CN105152655A - 一种陶瓷的织构化方法 - Google Patents

一种陶瓷的织构化方法 Download PDF

Info

Publication number
CN105152655A
CN105152655A CN201510414902.4A CN201510414902A CN105152655A CN 105152655 A CN105152655 A CN 105152655A CN 201510414902 A CN201510414902 A CN 201510414902A CN 105152655 A CN105152655 A CN 105152655A
Authority
CN
China
Prior art keywords
texturing
powder
silicon nitride
texturing method
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510414902.4A
Other languages
English (en)
Other versions
CN105152655B (zh
Inventor
伍尚华
蒋强国
郭伟明
古尚贤
周茂鹏
刘伟
程利霞
王成勇
王启民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Dongguan South China Design and Innovation Institute
Original Assignee
Guangdong University of Technology
Dongguan South China Design and Innovation Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology, Dongguan South China Design and Innovation Institute filed Critical Guangdong University of Technology
Priority to CN201510414902.4A priority Critical patent/CN105152655B/zh
Priority to PCT/CN2015/084379 priority patent/WO2017008317A1/en
Priority to US14/821,817 priority patent/US9708224B2/en
Publication of CN105152655A publication Critical patent/CN105152655A/zh
Application granted granted Critical
Publication of CN105152655B publication Critical patent/CN105152655B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/593Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/605Making or treating the green body or pre-form in a magnetic field
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/767Hexagonal symmetry, e.g. beta-Si3N4, beta-Sialon, alpha-SiC or hexa-ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/787Oriented grains

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)

Abstract

本发明提供一种陶瓷的织构化方法,包括步骤:a、配料,将含有烧结助剂的氮化硅粉体混匀,干燥;b、成型;将干燥后的粉体经过钢模干压和冷等静压制得一定形状的坯体;c、织构化,采用热压流动烧结的方法使步骤b制得的坯体在一维或二维方向流动从而实现晶粒定向排布和异向生长,制得高性能陶瓷;其中热压力为10-50MPa,温度为1000-2000℃。本发明通过热压流动烧结法,使烧结材料具有一定的流动充型性能,可用于在高温时的复杂形状的成型,并且伴有相应方向上的织构化。

Description

一种陶瓷的织构化方法
技术领域
本发明属于陶瓷材料技术领域,特别涉及一种陶瓷的织构化方法。
背景技术
结构陶瓷以其高硬度、低密度、高强、耐腐蚀、耐高温性能好等诸多优点,被广泛研究和应用,主要应用在高温、腐蚀、强磨损等极端环境和一些电子元器件上,例如陶瓷发动机涡轮、铸铝坩埚、刀具、轴承球、散热基板等。但是,陶瓷材料的脆性、热学性能极大的限制了其在个领域中的应用。近几十年的研究,通过织构化的方法有效提高了其力学、热学等性能。主要方法有模板晶粒法、热加工法、磁场法、电场法等。模板晶粒法工艺过程繁复,织构化程度低;热加工法高耗能并且织构化程度不高;磁场法和电场法,对设备要求极高,成本高,极大限制了实际应用。为此,如何开发一种陶瓷的织构化方法,能够提高织构化程度并且能耗低对设备要求不高,是目前领域内难以克服的问题。
发明内容
针对以上问题,本发明的目的是一种新的陶瓷的织构化方法—热压流动烧结法,可以完成对氮化硅陶瓷材料的一维、二维织构化,同时利用烧结样品的变形量控制织构化程度,赋予材料在不同方向上特殊的力学、热学性能和耐磨性等。
为实现以上目的,本发明的技术方案为:
一种陶瓷的织构化方法,包括步骤:a、配料,将含有烧结助剂的氮化硅粉体混匀,干燥;b、成型;将干燥后的粉体经过钢模干压和冷等静压制得一定形状的坯体;c、织构化,采用热压流动烧结的方法使步骤b制得的坯体在一维或二维方向流动从而实现晶粒定向排布和异向生长,制得高性能陶瓷;其中热压力为10-50MPa,温度为1000-2000℃。
所述烧结助剂为碱金属氧化物或稀土金属氧化物的任一种或多种。
所述步骤a的配料包括混料和干燥两个步骤,混料为将烧结助剂和陶瓷粉体加入溶剂中,配置成浆料,然后加入氮化硅研磨球进行球磨,氮化硅研磨球和粉体的重量比为1-5:1,并进行超声分散,氮化硅研磨球和混合粉体的重量比为1-5:1;其中烧结助剂和α相氮化硅粉体的重量比为0.5-35:100。
所述溶剂为水、无水乙醇、丙酮、丙醇的任一种或多种,混合粉体和溶剂的体积比为1:1-3。
将步骤混料制得的浆料放入旋转蒸发仪,加热温度为40-60℃,粉体干燥后过筛。
所述粉体干燥后过筛所用为30-200目筛。
所述步骤b成型包括粉料在钢模内干压成型后,再经过冷等静压成型两个步骤。
所述冷等静压的压力为50-300MPa。
所述织构化过程在石墨模具内进行,织构化步骤中采用流动的惰性气体为保护气氛。
一种陶瓷,由本发明的陶瓷的织构化方法所制得,用于制造金属切削刀具、散热基板、轴承球、铸铝坩埚、陶瓷发动机涡轮及其他结构件。
本发明的有益效果是:
1、本发明通过热压流动烧结,在烧结初期就能完成织构化,提高织构化程度;进一步提高氮化硅陶瓷的韧性、强度和导热性。通过本发明方法制备的氮化硅陶瓷的韧性可高达14MPa·m1/2,抗弯强度高达1800MPa,热导率高达150W·m-1·K-1,可应用于氮化硅陶瓷刀具、轴承球、散热基板/电路板或其它耐磨耐高温的关键零部件。
2、通过热压流动烧结法,使烧结材料具有一定的流动充型性能,可用于在高温时的复杂形状的成型,并且伴有相应方向上的织构化。
3、利用坯体一维或二维方向上的热压形变量控制织构化程度,氮化硅的织构化率可以从无织构化到完全织构化。
4、通过热压流动的方法,坯体在模具中一维或二维方向上流动,使晶粒定向排布,并促进晶粒的异向生长。
附图说明
图1为实施例1织构化前后的模具剖面图,A为步骤c织构化前的模具剖面图;B为步骤c织构化后的模具剖面图;
图2为实施例1氮化硅陶瓷二维织构化的原理图;
图3为二维织构化氮化硅陶瓷经等离子蚀刻后的微观结构图,其中a为垂直于热压方向的氮化硅等离子蚀刻后的微观结构图,b为平行于于热压方向的氮化硅等离子蚀刻后的微观结构图;
图4为实施例4织构化前后的模具剖面图,左边是图A,为步骤c织构化前的模具剖面图;右边是图B,为步骤c织构化后的模具剖面图。
图中:1、石墨模具;2、上冲头;3、下冲头;4、坯体;5、压力;6、陶瓷。
具体实施方式
根据附图进一步说明本发明的一种实施方式。
实施例1:参考图1、图2和图3,
为了更充分理解本发明的技术内容,下面结合具体实施例对本发明的技术方案作进一步介绍和说明。
实施例1-4的氮化硅陶瓷的制备方法如下:
实施例1:
Si3N4-MgO-Yb2O3-La2O3
a1、混料:将2.8克MgO、5.56克Yb2O3和5.56克La2O3加入无水乙醇中,配成混合粉体,超声分散10分钟,放入高纯氮化硅研磨球,球料比为3:1,球磨2小时,再加入126克α相氮化硅粉体,超声分散10分钟,再球磨12小时。
a2、干燥:将球磨后的浆料放入旋转蒸发仪,加热温度为60℃,粉体干燥后,过60目筛子。
b、成型:将干燥后的粉料利用直径50mm的钢模干压成型,压力为30MPa,获得相应形状的块体,再经过冷等静压成型为坯体,压力为200MPa。
c、织构化/烧结:用热压烧结使步骤3的坯体致密化,石墨模具直径为100mm,烧结温度到1500℃,开始加压至30MPa,在1800℃烧结,保温1小时,烧结压力为30MPa,保护气氛为流动氮气。
实施例2:
Si3N4-MgO-Yb2O3-La2O3
a1、混料:将2.8克MgO、5.56克Yb2O3和5.56克La2O3加入无水乙醇中,配成混合粉体,超声分散10分钟,放入高纯氮化硅研磨球,球料比为3:1,球磨2小时,再加入126克α相氮化硅粉体,超声分散10分钟,再球磨12小时。
a2、干燥:将球磨后的浆料放入旋转蒸发仪,加热温度为60℃,粉体干燥后,过60目筛子。
c、成型:将干燥后的粉料利用直径80mm的钢模干压成型,压力为30MPa,获得相应形状的块体,再经过冷等静压成型为坯体,压力为200MPa。
d、织构化/烧结:用热压烧结使步骤3的坯体致密化,石墨模具直径为100mm,烧结温度到1500℃,开始加压至30MPa,在1800℃烧结,保温1小时,烧结压力为30MPa,保护气氛为流动氮气。
实施例3:
Si3N4-MgO-Yb2O3-La2O3
a1、混料:将2.8克MgO、5.56克Yb2O3和5.56克La2O3加入无水乙醇中,配成混合粉体,超声分散10分钟,放入高纯氮化硅研磨球,球料比为3:1,球磨2小时,再加入126克α相氮化硅粉体,超声分散10分钟,再球磨12小时。
a2、干燥:将球磨后的浆料放入旋转蒸发仪,加热温度为60℃,粉体干燥后,过60目筛子。
b、成型:将干燥后的粉料利用直径100mm的钢模干压成型,压力为30MPa,获得相应形状的块体,再经过冷等静压成型为坯体,压力为200MPa。
c、织构化/烧结:用热压烧结使步骤3的坯体致密化,石墨模具直径为100mm,烧结温度为1800℃,保温1小时,烧结压力为30MPa,保护气氛为流动氮气。
实施例4:参考图4:
Si3N4-MgO-Yb2O3-La2O3
a1、混料:将2.8克MgO、5.56克Yb2O3和5.56克La2O3加入无水乙醇中,配成混合粉体,超声分散10分钟,放入高纯氮化硅研磨球,球料比为3:1,球磨2小时,再加入126克α相氮化硅粉体,超声分散10分钟,再球磨12小时。
a2、干燥:将球磨后的浆料放入旋转蒸发仪,加热温度为60℃,粉体干燥后,过60目筛子。
b、成型:将干燥后的粉料利用50*50mm的方钢模干压成型,压力为30MPa,获得相应形状的块体,再经过冷等静压成型为坯体,压力为200MPa。
c、织构化/烧结:用热压烧结使步骤3的坯体致密化,方形石墨模具尺寸为50*100mm,烧结温度到1500℃,开始加压至30MPa,在1800℃烧结,保温1小时,烧结压力为30MPa,保护气氛为流动氮气。
本发明陶瓷的织构化方法重要步骤c具体操作:将冷等静压后的坯体放入石墨模具内,加热至1100-1800℃,然后在上冲头和下冲头的作用下加压,坯体上的晶粒发生定向排布并且部分晶粒异向生长,得到所需的高性能陶瓷。
用金刚石工具分别对实施例1-4所制得的氮化硅陶瓷进行加工,用各实施例的氮化硅陶瓷分别制成多根3mm×4mm×45mm的样条。由实施例1的氮化硅陶瓷制成的样条记为1号样条,由实施例2-4的氮化硅陶瓷制成的样条相应地记为2-4号样条。1-4号样条用于测试氮化硅陶瓷的性能。
实施例1-4制备的氮化硅陶瓷(1-4号样条)进行如下性能测试:(a)抗弯强度与断裂韧性:每号样条中的10根用于测试氮化硅的抗弯强度,根据ASTM-C1161-02标准,四点抗弯,外跨距40mm,内跨距20mm;5根用单边桥切口法测试断裂韧性,三点抗弯,跨距为40mm,切口尺寸为150±2um。(b)热导率测试方法:利用激光导热仪测试热扩散系数,根据ASTM-E-461-01标准。(c)织构化率测试方法—利用不同面的XRD强度计算Lotgering指数。
表1实施例1-4制备的氮化硅陶瓷的性能测试结果
由表1的测试结果可知,氮化硅陶瓷经一维或者二维织构化后,较未织构化的样品,在一定方向上力学、热学性能均有很大提高。
以上所述仅以实施例来进一步说明本发明的技术内容,以便于读者更容易理解,但不代表本发明的实施方式仅限于此,任何依本发明所做的技术延伸或再创造,均受本发明的保护。

Claims (10)

1.一种陶瓷的织构化方法,包括步骤:a、配料,将含有烧结助剂的氮化硅粉体混匀,干燥;b、成型;将干燥后的粉体经过钢模干压和冷等静压制得一定形状的坯体;c、织构化,采用热压流动烧结的方法使步骤b制得的坯体在一维或二维方向流动从而实现晶粒定向排布和异向生长,制得高性能陶瓷;其中热压力为10-50MPa,温度为1000-2000℃。
2.根据权利要求1所述的陶瓷的织构化方法,所述烧结助剂为碱金属氧化物或稀土金属氧化物的任一种或多种。
3.根据权利要求1所述的陶瓷的织构化方法,所述步骤a的配料包括混料和干燥两个步骤,混料为将烧结助剂和陶瓷粉体加入溶剂中,配置成浆料,然后加入氮化硅研磨球进行球磨,氮化硅研磨球和粉体的重量比为1-5:1,并进行超声分散,氮化硅研磨球和混合粉体的重量比为1-5:1;其中烧结助剂和α相氮化硅粉体的重量比为0.5-35:100。
4.根据权利要求3所述的陶瓷的织构化方法,所述溶剂为水、无水乙醇、丙酮、丙醇的任一种或多种,混合粉体和溶剂的体积比为1:1-3。
5.根据权利要求3所述的陶瓷的织构化方法,将步骤混料制得的浆料放入旋转蒸发仪,加热温度为40-60℃,粉体干燥后过筛。
6.根据权利要求5所述的陶瓷的织构化方法,所述粉体干燥后过筛所用为30-200目筛。
7.根据权利要求5述的陶瓷的织构化方法,所述步骤b成型包括粉料在钢模内干压成型后,再经过冷等静压成型两个步骤。
8.根据权利要求7所述的陶瓷的织构化方法,所述冷等静压的压力为50-300MPa。
9.根据权利要求1所述的陶瓷的织构化方法,所述织构化过程在石墨模具内进行,织构化步骤中采用流动的惰性气体为保护气氛。
10.一种陶瓷,由权利要求1-9任一项织构化方法所制得,用于制造金属切削刀具、散热基板、轴承球、铸铝坩埚、陶瓷发动机涡轮及其他结构件。
CN201510414902.4A 2015-07-15 2015-07-15 一种陶瓷的织构化方法 Active CN105152655B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201510414902.4A CN105152655B (zh) 2015-07-15 2015-07-15 一种陶瓷的织构化方法
PCT/CN2015/084379 WO2017008317A1 (en) 2015-07-15 2015-07-17 A method of making textured ceramics
US14/821,817 US9708224B2 (en) 2015-07-15 2015-08-10 Method of making textured ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510414902.4A CN105152655B (zh) 2015-07-15 2015-07-15 一种陶瓷的织构化方法

Publications (2)

Publication Number Publication Date
CN105152655A true CN105152655A (zh) 2015-12-16
CN105152655B CN105152655B (zh) 2018-01-16

Family

ID=54793778

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510414902.4A Active CN105152655B (zh) 2015-07-15 2015-07-15 一种陶瓷的织构化方法

Country Status (3)

Country Link
US (1) US9708224B2 (zh)
CN (1) CN105152655B (zh)
WO (1) WO2017008317A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107586136A (zh) * 2017-10-17 2018-01-16 广东工业大学 一种3d打印氮化硅陶瓷的方法
CN110423122A (zh) * 2019-08-06 2019-11-08 中国科学院上海硅酸盐研究所 一种低损耗、高导热氮化硅陶瓷的制备方法
CN110483085A (zh) * 2019-08-01 2019-11-22 广东工业大学 一种晶须增强氧化铝复合陶瓷及其制备方法与应用
CN110981497A (zh) * 2019-12-23 2020-04-10 广东工业大学 一种高导热高耐磨的氮化硅陶瓷及其制备方法和应用
CN111499377A (zh) * 2020-05-13 2020-08-07 南方科技大学 一种压电陶瓷及其制备方法
CN111517805A (zh) * 2020-07-06 2020-08-11 佛山华骏特瓷科技有限公司 高耐磨的氮化硅基陶瓷及其制备方法和应用
CN112079645A (zh) * 2020-08-19 2020-12-15 广东工业大学 一种织构化碳化硅晶须增韧的氧化铝基陶瓷及其制备方法和应用
CN113354419A (zh) * 2021-07-02 2021-09-07 广东工业大学 一种晶粒[00l]高度定向的氮化硅基陶瓷及其制备方法和应用
CN113735594A (zh) * 2021-08-25 2021-12-03 北京科技大学 一种热压烧结制备高导热氮化硅陶瓷的方法
CN115385698A (zh) * 2022-08-29 2022-11-25 广东工业大学 一种具有织构化的硼化物/氮化硅复合陶瓷及其制备方法和应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114835501B (zh) * 2022-05-19 2023-06-23 广东工业大学 一种氮化硅基织构化梯度材料及其制备方法和应用
CN116332642B (zh) * 2023-02-19 2024-06-28 哈尔滨工业大学 一种高Qm的<111>取向四元织构陶瓷及其三步烧结制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103922746A (zh) * 2014-04-21 2014-07-16 哈尔滨工业大学 一种水基流延成型制备致密氮化硅陶瓷材料及致密异形氮化硅陶瓷材料的方法
CN104045350A (zh) * 2013-03-11 2014-09-17 中国科学院上海硅酸盐研究所 一种采用反应烧结工艺制备氮化硅-碳化硅复合陶瓷材料的方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2927226A1 (de) * 1979-07-05 1981-01-08 Kempten Elektroschmelz Gmbh Dichte formkoerper aus polykristallinem beta -siliciumcarbid und verfahren zu ihrer herstellung durch heisspressen
JPS60186475A (ja) * 1984-03-06 1985-09-21 京セラ株式会社 窒化珪素質焼結体及びその製造方法
JPS60186476A (ja) * 1984-03-06 1985-09-21 京セラ株式会社 窒化珪素質焼結体及びその製造方法
CN85100510A (zh) * 1985-04-01 1986-08-13 中国科学院上海硅酸盐研究所 含有氧化钇、氧化镧和氧化铝的氮化硅陶瓷及制造方法
US4904624A (en) * 1986-10-28 1990-02-27 Norton Company Silicon nitride with improved high temperature strength
DE3885140T2 (de) * 1987-04-10 1994-03-31 Hitachi Ltd Keramischer Verbundwerkstoff und Verfahren zu seiner Herstellung.
EP0308873B1 (en) * 1987-09-22 1993-08-04 Nippon Steel Corporation Ceramic composite and process for preparation thereof
US4917843A (en) * 1987-10-30 1990-04-17 Kernforschungsanlage Julich Gesellschaft Mit Beschrankter Haftung Process for joining molded silicon nitride parts
EP0399107B1 (en) * 1989-05-22 1996-03-20 Sumitomo Electric Industries, Ltd. High strength silicon nitride sintered body and process for producing same
JPH0570242A (ja) * 1991-06-26 1993-03-23 Sumitomo Electric Ind Ltd 耐衝撃材用窒化ケイ素系焼結体
US5234643A (en) * 1992-01-27 1993-08-10 Matsumoto Roger L K Silicon nitride ceramics containing crystallized grain boundary phases
CA2124093C (en) * 1994-03-31 2001-04-17 Prasad S. Apte Microwave sintering process
JP2615437B2 (ja) * 1994-09-20 1997-05-28 工業技術院長 高強度・高靱性窒化ケイ素焼結体及びその製造方法
JP3624225B2 (ja) * 1994-10-04 2005-03-02 独立行政法人産業技術総合研究所 窒化ケイ素系又はサイアロン系のセラミックス及びその成形法
US7964296B2 (en) * 2007-07-27 2011-06-21 Ceradyne, Inc. High-volume, fully dense silicon nitride monolith and method of making by simultaneously joining and hot pressing a plurality of RBSN parts
US20100273639A1 (en) * 2007-12-03 2010-10-28 Koninklijke Philips Electronics N.V. Ceramic material for leds with reduced scattering and method of making the same
FR2958288B1 (fr) * 2010-04-01 2012-10-05 Saint Gobain Ct Recherches Materiau a pores tubulaires
WO2013024548A1 (ja) * 2011-08-18 2013-02-21 イビデン株式会社 ハニカム構造体及びその製造方法、排ガス浄化装置並びにシリコアルミノホスフェート粒子
FR2984882A1 (fr) * 2011-12-23 2013-06-28 Saint Gobain Ct Recherches Procede de fabrication d'un produit mesoporeux.
DE112013002145T5 (de) * 2012-06-27 2015-03-05 Dow Global Technologies Llc Verbessertes Verfahren zur Herstellung poröser Stopfen in Keramikwabenfiltern
US10462907B2 (en) * 2013-06-24 2019-10-29 President And Fellows Of Harvard College Printed three-dimensional (3D) functional part and method of making
US10668539B2 (en) * 2014-11-10 2020-06-02 Smith International, Inc. Graphite heater with tailored resistance characteristics for HPHT presses and products made therein

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104045350A (zh) * 2013-03-11 2014-09-17 中国科学院上海硅酸盐研究所 一种采用反应烧结工艺制备氮化硅-碳化硅复合陶瓷材料的方法
CN103922746A (zh) * 2014-04-21 2014-07-16 哈尔滨工业大学 一种水基流延成型制备致密氮化硅陶瓷材料及致密异形氮化硅陶瓷材料的方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107586136A (zh) * 2017-10-17 2018-01-16 广东工业大学 一种3d打印氮化硅陶瓷的方法
CN110483085B (zh) * 2019-08-01 2022-10-04 广东工业大学 一种晶须增强氧化铝复合陶瓷及其制备方法与应用
CN110483085A (zh) * 2019-08-01 2019-11-22 广东工业大学 一种晶须增强氧化铝复合陶瓷及其制备方法与应用
CN110423122A (zh) * 2019-08-06 2019-11-08 中国科学院上海硅酸盐研究所 一种低损耗、高导热氮化硅陶瓷的制备方法
CN110423122B (zh) * 2019-08-06 2021-08-06 中国科学院上海硅酸盐研究所 一种低损耗、高导热氮化硅陶瓷的制备方法
CN110981497A (zh) * 2019-12-23 2020-04-10 广东工业大学 一种高导热高耐磨的氮化硅陶瓷及其制备方法和应用
CN111499377A (zh) * 2020-05-13 2020-08-07 南方科技大学 一种压电陶瓷及其制备方法
CN111517805A (zh) * 2020-07-06 2020-08-11 佛山华骏特瓷科技有限公司 高耐磨的氮化硅基陶瓷及其制备方法和应用
CN112079645A (zh) * 2020-08-19 2020-12-15 广东工业大学 一种织构化碳化硅晶须增韧的氧化铝基陶瓷及其制备方法和应用
CN112079645B (zh) * 2020-08-19 2022-03-25 广东工业大学 一种织构化碳化硅晶须增韧的氧化铝基陶瓷及其制备方法和应用
CN113354419A (zh) * 2021-07-02 2021-09-07 广东工业大学 一种晶粒[00l]高度定向的氮化硅基陶瓷及其制备方法和应用
CN113735594A (zh) * 2021-08-25 2021-12-03 北京科技大学 一种热压烧结制备高导热氮化硅陶瓷的方法
CN115385698A (zh) * 2022-08-29 2022-11-25 广东工业大学 一种具有织构化的硼化物/氮化硅复合陶瓷及其制备方法和应用

Also Published As

Publication number Publication date
US9708224B2 (en) 2017-07-18
CN105152655B (zh) 2018-01-16
WO2017008317A1 (en) 2017-01-19
US20170015593A1 (en) 2017-01-19

Similar Documents

Publication Publication Date Title
CN105152655B (zh) 一种陶瓷的织构化方法
CN105130410B (zh) 一种快速合成cbn磨具用陶瓷结合剂的制备方法
CN107586136A (zh) 一种3d打印氮化硅陶瓷的方法
CN105541341A (zh) 一种添加复合助剂制备高致密度氮化硅陶瓷的方法
CN105236943B (zh) 一种Al2O3/Ti(C,N)复合陶瓷刀具材料及其微波烧结工艺
CN104894641B (zh) 一种高致密(LaxCa1‑x)B6多晶阴极材料及其制备方法
CN105859301B (zh) 一种氮化硅陶瓷及其制备方法
CN103896601A (zh) 一种高致密度复杂形状陶瓷制品的热压烧结方法
CN102746013A (zh) 一种轻质高强氮化硅结合碳化硅耐火材料及其制备方法
CN101200367A (zh) 钇铁石榴石铁氧体材料制备方法
CN106892660A (zh) 一种陶瓷手机后盖及其制备方法
CN104761251B (zh) 一种制备镁铝尖晶石的反应烧结方法
CN103820691B (zh) 一种FeAl/TiC复合材料的常压烧结制备方法
CN102442819A (zh) 一种低成本制备高性能大型氧化铝制品的方法
CN106187199A (zh) 一种高度织构化Ti2AlN陶瓷的制备方法
CN104131208A (zh) 一种氧化铝-碳化钛微米复合陶瓷刀具材料及其微波烧结方法
CN107555998A (zh) 高纯度Fe2AlB2陶瓷粉体及致密块体的制备方法
CN111517805A (zh) 高耐磨的氮化硅基陶瓷及其制备方法和应用
CN102786304B (zh) 一种热压碳化硼陶瓷的制备方法
CN103194631B (zh) 高体积分数氧化铝陶瓷颗粒增强铝复合材料的制备方法
CN102826856A (zh) 一种高纯低密度ito靶材及其制备方法
CN103143709A (zh) 基于Ti元素粉末和Al元素粉末制备TiAl金属间化合物零件的方法
CN108620586B (zh) 3d打印高致密度钛-硼化钛的复合材料及其制备方法
CN102635479A (zh) 车用氮化硅陶瓷预热塞的制备方法
CN101985396B (zh) 采用烧块切片法制备氮化铝陶瓷基片的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20151216

Assignee: Dongguan Sequoia Automation Co.,Ltd.

Assignor: DONGGUAN SOUTH CHINA DESIGN INNOVATION INSTITUTE

Contract record no.: X2022440000149

Denomination of invention: A kind of textured method of ceramics

Granted publication date: 20180116

License type: Common License

Record date: 20220916

CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: 523000 room 318, building 9, No. 1, Xuefu Road, Songshanhu Park, Dongguan City, Guangdong Province

Patentee after: DONGGUAN SOUTH CHINA DESIGN INNOVATION INSTITUTE

Country or region after: China

Patentee after: GUANGDONG University OF TECHNOLOGY

Address before: Building 13, No.1 Xinzhu Road Headquarters, Songshan Lake Science and Technology Industrial Park, Dongguan City, Guangdong Province, 523000

Patentee before: DONGGUAN SOUTH CHINA DESIGN INNOVATION INSTITUTE

Country or region before: China

Patentee before: GUANGDONG University OF TECHNOLOGY