确定或设计共定位至DNA的向导RNA和Cas9蛋白或结合至DNA的TALEN,包括靶核酸。技术人员将进一步能够确定同样共定位至包含靶核酸的DNA的转录调节蛋白或结构域,诸如转录激活因子或转录抑制因子。DNA包括基因组DNA、线粒体DNA、病毒DNA或外源DNA。根据一个方面,在实施本公开中有用的材料和方法包括DiCarlo,etal.,NucleicAcidsResearch,2013,vol.41,No.74336-4343中所描述的那些,通过引用将其全部内容结合于此用于所有目的,包括示例性菌株和介质、质粒构建、质粒的转化、瞬时gRNA盒基因(gRNAcassette)与供体核酸的电穿孔、gRNA质粒与供体DNA转化至Cas9-表达细胞中、Cas9的半乳糖诱导(galactoseinduction)、在酵母基因组中CRISPR-Cas目标的鉴定等。Mali,P.,Yang,L.,Esvelt,K.M.,Aach,J.,Guell,M.,DiCarlo,J.E.,Norville,J.E.andChurch,G.M.(2013)RNA-GuidedhumangenomeengineeringviaCas9.Science,10.1126fscience.1232033;Storici,F.,Durham,C.L.,Gordenin,D.A.andResnick,M.A.(2003)Chromosomalsite-specificdouble-strandbreaksareefficientlytargetedforrepairbyoligonucleotidesinyeast.PNAS,100,14994-14999以及Jinek,M.,Chylinski,K.,Fonfara,l.,Hauer,M.,Doudna,J.A.andCharpentier,E.(2012)Aprogrammabledual-RNA-GuidedDNAendonucleaseinadaptivebacterialimmunity.Science,337,816-821中提供了对技术人员实施本发明有用的包括信息、材料和方法的其他参考文献,通过引用将其全部内容结合于此用于所有目的。
为了这种引入,可以使用本领域技术人员已知的任何方法将外来核酸(即,不是细胞的天然核酸组成部分的那些)引入至细胞中。这样的方法包括转染、转导、病毒转导、微注射、脂转染(lipofection)、核转染(nucleofection)、纳米颗粒轰击、转化、接合等。使用容易确定的文献来源,本领域的技术人员将容易地理解并适应这种方法。
供体核酸包括插入至本文所描述的核酸序列的任何核酸。
给出以下实施例来代表本公开。这些实施例不应解释为限制本公开内容的范围,鉴于本公开、附图和所附的权利要求,这些和其他等同实施方式将是显而易见的。
实施例I
向导RNA组装
将19bp选定的靶序列(即,5'-N19-NGG-3'的5'-N19)引入至两种互补的l00mer寡核苷酸(TTCTTGGCTTTATATATCTTGTGGAAAGGACGAAACACCGN19GTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCC)。将每种100mer寡核苷酸以100mM悬浮在水中,以等体积混合并在热循环机器中退火(95℃,5min;降温(梯度下降,ramp)至4℃,0.1℃/sec)。为了制备目的载体,使用AfIII使gRNA克隆载体(Addgene质粒ID41824)线性化并纯化载体。用10ng退火的100bp片段、100ng目的骨架、IXGibson组装反应混合物(NewEnglandBiolabs)在50℃下进行(10ul)gRNA组装反应30min。可以直接处理反应用于细菌转化来克隆单个组装。
实施例II
重新编码的TALE设计和组装
以不同水平优化re-TALE以促进组装并改善表达。首先共优化re-TALEDNA序列用于人类密码子用途,和5'端(GeneGA,Bioconductor)的低mRNA加倍能量。通过几个循环演变得到的序列以消除长于11bp的重复(直接(顺行,direct)或反向)(参见图12)。在每个循环中,评估每个重复的同义序列(synonymoussequences)。选择与演变DNA具有最大汉明距离(hammingdistance)的那些。含有16.5个单体的re-TALE中的一个的序列如下:
CTAACCCCTGAACAGGTAGTCGCTATAGCTTCAAATATCGGGGGCAAGCAAGCACTTG
AGACCGTTCAACGACTCCTGCCAGTGCTCTGCGAAGCCCATGGATTGACTCCGGAGCA
AGTCGTCGCGATCGCGAGCAACGGCGCGGGGAAGCAGGCGCTGGAAACTGTTCAGAG
ACTGCTGCCTGTACTTTGTCAGGCGCATGGTCTCACCCCCGAACAGGTTGTCGCAATA
GCAAGTAATATAGGCGGTAAGCAAGCCCTAGAGACTGTGCAACGCCTGCTCCCCGTGC
TGTGTCAGGCTCACGGTCTGACACCTGAACAAGTTGTCGCGATAGCCAGTCACGACGG
GGGAAAACAAGCTCTAGAAACGGTTCAAAGGTTGTTGCCCGTTCTGTGCCAAGCACAT
GGGTTAACACCCGAACAAGTAGTAGCGATAGCGTCAAATAACGGGGGTAAACAGGCT
TTGGAGACGGTACAGCGGTTATTGCCGGTCCTCTGCCAGGCCCACGGACTTACGCCAG
AACAGGTGGTTGCAATTGCCTCCAACATCGGCGGGAAACAAGCGTTGGAAACTGTGC
AGAGACTCCTTGCTGTTTTGTGTCAAGCCCACGGCTTGACGCCTGAGCAGGTTGTGGC
CATCGCTAGCCACGAGGGAGGGAAGCAGGCTCTTGAAACCGTACAGCGACTTCTCCCA
GTTTTGTGCCAAGCTCACGGGCTAACCCCCGAGCAAGTAGTTCCCATAGCAAGCAACG
GAGGAGGAAAACAGGCATTAGAAACAGTTCAGCGCTTGCTCCCGGTACTCTGTCAGG
CACACGGTCTAACTCCGGAACAGGTCGTAGCCATTGCTTCCCATGATGGCGGCAAACA
GGCGCTAGAGACAGTCCAGAGGCTCTTGCCTGTGTTATGCCAGGCACATGGCCTCACC
CCGGAGCAGGTCGTTGCCATCGCCAGTAATATCGGCGGAAAGCAAGCTCTCGAAACA
GTACAACGGCTGTTGCCAGTCCTATGTGAAGCTCATGGACTGACGCCCGAGCAGGTAG
TGGCAATCGCATCTCACGATGGAGGTAAACAAGCACTCGAGACTGTCCAAAGATTGTT
ACCCGTACTATGCCAAGCGCATGGTTTAACCCCAGAGCAAGTTGTGGCTATTGCATCT
AACGGCGGTGGCAAACAAGCCTTGGAGACACTGCAACGATTACTGCCTGTCTTATGTC
AGGCCCATGGCCTTACTCCTGAGCAAGTCGTAGCTATCGCCAGCAACATAGGTGGGAA
ACAGGCCCTGGAAACCGTACAACGTCTCCTCCCAGTACTTTGTCAAGCACACGGGTTG
ACACCGGAACAAGTGGTGGCGATTGCGTCCAACGGCGGAGGCAAGCAGGCACTGGAG
ACCGTCCAACGGCTTCTTCCGGTTCTTTGCGAGGCTCATGGGCTCACGCCACAGCAGG
TGGTAGCAATAGCGTCGAACATCGGTGGTAAGCAAGCGCTTGAAACGGTCCAGCGTCT
TCTGCCGGTGTTGTGCCAGGCGCACGGACTCACACCAGAACAAGTGGTTGCTATTGCT
AGTAACAACGGTGGAAAGCAGGCCCTCGAGACGGTGCAGAGGTTACTTGCCGTCCTCT
GTCAAGCGCACGGCCTCACTCCAGAGCAAGTGGTTGCGATCGCTTCAAACAATGGTGG
AAGACCTGCCCTGGAA
根据某些方面,可以使用与以上序列具有至少80%序列同一性、至少85%序列同一性、至少90%序列同一性、至少95%序列同一性、至少98序列同一性或至少99%序列同一性的TALE。技术人员将容易理解在仍保持TALE的DNA结合活性的同时,以上序列可以改变。
在标准KapaHIFI(KPAP)PCR条件下通过两轮PCR生成编码两种RVD的re-TALE二聚体嵌段(参见图6A),其中,第一轮PCR引入了RVD编码序列以及第二轮PCR生成了与相邻嵌段重叠36bp的整个二聚体嵌段。使用QIAquick96PCR纯化试剂盒(QIAGEN)纯化PCR产物并通过Nano-drop测量浓度。引物和模板序列列于以下表1和表2中。
表1-re-TALE嵌段序列
表2.re-TALE嵌段引物序列
通过修饰TALE-TF和TALEN克隆骨架构建re-TALEN和re-TALE-TF目的载体(参见参考文献24,通过引用将其全部内容结合于此)。重新编码载体上的0.5RVD区域并且在指定的re-TALE克隆位点上并入Sapl剪切位点。图20中提供了re-TALEN和re-TALE-TF骨架的序列。可以用制造商建议的条件通过SapI(NewEnglandBiolabs)预处理并用QIAquickPCR纯化试剂盒(QIAGEN)纯化质粒。
用200ng每种嵌段、500ng目的骨架、1XTASA酶混合物(2USapl、100UAmpligase(Epicentre)、10mUT5核酸外切酶(Epicentre)、2.5UPhusionDNA聚合酶(NewEnglandBiolabs))和之前所描述的1X等温组装反应缓冲液(参见参考文献25,通过引用将其全部结合于此)(5%PEG-8000、100mMTris-HClpH7.5、10mMMgCl2、10mMDTT、四种dNTP每种0.2mM和1mMNAD)进行(10ul)一锅TASA组装反应。温育在37℃下进行5min以及在50℃下进行30min。可以直接处理TASA组装反应用于细菌转化以克隆单个组装体。通过该方法,得到全长构建体的效率是~20%。可替代地,通过三步组装可以实现>90%的效率。首先,在50℃下用200ng的每种嵌段、1Xre-TALE酶混合物(100UAmpligase、12.5mUT5核酸外切酶、2.5UPhusionDNA聚合酶)和1X等温组装缓冲液进行10ulre-TALE组装反应30min,随后是标准化的KapaHIFIPCR反应,琼脂糖凝胶电泳和QIA快速凝胶提取(Qiagen)以富集全长re-TALE。然后可以将200ngre-TALE扩增子与500ngSapl预处理的目的骨架、1Xre-TALE组装混合物和1X等温组装反应缓冲液混合并在50℃下温育30min。可以直接处理re-TALE最终组装反应用于细菌转化以克隆单个组装体。本领域的技术人员从已知的实践本文所描述的方法的那些中将能够容易选择核酸内切酶、核酸外切酶、聚合酶和连接酶。例如,可以使用II型核酸内切酶,诸如:Fok1、BtsI、EarI、SapI。可以使用可滴定的核酸外切酶,诸如λ(lamda)核酸外切酶、T5核酸外切酶和核酸外切酶III。可以使用非热启动聚合酶(non-hotstartpolymerase),诸如phusionDNA聚合酶、TaqDNA聚合酶和VentRDNA聚合酶。在该反应中,可以使用热稳定的连接酶,诸如Ampligase、pfuDNA连接酶、TaqDNA连接酶。此外,可以根据使用的特定物种使用不同的反应条件来激活这种核酸内切酶、外切核酸酶、聚合酶和连接酶。
实施例III
细胞系和细胞培养物
在mTeSR1(StemcellTechnologies)的基质胶(BDBiosciences)涂覆的板中维持PGP1iPS细胞。用TrypLEExpress(Invitrogen)每5-7天传代培养物。293T和293FT细胞生长并保持在补充有10%胎牛血清(FBS,Invitrogen)、青霉素/链霉素(pen/strep,Invitrogen)和非必需氨基酸(NEAA,Invitrogen)的Dulbecco's改良的Eagle's培养基(DMEM,Invitrogen)高葡萄糖中。K562细胞生长并保持在补充有10%胎牛血清(FBS,Invitrogen15%)和青霉素/链霉素(pen/strep,Invitrogen)的RPMI(Invitrogen)中。在湿度培养箱中在37℃和5%CO2下维持所有细胞。
根据参考文献26所描述的建立检测HDR效率的稳定的293T细胞系,通过引用将参考文献26的全部内容结合于此。确切地,报告子细胞系带有通过插入终止密码子和源自AAVSl座位的68bp基因组片段破坏的基因组整合的GFP编码序列。
实施例IV
re-TALEN活性测试
将293T报告子细胞以2×105细胞每孔的密度接种在24孔板中并按照制造商的规程使用Lipofectamine2000通过1μg每种re-TALEN质粒和2μgDNA供体质粒转染它们。转染~18h后使用TrypLEExpress(Invitrogen)收获细胞并将其重悬浮在200μl介质中用于使用LSRFortessa细胞分析仪(BDBiosciences)进行流式细胞仪分析。使用FlowJo(FlowJo)分析流式细胞仪数据。针对每个转染样品分析至少25,000事件(event)。对于293T中的内源AAVSl座位靶向实验,转染程序与以上所描述的相同以及在转染后1周用3μg/ml的药物浓度进行嘌呤霉素选择。
实施例V
功能性慢病毒生成评估
通过标准PCR和克隆技术创建慢病毒载体。通过Lipofectamine2000用LentiviralPackagingMix(Invitrogen)将慢病毒质粒转染至培养的293FT细胞(Invitrogen)以产生慢病毒。转染后48h和72h收集上清液,无菌过滤,并且用聚凝胺(polybrene)将100ul过滤的上清液添加至5x105新鲜的293T细胞中。基于下式计算慢病毒滴度:病毒滴度=(GFP+293T细胞的百分比*转导下初始细胞数目)/(转导实验中使用的原始病毒收集上清液的体积)。为了测试慢病毒的功能,转导后3天,用携带mCherry报告子的30ng质粒和500ngpUC19质粒使用Lipofectamine2000(Invitrogen)转染慢病毒转导的293T细胞。转染后18小时使用AxioObserverZ.1(Zeiss)分析细胞图像并使用TrypLEExpress(Invitrogen)收获并且将其再悬浮于200μl介质中用于使用LSRFortessa细胞分析仪(BDBiosciences)的流式细胞仪分析。使用BDFACSDiva(BDBiosciences)分析流式细胞仪数据。
实施例VI
测试re-TALEN和Cas9-gRNA基因组编辑效率
核转染前,将PGP1iPSC培养在Rho激酶(ROCK)抑制剂Y-27632(Calbiochem)中2h。使用P3PrimaryCell4D-NucleofectorXKit(Lonza)进行转染。确切地,使用TrypLEExpress(Invitrogen)收获细胞并将2x106个细胞重新悬浮在包含16.4μlP3核转染溶液、3.6μl补充液、1μg每种re-TALEN质粒或lugCas9以及luggRNA构建体、2μ1100μΜssODN的20μl核转染混合物中。随后,将混合物转移至20μlNucleocuvette条并使用CB150程序进行核转染。将细胞放置在补充有ROCK抑制剂的mTeSRl介质中的基质胶涂覆的板上第一个24hr。针对用dsDNA供体的内源AAVSl座位靶向实验,除了使用2μgdsDNA供体以及转染后以0.5ug/mL浓度用嘌呤霉素补充mTeSRl介质,遵循相同的步骤。
该实施例中使用的reTALEN、gRNA和ssODN的信息列于以下表3和表4中。
表3.re-TALEN对/Cas9-gRNA靶向CCR5的信息
表4.用于研究ssODN-介导的基因组编辑的ssODN设计
实施例VII
靶向区域的扩增子文库制备
核转染后6天收获细胞并将0.1μlprepGEM组织蛋白酶(ZyGEM)和1μlprepGEMgold缓冲液(ZyGEM)添加至介质中8.9μl的2~5X105细胞中。然后将lul反应物添加至包含5ul2XKAPAHifiHotstartReadymix(KAPABiosystems)和100nΜ对应的扩增引物对的9μlPCR混合物中。在95℃下温育反应5min,随后是15个循环:98℃,20s;65℃,20s和72℃,20s。为了添加使用的Illumina序列接头,然后将5μl反应产物添加至包含12.5μl2XKAPAHIFIHotstartReadymix(KAPABiosystems)和携带Illumina序列接头的200nM引物的20μlPCR混合物中。在95℃下温育反应5min,随后是25个循环:98℃,20s;65℃,20s和72℃,20s。通过QIAquickPCR纯化试剂盒纯化PCR产物,以大概相同的浓度混合,并用MiSeqPersonalSequencer测序。PCR引物列于以下表5中。
表5.CCR5靶向位点PCR引物序列
*index-PCR引物购自epicentre(ScriptSeqTMIndexPCR引物)
实施例VIII
基因组编辑评价系统(GEAS)
采用下一代测序来检测罕见的(rare)基因组改变。参见参考文献27-30,通过引用将其全部内容结合于此。为了使该方法能够广泛用于快速评价hiPSCS中的HDR和NHEJ的效率,创建了称为“pipeline(管线)”的软件来分析基因组工程数据。该pipeline整合在一个单个的Unix模块中,该模块使用不同的工具,诸如R、BLAT和FASTXToolkit。
条码分离(barcodespliting):将各组样品集中在一起并使用MiSeq150bp成对末端(PE150)(IlluminaNextGenSequencing)测序,以及之后基于DNA条码使用FASTXToolkit分离。
质量过滤:整理(trim)具有较低序列质量(phred得分<20)的核苷酸。整理之后,舍弃短于80个核苷酸的读取序列(read)。
作图(mapping):使用BLAT来作图独立于参考基因组的成对读取序列并生成输出.psl文档。
插入缺失调用(indelcalling):将插入缺失定义为比对中包含2个嵌段匹配的全长读取序列。仅考虑在两个成对末端读取序列中遵循该模式的读取序列。作为质量控制,要求插入缺失读取序列与参考基因组匹配最少70nt并且两个嵌段至少是20nt长。通过每个嵌段相对参考基因组的位置计算插入缺失的大小和位置。将非同源性末端接合(NHEJ)评估为包含插入缺失的读取序列的百分比(参见以下等式1)。在靶位点附近检测大部分的NHEJ事件。
同源引导重组(HDR)的效率:将在DSB中央的12bp窗口内匹配(grep)的模式用于计算对应于包含参考序列的读取序列的特异性信号、参考序列(预期2bp错配)的修饰和在预期的2bp错配内仅包含1bp突变的读取序列(参见以下等式1)。
等式1.评估NHEJ和HDR
A=与参考相同的读取序列:XXXXXABXXXXX
B=包含由ssODN编程的2bp错配的读取序列:XXXXXabXXXXX
C=在靶位点处仅包含1bp突变的读取序列:诸如XXXXXaBXXXXX或XXXXXAbXXXXX
D=包含以上所描述的插入缺失的读取序列
实施例IX
克隆hiPSC的基因型筛选
在FACS分选之前,用补充有SMC4(5uMthiazovivin、1uMCHIR99021、0.4uMPD0325901、2uMSB431542)(参见参考文献23,通过引用将其全部内容结合于此)的mTesr-1介质预处理在不含饲养层的培养物上的人类iPS细胞至少2hr。使用Accutase(Millipore)分解培养物并将其重新悬浮在补充有SMC4和1~2X107/mL浓度的活性染料(viabilitydye)ToPro-3(Invitrogen)的mTesr-1介质中。在无菌条件下使用BDFACSAriaIISORPUV(BDBiosciences)通过100um喷嘴将活hiPS细胞单细胞分选至用辐射的CF-1小鼠胚胎成纤维细胞(GlobalStem)涂覆的96孔板中。每孔包含hES细胞介质(参见参考文献31,通过引用将其全部内容结合于此)与补充有SMC4和5ug/ml纤连蛋白(Sigma)的100ng/ml重组人类碱性成纤维细胞生长因子(bFGF)(Millipore)。在分选之后,以70xg将板离心3min。在分选之后4天,看到集落形成,并用hES细胞介质与SMC4代替培养介质。分选后8天可以从hES细胞介质中除去SMC4。
荧光激活细胞分选(FACS)后8天收获几千细胞并将0.1ulprepGEM组织蛋白酶(ZyGEM)和1ulprepGEMgold缓冲液(ZyGEM)添加至8.9ul介质中的细胞中。然后将反应物添加至包含35.5ml铂1.1XSupermix(Invitrogen)、250nM每种dNTP和400nM引物的40μlPCR混合物中。在95℃下温育反应3min,随后是30个循环:95℃,20s;65℃,30s和72℃,20s。使用表5中的PCR引物中的一种Sanger测序产物并使用DNASTAR(DNASTAR)分析序列。
实施例X
hiPSC的免疫染色和畸胎瘤测定
使用以下抗体在37℃的KnockOutDMEM/F-12介质中温育细胞60分钟:Anti-SSEA-4PE(Millipore)(1:500稀释);Tra-1-60(BDPharmingen)(1:100稀释)。温育后,用KnockOutDMEM/F-12洗涤细胞三次并在AxioObserverZ.1(ZIESS)上成像。
为了进行畸胎瘤形成分析,使用胶原酶型IV(Invitrogen)收获人类iPSC并将细胞重新悬浮在200μl基质胶中并肌内注射至Rag2γ敲除小鼠(knockoutmice)的后肢。注射4-8周后,分离畸胎瘤并将其固定在甲醛中。随后通过苏木素和伊红染色分析畸胎瘤。
实施例XI
使用reTALEN靶向人类体细胞和人类干细胞中的基因组座位
根据某些方面,修饰或重新编码本领域技术人员已知的TALE来消除重复序列。参考文献2、7-12中公开了适合用于修饰和用于在本文描述的病毒递送载体和多种细胞系以及生物体中的基因组编辑方法中使用的这种TALE,通过引用将其全部内容结合于此。研究了几种策略来组装重复的TALERVD测定序列(参见参考文献14和32-34,通过引用将其全部内容结合于此)。然而,一旦组装,TALE序列重复保持不稳定,其限制该工具,尤其是病毒基因递送载体的广泛实用性(参考参考文献13和35,通过引用将其全部内容结合于此)。因此,本公开的一方面涉及缺少重复的TALE,诸如完全缺少重复的TALE。这种重新编码的TALE是有利的,因为其能够更快更简单地合成延伸的TALERVD阵列。
为了消除重复,计算机演变TALERVD阵列的核苷酸序列以最小化序列重复的数目,同时保持氨基酸组成。编码16个串联RVDDNA识别单体的重新编码的TALE(Re-TALE)加上最终的半RVD重复缺乏任意12bp重复(参见图5a)。值得注意地,这种水平的重新编码足以允许任何特异性单体或全长re-TALE构建体中一部分的PCR扩增(参见图5b)。使用标准DNA合成技术可以合成改进设计的re-TALE(参见参考文献36,通过引用将其全部内容结合于此),而不会导致与重度重复序列(repeatheavysequence)相关的其他成本或程序。此外,重新编码的序列设计允许使用本文的方法中以及参考图6所描述的改良的等温组装反应有效组装re-TALE构建体。
根据以下统计分析基因组编辑NGS数据。对于HDR特异性分析,使用精确的二项式测试来计算观察包含2bp错配的序列读取序列的多种个数的概率。基于靶向位点之前和之后的10bp窗口的测序结果,评估两个窗口(PI和P2)的最大碱基变化率。利用纯粹的假设:两个靶bp中的每个的变化是独立的,计算作为这两种概率的乘积(P1*P2)的靶位点处观察到2bp错配的预期概率。基于包含N个总读取序列和n个HDR读取序列的数据集,我们计算观察到的HDR效率的p值。对于HDR灵敏度分析,ssODNDNA供体针对靶向基因组包含2bp错配,其使得如果将ssODN引入至靶向基因组,在两个靶bp中可能共存碱基变化。其它非预期观察到的序列变化不太可能同时变化。因此,非预期变化很少相互关联(相互依赖性,interdependent)。基于这些假设,将交互信息(MI)用于测量在所有其他位置对中同时的两种碱基对变化的交互依赖性,以及将HDR检测限评估为当靶向2bp位点的MI大于所有其他位置对的MI时的最小HDR。对于给定的实验,确定来自原始fastq文件的具有预期2bp错配的HDR读取序列并通过从原始数据组系统除去不同数目的HDR读取序列模拟具有稀释的HDR效率的一组fastq文件。计算在靶位点中心的20bp窗口内的所有成对位置之间的交互信息(MI)。在这些计算中,计算任何两个位置之间的碱基组成的交互信息。与以上描述的HDR特异性测量不同,该测量没有评价位置对变化为任何特定对的靶碱基的趋势,仅评价它们同时变化的趋势(参见图8A)。表6示出了re-TALEN/ssODN靶向CCR5的HDR和NHEJ效率以及Cas9-gRNA的NHEL效率。我们在R中编码我们的分析并使用软件包infotheo计算MI。
表6
*HDR检测限超过检测的实际HDR的组
根据以下寻找基因组编辑效率和表观遗传状态之间的相关性。计算Pearson相关系数用于研究表观遗传参数(DNaseIHS或核小体占用(nucleosomeoccypancy))和基因组工程效率(HR,NHEJ)之间可能的关联。由UCSC基因组浏览器下载DNAasel超敏性的数据集。hiPSCsDNaseIHS:/gbdb/hg19/bbi/wgEncodeOpenChromDnaseIpsnihi7Sig.bigWig
为了计算P值,将观察到的相关性与通过随机化表观遗传参数(N=100000)的位置建立的模拟分布比较。将观察到的高于模拟分布95th百分比或低于5th百分比的相关性视为潜在关联。
确定与人类细胞中对应的非重新编码TALEN比较的reTALEN的功能。根据参考文献37所描述的使用包含携带移框插入的GFP报告子盒基因的HEK293细胞系,通过引用将参考文献37的全部内容结合于此。还参见图1a。与无启动子的GFP供体构建体一起递送靶向插入序列的TALEN或reTALEN导致GFP盒基因的DSB诱导的HDR修复,使得可以将GFP修复效率用于评估核酸酶剪切效率。参见参考文献38,通过引用将其全部内容结合于此。在1.4%转染细胞中reTALEN诱导GFP修复,与通过TALEN(1.2%)实现的类似(参见图1b)。测试了在PGP1hiPSC中的AAVS1座位处的reTALEN的活性(参见图1c)并成功恢复了包含特异性插入(参见图1d、1e)的细胞克隆体,确定reTALEN在体细胞和多能人类细胞中是活性的。
消除重复能够生成具有re-TALE负载(cargo)的功能慢病毒。确切地,将慢病毒颗粒包装为编码re-TALE-2A-GFP并测试通过转染mCherry报告子至慢病毒-reTALE-2A-GFP感染的293T细胞池的病毒颗粒编码的re-TALE-TF的活性。由慢病毒-re-TALE-TF转导的293T细胞与仅阴性的报告子相比示出36X报告子表达活性(参见图7a、b、c)。检查慢病毒感染细胞中re-TALE-TF的序列完整性并检测测试的所有10个克隆体中的全长reTALE(参见图7d)。
实施例XII
用基因组编辑评价系统(GEAS)比较在hiPSC中ReTALE和Cas9-gRNA效率
为了比较re-TALEN与Cas9-gRNA在hiPSC中的编辑效率,研究了下一代的测序平台(基因组编辑评价系统)以确定和定量NHEJ和HDR基因编辑事件。设计且构造了re-TALEN对和Cas9-gRNA,两者沿着除了2bp错配之外其他均与靶位点相同的90ntssODN供体都靶向CCR5(表3中的re-TALEN、Cas9-gRNA对#3)的上游区域(参见图2a)。将核酸酶构建体和供体ssODN转染至hiPSC中。为了定量基因编辑效率,转染3天之后在靶基因组区域上进行了成对末端深度测序。通过包含精确的2bp错配的读取序列(reads)百分数测量了HDR效率。通过携带插入缺失(indel)的读取序列百分数测量NHEJ效率。
单独将ssODN递送至hiPSC中产生最小的HDR和NHEJ速率,同时re-TALEN和ssODN的递送导致1.7%HDR以及1.2%NHEJ的效率(参见图2b)。具有ssODN的Cas9-gRNA的引入导致1.2%HDR效率和3.4%NHEJ效率。值得注意的是,基因组缺失和插入的速率在两个reTALEN结合位点之间的间隔区中间达到峰值,但是在Cas9-gRNA靶位点的前间区关联基序(PhotospacerAssociatedMotif,PAM)的上游3-4bp达到峰值(参见图2b),由于在这些区域中发生的双链断裂,这将是如同预期的。观察到由re-TALEN生成中位基因组6bp大小的缺失和3bp大小的插入,以及观察到由Cas9-gRNA生成的7bp大小的中位缺失和lbp的插入(参见图2b),符合通常由NHEJ生成的DNA损伤模式(参见参考文献4,通过引用将其全部内容结合于此)。下一代测序平台的几个分析显示GEAS可以检测到低至0.007%的HDR检出率,其既是高度可重复的(变化系数在复制=±15%*测量效率之间)而且与最常规使用的错配灵敏的核酸内切酶测定法相比更灵敏400X(参见图8)。
建立靶向CCR5基因组座位的十五个位点的re-TALEN对和Cas9-gRNA以确定编辑效率(参见图2c,参见表3)。选择这些位点以表示大范围的DNaseI灵敏度(参见参考文献39,通过引用将其全部内容结合于此)。用对应的ssODN供体(参见表3)将核酸酶构建体转染至PGP1hiPSC中。转染六天后,示出了在这些位点的基因组编辑效率(表6)。对于15个含ssODN供体的re-TALEN对中的13个,在统计学的检测阈值水平之上检测NHEJ和HDR,平均NHEJ效率为0.4%以及平均HDR效率为0.6%(参见图2c)。此外,在HR和NHEJ效率之间在相同的靶座位(P<1X10-4)处发现了统计上显著的正相关性(r2=0.81)(参见图9a),表明DSB生成,HDR和NHEJ两者共同的上游步骤对于reTALEN介导的基因组编辑是速率限制步骤。
相比之下,所有的15个Cas9-gRNA对示出了显著水平的NHEJ和HR,平均NHEJ效率为3%以及平均HDR效率为1.0%(参见图2c)。此外,还检测到由Cas9-gRNA引入的NHEJ效率和HDR效率之间的正相关性(参见图9b)(r2=0.52,p=0.003),符合对reTALEN的观察。由Cas9-gRNA实现的NHEJ效率显著地高于由reTALEN实现的NHEJ效率(t测试,成对末端,P=0.02)。观察到NHEJ效率与gRNA靶序列的熔融温度之间的适度但统计上显著的相关性(参见图9c)(r2=0.28,p=0.04),表明gRNA与它的基因组靶之间的碱基配对的强度可以解释在Cas9-gRNA介导的DSB生成的效率中多达28%的变化。即使Cas9-gRNA产生的NHEJ水平比对应的reTALEN高出平均7倍,但是Cas9-gRNA仅实现了与对应的reTALEN(平均值=0.6%)类似的HDR水平(平均值=1.0%)。不希望受科学理论的限制,这些结果可以表明DSB下的ssODN浓度是HDR的限制因素或由Cas9-gRNA创建的基因组断裂结构对有效的HDR是不利的。对于任一方法没有观察到DNaselHS与基因组靶向效率之间的相关性(参见图10)。
实施例XIII
用于HDR的ssODN供体设计的优化
根据以下设计hiPSC中的高性能ssODN。设计了不同长度(50-170nt)的、所有在CCR5re-TALEN对#3靶位点的间隔区当中携带相同的2bp错配的一组ssODN供体。观察到HDR效率随着ssODN长度变化,并且通过90nt的ssODN观察到最佳的~1.8%的HDR效率,然而更长的ssODN降低HDR效率(参见图3a)。由于当dsDNA供体与核酸酶一起使用时(参见参考文献40,通过引用将其全部内容结合于此),更长的同源区域改善了HDR速率,对于这种结果可能的原因可以是相比于dsDNA供体,ssODN用于交替的基因组修复过程;更长的ssODN是更不可利用于基因组修复机制;或更长的ssODN导致负效应而抵销由更长的同源性(homology)得到的任何改善(参见参考文献41,通过引用将其全部内容结合于此)。然而,如果以上前两种原因中任一种是所述情形,那么NHEJ速率应该不受影响或者将随着更长的ssODN而增加,因为NHEJ修复不包括ssODN供体。然而,观察到NHEJ速率随着HDR而降低(参见图3a),表明更长的ssODN存在抵消效果(offsettingeffects)。可能的假设是更长的ssODN对于细胞是有毒的(参见参考文献42,通过引用将其全部内容结合于此),或更长的ssODN的转染使DNA加工机制饱和,从而引起摩尔DNA吸收的降低,并且降低细胞摄取或表达re-TALEN质粒的能力。
检测了由ssODN供体携带的错配引入的速率怎样随着它们至双链断裂(“DSB”)的距离而改变。设计了一系列的90ntssODN,所有在re-TALEN对#3的间隔区的中心具有相同的2bp错配(A)。每一ssODN在从中心变化的距离下还包含第二2bp错配(B)(参见图3b)。仅具有中心的2bp错配的ssODN用作对照。将这些ssODN的每一个单独地与re-TALEN对#3一起引入并且用GEAS分析结果。我们发现整体HDR(由在合并A错配(仅A或A+B)时的速率测量的)随着B错配变得远离中心而降低(参见图3b,参见图11a)。在B仅是l0bp远离A时观察到的更高的整体HDR可以反映相对紧邻dsDNA断裂的基因组DNA,不太需要对ssODN退火。
对于B至A的每段距离,HDR事件的一部分仅引入A错配,同时另外的部分引入A和B错配两者(参见图3b(仅A以及A+B))。这两种结果可以是由于沿着ssDNA寡核苷酸(寡聚物,oligo)长度的基因转换域(geneconversiontracts)(参见参考文献43,通过引用将其全部内容结合于此),因而A+B错配的合并来自长的转换域延伸超出B错配,并且仅A错配的合并来自没有达到B的较短域。在这种解释下,评估了在沿着ssODN的双向中基因转换长度的分布(参见图11b)。评估的分布表示由于它们的长度提高,基因转换域逐渐地变得不频繁,但是在数十个碱基用于ssDNA供体相比数百个碱基用于dsDNA供体的高度压缩的距离标度上,看出了具有dsDNA供体中的一种与基因转换域分布非常相似的结果。与该结果一致,用含有三对2bp错配的ssODN以10nt间隔将在中心2bp错配“A”的任一侧隔开的实验,导致了在其中当将A单独地合并86%时,在其它时候将多重B错配合并的(参见图11c)模式。尽管一些仅B合并结果是过低难以估计小于10bp的域长度的分布,但是清楚的是,在核酸酶位点支配的10bp内短域区域(tractregion)占优势(参见图1lb)。最后,在所有的以单个B错配的实验中,看出贯穿所有B距离A的距离,小部分的仅B引入事件(0.04%~0.12%)是大致恒定的。
此外,进行可以将ssODN供体放置多远至re-TALEN诱导的dsDNA断裂同时仍然观察合并的分析。测试具有中心2bp错配的靶向更大的距离范围(-600bp至+400bp)远离re-TALEN诱导的dsDNA断裂位点的一组90ntssODN。当ssODN匹配≥40bp时,与中心地安置在剪切区域内的对照ssODN相比,我们观察到降低>30x的HDR效率(参见图3c)。观察到低水平的合并可以是由于与dsDNA剪切无关的步骤,如同在由ssDNA供体单独地将基因组改造的实验中示出的,参见参考文献42,通过引用将其全部内容结合于此。同时,当ssODN是在~40bp之外时,存在的低水平HDR可以是由于在dsDNA断裂的另一侧上沿着不足的ssODN寡核苷酸长度剪切dsDNA的包含错配的一侧上减弱的同源物的组合。
测试设计用于Cas9-gRNA介导靶向的ssODNDNA供体。构建了靶向AAVS1位置的Cas9-gRNA(C2),并且设计了ssODN供体的可变的取向(Oc:互补于gRNA以及On:非互补于gRNA)和长度(30、50、70、90、110nt)。Oc比On达到了更佳的效率,70mer的Oc达到最佳的1.5%的HDR速率(参见图3d)。使用源自Cas9的切口酶(Cc:Cas9_D10A)检测相同的ssODN链的偏向性,尽管事实上由具有ssODN的Cc介导的HDR效率显著地低于C2(t检测,配对末端,P=0.02)(参见图12)。
实施例XIV
校正细胞的hiPSC克隆分离
GEAS显示了re-TALEN对#3实现了在hiPSC中具有~1%效率的精确的基因组编辑,在该水平下,通常可以通过筛选克隆将经正确编辑的细胞分离。HiPSC作为单细胞具有不良的生存力。将在参考文献23(通过引用将其全部内容结合于此)中所描述的优化规程,以及单细胞FACS分类程序用于建立用于单种hiPSC分选和维持的强大平台,其中hiPS克隆可以以>25%的存活率恢复。这种方法与快速且有效的基因分型系统结合以在1小时的单个管反应中引导染色体DNA提取以及靶向的基因组扩增,使编辑的hiPSC能够大规模基因分型(genotyping)。同时,这些方法包括在没有选择的情况下用于稳健地获得基因组编辑的HiPSC的管线(pipeline)。
为了证实这个系统(参见图4a),用一对re-TALEN以及在位点#3靶向CCR5的ssODN转染PGP1HiPSC(参见表3)。用部分的转染细胞进行GEAS,发现1.7%的HDR频率(参见图4b)。这些信息与分选的单细胞克隆的25%的恢复率一起允许评估从五个96孔板以98%泊松概率(假定μ=0.017*0.25*96*5*2)得到至少一种经正确编辑的克隆体。转染六天后,FACS分选HiPSC,并且分选八天后,筛选100种hiPSC克隆体。Sanger测序显示了这些未经选择的hiPSC克隆的100种中的2种包含具有由ssODN供体引入的2bp突变的杂合基因型(图4c)。1%的靶向效率(l%=2/2*100,在100种筛选的细胞中2种单等位基因校正的克隆体)与下一代测序分析(1.7%)一致(参见图4b)。对于SSEA4和TRA-1-60,以免疫染色证实了得到的HiPSC的多能性(参见图4d)。成功靶向的hiPSC克隆能够产生具有全部的三个胚层的性质的成熟畸胎瘤(teratomas)(参见图4e)。
实施例XV
连续的细胞基因组编辑的方法
根据某些方面,提供了用于在细胞中,包括例如人类干细胞的人类细胞中的基因组编辑的方法,其中将细胞遗传地修饰以包含编码酶的核酸,该酶与和靶DNA互补的RNA形成共定位复合物并以位点特异性方式裂解靶DNA。这类酶包括RNA引导的DNA结合蛋白,如II型CRISPR系统的RNA引导的DNA结合蛋白。示例性的酶是Cas9。根据这个方面,该细胞表达该酶并且从细胞周围的介质中将向导RNA提供至细胞。向导RNA和酶在靶DNA处形成共定位复合物,其中该酶剪切该DNA。可选地,为了在剪切位点插入至DNA中,可以存在供体核酸,例如通过非同源性末端结合或同源重组。根据一方面,编码与和靶DNA互补的RNA形成共定位复合物并以位点特异性方式裂解靶DNA的酶如Cas9的核酸,是受启动子影响的,如可以将该核酸激活和沉默。这样的启动子对本领域的那些技术人员而言是众所周知的。一个示例性的启动子是DOX诱导型启动子。根据一方面,通过可逆地将编码与和靶DNA互补的RNA形成共定位复合物并以位点特异性方式裂解靶DNA的酶的核酸插入至它的基因组中,遗传地修饰细胞。一旦插入,通过使用如转座酶的试剂可以除去该核酸。以这样的方式,在使用之后可以容易地除去该核酸。
根据一方面,提供了使用CRISPR系统在人类诱导多能干细胞(hiPSC)中的连续的基因组编辑系统。根据示例性的方面,该方法包括hiPSC系(line)与可逆地插入至基因组中的Cas9的使用(Cas9-hiPSC);以及已经将其从它们的天然形式修饰后的gRNA以允许它们从围绕该细胞的介质通过至该细胞中用于与Cas9一起使用。以某种方式已经将这类的gRNA用磷酸酶处理以除去磷酸酯基。通过在组织培养介质中补充磷酸酶处理后的gRNA与Cas9一起进行在细胞中的基因组编辑。这种途径能够使单日处理的在HiPSC中无痕的基因组编辑高达50%的效率,相比于迄今为止报道的最佳效率,其是2-10X倍更加有效的。进一步地,该方法易于使用并且具有显著降低的细胞毒性。本公开内容的实施方式包括hiPSC的单次编辑用于生物学研究以及治疗应用,HiPSC的多重编辑用于生物学研究以及治疗应用,定向的hiPSC演变以及hiPSC和其衍生细胞的表型筛选。
根据某些方面,除了干细胞之外,可以使用在本文中所描述的其他细胞系和有机体。例如,本文中所描述的方法可以用于动物细胞如小鼠或大鼠细胞以使能够产生稳定的Cas9整合的小鼠细胞和大鼠细胞并且通过从围绕细胞的介质中局部地引入磷酸酶处理的gRNA可以进行组织特异性基因组编辑。而且,可以将其他Cas9衍生物插入至许多细胞系和有机体,以及可以进行靶向基因组的操作,如可以进行序列特异性缺口、基因激活、抑制以及表观遗传修饰。
本公开内容的方面旨在产生稳定的具有插入至基因组的Cas9的hiPSC。本公开内容的方面旨在修饰RNA以能够通过细胞壁进入至细胞中并且与Cas9共定位同时避免细胞的免疫应答。这类修饰的向导RNA可以达到具有最小毒性的最佳的转染率。本公开内容的方面旨在使用磷酸酶处理的gRNA在Cas9-hiPSC中最优化基因组编辑。本公开内容的方面包括从hiPSC中消除Cas9以达到无痕的基因组编辑,其中已经将编码Cas9的核酸可逆地置于细胞基因组中。本公开内容的方面包括使用具有插入至基因组中的Cas9的hiPSC的生物医学工程以生成期望的遗传突变。这类工程改造的hiPSC保持多能性并且可以将其成功地分化为各种细胞类型,包括心肌细胞,其完全重演患者细胞系的表型。
本公开内容的方面包括用于多重基因组编辑的磷酸酶处理的gRNA的文库。本公开内容的方面包括产生每种携带1至几个在基因组中所称的突变的PGP细胞系的文库,这可以用作用于药物筛选的资源。本公开内容的方面包括产生具有所有以不同序列条码化从而跟踪要素的位置和活性的逆反式作用因子(逆转录反式作用因子,retrotranselements)的PGP1细胞系。
实施例XVI
生成稳定的具有插入至基因组中的Cas9的hiPSC
在dox诱导启动子下编码Cas9并且将构建体置于Piggybac载体中,可以将该载体插入基因组中并且借助于Piggybac转座酶将其在基因组中除去。PCR反应验证了稳定的载体插入(参见图14)。经由RT-QPCR测定诱导型Cas9表达。在培养基中补充1ug/mL的DOX8小时之后,Cas9的mRNA水平增强了1000X,在将DOX排出~20小时之后Cas9mRNA水平下降至正常水平(参见图15)。
根据一个方面,Cas9-hiPSC系统类基因组编辑绕开了Cas9质粒/RNA的转染程序,大的构建体在hiPSC中通常具有<1%的转染率。本Cas9-hiPSC系统可以用作在人类干细胞中进行高效基因组工程的平台。此外,使用Piggybac系统引入至hiPSC的Cas9盒基因,在引入转座酶之后可以从基因组中容易地除去。
实施例XVII
磷酸酶处理的向导RNA
为了能够在Cas9-hiPSC上连续的基因组编辑,生成一系列的编码gRNA的修饰RNA并且将其补充至与脂质体复合的Cas9-iPS培养基中。在没有任何加帽的情况下,磷酸酶处理的天然RNA达到了最佳的13%的HDR效率,比预先报道的5'帽-ModRNA高出30X(参见图16)。
根据一方面,向导RNA物理连接至供体DNA。用这样的方式,提供了耦合Cas9介导的基因组剪切以及ssODN介导的HDR的方法,因此刺激序列特异性的基因组编辑。与DNAssODN供体连接的具有最优浓度的gRNA达到了44%的HDR以及非特异性的2%的NHEJ(参见图17)。值得注意的是,在以核转染或电穿孔观察时,这种程序没有发生可见的毒性。
根据一方面,本公开内容提供了体外改造的编码gRNA的RNA结构,其实现了高的转染率、与基因组插入Cas9有关的基因组编辑效率。此外,本公开内容提供了gRNA-DNA嵌合构建体以将基因组剪切事件与同源重组反应(homologydirectedrecombinationreaction)结合。
实施例XVIII
从hiPSC可逆消除工程Cas9以实现无痕基因组编辑
根据某些方面,使用可逆的载体将Cas9盒基因插入至hiPSC细胞的基因组中。因此,使用PiggyBac载体将Cas9盒基因可逆地插入至hiPSC细胞的基因组中。通过用转座酶编码质粒转染细胞将Cas9盒基因从基因组编辑的hiPSC中除去。因此,本公开内容的方面包括使用对本领域的技术人员已知的可逆的载体。可逆的载体是可以将其插入至基因组中的一种,例如然后以对应的载体去除酶将其除去。这类载体和对应的载体去除酶对本领域的那些技术人员是已知的。通过PCR反应确定在移植的iPS细胞上进行的筛选以及Cas9盒基因缺失的克隆的恢复。因此,本公开内容提供了通过具有存在于细胞的永久的Cas9盒基因来编辑基因组而不影响其余的基因组的方法。
实施例XIX
iPGP1细胞中的基因组编辑
由于缺乏合适的模型系统,心肌病的发病机理的研究已经历史性地被阻碍。源自患者的诱导多能干细胞(iPSC)的心肌细胞分化提供了一种克服这种障碍的有希望的途径,并且心肌病的iPSC模型的报告已经开始出现。然而,这种希望的实现将需要克服源自患者的iPSC系的遗传异质性的方法。
使用Cas9-iPGP1细胞系以及结合至DNA的磷酸酶处理的向导RNA产生了三种除了在TAZ外显子6处的序列之外均是等基因的iPSC系,其经确定携带在巴思综合征(Barthsyndrome)患者中的单核苷酸缺失。单轮的RNA转染实现了~30%的HDR效率。将具有期望的突变的修饰的Cas9-iPGP1进行克隆(colonize)(参见图18)并且使细胞系分化为心肌细胞。源自改造的Cas9-iPGP1的心肌细胞完全重演了在源自患者的iPSC中和在新生的大鼠TAZ敲除模型中观察到的心磷脂、线粒体和ATP缺陷(参见图19)。因此,提供了在多能性细胞中校正引起疾病的突变,随后分化该细胞为期望的细胞类型的方法。
实施例XX
材料和方法
1.PiggyBacCas9dox诱导型稳定人类iPS/ES系的建立
1.在细胞达到70%的融合之后,用ROCK抑制剂Y27632以终浓度10uM预处理培养物过夜。
2.第二天通过将82μl的人类干细胞核转染溶液以及18ul的补充液1在1.5ml无菌的微量离心管中组合以制备核转染溶液。充分混合。在37℃下温育溶液5min。
3.吸出mTeSRl;在2mL/孔的六孔板中用DPBS平缓地冲洗细胞。
4.吸出DPBS,加入2mL/孔的维尔烯(Versene),并且将培养物放回在37℃的培养箱中直至它们变成圆形并且松散地附着,而未分离。这个过程需要3-7min。
5.平缓地吸出维尔烯并且加入mTeSRl。加入1ml的mTeSRl并且通过在它们中平缓地流动mTeSRl,用1000uL的微量移液器移出细胞。
6.收集取出的细胞,平缓地将它们粉碎成单个细胞悬浮液,并且通过血球计数计(hemacytometer)定量并且调整细胞密度至1百万个细胞/ml。
7.加入1ml细胞悬浮液至1.5ml微量离心管中并且在台式离心机中以1100RPM下离心5min。
8.在100μl的步骤2的人类干细胞核转染溶液中将细胞再悬浮。
9.使用1ml的微量吸管管嘴将细胞转移至核转染仪管(nucleofectorcuvette)中。在管中加入1μg的质粒转座酶以及5ug的PBCas9质粒至细胞悬浮液中。通过温和地涡流将细胞与DNA混合。
10.将管(cuvette)放入核转染仪中。选择程序B-016并且通过压按键X将细胞核转染。
11.在核转染之后在管中加入具有ROCK抑制剂的500ulmTeSRl介质。
12.使用提供的Pasteur塑料移液器从管中将核转染细胞吸出。并且将细胞逐滴地转移至良好涂覆基质胶的具有ROCK抑制剂的6孔板mTeSRl介质中。在37℃下将细胞温育过夜。
13.第二天改变至mTesrl的介质并且在72小时的转染之后;在lug/ml的终浓度下加入嘌呤霉素。并且在7天内建立该系。
2.RNA制备
1.制备具有gRNA编码序列上游的T7启动子的DNA模板。
2.使用MegaClear纯化(试剂盒)将DNA纯化并且将其浓度标准化。
3.制备普通(定制,Custom)NTPS混合物用于不同的gRNA生产。
#1天然RNA混合物 [最终](mM)
GTP 7.544 -->
ATP 7.5
CTP 7.5
UTP 7.5
总体积
#3修饰的RNA混合物 [最终](mM)
GTP 7.5
ATP 7.5
5-Me-CTP(Tri-Link) 7.5
拟-UTP(Tri-Link) 7.5
总体积
4.在室温下制备体外转录混合物。
5.在37℃下温育4小时(3-6hr可以)(热循环仪)。
6.加入2μlTurboDNAse(来自Ambion的MEGA转录试剂盒(MEGAscriptkit))至每一个样品。平缓地混合并且在37℃下温育15’。
7.使用来自Ambion的MegaClear根据制造商的说明纯化DNAse处理后的反应物。
8.使用MEGAclear纯化RNA(可以将纯化的RNA在-80下存储数月)。
9.除去磷酸酯基团以避免来自宿主细胞的Toll2免疫反应。
平缓地将样品混合并且在37℃下温育30’(30’至1小时可以)
3.RNA转染
1.以10K-20K个细胞/48孔布板(无抗生素)。将细胞30-50%融合用于转染。
2.在转染之前至少两小时将细胞介质改变至含有B18R(200ng/ml)、DOX(1ug/ml))、嘌呤霉素(2ug/ml)。
3.制备包含gRNA(0.5ug~2ug)、供体DNA(0.5ug~2ug)和RNAiMax的转染试剂,在室温中将混合物温育15分钟并且转移至细胞。
4.单人类iPS细胞接种以及单克隆体提取
1.在dox诱导4天以及dox收回(withdraw)1天之后,吸出介质,以DPBS平缓地冲洗。加入2mL/孔的维尔烯,并且将培养物放回至37℃下的培养箱中直至它们变成圆形(聚集,roundup)并且松散地附着但不分离。这需要3-7min。
2.平缓地吸出维尔烯并且加入mTeSRl。加入1ml的mTeSRl并且通过在它们中平缓地流动mTeSRl,用1000uL的微量移液器取出细胞。
3.收集取出的细胞,平缓地将它们粉碎至单个细胞悬浮液,并且通过血球计数计定量并且调整细胞密度至100K个细胞/ml。
4.在50K、100K和400K/10cm皿的细胞密度下,将细胞接种至具有mTeSRl加ROCK抑制剂的涂覆基质胶的10cm皿中。
5.筛选单细胞形成克隆
1.在10cm皿中培养12天之后,克隆大得足以通过肉眼确定并且通过克隆标记物(colonmarker)标记。不要使克隆变得过大并且彼此粘附。
2.将10cm皿放至培养罩(培养间,culturehood)并且使用具有过滤吸嘴的P20移液管(设置在10ul)。将24孔板的一个孔吸出10ul介质。通过刮刻克隆成小块而提取克隆并且将其转移至24孔板的一个孔中。每一过滤吸嘴(filtertip)用于每一克隆。
3。在4-5天之后,在24孔板的一个孔中的克隆变得大的足以将其分离。
4.吸出介质并且以2mL/孔DPBS冲洗。
5.吸出DPBS,以250ul/孔分散酶(dispase)将其替换(0.1U/mL)。
并且在37℃下在分散酶中温育细胞7min。
6.以2ml的DPBS替换分散酶。
7.加入250ul的mTeSRl。使用细胞刮刀以聚集(lodgeoff)细胞并且收集细胞。
8.转移125ul细胞悬浮液至涂覆基质胶的24孔板的孔中。
9.转移125ul细胞悬浮液至1.5ml的微量离心管用于基因组DNA提取。
6.克隆筛选。
1.由步骤7.7将管离心。
2.吸出介质并且每孔加入250ul裂解缓冲液(10mM+TrispH7.5+(或+8.0),10mMEDTA,10mM。
3.NaCl,+10%SDS,40ug/mL+蛋白酶K(在使用缓冲液前加入新鲜液)。
4.在55℃下温育过夜。
5.通过添加250ul异丙醇使DNA析出。
6.在最高速度下旋转30分钟。用70%乙醇清洗。
7.平缓地除去乙醇。空气干燥5min。
8.用100-200uldH2O使gDNA再悬浮。
9.用特异性引物PCR扩增靶基因组区域。
10.用各自的引物将PCR产物Sanger测序。
11.分析Sanger序列数据并且扩增靶克隆。
7.Piggybac载体去除
1.重复步骤2.1-2.9
2.使用1mL移液管吸嘴将细胞转移至核转染管。加入2μg的转座酶质粒至在管中的细胞悬浮液中。通过平缓地涡旋将细胞与DNA混合。
3.重复步骤2.10-2.11
4.使用提供的巴斯德塑料移液管从管中吸出核转染细胞。并且逐滴地转移细胞至具有mTeSRl介质加ROCK抑制剂的涂覆基质胶的10cm的皿中。在37℃下温育细胞过夜。
5.第二天改变介质为mTeSRl并且在随后的4天每天都改变该介质。
6.在克隆变得足够大之后,取出20-50个克隆并且将其接种至24孔中。
7.用PBCas9PiggyBac载体引物基因分型该克隆并且扩增阴性克隆。
参考文献
通过以下数字在整个说明书中指定参考文献并将其中的全部阐述结合至说明书中。通过引用将以下参考文献中的每个的全部内容结合于此。
1.Carroll,D.(2011)Genomeengineeringwithzinc-fingernucleases.Genetics,188,773-82.
2.Wood,A.J.,Lo,T.-W.,Zeitler,B.,Pickle,C.S.,Ralston,E.J.,Lee,A.H.,Amora,R.,Miller,J.C.,Leung,E.,Meng,X.,etal.(2011)TargetedgenomeeditingacrossspeciesusingZFNsandTALENs.Science(NewYork,N.Y.),333,307.
3.Perez-Pinera,P.,Ousterout,D.G.andGersbach,C.A.(2012)Advancesintargetedgenomeediting.Currentopinioninchemicalbiology,16,268-77.
4.Symington,L.S.andGautier,J.(2011)Double-strandbreakendresectionandrepairpathwaychoice.Annualrevicwofgenetics,45,247-71.
5.Urnov,F.D.,Miller,J.C.,Lee,Y.-L.,Beausejour,C.M.,Rock,J.M.,Augustus,S.,Jamieson,A.C.,Porteus,M.H.,Gregory,P.D.andHolmes,M.C.(2005)Highlyefficientendogenoushumangenecorrectionusingdesignedzinc-fingernucleases.Nature,435,646-51.
6.Boch,J.,Scholze,H.,Schornack,S.,Landgraf,A.,Hahn,S.,Kay,S.,Lahaye,T.,Nickstadt,A.andBonas,U.(2009)BreakingthecodeofDNAbindingspecificityofTAL-typeIIIeffectors.Science(NewYork,N.Y.),326,1509-12.
7.Cell,P.,Replacement,K.S.,Talens,A.,Type,A.,Collection,C.,Ccl-,A.andQuickextract,E.GeneticengineeringofhumanpluripotentcellsusingTALEnucleases.
8.Mussolino,C.,Morbitzer,R.,Lütge,F.,Dannemann,N.,Lahaye,T.andCathomen,T.(2011)AnovelTALEnucleasescaffoldenableshighgenomeeditingactivityincombinationwithlowtoxicity.Nucleicacidsresearch,39,9283-93.
9.Ding,Q.,Lee,Y.,Schaefer,E.A.K.,Peters,D.T.,Veres,A.,Kim,K.,Kuperwasser,N.,Motola,D.L.,Meissner,T.B.,Hendriks,W.T.,etal.(2013)ResourceATALENGenome-EditingSystemforGeneratingHumanStemCell-BasedDiseaseModels.
10.Hockemeyer,D.,Wang,H.,Kiani,S.,Lai,C.S.,Gao,Q.,Cassady,J.P.,Cost,G.J.,Zhang,L.,Santiago,Y.,Miller,J.C.,etal.(2011)GeneticengineeringofhumanpluripotentcellsusingTALEnucleases.Naturebiotechnology,29,731-4.
11.Bedell,V.M.,Wang,Y.,Campbell,J.M.,Poshusta,T.L.,Starker,C.G.,KrugIi,R.G.,Tan,W.,Penheiter,S.G.,Ma,A.C.,Leung,A.Y.H.,etal.(2012)Invivogenomeeditingusingahigh-efficiencyTALENsystem.Nature,490,114-118.
12.Miller,J.C.,Tan,S.,Qiao,G.,Barlow,K.a,Wang,J.,Xia,D.F.,Meng,X.,Paschon,D.E.,Leung,E.,Hinkley,S.J.,etal.(2011)ATALEnucleasearchitectureforefficientgenomeediting.Naturebiotectnology,29,143-8.
13.Holkers,M.,Maggio,I.,Liu,J.,Janssen,J.M.,Miselli,F.,Mussolino,C.,Recchia,A.,Cathomen,T.andM.aF.V(2012)DifferentialintegrityofTALEnucleasegenesfollowingadenoviralandlentiviralvectorgenetransferintohumancells.Nucleicacidsresearch,10.1093/nar/gks1446.
14.Reyon,D.,Tsai,S.Q.,Khayter,C.,Foden,J.a,Sander,J.D.andJoung,J.K.(2012)FLASHassemblyofTALENsforhigh-throughputgenomeediting.NatureBiotechnology,30,460-465.
15.Qiu,P.,Shandilya,H.,D’Alessio,J.M.,O’Connor,K.,Durocher,J.andGerard,G.F.(2004)MutationdetectionusingSurveyornuclease.BioTechniques,36,702-7.
16.Mali,P.,Yang,L.,Esvelt,K.M.,Aach,J.,Guell,M.,DiCarlo,J.E.,Norville,J.E.andChurch,G.M.(2013)RNA-guidedhumangenomeengineefingviaCas9.Science(NewYork,N.Y.),339,823-6.
17.Ding,Q.,Regan,S.N.,Xia,Y.,Oostrom,L.A.,Cowan,C.A.andMusunuru,K.(2013)EnhancedEfficiencyofHumanPluripotentStemCellGenomeEditingthroughReplacingTALENswithCRISPRs.CellStemCell,12,393-394.
18.Cong,L.,Ran,F.A.,Cox,D.,Lin,S.,Barretto,R.,Habib,N.,Hsu,P.D.,Wu,X.,Jiang,W.,Marraffini,L.a,etal.(2013)MultiplexgenomeengineeringusingCRISPR/Cassystems.Science(NewYork,N.Y.),339,819-23.
19.Cho,S.W.,Kim,S.,Kim,J.M.andKim,J.-S.(2013)TargetedgenomeengineeringinhumancellswiththeCas9RNA-guidedendonuclease.Naturebiotechnology,31,230-232.
20.Hwang,W.Y.,Fu,Y.,Reyon,D.,Maeder,M.L.,Tsai,S.Q.,Sander,J.D.,Peterson,R.T.,Yeh,J.-R.J.andJoung,J.K.(2013)EfficientgenomeeditinginzebrafishusingaCRISPR-Cassystem.Naturebiotechnology,31,227-229.
21.Chen,F.,Pruett-Miller,S.M.,Huang,Y.,Gjoka,M.,Duda,K.,Taunton,J.,Collingwood,T.N.,Frodin,M.andDavis,G.D.(2011)High-frequencygenomeeditingusingssDNAoligonucleotideswithzinc-fingernucleases.Naturemethods,8,753-5.
22.Soldner,F.,Laganière,J.,Cheng,A.W.,Hockemeyer,D.,Gao,Q.,Alagappan,R.,Khurana,V.,Golbe,L.I.,Myers,R.H.,Lindquist,S.,etal.(2011)GenerationofisogenicpluripotentstemcellsdifferingexclusivelyattwoearlyonsetParkinsonpointmutations.Cell,146,318-31.
23.Valamehr,B.,Abujarour,R.,Robinson,M.,Le,T.,Robbins,D.,Shoemaker,D.andFlynn,P.(2012)Anovelplatformtoenablethehigh-throughputderivationandcharacterizationoffeeder-freehumaniPSCs.Scientificreports,2,213.
24.Sanjana,N.E.,Cong,L.,Zhou,Y.,Cunniff,M.M.,Feng,G.andZhang,F.(2012)Atranscriptionactivator-likeeffectortoolboxforgenomeengineering.Natureprotocols,7,171-92.
25.Gibson,D.G.,Young,L.,Chuang,R.,Venter,J.C.,Iii,C.A.H.,Smith,H.O.andAmerica,N.(2009)EnzymaticassemblyofDNAmoleculesuptoseveralhundredkilobases.6,12-16.
26.Zou,J.,Maeder,M.L.,Mali,P.,Pruett-Miller,S.M.,Thibodeau-Beganny,S.,Chou,B.-K.,Chen,G.,Ye,Z.,Park,I.-H.,Daley,G.Q.,etal.(2009)Genetargetingofadisease-relatedgeneinhumaninducedplufipotentstemandembryonicstemcells.Cellstemcell,5,97-110.
27.Perez,E.E.,Wang,J.,Miller,J.C.,Jouvenot,Y.,Kim,K.a,Liu,O.,Wang,N.,Lee,G.,Bartsevich,V.V,Lee,Y.-L.,etal.(2008)EstablishmentofHIV-1resistanceinCD4+Tcellsbygenomeeditingusingzinc-fingernucleases.Naturebiotechnology,26,808-16.
28.Bhakta,M.S.,Henry,I.M.,Ousterout,D.G.,Das,K.T.,Lockwood,S.H.,Meckler,J.F.,Wallen,M.C.,Zykovich,A.,Yu,Y.,Leo,H.,etal.(.2013)Highlyactivezinc-fingernucleasesbyextendedmodularassembly.Genomeresearch,10.1101/gr.143693.112.
29.Kim,E.,Kim,S.,Kim,D.H.,Choi,B.-S.,Choi,I.-Y.andKim,J.-S.(2012)PrecisiongenomeengineeringwithprogrammableDNA-nickingenzymes.Genomeresearch,22,1327-33.
30.Gupta,A.,Meng,X.,Zhu,L.J.,Lawson,N.D.andWolfe,S.a(2011)Zincfingerprotein-dependentand-independentcontributionstotheinvivooff-targetactivityofzincfingernucleases.Nucleicacidsresearch,39,381-92.
31.Park,I.-H.,Lerou,P.H.,Zhao,R.,Huo,H.andDaley,G.Q.(2008)Generationofhuman-inducedpluripotentstemcells.Natureprotocols,3,1180-6.
32.Cermak,T.,Doyle,E.L.,Christian,M.,Wang,L.,Zhang,Y.,Schmidt,C.,Baller,J.A.,Somia,N.V,Bogdanove,A.J.andVoytas,D.F.(2011)EfficientdesignandassemblyofcustomTALENandotherTALeffector-basedconstructsforDNAtargeting.Nucleicacidsresearch,39,e82.
33.Briggs,A.W.,Rios,X.,Chari,R.,Yang,L.,Zhang,F.,Mali,P.andChurch,G.M.(2012)Iterativecappedassembly:rapidandscalablesynthesisofrepeat-moduleDNAsuchasTALeffectorsfiomindividualmonomers.Nucleicacidsresearch,10.1093/nar/gks624.
34.Zhang,F.,Cong,L.,Lodato,S.,Kosuri,S.,Church,G.M.andArlotta,P.(2011)LETTErsEfficientconstructionofsequence-specificTALeffectorsformodulatingmammaliantranscription.29,149-154.
35.Pathak,V.K.andTemin,H.M.(1990)Broadspectrumofinvivoforwardmutations,hypermutations,andmutationalhotspotsinaretroviralshuttlevectorafterasinglereplicationcycle:substitutions,frameshifis,andhypermutations.ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica,87,6019-23.
36.Tian,J.,Ma,K.andSaaem,I.(2009)Advancinghigh-throughputgenesynthesistechnology.MolecularbioSystems,5,714-22.
37.Zou,J.,Mali,P.,Huang,X.,Dowey,S.N.andCheng,L.(2011)Site-specificgeneconectionofapointmutationinhumaniPScellsderivedfromanadultpatientwithsicklecelldisease.Blood,118,4599-608.
38.Mali,P.,Yang,L.,Esvelt,K.M.,Aach,J.,Guell,M.,Dicarlo,J.E.,Norville,J.E.andChurch,G.M.(2013)RNA-GuidedHumanGenome.
39.Boyle,A.P.,Davis,S.,Shulha,H.P.,Meltzer,P.,Margulies,E.H.,Weng,Z.,Furey,T.S.andCrawford,G.E.(2008)High-resolutionmappingandcharacterizationofopenchromatinacrossthegenome.Cell,132,311-22.
40.Orlando,S.J.,Santiago,Y.,DeKelver,R.C.,Freyvert,Y.,Boydston,E.a,Moehle,E.a,Choi,V.M.,Gopalan,S.M.,Lou,J.F.,Li,J.,etal.(2010)Zinc-fingernuclease-driventargetedintegrationintomammaliangenomesusingdonorswithlimitedchromosomalhomology.Nucleicacidsresearch,38,e152.
41.Wang,Z.,Zhou,Z.-J.,Liu,D.-P.andHuang,J.-D.(2008)Double-strandedbreakcanberepairedbysingle-strandedoligonucleotidesviatheATM/ATRpathwayinmammaliancells.Oligonucleotides,18,21-32.
42.Rios,X.,Briggs,A.W.,Christodoulou,D.,Gorham,J.M.,Seidhman,J.G.andChurch,G.M.(2012)Stablegenetargetinginhumancellsusingsingle-strandoligonucleotideswithmodifiedbases.PloSone,7,e36697.
43.Elliott,B.,Richardson,C.,Winderbaum,J.,Jac,A.,Jasin,M.andNickoloff,J.A.C.A.(1998)GeneConversionTractsfromDouble-StrandBreakRepairinMammalianCellsGeneConversionTractsfromDouble-StrandBreakRepairinMammalianCells.18.
44.Lombardo,A.,Genovese,P.,Beausejour,C.M.,Colleoni,S.,Lee,Y.-L.,Kim,K.a,Ando,D.,Urnov,F.D.,Galli,C.,Gregory,P.D.,etal.(2007)Geneeditinginhumanstemcellsusingzincfingernucleasesandintegrase-defectivelentiviralvectordelivery.Naturebiotechnology,25,1298-306.
45.Jinek,M.,Chylinski,K.,Fonfara,I.,Hauer,M.,Doudna,J.aandCharpentier,E.(2012)Aprogrammabledual-RNA-guidedDNAendonucleaseinadaptivebacterialimmunity.Science(NewYork,N.Y.),337,816-21.
46.Shrivastav,M.,DeHaro,L.P.andNickoloff,J.a(2008)RegulationofDNAdouble-straudbreakrepairpathwaychoice.Cellresearch,18,134-47.
47.Kim,Y.G.,Cha,J.andChandrasegaran,S.(1996)Hybridrestrictionenzymes:zincfingerfusionstoFokIcleavagedomain.ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica,93,1156-60.
48.Mimitou,E.P.andSymington,L.S.(2008)Sae2,ExolandSgslcollaborateinDNAdouble-strandbreakprocessing.Nature,455,770-4.
49.Doyon,Y.,Choi,V.M.,Xia,D.F.,Vo,T.D.,Gregory,P.D.andHolmes,M.C.(2010)Transientcoldshockenhanceszinc-fingernuclease-mediatedgenedisruption.Naturemethods,7,459-60.

Claims (158)

1.一种改变细胞中的靶DNA的方法,包括:
将缺少100bp或更长重复序列的TALEN引入至细胞,其中,所述TALEN裂解所述靶DNA并且所述细胞经历非同源性末端接合以在所述细胞中产生改变的DNA。
2.根据权利要求1所述的方法,其中,所述TALEN缺少90bp或更长的重复序列。
3.根据权利要求1所述的方法,其中,所述TALEN缺少80bp或更长的重复序列。
4.根据权利要求1所述的方法,其中,所述TALEN缺少70bp或更长的重复序列。
5.根据权利要求1所述的方法,其中,所述TALEN缺少60bp或更长的重复序列。
6.根据权利要求1所述的方法,其中,所述TALEN缺少50bp或更长的重复序列。
7.根据权利要求1所述的方法,其中,所述TALEN缺少40bp或更长的重复序列。
8.根据权利要求1所述的方法,其中,所述TALEN缺少30bp或更长的重复序列。
9.根据权利要求1所述的方法,其中,所述TALEN缺少20bp或更长的重复序列。
10.根据权利要求1所述的方法,其中,所述TALEN缺少19bp或更长的重复序列。
11.根据权利要求1所述的方法,其中,所述TALEN缺少18bp或更长的重复序列。
12.根据权利要求1所述的方法,其中,所述TALEN缺少17bp或更长的重复序列。
13.根据权利要求1所述的方法,其中,所述TALEN缺少16bp或更长的重复序列。
14.根据权利要求1所述的方法,其中,所述TALEN缺少15bp或更长的重复序列。
15.根据权利要求1所述的方法,其中,所述TALEN缺少14bp或更长的重复序列。
16.根据权利要求1所述的方法,其中,所述TALEN缺少13bp或更长的重复序列。
17.根据权利要求1所述的方法,其中,所述TALEN缺少12bp或更长的重复序列。
18.根据权利要求1所述的方法,其中,所述TALEN缺少11bp或更长的重复序列。
19.根据权利要求1所述的方法,其中,所述TALEN缺少10bp或更长的重复序列。
20.根据权利要求1所述的方法,其中,所述细胞是真核细胞。
21.根据权利要求1所述的方法,其中,所述细胞是酵母细胞、植物细胞或动物细胞。
22.根据权利要求1所述的方法,其中,所述细胞是体细胞。
23.根据权利要求1所述的方法,其中,所述细胞是干细胞。
24.根据权利要求1所述的方法,其中,所述细胞是人类干细胞。
25.根据权利要求1所述的方法,包括:
将编码所述TALEN的第一外来核酸引入至所述细胞中,
其中,所述TALEN表达,并且
其中,所述TALEN在所述细胞中裂解所述靶DNA以产生改变的DNA。
26.根据权利要求1所述的方法,包括:
将包含编码所述TALEN的第一外来核酸的病毒引入至所述细胞中,
其中,所述TALEN表达,并且
其中,所述TALEN在所述细胞中裂解所述靶DNA以产生改变的DNA。
27.根据权利要求1所述的方法,包括:
将编码所述TALEN的第一外来核酸引入至所述细胞中,所述TALEN具有以下TALE序列或与所述TALE序列具有至少90%序列同一性的序列,
CTAACCCCTGAACAGGTAGTCGCTATAGCTTCAAATATCGGGGGCAAGCAAGCACTTGAGACCGTTCAACGACTCCTGCCAGTGCTCTGCCAAGCCCATGGATTGACTCCGGAGCAAGTCGTCGCGATCGCGAGCAACGGCGGGGGGAAGCAGGCGCTGGAAACTGTTCAGAGACTGCTGCCTGTACTTTGTCAGGCGCATGGTCTCACCCCCGAACAGGTTGTCGCAATAGCAAGTAATATAGGCGGTAAGCAAGCCCTAGAGACTGTGCAACGCCTGCTCCCCGTGCTGTGTCAGGCTCACGGTCTGACACCTGAACAAGTTGTCGCGATAGCCAGTCACGACGGGGGAAAACAAGCTCTAGAAACGGTTCAAAGGTTGTTGCCCGTTCTGTGCCAAGCACATGGGTTAACACCCGAACAAGTAGTAGCGATAGCGTCAAATAACGGGGGTAAACAGGCTTTGGAGACGGTACAGCGGTTATTGCCGGTCCTCTGCCAGGCCCACGGACTTACGCCAGAACAGGTGGTTGCAATTGCCTCCAACATCGGCGGGAAACAAGCGTTGGAAACTGTGCAGAGACTCCTTCCTGTTTTGTGTCAAGCCCACGGCTTGACGCCTGAGCAGGTTGTGGCCATCGCTAGCCACGACGGAGGGAAGCAGGCTCTTGAAACCGTACAGCGACTTCTCCCAGTTTTGTGCCAAGCTCACGGGCTAACCCCCGAGCAAGTAGTTGCCATAGCAAGCAACGGAGGAGGAAAACAGGCATTAGAAACAGTTCAGCGCTTGCTCCCGGTACTCTGTCAGGCACACGGTCTAACTCCGGAACAGGTCGTAGCCATTGCTTCCCATGATGGCGGCAAACAGGCGCTAGAGACAGTCCAGAGGCTCTTGCCTGTGTTATGCCAGGCACATGGCCTCACCCCGGAGCAGGTCGTTGCCATCGCCAGTAATATCGGCGGAAAGCAAGCTCTCGAAACAGTACAACGGCTGTTGCCAGTCCTATGTCAAGCTCATGGACTGACGCCCGAGCAGGTAGTGGCAATCGCATCTCACGATGGAGGTAAACAAGCACTCGAGACTGTCCAAAGATTGTTACCCGTACTATGCCAAGCGCATGGTTTAACCCCAGAGCAAGTTGTGGCTATTGCATCTAACGGCGGTGGCAAACAAGCCTTGGAGACAGTGCAACGATTACTGCCTGTCTTATGTCAGGCCCATGGCCTTACTCCTGAGCAAGTCGTAGCTATCGCCAGCAACATAGGTGGGAAACAGGCCCTGGAAACCGTACAACGTCTCCTCCCAGTACTTTGTCAAGCACACGGGTTGACACCGGAACAAGTGGTGGCGATTGCGTCCAACGGCGGAGGCAAGCAGGCACTGGAGACCGTCCAACGGCTTCTTCCGGTTCTTTGCCAGGCTCATGGGCTCACGCCAGAGCAGGTGGTAGCAATAGCGTCGAACATCGGTGGTAAGCAAGCGCTTGAAACGGTCCAGCGTCTTCTGCCGGTGTTGTGCCAGGCGCACGGACTCACACCAGAACAAGTGGTTGCTATTGCTAGTAACAACGGTGGAAAGCAGGCCCTCGAGACGGTGCAGAGGTTACTTCCCGTCCTCTGTCAAGCGCACGGCCTCACTCCAGAGCAAGTGGTTGCGATCGCTTCAAACAATGGTGGAAGACCTGCCCTGGAA,
其中,所述TALEN表达,并且
其中,所述TALEN在所述细胞中裂解所述靶DNA以产生改变的DNA。
28.根据权利要求1所述的方法,包括:
将包含编码所述TALEN的第一外来核酸的病毒引入至所述细胞中,所述TALEN具有以下TALE序列或与所述TALE序列具有至少90%序列同一性的序列
CTAACCCCTGAACAGGTAGTCGCTATAGCTTCAAATATCGGGGGCAAGCAAGCACTTGAGACCGTTCAACGACTCCTGCCAGTGCTCTGCCAAGCCCATGGATTGACTCCGGAGCAAGTCGTCGCGATCGCGAGCAACGGCGGGGGGAAGCAGGCGCTGGAAACTGTTCAGAGACTGCTGCCTGTACTTTGTCAGGCGCATGGTCTCACCCCCGAACAGGTTGTCGCAATAGCAAGTAATATAGGCGGTAAGCAAGCCCTAGAGACTGTGCAACGCCTGCTCCCCGTGCTGTGTCAGGCTCACGGTCTGACACCTGAACAAGTTGTCGCGATAGCCAGTCACGACGGGGGAAAACAAGCTCTAGAAACGGTTCAAAGGTTGTTGCCCGTTCTGTGCCAAGCACATGGGTTAACACCCGAACAAGTAGTAGCGATAGCGTCAAATAACGGGGGTAAACAGGCTTTGGAGACGGTACAGCGGTTATTGCCGGTCCTCTGCCAGGCCCACGGACTTACGCCAGAACAGGTGGTTGCAATTGCCTCCAACATCGGCGGGAAACAAGCGTTGGAAACTGTGCAGAGACTCCTTCCTGTTTTGTGTCAAGCCCACGGCTTGACGCCTGAGCAGGTTGTGGCCATCGCTAGCCACGACGGAGGGAAGCAGGCTCTTGAAACCGTACAGCGACTTCTCCCAGTTTTGTGCCAAGCTCACGGGCTAACCCCCGAGCAAGTAGTTGCCATAGCAAGCAACGGAGGAGGAAAACAGGCATTAGAAACAGTTCAGCGCTTGCTCCCGGTACTCTGTCAGGCACACGGTCTAACTCCGGAACAGGTCGTAGCCATTGCTTCCCATGATGGCGGCAAACAGGCGCTAGAGACAGTCCAGAGGCTCTTGCCTGTGTTATGCCAGGCACATGGCCTCACCCCGGAGCAGGTCGTTGCCATCGCCAGTAATATCGGCGGAAAGCAAGCTCTCGAAACAGTACAACGGCTGTTGCCAGTCCTATGTCAAGCTCATGGACTGACGCCCGAGCAGGTAGTGGCAATCGCATCTCACGATGGAGGTAAACAAGCACTCGAGACTGTCCAAAGATTGTTACCCGTACTATGCCAAGCGCATGGTTTAACCCCAGAGCAAGTTGTGGCTATTGCATCTAACGGCGGTGGCAAACAAGCCTTGGAGACAGTGCAACGATTACTGCCTGTCTTATGTCAGGCCCATGGCCTTACTCCTGAGCAAGTCGTAGCTATCGCCAGCAACATAGGTGGGAAACAGGCCCTGGAAACCGTACAACGTCTCCTCCCAGTACTTTGTCAAGCACACGGGTTGACACCGGAACAAGTGGTGGCGATTGCGTCCAACGGCGGAGGCAAGCAGGCACTGGAGACCGTCCAACGGCTTCTTCCGGTTCTTTGCCAGGCTCATGGGCTCACGCCAGAGCAGGTGGTAGCAATAGCGTCGAACATCGGTGGTAAGCAAGCGCTTGAAACGGTCCAGCGTCTTCTGCCGGTGTTGTGCCAGGCGCACGGACTCACACCAGAACAAGTGGTTGCTATTGCTAGTAACAACGGTGGAAAGCAGGCCCTCGAGACGGTGCAGAGGTTACTTCCCGTCCTCTGTCAAGCGCACGGCCTCACTCCAGAGCAAGTGGTTGCGATCGCTTCAAACAATGGTGGAAGACCTGCCCTGGAA,
其中,所述TALEN表达,并且
其中,所述TALEN在所述细胞中裂解所述靶DNA以产生改变的DNA。
29.一种改变细胞中的靶DNA的方法,包括:
在细胞内结合缺少100bp或更长重复序列的TALEN和供体核酸序列,其中,所述TALEN裂解所述靶DNA并且所述供体核酸序列插入至所述细胞中的所述DNA中。
30.根据权利要求29所述的方法,其中,所述细胞经历非同源性末端接合以在所述细胞中产生改变的DNA。
31.根据权利要求29所述的方法,其中,所述细胞经历同源重组以在所述细胞中产生改变的DNA。
32.根据权利要求29所述的方法,其中,所述TALEN缺少90bp或更长的重复序列。
33.根据权利要求29所述的方法,其中,所述TALEN缺少80bp或更长的重复序列。
34.根据权利要求29所述的方法,其中,所述TALEN缺少70bp或更长的重复序列。
35.根据权利要求29所述的方法,其中,所述TALEN缺少60bp或更长的重复序列。
36.根据权利要求29所述的方法,其中,所述TALEN缺少50bp或更长的重复序列。
37.根据权利要求29所述的方法,其中,所述TALEN缺少40bp或更长的重复序列。
38.根据权利要求29所述的方法,其中,所述TALEN缺少30bp或更长的重复序列。
39.根据权利要求29所述的方法,其中,所述TALEN缺少20bp或更长的重复序列。
40.根据权利要求29所述的方法,其中,所述TALEN缺少19bp或更长的重复序列。
41.根据权利要求29所述的方法,其中,所述TALEN缺少18bp或更长的重复序列。
42.根据权利要求29所述的方法,其中,所述TALEN缺少17bp或更长的重复序列。
43.根据权利要求29所述的方法,其中,所述TALEN缺少16bp或更长的重复序列。
44.根据权利要求29所述的方法,其中,所述TALEN缺少15bp或更长的重复序列。
45.根据权利要求29所述的方法,其中,所述TALEN缺少14bp或更长的重复序列。
46.根据权利要求29所述的方法,其中,所述TALEN缺少13bp或更长的重复序列。
47.根据权利要求29所述的方法,其中,所述TALEN缺少12bp或更长的重复序列。
48.根据权利要求29所述的方法,其中,所述TALEN缺少11bp或更长的重复序列。
48.根据权利要求29所述的方法,其中,所述TALEN缺少10bp或更长的重复序列。
50.根据权利要求29所述的方法,其中,所述细胞是真核细胞。
51.根据权利要求29所述的方法,其中,所述细胞是酵母细胞、植物细胞或动物细胞。
52.根据权利要求29所述的方法,其中,所述细胞是体细胞。
53.根据权利要求29所述的方法,其中,所述细胞是干细胞。
54.根据权利要求29所述的方法,其中,所述细胞是人类干细胞。
55.根据权利要求29所述的方法,包括:
将编码所述TALEN的第一外来核酸引入至所述细胞中,
其中,所述TALEN表达,并且
其中,所述TALEN在所述细胞中裂解所述靶DNA以产生改变的DNA。
56.根据权利要求29所述的方法,包括:
将包含编码所述TALEN的第一外来核酸的病毒引入至所述细胞中,
其中,所述TALEN表达,并且
其中,所述TALEN在所述细胞中裂解所述靶DNA以产生改变的DNA。
57.根据权利要求29所述的方法,包括:
将编码所述TALEN的第一外来核酸引入至所述细胞中,所述TALEN具有以下TALE序列或与所述TALE序列具有至少90%序列同一性的序列
CTAACCCCTGAACAGGTAGTCGCTATAGCTTCAAATATCGGGGGCAAGCAAGCACTTGAGACCGTTCAACGACTCCTGCCAGTGCTCTGCCAAGCCCATGGATTGACTCCGGAGCAAGTCGTCGCGATCGCGAGCAACGGCGGGGGGAAGCAGGCGCTGGAAACTGTTCAGAGACTGCTGCCTGTACTTTGTCAGGCGCATGGTCTCACCCCCGAACAGGTTGTCGCAATAGCAAGTAATATAGGCGGTAAGCAAGCCCTAGAGACTGTGCAACGCCTGCTCCCCGTGCTGTGTCAGGCTCACGGTCTGACACCTGAACAAGTTGTCGCGATAGCCAGTCACGACGGGGGAAAACAAGCTCTAGAAACGGTTCAAAGGTTGTTGCCCGTTCTGTGCCAAGCACATGGGTTAACACCCGAACAAGTAGTAGCGATAGCGTCAAATAACGGGGGTAAACAGGCTTTGGAGACGGTACAGCGGTTATTGCCGGTCCTCTGCCAGGCCCACGGACTTACGCCAGAACAGGTGGTTGCAATTGCCTCCAACATCGGCGGGAAACAAGCGTTGGAAACTGTGCAGAGACTCCTTCCTGTTTTGTGTCAAGCCCACGGCTTGACGCCTGAGCAGGTTGTGGCCATCGCTAGCCACGACGGAGGGAAGCAGGCTCTTGAAACCGTACAGCGACTTCTCCCAGTTTTGTGCCAAGCTCACGGGCTAACCCCCGAGCAAGTAGTTGCCATAGCAAGCAACGGAGGAGGAAAACAGGCATTAGAAACAGTTCAGCGCTTGCTCCCGGTACTCTGTCAGGCACACGGTCTAACTCCGGAACAGGTCGTAGCCATTGCTTCCCATGATGGCGGCAAACAGGCGCTAGAGACAGTCCAGAGGCTCTTGCCTGTGTTATGCCAGGCACATGGCCTCACCCCGGAGCAGGTCGTTGCCATCGCCAGTAATATCGGCGGAAAGCAAGCTCTCGAAACAGTACAACGGCTGTTGCCAGTCCTATGTCAAGCTCATGGACTGACGCCCGAGCAGGTAGTGGCAATCGCATCTCACGATGGAGGTAAACAAGCACTCGAGACTGTCCAAAGATTGTTACCCGTACTATGCCAAGCGCATGGTTTAACCCCAGAGCAAGTTGTGGCTATTGCATCTAACGGCGGTGGCAAACAAGCCTTGGAGACAGTGCAACGATTACTGCCTGTCTTATGTCAGGCCCATGGCCTTACTCCTGAGCAAGTCGTAGCTATCGCCAGCAACATAGGTGGGAAACAGGCCCTGGAAACCGTACAACGTCTCCTCCCAGTACTTTGTCAAGCACACGGGTTGACACCGGAACAAGTGGTGGCGATTGCGTCCAACGGCGGAGGCAAGCAGGCACTGGAGACCGTCCAACGGCTTCTTCCGGTTCTTTGCCAGGCTCATGGGCTCACGCCAGAGCAGGTGGTAGCAATAGCGTCGAACATCGGTGGTAAGCAAGCGCTTGAAACGGTCCAGCGTCTTCTGCCGGTGTTGTGCCAGGCGCACGGACTCACACCAGAACAAGTGGTTGCTATTGCTAGTAACAACGGTGGAAAGCAGGCCCTCGAGACGGTGCAGAGGTTACTTCCCGTCCTCTGTCAAGCGCACGGCCTCACTCCAGAGCAAGTGGTTGCGATCGCTTCAAACAATGGTGGAAGACCTGCCCTGGAA,
其中,所述TALEN表达,并且
其中,所述TALEN在所述细胞中裂解所述靶DNA以产生改变的DNA。
58.根据权利要求29所述的方法,包括:
将包含编码所述TALEN的第一外来核酸的病毒引入至所述细胞中,所述TALEN具有以下TALE序列或与所述TALE序列具有至少90%序列同一性的序列
CTAACCCCTGAACAGGTAGTCGCTATAGCTTCAAATATCGGGGGCAAGCAAGCACTTGAGACCGTTCAACGACTCCTGCCAGTGCTCTGCCAAGCCCATGGATTGACTCCGGAGCAAGTCGTCGCGATCGCGAGCAACGGCGGGGGGAAGCAGGCGCTGGAAACTGTTCAGAGACTGCTGCCTGTACTTTGTCAGGCGCATGGTCTCACCCCCGAACAGGTTGTCGCAATAGCAAGTAATATAGGCGGTAAGCAAGCCCTAGAGACTGTGCAACGCCTGCTCCCCGTGCTGTGTCAGGCTCACGGTCTGACACCTGAACAAGTTGTCGCGATAGCCAGTCACGACGGGGGAAAACAAGCTCTAGAAACGGTTCAAAGGTTGTTGCCCGTTCTGTGCCAAGCACATGGGTTAACACCCGAACAAGTAGTAGCGATAGCGTCAAATAACGGGGGTAAACAGGCTTTGGAGACGGTACAGCGGTTATTGCCGGTCCTCTGCCAGGCCCACGGACTTACGCCAGAACAGGTGGTTGCAATTGCCTCCAACATCGGCGGGAAACAAGCGTTGGAAACTGTGCAGAGACTCCTTCCTGTTTTGTGTCAAGCCCACGGCTTGACGCCTGAGCAGGTTGTGGCCATCGCTAGCCACGACGGAGGGAAGCAGGCTCTTGAAACCGTACAGCGACTTCTCCCAGTTTTGTGCCAAGCTCACGGGCTAACCCCCGAGCAAGTAGTTGCCATAGCAAGCAACGGAGGAGGAAAACAGGCATTAGAAACAGTTCAGCGCTTGCTCCCGGTACTCTGTCAGGCACACGGTCTAACTCCGGAACAGGTCGTAGCCATTGCTTCCCATGATGGCGGCAAACAGGCGCTAGAGACAGTCCAGAGGCTCTTGCCTGTGTTATGCCAGGCACATGGCCTCACCCCGGAGCAGGTCGTTGCCATCGCCAGTAATATCGGCGGAAAGCAAGCTCTCGAAACAGTACAACGGCTGTTGCCAGTCCTATGTCAAGCTCATGGACTGACGCCCGAGCAGGTAGTGGCAATCGCATCTCACGATGGAGGTAAACAAGCACTCGAGACTGTCCAAAGATTGTTACCCGTACTATGCCAAGCGCATGGTTTAACCCCAGAGCAAGTTGTGGCTATTGCATCTAACGGCGGTGGCAAACAAGCCTTGGAGACAGTGCAACGATTACTGCCTGTCTTATGTCAGGCCCATGGCCTTACTCCTGAGCAAGTCGTAGCTATCGCCAGCAACATAGGTGGGAAACAGGCCCTGGAAACCGTACAACGTCTCCTCCCAGTACTTTGTCAAGCACACGGGTTGACACCGGAACAAGTGGTGGCGATTGCGTCCAACGGCGGAGGCAAGCAGGCACTGGAGACCGTCCAACGGCTTCTTCCGGTTCTTTGCCAGGCTCATGGGCTCACGCCAGAGCAGGTGGTAGCAATAGCGTCGAACATCGGTGGTAAGCAAGCGCTTGAAACGGTCCAGCGTCTTCTGCCGGTGTTGTGCCAGGCGCACGGACTCACACCAGAACAAGTGGTTGCTATTGCTAGTAACAACGGTGGAAAGCAGGCCCTCGAGACGGTGCAGAGGTTACTTCCCGTCCTCTGTCAAGCGCACGGCCTCACTCCAGAGCAAGTGGTTGCGATCGCTTCAAACAATGGTGGAAGACCTGCCCTGGAA,
其中,所述TALEN表达,并且
其中,所述TALEN在所述细胞中裂解所述靶DNA以产生改变的DNA。
59.一种包含编码缺少100bp或更长重复序列的TALEN的核酸序列的病毒。
60.根据权利要求59所述的病毒,其中,所述TALEN缺少90bp或更长的重复序列。
61.根据权利要求59所述的病毒,其中,所述TALEN缺少80bp或更长的重复序列。
62.根据权利要求59所述的病毒,其中,所述TALEN缺少70bp或更长的重复序列。
63.根据权利要求59所述的病毒,其中,所述TALEN缺少60bp或更长的重复序列。
64.根据权利要求59所述的病毒,其中,所述TALEN缺少50bp或更长的重复序列。
65.根据权利要求59所述的病毒,其中,所述TALEN缺少40bp或更长的重复序列。
66.根据权利要求59所述的病毒,其中,所述TALEN缺少30bp或更长的重复序列。
67.根据权利要求59所述的病毒,其中,所述TALEN缺少20bp或更长的重复序列。
68.根据权利要求59所述的病毒,其中,所述TALEN缺少19bp或更长的重复序列。
69.根据权利要求59所述的病毒,其中,所述TALEN缺少18bp或更长的重复序列。
70.根据权利要求59所述的病毒,其中,所述TALEN缺少17bp或更长的重复序列。
71.根据权利要求59所述的病毒,其中,所述TALEN缺少16bp或更长的重复序列。
72.根据权利要求59所述的病毒,其中,所述TALEN缺少15bp或更长的重复序列。
73.根据权利要求59所述的病毒,其中,所述TALEN缺少14bp或更长的重复序列。
74.根据权利要求59所述的病毒,其中,所述TALEN缺少13bp或更长的重复序列。
75.根据权利要求59所述的病毒,其中,所述TALEN缺少12bp或更长的重复序列。
76.根据权利要求59所述的病毒,其中,所述TALEN缺少11bp或更长的重复序列。
77.根据权利要求59所述的病毒,其中,所述TALEN缺少10bp或更长的重复序列。
78.根据权利要求59所述的病毒,是慢病毒。
79.一种包含编码缺少100bp或更长重复序列的TALEN的核酸序列的细胞。
80.根据权利要求70所述的细胞,其中,所述TALEN缺少90bp或更长的重复序列。
81.根据权利要求70所述的细胞,其中,所述TALEN缺少80bp或更长的重复序列。
82.根据权利要求70所述的细胞,其中,所述TALEN缺少70bp或更长的重复序列。
83.根据权利要求70所述的细胞,其中,所述TALEN缺少60bp或更长的重复序列。
84.根据权利要求70所述的细胞,其中,所述TALEN缺少50bp或更长的重复序列。
85.根据权利要求70所述的细胞,其中,所述TALEN缺少40bp或更长的重复序列。
86.根据权利要求70所述的细胞,其中,所述TALEN缺少30bp或更长的重复序列。
87.根据权利要求70所述的细胞,其中,所述TALEN缺少20bp或更长的重复序列。
88.根据权利要求70所述的细胞,其中,所述TALEN缺少19bp或更长的重复序列。
89.根据权利要求70所述的细胞,其中,所述TALEN缺少18bp或更长的重复序列。
90.根据权利要求70所述的细胞,其中,所述TALEN缺少17bp或更长的重复序列。
91.根据权利要求70所述的细胞,其中,所述TALEN缺少16bp或更长的重复序列。
92.根据权利要求70所述的细胞,其中,所述TALEN缺少15bp或更长的重复序列。
93.根据权利要求70所述的细胞,其中,所述TALEN缺少14bp或更长的重复序列。
94.根据权利要求70所述的细胞,其中,所述TALEN缺少13bp或更长的重复序列。
95.根据权利要求70所述的细胞,其中,所述TALEN缺少12bp或更长的重复序列。
96.根据权利要求70所述的细胞,其中,所述TALEN缺少11bp或更长的重复序列。
97.根据权利要求70所述的细胞,其中,所述TALEN缺少10bp或更长的重复序列。
98.根据权利要求70所述的细胞,是真核细胞。
99.根据权利要求70所述的细胞,是酵母细胞、植物细胞或动物细胞。
100.根据权利要求70所述的细胞,是体细胞。
101.根据权利要求70所述的细胞,是干细胞。
102.根据权利要求70所述的细胞,是人类干细胞。
103.一种形成TALE的方法,包括:
结合核酸内切酶、DNA聚合酶、DNA连接酶、核酸外切酶、编码重复可变二残基结构域的多个核酸二聚体嵌段和包含核酸内切酶切割位点的TALE-N/TF骨架载体,
激活所述核酸内切酶以在所述核酸内切酶切割位点处切割所述TALE-N/TF骨架载体以产生第一末端和第二末端,
激活所述核酸外切酶以在所述TALE-N/TF骨架载体和所述多个核酸二聚体嵌段上形成3'和5'突出部分并以希望顺序退火所述TALE-N/TF骨架载体和所述多个核酸二聚体嵌段,
激活所述DNA聚合酶和所述DNA连接酶以连接所述TALE-N/TF骨架载体和所述多个核酸二聚体嵌段。
104.一种在干细胞中改变靶DNA的方法,所述干细胞表达与互补于所述靶DNA的RNA形成共定位复合物并以位点特异性方式裂解所述靶DNA的酶,所述方法包括:
(a)将编码互补于所述靶DNA并将所述酶引导至所述靶DNA的RNA的第一外来核酸引入至所述干细胞中,其中,所述RNA和所述酶是用于所述靶DNA的共定位复合物的成员,
将编码供体核酸序列的第二外来核酸引入至所述干细胞中,
其中,所述RNA和所述供体核酸序列表达,
其中,所述RNA和所述酶共定位至所述靶DNA,所述酶裂解所述靶DNA并且所述供体核酸插入至所述靶DNA以在所述干细胞中产生改变的DNA。
105.根据权利要求104所述的方法,其中,所述酶是RNA向导的DNA结合蛋白。
106.根据权利要求104所述的方法,其中,所述酶是II型CRISPR系统的RNA向导的DNA结合蛋白。
107.根据权利要求104所述的方法,其中,所述酶是Cas9。
108.根据权利要求104所述的方法,其中,所述RNA在约10至约500个核苷酸之间。
109.根据权利要求104所述的方法,其中,所述RNA在约20至约100个核苷酸之间。
110.根据权利要求104所述的方法,其中,所述RNA是向导RNA。
111.根据权利要求104所述的方法,其中,所述RNA是tracrRNA-crRNA融合体。
112.根据权利要求104所述的方法,其中,所述DNA是基因组DNA、线粒体DNA、病毒DNA或外源DNA。
113.根据权利要求104所述的方法,其中,通过重组插入所述供体核酸序列。
114.根据权利要求104所述的方法,其中,通过同源重组插入所述供体核酸序列。
115.根据权利要求104所述的方法,其中,通过非同源性末端接合插入所述供体核酸序列。
116.根据权利要求104所述的方法,其中,所述RNA和所述供体核酸序列存在于一个或多个质粒上。
117.根据权利要求104所述的方法,进一步包括重复多次步骤(a)以在所述细胞中产生所述DNA的多重改变。
118.根据权利要求104所述的方法,其中,在干细胞中产生改变的DNA之后,从所述干细胞基因组中除去编码所述酶的核酸,所述酶与互补于所述靶DNA的RNA形成共定位复合物并以位点特异性方式裂解所述靶DNA。
119.根据权利要求104所述的方法,其中,所述RNA和所述供体核酸序列表达为结合的核酸序列。
120.一种包含编码酶的第一外来核酸的干细胞,所述酶与互补于靶DNA的RNA形成共定位复合物并以位点特异性方式裂解所述靶DNA。
121.根据权利要求120所述的干细胞,进一步包含编码与所述靶DNA互补并引导所述酶至所述靶DNA的RNA的第二外来核酸,其中,所述RNA和所述酶是用于所述靶DNA的共定位复合物的成员。
122.根据权利要求121所述的干细胞,进一步包含编码供体核酸序列的第三外来核酸。
123.根据权利要求120所述的干细胞,进一步包含用于启动所述酶表达的诱导型启动子。
124.根据权利要求120所述的干细胞,其中,所述第一外来核酸是使用转座酶从所述细胞的基因组DNA中可除去的。
125.根据权利要求120所述的干细胞,其中,所述酶是RNA向导的DNA结合蛋白。
126.根据权利要求120所述的干细胞,其中,所述酶是II型CRISPR系统的RNA向导的DNA结合蛋白。
127.根据权利要求120所述的干细胞,其中,所述酶是Cas9。
128.根据权利要求120所述的干细胞,其中,所述RNA在约10至约500个核苷酸之间。
129.根据权利要求120所述的干细胞,其中,所述RNA在约20至约100个核苷酸之间。
130.根据权利要求120所述的干细胞,其中,所述RNA是向导RNA。
131.根据权利要求120所述的干细胞,其中,所述RNA是tracrRNA-crRNA融合体。
132.根据权利要求120所述的干细胞,其中,所述靶DNA是基因组DNA、线粒体DNA、病毒DNA或外源DNA。
133.一种包含编码酶的第一外来核酸并且包含用于启动所述酶的表达的诱导型启动子的细胞,所述酶与互补于靶DNA的RNA形成共定位复合物并以位点特异性方式裂解所述靶DNA。
134.根据权利要求133所述的细胞,进一步包含编码互补于所述靶DNA并引导所述酶至所述靶DNA的RNA的第二外来核酸,其中,所述RNA和所述酶是用于所述靶DNA的共定位复合物的成员。
135.根据权利要求134所述的干细胞,进一步包含编码供体核酸序列的第三外来核酸。
136.一种包含编码酶的第一外来核酸的细胞,所述酶与互补于靶DNA的RNA形成共定位复合物并以位点特异性方式裂解所述靶DNA,其中,所述第一外来核酸是使用转座酶从所述细胞的基因组DNA中可除去的。
137.根据权利要求136所述的细胞,进一步包含编码互补于所述靶DNA并引导所述酶至所述靶DNA的RNA的第二外来核酸,其中,所述RNA和所述酶是用于所述靶DNA的共定位复合物的成员。
138.根据权利要求137所述的干细胞,进一步包含编码供体核酸序列的第三外来核酸。
139.一种包含编码酶的第一外来核酸的细胞,所述酶与互补于靶DNA的RNA形成共定位复合物并以位点特异性方式裂解所述靶DNA,其中,所述第一外来核酸可逆地插入至所述细胞的基因组DNA中。
140.根据权利要求139所述的细胞,进一步包含编码与所述靶DNA互补并引导所述酶至所述靶DNA的RNA的第二外来核酸,其中,所述RNA和所述酶是用于所述靶DNA的共定位复合物的成员。
141.根据权利要求140所述的干细胞,进一步包含编码供体核酸序列的第三外来核酸。
142.一种在表达酶的细胞中改变靶DNA的方法,所述酶与互补于所述靶DNA的RNA形成共定位复合物并以位点特异性方式裂解所述靶DNA,所述方法包括:
(a)将编码供体核酸序列的第一外来核酸引入至所述细胞中,
从所述细胞周围的介质中将与所述靶DNA互补并引导所述酶至所述靶DNA的RNA引入至所述细胞中,其中,所述RNA和所述酶是用于所述靶DNA的共定位复合物的成员,
其中,所述供体核酸序列表达,
其中,所述RNA和所述酶共定位至所述靶DNA,所述酶裂解所述靶DNA并且所述供体核酸插入至所述靶DNA以在所述细胞中产生改变的DNA。
143.根据权利要求142所述的方法,其中,所述RNA包括5'帽结构。
144.根据权利要求142所述的方法,其中,所述RNA缺少磷酸酯基团。
145.根据权利要求142所述的方法,其中,所述酶是RNA向导的DNA结合蛋白。
146.根据权利要求142所述的方法,其中,所述酶是II型CRISPR系统的RNA向导的DNA结合蛋白。
147.根据权利要求142所述的方法,其中,所述酶是Cas9。
148.根据权利要求142所述的方法,其中,所述RNA在约10至约500个核苷酸之间。
149.根据权利要求142所述的方法,其中,所述RNA在约20至约100个核苷酸之间。
150.根据权利要求142所述的方法,其中,所述RNA是向导RNA。
151.根据权利要求142所述的方法,其中,所述RNA是tracrRNA-crRNA融合体。
152.根据权利要求142所述的方法,其中,所述DNA是基因组DNA、线粒体DNA、病毒DNA或外源DNA。
153.根据权利要求142所述的方法,其中,通过重组插入所述供体核酸序列。
154.根据权利要求142所述的方法,其中,通过同源重组插入所述供体核酸序列。
155.根据权利要求142所述的方法,其中,通过非同源性末端接合插入所述供体核酸序列。
156.根据权利要求142所述的方法,进一步包括多次重复步骤(a)以在所述细胞中产生所述DNA的多重改变。
157.根据权利要求142所述的方法,其中,在细胞中产生改变的DNA之后,从所述细胞的基因组中除去编码所述酶的核酸,所述酶与互补于所述靶DNA的RNA形成共定位复合物并以位点特异性方式裂解所述靶DNA。
158.根据权利要求142所述的方法,其中,所述RNA和所述供体核酸序列表达为结合的核酸序列。
CN201480042306.1A 2013-07-26 2014-07-25 基因组工程 Active CN105473773B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202410183863.0A CN118028379A (zh) 2013-07-26 2014-07-25 基因组工程
CN202010094041.7A CN111304230A (zh) 2013-07-26 2014-07-25 基因组工程

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361858866P 2013-07-26 2013-07-26
US61/858,866 2013-07-26
PCT/US2014/048140 WO2015013583A2 (en) 2013-07-26 2014-07-25 Genome engineering

Related Child Applications (2)

Application Number Title Priority Date Filing Date
CN202410183863.0A Division CN118028379A (zh) 2013-07-26 2014-07-25 基因组工程
CN202010094041.7A Division CN111304230A (zh) 2013-07-26 2014-07-25 基因组工程

Publications (2)

Publication Number Publication Date
CN105473773A true CN105473773A (zh) 2016-04-06
CN105473773B CN105473773B (zh) 2024-03-08

Family

ID=52390824

Family Applications (3)

Application Number Title Priority Date Filing Date
CN201480042306.1A Active CN105473773B (zh) 2013-07-26 2014-07-25 基因组工程
CN202010094041.7A Pending CN111304230A (zh) 2013-07-26 2014-07-25 基因组工程
CN202410183863.0A Pending CN118028379A (zh) 2013-07-26 2014-07-25 基因组工程

Family Applications After (2)

Application Number Title Priority Date Filing Date
CN202010094041.7A Pending CN111304230A (zh) 2013-07-26 2014-07-25 基因组工程
CN202410183863.0A Pending CN118028379A (zh) 2013-07-26 2014-07-25 基因组工程

Country Status (14)

Country Link
US (4) US10563225B2 (zh)
EP (4) EP3024964B1 (zh)
JP (4) JP6739335B2 (zh)
KR (2) KR20230096134A (zh)
CN (3) CN105473773B (zh)
AU (4) AU2014293015B2 (zh)
BR (1) BR112016001721B1 (zh)
CA (1) CA2918540A1 (zh)
ES (1) ES2715666T3 (zh)
HK (1) HK1218940A1 (zh)
IL (2) IL243560B (zh)
RU (2) RU2688462C2 (zh)
SG (3) SG11201600217QA (zh)
WO (1) WO2015013583A2 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106957856A (zh) * 2016-01-12 2017-07-18 中国科学院广州生物医药与健康研究院 无毛模型猪的重构卵及其构建方法和模型猪的构建方法
CN109072207A (zh) * 2016-04-29 2018-12-21 巴斯夫植物科学有限公司 用于修饰靶核酸的改进方法
CN109415725A (zh) * 2016-07-01 2019-03-01 微软技术许可有限责任公司 分子状态机
US11359234B2 (en) 2016-07-01 2022-06-14 Microsoft Technology Licensing, Llc Barcoding sequences for identification of gene expression

Families Citing this family (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
SG11201406547YA (en) 2012-04-25 2014-11-27 Regeneron Pharma Nuclease-mediated targeting with large targeting vectors
IL308158A (en) 2012-12-17 2023-12-01 Harvard College RNA-guided human genome engineering
EP2981617B1 (en) 2013-04-04 2023-07-05 President and Fellows of Harvard College Therapeutic uses of genome editing with crispr/cas systems
DK2986729T3 (en) 2013-04-16 2018-10-29 Regeneron Pharma TARGETED MODIFICATION OF ROOT THROUGH
JP2016528890A (ja) 2013-07-09 2016-09-23 プレジデント アンド フェローズ オブ ハーバード カレッジ CRISPR/Cas系を用いるゲノム編集の治療用の使用
US20150044192A1 (en) 2013-08-09 2015-02-12 President And Fellows Of Harvard College Methods for identifying a target site of a cas9 nuclease
US9359599B2 (en) 2013-08-22 2016-06-07 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US9388430B2 (en) 2013-09-06 2016-07-12 President And Fellows Of Harvard College Cas9-recombinase fusion proteins and uses thereof
US9526784B2 (en) 2013-09-06 2016-12-27 President And Fellows Of Harvard College Delivery system for functional nucleases
US9340799B2 (en) 2013-09-06 2016-05-17 President And Fellows Of Harvard College MRNA-sensing switchable gRNAs
DE202014010413U1 (de) 2013-09-18 2015-12-08 Kymab Limited Zellen und Organismen
WO2015070083A1 (en) 2013-11-07 2015-05-14 Editas Medicine,Inc. CRISPR-RELATED METHODS AND COMPOSITIONS WITH GOVERNING gRNAS
RU2685914C1 (ru) 2013-12-11 2019-04-23 Регенерон Фармасьютикалс, Инк. Способы и композиции для направленной модификации генома
US9840699B2 (en) 2013-12-12 2017-12-12 President And Fellows Of Harvard College Methods for nucleic acid editing
EP3690044B1 (en) 2014-02-11 2024-01-10 The Regents of the University of Colorado, a body corporate Crispr enabled multiplexed genome engineering
EP3114227B1 (en) 2014-03-05 2021-07-21 Editas Medicine, Inc. Crispr/cas-related methods and compositions for treating usher syndrome and retinitis pigmentosa
US11339437B2 (en) 2014-03-10 2022-05-24 Editas Medicine, Inc. Compositions and methods for treating CEP290-associated disease
WO2015138510A1 (en) 2014-03-10 2015-09-17 Editas Medicine., Inc. Crispr/cas-related methods and compositions for treating leber's congenital amaurosis 10 (lca10)
US11141493B2 (en) 2014-03-10 2021-10-12 Editas Medicine, Inc. Compositions and methods for treating CEP290-associated disease
WO2015148863A2 (en) 2014-03-26 2015-10-01 Editas Medicine, Inc. Crispr/cas-related methods and compositions for treating sickle cell disease
WO2015191693A2 (en) * 2014-06-10 2015-12-17 Massachusetts Institute Of Technology Method for gene editing
EP3177718B1 (en) 2014-07-30 2022-03-16 President and Fellows of Harvard College Cas9 proteins including ligand-dependent inteins
MX2017004890A (es) 2014-10-15 2018-02-12 Regeneron Pharma Metodos y composiciones para la generación o el mantenimiento de células pluripotentes.
WO2016065364A1 (en) * 2014-10-24 2016-04-28 Life Technologies Corporation Compositions and methods for enhancing homologous recombination
WO2016073990A2 (en) 2014-11-07 2016-05-12 Editas Medicine, Inc. Methods for improving crispr/cas-mediated genome-editing
NZ731962A (en) 2014-11-21 2022-07-01 Regeneron Pharma Methods and compositions for targeted genetic modification using paired guide rnas
CN107250148B (zh) 2014-12-03 2021-04-16 安捷伦科技有限公司 具有化学修饰的指导rna
WO2016094679A1 (en) 2014-12-10 2016-06-16 Regents Of The University Of Minnesota Genetically modified cells, tissues, and organs for treating disease
EP3271461A1 (en) * 2015-03-20 2018-01-24 Danmarks Tekniske Universitet Crispr/cas9 based engineering of actinomycetal genomes
EP4019635A1 (en) * 2015-03-25 2022-06-29 Editas Medicine, Inc. Crispr/cas-related methods, compositions and components
KR102648489B1 (ko) 2015-04-06 2024-03-15 더 보드 어브 트러스티스 어브 더 리랜드 스탠포드 주니어 유니버시티 Crispr/cas-매개 유전자 조절을 위한 화학적으로 변형된 가이드 rna
SG11201708653RA (en) 2015-04-24 2017-11-29 Editas Medicine Inc Evaluation of cas9 molecule/guide rna molecule complexes
JP7030522B2 (ja) * 2015-05-11 2022-03-07 エディタス・メディシン、インコーポレイテッド 幹細胞における遺伝子編集のための最適化crispr/cas9システムおよび方法
WO2016196887A1 (en) 2015-06-03 2016-12-08 Board Of Regents Of The University Of Nebraska Dna editing using single-stranded dna
CN116334142A (zh) 2015-06-09 2023-06-27 爱迪塔斯医药公司 用于改善移植的crispr/cas相关方法和组合物
US9790490B2 (en) 2015-06-18 2017-10-17 The Broad Institute Inc. CRISPR enzymes and systems
WO2016205749A1 (en) 2015-06-18 2016-12-22 The Broad Institute Inc. Novel crispr enzymes and systems
CN109536474A (zh) 2015-06-18 2019-03-29 布罗德研究所有限公司 降低脱靶效应的crispr酶突变
US10166255B2 (en) 2015-07-31 2019-01-01 Regents Of The University Of Minnesota Intracellular genomic transplant and methods of therapy
WO2017040511A1 (en) 2015-08-31 2017-03-09 Agilent Technologies, Inc. Compounds and methods for crispr/cas-based genome editing by homologous recombination
US11667911B2 (en) 2015-09-24 2023-06-06 Editas Medicine, Inc. Use of exonucleases to improve CRISPR/CAS-mediated genome editing
EP3365356B1 (en) 2015-10-23 2023-06-28 President and Fellows of Harvard College Nucleobase editors and uses thereof
ES2953925T3 (es) * 2015-11-04 2023-11-17 Fate Therapeutics Inc Ingeniería genómica de células pluripotentes
KR101885901B1 (ko) * 2015-11-13 2018-08-07 기초과학연구원 5' 말단의 인산기가 제거된 rna를 포함하는 리보핵산단백질 전달용 조성물
WO2017087708A1 (en) 2015-11-19 2017-05-26 The Brigham And Women's Hospital, Inc. Lymphocyte antigen cd5-like (cd5l)-interleukin 12b (p40) heterodimers in immunity
EP3383409A4 (en) * 2015-12-02 2019-10-02 The Regents of The University of California COMPOSITIONS AND METHODS FOR MODIFYING TARGET NUCLEIC ACID
US11441146B2 (en) * 2016-01-11 2022-09-13 Christiana Care Health Services, Inc. Compositions and methods for improving homogeneity of DNA generated using a CRISPR/Cas9 cleavage system
WO2017165862A1 (en) 2016-03-25 2017-09-28 Editas Medicine, Inc. Systems and methods for treating alpha 1-antitrypsin (a1at) deficiency
US11597924B2 (en) 2016-03-25 2023-03-07 Editas Medicine, Inc. Genome editing systems comprising repair-modulating enzyme molecules and methods of their use
WO2017180694A1 (en) 2016-04-13 2017-10-19 Editas Medicine, Inc. Cas9 fusion molecules gene editing systems, and methods of use thereof
CA3026112A1 (en) 2016-04-19 2017-10-26 The Broad Institute, Inc. Cpf1 complexes with reduced indel activity
WO2017184768A1 (en) 2016-04-19 2017-10-26 The Broad Institute Inc. Novel crispr enzymes and systems
WO2017207589A1 (en) * 2016-06-01 2017-12-07 Kws Saat Se Hybrid nucleic acid sequences for genome engineering
US10767175B2 (en) 2016-06-08 2020-09-08 Agilent Technologies, Inc. High specificity genome editing using chemically modified guide RNAs
WO2017223538A1 (en) 2016-06-24 2017-12-28 The Regents Of The University Of Colorado, A Body Corporate Methods for generating barcoded combinatorial libraries
US11471462B2 (en) 2016-06-27 2022-10-18 The Broad Institute, Inc. Compositions and methods for detecting and treating diabetes
US11566263B2 (en) 2016-08-02 2023-01-31 Editas Medicine, Inc. Compositions and methods for treating CEP290 associated disease
GB2568182A (en) 2016-08-03 2019-05-08 Harvard College Adenosine nucleobase editors and uses thereof
AU2017308889B2 (en) 2016-08-09 2023-11-09 President And Fellows Of Harvard College Programmable Cas9-recombinase fusion proteins and uses thereof
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
EP3510151A4 (en) 2016-09-09 2020-04-15 The Board of Trustees of the Leland Stanford Junior University HIGH-THROUGHPUT PRECISION GENE EDITING
KR102622411B1 (ko) 2016-10-14 2024-01-10 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 핵염기 에디터의 aav 전달
CN110520530A (zh) 2016-10-18 2019-11-29 明尼苏达大学董事会 肿瘤浸润性淋巴细胞和治疗方法
KR20190089175A (ko) * 2016-11-18 2019-07-30 진에딧 인코포레이티드 표적 핵산 변형을 위한 조성물 및 방법
WO2018119359A1 (en) 2016-12-23 2018-06-28 President And Fellows Of Harvard College Editing of ccr5 receptor gene to protect against hiv infection
US11530388B2 (en) * 2017-02-14 2022-12-20 University of Pittsburgh—of the Commonwealth System of Higher Education Methods of engineering human induced pluripotent stem cells to produce liver tissue
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
WO2018165629A1 (en) 2017-03-10 2018-09-13 President And Fellows Of Harvard College Cytosine to guanine base editor
EP3596217A1 (en) 2017-03-14 2020-01-22 Editas Medicine, Inc. Systems and methods for the treatment of hemoglobinopathies
EP3601562A1 (en) 2017-03-23 2020-02-05 President and Fellows of Harvard College Nucleobase editors comprising nucleic acid programmable dna binding proteins
US20210115407A1 (en) 2017-04-12 2021-04-22 The Broad Institute, Inc. Respiratory and sweat gland ionocytes
WO2018195486A1 (en) 2017-04-21 2018-10-25 The Broad Institute, Inc. Targeted delivery to beta cells
EP3615672A1 (en) 2017-04-28 2020-03-04 Editas Medicine, Inc. Methods and systems for analyzing guide rna molecules
WO2018204777A2 (en) 2017-05-05 2018-11-08 The Broad Institute, Inc. Methods for identification and modification of lncrna associated with target genotypes and phenotypes
EP3622070A2 (en) 2017-05-10 2020-03-18 Editas Medicine, Inc. Crispr/rna-guided nuclease systems and methods
WO2018209320A1 (en) 2017-05-12 2018-11-15 President And Fellows Of Harvard College Aptazyme-embedded guide rnas for use with crispr-cas9 in genome editing and transcriptional activation
AU2018279829B2 (en) 2017-06-09 2024-01-04 Editas Medicine, Inc. Engineered Cas9 nucleases
US9982279B1 (en) 2017-06-23 2018-05-29 Inscripta, Inc. Nucleic acid-guided nucleases
US10011849B1 (en) 2017-06-23 2018-07-03 Inscripta, Inc. Nucleic acid-guided nucleases
WO2019006418A2 (en) 2017-06-30 2019-01-03 Intima Bioscience, Inc. ADENO-ASSOCIATED VIRAL VECTORS FOR GENE THERAPY
WO2019014564A1 (en) 2017-07-14 2019-01-17 Editas Medicine, Inc. SYSTEMS AND METHODS OF TARGETED INTEGRATION AND GENOME EDITING AND DETECTION THEREOF WITH INTEGRATED PRIMING SITES
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
MX2020001178A (es) 2017-07-31 2020-09-25 Regeneron Pharma Celulas madre embrionarias de raton transgenico con cas y ratones y usos de los mismos.
EP3676376A2 (en) 2017-08-30 2020-07-08 President and Fellows of Harvard College High efficiency base editors comprising gam
CN111344403A (zh) * 2017-09-15 2020-06-26 利兰斯坦福初级大学董事会 遗传工程细胞的多元性产生和条形码编制
KR20200121782A (ko) 2017-10-16 2020-10-26 더 브로드 인스티튜트, 인코퍼레이티드 아데노신 염기 편집제의 용도
US11268092B2 (en) 2018-01-12 2022-03-08 GenEdit, Inc. Structure-engineered guide RNA
CN112272516B (zh) 2018-04-06 2023-05-30 儿童医疗中心有限公司 用于体细胞重新编程和调整印记的组合物和方法
GB2589246A (en) 2018-05-16 2021-05-26 Synthego Corp Methods and systems for guide RNA design and use
US20210246505A1 (en) * 2018-06-21 2021-08-12 Memorial Sloan Kettering Cancer Center Compositions & methods for monitoring dna repair
KR20210053898A (ko) 2018-07-31 2021-05-12 더 브로드 인스티튜트, 인코퍼레이티드 신규 crispr 효소 및 시스템
CA3121268A1 (en) 2018-12-10 2020-06-18 Amgen Inc. Mutated piggybac transposase
BR112021018606A2 (pt) 2019-03-19 2021-11-23 Harvard College Métodos e composições para editar sequências de nucleotídeos
CN115175996A (zh) 2019-09-20 2022-10-11 博德研究所 新颖vi型crispr酶和系统
EP4146797A1 (en) 2020-05-06 2023-03-15 Orchard Therapeutics (Europe) Limited Treatment for neurodegenerative diseases
DE112021002672T5 (de) 2020-05-08 2023-04-13 President And Fellows Of Harvard College Vefahren und zusammensetzungen zum gleichzeitigen editieren beider stränge einer doppelsträngigen nukleotid-zielsequenz
EP4232583A1 (en) 2020-10-21 2023-08-30 Massachusetts Institute of Technology Systems, methods, and compositions for site-specific genetic engineering using programmable addition via site-specific targeting elements (paste)
TW202233660A (zh) 2020-10-30 2022-09-01 美商安進公司 過表現胰島素樣生長因子受體突變體以調節igf補充
KR20240055811A (ko) 2021-09-10 2024-04-29 애질런트 테크놀로지스, 인크. 프라임 편집을 위한 화학적 변형을 갖는 가이드 rna
CA3237300A1 (en) 2021-11-01 2023-05-04 Tome Biosciences, Inc. Single construct platform for simultaneous delivery of gene editing machinery and nucleic acid cargo
WO2023122764A1 (en) 2021-12-22 2023-06-29 Tome Biosciences, Inc. Co-delivery of a gene editor construct and a donor template
WO2023205744A1 (en) 2022-04-20 2023-10-26 Tome Biosciences, Inc. Programmable gene insertion compositions
WO2023225670A2 (en) 2022-05-20 2023-11-23 Tome Biosciences, Inc. Ex vivo programmable gene insertion
WO2024020587A2 (en) 2022-07-22 2024-01-25 Tome Biosciences, Inc. Pleiopluripotent stem cell programmable gene insertion

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110301073A1 (en) * 2010-05-17 2011-12-08 Sangamo Biosciences, Inc. Novel DNA-binding proteins and uses thereof

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5641670A (en) * 1991-11-05 1997-06-24 Transkaryotic Therapies, Inc. Protein production and protein delivery
US6689558B2 (en) 2000-02-08 2004-02-10 Sangamo Biosciences, Inc. Cells for drug discovery
EP1280928B1 (en) * 2000-05-10 2016-11-30 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Resistance to acetohydroxyacid synthase-inhibiting herbicides
CA2474486C (en) 2002-01-23 2013-05-14 The University Of Utah Research Foundation Targeted chromosomal mutagenesis using zinc finger nucleases
KR100766952B1 (ko) 2002-12-09 2007-10-17 주식회사 툴젠 조절성 징크 핑거 단백질
JP2007521823A (ja) 2004-02-13 2007-08-09 ノボザイムス アクティーゼルスカブ プロテアーゼ変異型
DE102005062662A1 (de) 2005-12-23 2007-06-28 Basf Ag Verfahren zur Herstellung optisch aktiver Alkohole
BRPI0808704B1 (pt) 2007-03-02 2022-01-18 Dupont Nutrition Biosciences Aps Método para gerar uma cultura inicial compreendendo pelo menos duas cepas variantes resistentes a bacteriófagos, cultura iniciadora e método de fermentação
US8546553B2 (en) 2008-07-25 2013-10-01 University Of Georgia Research Foundation, Inc. Prokaryotic RNAi-like system and methods of use
US20100076057A1 (en) 2008-09-23 2010-03-25 Northwestern University TARGET DNA INTERFERENCE WITH crRNA
US9404098B2 (en) 2008-11-06 2016-08-02 University Of Georgia Research Foundation, Inc. Method for cleaving a target RNA using a Cas6 polypeptide
PH12012500097A1 (en) * 2009-07-21 2011-01-27 Shanghai Inst Organic Chem Potent small molecule inhibitors of autophagy, and methods of use thereof
PT2816112T (pt) 2009-12-10 2018-11-20 Univ Iowa State Res Found Inc Modificação do adn modificada pelo efector tal
NO332016B1 (no) 2009-12-29 2012-05-21 Stiftelsen Sintef Prøvebehandlingskassett og fremgangsmåte for å behandle og/eller analysere en prøve under sentrifugalkraft
GB201000591D0 (en) 2010-01-14 2010-03-03 Ucb Pharma Sa Bacterial hoist strain
MX336731B (es) * 2010-01-28 2016-01-28 Harvard College Composiciones y metodos para potenciar la actividad de proteasoma.
US10087431B2 (en) 2010-03-10 2018-10-02 The Regents Of The University Of California Methods of generating nucleic acid fragments
BR112012028805A2 (pt) 2010-05-10 2019-09-24 The Regents Of The Univ Of California E Nereus Pharmaceuticals Inc composições de endorribonuclease e métodos de uso das mesmas.
US20140113376A1 (en) 2011-06-01 2014-04-24 Rotem Sorek Compositions and methods for downregulating prokaryotic genes
CA2841541C (en) 2011-07-25 2019-11-12 Sangamo Biosciences, Inc. Methods and compositions for alteration of a cystic fibrosis transmembrane conductance regulator (cftr) gene
US8450107B1 (en) 2011-11-30 2013-05-28 The Broad Institute Inc. Nucleotide-specific recognition sequences for designer TAL effectors
GB201122458D0 (en) 2011-12-30 2012-02-08 Univ Wageningen Modified cascade ribonucleoproteins and uses thereof
RU2650811C2 (ru) 2012-02-24 2018-04-17 Фред Хатчинсон Кэнсер Рисерч Сентер Композиции и способы лечения гемоглобинопатии
EP2820159B1 (en) 2012-02-29 2019-10-23 Sangamo Therapeutics, Inc. Methods and compositions for treating huntington's disease
WO2013141680A1 (en) 2012-03-20 2013-09-26 Vilnius University RNA-DIRECTED DNA CLEAVAGE BY THE Cas9-crRNA COMPLEX
US9637739B2 (en) 2012-03-20 2017-05-02 Vilnius University RNA-directed DNA cleavage by the Cas9-crRNA complex
ES2960803T3 (es) 2012-05-25 2024-03-06 Univ California Métodos y composiciones para la modificación de ADN diana dirigida por RNA y para la modulación de la transcripción dirigida por RNA
EP2880171B1 (en) 2012-08-03 2018-10-03 The Regents of The University of California Methods and compositions for controlling gene expression by rna processing
ES2926021T3 (es) 2012-10-23 2022-10-21 Toolgen Inc Composición para escindir un ADN objetivo que comprende un ARN guía específico para el ADN objetivo y ácido nucleico codificador de proteína Cas o proteína Cas, y uso de la misma
EP3617309A3 (en) 2012-12-06 2020-05-06 Sigma Aldrich Co. LLC Crispr-based genome modification and regulation
SG10201912328UA (en) 2012-12-12 2020-02-27 Broad Inst Inc Delivery, Engineering and Optimization of Systems, Methods and Compositions for Sequence Manipulation and Therapeutic Applications
CN113355357A (zh) 2012-12-12 2021-09-07 布罗德研究所有限公司 对用于序列操纵的改进的系统、方法和酶组合物进行的工程化和优化
US8697359B1 (en) 2012-12-12 2014-04-15 The Broad Institute, Inc. CRISPR-Cas systems and methods for altering expression of gene products
AU2014235794A1 (en) 2013-03-14 2015-10-22 Caribou Biosciences, Inc. Compositions and methods of nucleic acid-targeting nucleic acids
US9234213B2 (en) 2013-03-15 2016-01-12 System Biosciences, Llc Compositions and methods directed to CRISPR/Cas genomic engineering systems
US20140349400A1 (en) 2013-03-15 2014-11-27 Massachusetts Institute Of Technology Programmable Modification of DNA
EP2981617B1 (en) 2013-04-04 2023-07-05 President and Fellows of Harvard College Therapeutic uses of genome editing with crispr/cas systems
US20140349405A1 (en) 2013-05-22 2014-11-27 Wisconsin Alumni Research Foundation Rna-directed dna cleavage and gene editing by cas9 enzyme from neisseria meningitidis
US11685935B2 (en) 2013-05-29 2023-06-27 Cellectis Compact scaffold of Cas9 in the type II CRISPR system
WO2014198911A1 (en) 2013-06-14 2014-12-18 Cellectis Improved polynucleotide sequences encoding tale repeats
WO2014204725A1 (en) 2013-06-17 2014-12-24 The Broad Institute Inc. Optimized crispr-cas double nickase systems, methods and compositions for sequence manipulation
CA2933134A1 (en) 2013-12-13 2015-06-18 Cellectis Cas9 nuclease platform for microalgae genome engineering

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110301073A1 (en) * 2010-05-17 2011-12-08 Sangamo Biosciences, Inc. Novel DNA-binding proteins and uses thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MAARTEN HOLKERS.ETC: "Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells", 《NUCLEIC ACIDS RESEARCH》 *
THOMAS GAJ.ETC: "ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering", 《TRENDS IN BIOTECHNOLOGY》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106957856A (zh) * 2016-01-12 2017-07-18 中国科学院广州生物医药与健康研究院 无毛模型猪的重构卵及其构建方法和模型猪的构建方法
CN106957856B (zh) * 2016-01-12 2020-07-28 中国科学院广州生物医药与健康研究院 无毛模型猪的重构卵及其构建方法和模型猪的构建方法
CN109072207A (zh) * 2016-04-29 2018-12-21 巴斯夫植物科学有限公司 用于修饰靶核酸的改进方法
CN109072207B (zh) * 2016-04-29 2024-05-07 巴斯夫植物科学有限公司 用于修饰靶核酸的改进方法
CN109415725A (zh) * 2016-07-01 2019-03-01 微软技术许可有限责任公司 分子状态机
US11359234B2 (en) 2016-07-01 2022-06-14 Microsoft Technology Licensing, Llc Barcoding sequences for identification of gene expression
US11422832B2 (en) 2016-07-01 2022-08-23 Microsoft Technology Licensing, Llc Molecular state machines using HDR template insertion

Also Published As

Publication number Publication date
AU2021202581A1 (en) 2021-05-27
RU2016106649A (ru) 2017-08-31
AU2023248167A1 (en) 2023-12-14
IL272193B (en) 2022-05-01
US20150031132A1 (en) 2015-01-29
EP3483277A1 (en) 2019-05-15
JP7419328B2 (ja) 2024-01-22
WO2015013583A2 (en) 2015-01-29
WO2015013583A8 (en) 2015-03-05
EP3916099A1 (en) 2021-12-01
AU2014293015B2 (en) 2019-01-24
EP4234703A2 (en) 2023-08-30
IL243560B (en) 2020-02-27
SG10201913000PA (en) 2020-03-30
EP4234703A3 (en) 2023-09-06
JP6993063B2 (ja) 2022-01-13
EP3024964A4 (en) 2017-01-18
JP2016528894A (ja) 2016-09-23
HK1218940A1 (zh) 2017-03-17
AU2018278911B2 (en) 2021-01-28
EP3483277B1 (en) 2021-07-07
US20220235382A1 (en) 2022-07-28
CA2918540A1 (en) 2015-01-29
RU2016106649A3 (zh) 2018-08-10
RU2764757C2 (ru) 2022-01-21
AU2018278911A1 (en) 2019-01-03
EP3024964A2 (en) 2016-06-01
US9914939B2 (en) 2018-03-13
US10563225B2 (en) 2020-02-18
NZ716606A (en) 2022-03-25
AU2018278911C1 (en) 2021-09-23
JP6739335B2 (ja) 2020-08-12
AU2014293015A1 (en) 2016-02-11
EP3024964B1 (en) 2018-12-19
RU2019114217A (ru) 2019-08-23
EP3916099B1 (en) 2023-04-12
KR20160035017A (ko) 2016-03-30
US20150031133A1 (en) 2015-01-29
BR112016001721A2 (pt) 2017-09-05
US20160369301A1 (en) 2016-12-22
SG11201600217QA (en) 2016-02-26
SG10201800259WA (en) 2018-02-27
ES2715666T3 (es) 2019-06-05
CN111304230A (zh) 2020-06-19
BR112016001721B1 (pt) 2023-10-03
KR20230096134A (ko) 2023-06-29
AU2021202581B2 (en) 2023-07-13
JP2022033922A (ja) 2022-03-02
RU2019114217A3 (zh) 2020-07-16
JP2020110152A (ja) 2020-07-27
CN118028379A (zh) 2024-05-14
IL243560A0 (en) 2016-02-29
US11306328B2 (en) 2022-04-19
CN105473773B (zh) 2024-03-08
RU2688462C2 (ru) 2019-05-21
WO2015013583A3 (en) 2015-04-23
JP2024029218A (ja) 2024-03-05
IL272193A (en) 2020-03-31

Similar Documents

Publication Publication Date Title
CN105473773A (zh) 基因组工程
CN102250936B (zh) 利用锌指核酶技术培育斑马鱼的方法及其在建立药物筛选模型中的应用
RU2812848C2 (ru) Геномная инженерия
NZ754902B2 (en) Genome engineering
NZ754903B2 (en) Genome engineering
NZ754904B2 (en) Genome engineering
NZ754903A (en) Genome engineering
NZ716606B2 (en) Genome engineering

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant