WO2013024548A1 - ハニカム構造体及びその製造方法、排ガス浄化装置並びにシリコアルミノホスフェート粒子 - Google Patents

ハニカム構造体及びその製造方法、排ガス浄化装置並びにシリコアルミノホスフェート粒子 Download PDF

Info

Publication number
WO2013024548A1
WO2013024548A1 PCT/JP2011/068707 JP2011068707W WO2013024548A1 WO 2013024548 A1 WO2013024548 A1 WO 2013024548A1 JP 2011068707 W JP2011068707 W JP 2011068707W WO 2013024548 A1 WO2013024548 A1 WO 2013024548A1
Authority
WO
WIPO (PCT)
Prior art keywords
honeycomb structure
honeycomb
silicoaluminophosphate particles
less
concentration
Prior art date
Application number
PCT/JP2011/068707
Other languages
English (en)
French (fr)
Inventor
雅文 國枝
吉豊 西尾
Original Assignee
イビデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社 filed Critical イビデン株式会社
Priority to EP11870891.6A priority Critical patent/EP2745933B1/en
Priority to JP2013528897A priority patent/JP5814373B2/ja
Priority to US14/128,565 priority patent/US20140147673A1/en
Priority to PCT/JP2011/068707 priority patent/WO2013024548A1/ja
Publication of WO2013024548A1 publication Critical patent/WO2013024548A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates [SAPO compounds]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • B29C48/11Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels comprising two or more partially or fully enclosed cavities, e.g. honeycomb-shaped
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/06Aluminophosphates containing other elements, e.g. metals, boron
    • C01B37/08Silicoaluminophosphates [SAPO compounds], e.g. CoSAPO
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/54Phosphates, e.g. APO or SAPO compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2067Urea
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9202Linear dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9205Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9207Specific surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to a honeycomb structure, a method for manufacturing the honeycomb structure, an exhaust gas purification device, and silicoaluminophosphate particles.
  • SCR selective catalytic reduction
  • zeolite is known as a material that adsorbs ammonia in a selective catalytic reduction system.
  • Patent Document 1 discloses a honeycomb structure having a honeycomb unit including zeolite, inorganic fibers and / or whiskers, and an inorganic binder.
  • SAPO-34 is known as a zeolite excellent in NOx purification performance.
  • SAPO-34 contracts or expands by adsorbing or desorbing water, and the lattice constant changes. For this reason, the honeycomb structure having a honeycomb unit containing SAPO-34 has a problem that the honeycomb unit is likely to be damaged when SAPO-34 adsorbs or desorbs water.
  • the present invention is excellent in NOx purification performance and can prevent the honeycomb unit from being damaged by adsorbing or desorbing water, and production of the honeycomb structure It is an object of the present invention to provide a method and an exhaust gas purification apparatus having the honeycomb structure.
  • Another object of the present invention is to provide silicoaluminophosphate particles that are excellent in NOx purification performance and can suppress shrinkage due to water adsorption and expansion due to water desorption.
  • a honeycomb structure of the present invention is a honeycomb structure having a honeycomb unit in which a plurality of through holes are arranged in parallel in a longitudinal direction with partition walls interposed therebetween, and the honeycomb unit includes silicoaluminophosphate particles and an inorganic binder.
  • the silicoaluminophosphate particles After the raw material paste is extruded and fired, the silicoaluminophosphate particles have a ratio of the amount of Si to the sum of the amounts of Al and P of 0.16 to 0.33,
  • the specific surface area is 200 m 2 / g or more and 400 m 2 / g or less, and the average primary particle size is 2.0 ⁇ m or more and 6.0 ⁇ m or less.
  • the silicoaluminophosphate particles are preferably ion-exchanged with copper ions and / or iron ions. *
  • the content of the silicoaluminophosphate particles per apparent volume is preferably 230 g / L or more and 360 g / L or less.
  • the apparent volume is the volume of the outer periphery including the void volume.
  • the inorganic binder is preferably a solid content contained in one or more selected from the group consisting of alumina sol, silica sol, titania sol, water glass, sepiolite, attapulgite and boehmite. *
  • the raw material paste preferably further includes one or more selected from the group consisting of inorganic fibers, scale-like substances, tetrapot-like substances, and three-dimensional needle-like substances.
  • the inorganic fiber is at least one selected from the group consisting of alumina, silica, silicon carbide, silica alumina, glass, potassium titanate, and aluminum borate, and the scaly substance includes glass, muscovite, alumina, and silica.
  • the tetrapot-like substance is zinc oxide
  • the three-dimensional needle-like substance is alumina, silica, silicon carbide, silica alumina, glass, potassium titanate, boric acid. It is desirable to be at least one selected from the group consisting of aluminum and boehmite. *
  • the honeycomb structure of the present invention preferably has a plurality of the honeycomb units.
  • the honeycomb structure of the present invention has a NOx purification rate of 85% or more when a simulated gas at 200 ° C. is flowed through the honeycomb structure so that the space velocity is 80000 / h. It is a ratio of the flow rate [m 3 / h] of the simulated gas to the apparent volume [m 3 ] of the honeycomb structure, and the simulated gas has a nitrogen monoxide concentration of 350 ppm and an ammonia concentration of 350 ppm. It is desirable that the oxygen concentration is 10%, the water concentration is 5%, the carbon dioxide concentration is 5%, and the nitrogen balance.
  • a method for manufacturing a honeycomb structure according to the present invention is a method for manufacturing a honeycomb structure having a honeycomb unit in which a plurality of through holes are arranged in parallel in the longitudinal direction with partition walls therebetween, wherein the silicoaluminophosphate particles and the inorganic binder are provided.
  • the ratio of the amounts of these substances is 0.16 or more and 0.33 or less, the specific surface area is 200 m 2 / g or more and 400 m 2 / g or less, and the average primary particle size is 2 ⁇ m or more and 6 ⁇ m or less.
  • the atmosphere for firing the extruded raw material paste has an oxygen concentration of 1% or more and 10% or less, and the firing temperature of the extruded raw material paste is 600 ° C. or higher and 1000 ° C. or lower.
  • the firing time of the raw material paste is preferably 7 hours or more and 10 hours or less.
  • the exhaust gas purifying apparatus of the present invention is housed in a metal container in a state where a holding sealing material is disposed on the outer peripheral surface excluding both end faces of the honeycomb structure of the present invention.
  • the ratio of the amount of Si to the sum of the amounts of Al and P is 0.16 or more and 0.33 or less, and the specific surface area is 200 m 2 / g or more and 400 m 2 / g or less.
  • the average primary particle size is 2.0 ⁇ m or more and 6.0 ⁇ m or less.
  • the honeycomb structure having excellent NOx purification performance and capable of suppressing damage to the honeycomb unit due to adsorption or desorption of water, the method for manufacturing the honeycomb structure, and the honeycomb structure are provided.
  • An exhaust gas purification apparatus can be provided.
  • silicoaluminophosphate particles that are excellent in NOx purification performance and can suppress shrinkage due to water adsorption and expansion due to water desorption.
  • FIG. 4 is a perspective view showing a honeycomb unit constituting the honeycomb structure of Fig. 3. It is a perspective view which shows the other example of the honeycomb structure of this invention.
  • FIG. 6 is a perspective view showing a honeycomb unit constituting the honeycomb structure of FIG. 5.
  • FIG. 1 shows an example of the honeycomb structure of the present invention.
  • the honeycomb structure 10 includes a single honeycomb unit 11 in which a plurality of through holes 11a are arranged in parallel in the longitudinal direction with a partition wall 11b interposed therebetween.
  • the honeycomb unit 11 is manufactured by extruding a raw material paste containing silicoaluminophosphate (SAPO) particles and an inorganic binder, and then firing it. Further, an outer peripheral coat layer 12 is formed on the outer peripheral surface excluding both end surfaces of the honeycomb unit 11.
  • SAPO silicoaluminophosphate
  • the silicoaluminophosphate particles mean the silicoaluminophosphate particles contained in the raw material paste.
  • the ratio of the amount of Si to the sum of the amounts of Al and P in the silicoaluminophosphate particles is 0.16 to 0.33, preferably 0.16 to 0.28, and preferably 0.20 to 0.28. More preferred is 0.22 to 0.26.
  • the ratio of the amount of Si to the sum of the amounts of Al and P in the silicoaluminophosphate particles is less than 0.16, the shrinkage caused by the adsorption of water by the silicoaluminophosphate particles and the desorption of the silicoaluminophosphate particles It becomes difficult to suppress the expansion caused by this.
  • the unit of the substance amount in the present invention is mol, and the ratio (molar ratio) of the Si substance amount [mol] to the sum of the Al and P substance amounts [mol] of the silicoaluminophosphate particles is the energy dispersion type X It can be measured using a line analyzer (EDS).
  • EDS line analyzer
  • the specific surface area of the silicoaluminophosphate phosphate particles are 200 ⁇ 400m 2 / g, preferably from 210 ⁇ 385m 2 / g, more preferably 250 ⁇ 360m 2 / g, more preferably 280 ⁇ 330m 2 / g. If the specific surface area of the silicoaluminophosphate particles is less than 200 m 2 / g, the number of pores in the honeycomb unit 11 is reduced, so that the exhaust gas hardly enters the partition walls 11b of the honeycomb unit 11, and the silicoaluminophosphate particles Is not effectively used for NOx purification.
  • the silicoaluminophosphate particles usually have a specific surface area of about 500 m 2 / g.
  • the silicoaluminophosphate particles are made amorphous by treating the silicoaluminophosphate particles with an alkali to form amorphous crystals.
  • the specific surface area can be 400 m 2 / g or less.
  • the alkali used for the alkali treatment is not particularly limited, and examples thereof include ammonia and sodium hydroxide.
  • the specific surface area of the silicoaluminophosphate particles can be measured using the BET multipoint method (N 2 adsorption method). Further, when measuring the specific surface area of the silicoaluminophosphate particles, for example, an automatic specific surface area / pore distribution measuring device Tristar 3000 (manufactured by Shimadzu Corporation) can be used.
  • the average primary particle size of the silicoaluminophosphate particles is 2.0 to 6.0 ⁇ m, preferably 3.0 to 5.0 ⁇ m, more preferably 3.5 to 4.5 ⁇ m.
  • the average primary particle size of the silicoaluminophosphate particles is less than 2.0 ⁇ m, the exhaust gas hardly penetrates into the partition walls 11b, and the silicoaluminophosphate particles are not effectively used for NOx purification.
  • the average primary particle size of the silicoaluminophosphate particles exceeds 6.0 ⁇ m, the porosity of the honeycomb unit 11 increases, the strength of the honeycomb unit 11 decreases, and the specific surface area of the silicoaluminophosphate particles decreases. As a result, the NOx purification performance decreases.
  • the average primary particle size of the silicoaluminophosphate particles is usually about 20 ⁇ m, but the average primary particle size can be reduced by grinding the silicoaluminophosphate particles.
  • the average primary particle size of the silicoaluminophosphate particles can be measured using a laser diffraction type particle size distribution measuring device.
  • the ratio of the amount of Si to the sum of the amounts of Al and P is 0.16 to 0.28
  • the specific surface area is 210 to 385 m 2 / g
  • the average primary particle size is 2 It is preferably from 0.0 to 6.0 ⁇ m.
  • Silicoaluminophosphate particles can be prepared by adding phosphoric acid, aluminum hydroxide, silica and a structure directing agent (SDA) to water to prepare a precursor gel, followed by heating and alkali treatment.
  • SDA structure directing agent
  • the structure directing agent is a template used for forming a regular pore structure when producing silicoaluminophosphate particles.
  • the ratio of the amount of Si to the sum of the amounts of Al and P of the silicoaluminophosphate particles is controlled by adjusting the ratio of the amount of silica to the sum of the amounts of phosphoric acid and aluminum hydroxide. be able to. Further, the specific surface area of the silicoaluminophosphate particles can be controlled by adjusting the conditions for alkali treatment.
  • the structure directing agent is not particularly limited, and examples thereof include morpholine, diethylamine, tetraethylammonium hydroxide, triethylamine and the like, and two or more kinds may be used in combination.
  • the silicoaluminophosphate particles are preferably ion-exchanged with copper ions and / or iron ions in consideration of NOx purification performance.
  • Silicoaluminophosphate particles that are ion-exchanged with copper ions and / or iron ions preferably have an ion exchange amount of 1.0 to 5.0% by mass.
  • the ion exchange amount of the silicoaluminophosphate particles is less than 1.0% by mass, the effect of improving the NOx purification performance is reduced.
  • the ion exchange amount of the silicoaluminophosphate particles exceeds 5.0% by mass, the hydrothermal durability decreases, for example, the NOx purification performance at a high temperature of 500 ° C. or higher decreases.
  • the silicoaluminophosphate particles may be ion-exchanged with metal ions other than those described above.
  • the honeycomb unit 11 preferably has a content of silicoaluminophosphate particles per apparent volume of 230 to 360 g / L. If the content of the silicoaluminophosphate particles per apparent volume of the honeycomb unit 11 is less than 230 g / L, the apparent volume of the honeycomb unit 11 must be increased in order to improve the NOx purification performance. On the other hand, when the content of the silicoaluminophosphate particles per apparent volume of the honeycomb unit 11 exceeds 360 g / L, the strength of the honeycomb unit 11 becomes insufficient, or the aperture ratio of the honeycomb unit 11 decreases.
  • the apparent volume means the volume of the outer periphery including the void volume.
  • the inorganic binder contained in the raw material paste is not particularly limited, and examples thereof include solids contained in alumina sol, silica sol, titania sol, water glass, sepiolite, attapulgite, boehmite and the like, and two or more kinds may be used in combination.
  • the content of the inorganic binder in the solid content of the raw material paste is preferably 5 to 30% by mass, and more preferably 10 to 20% by mass.
  • the content of the inorganic binder in the solid content of the raw material paste is less than 5% by mass, the strength of the honeycomb unit 11 is lowered.
  • the content of the solid content of the inorganic binder in the solid content of the raw material paste exceeds 30% by mass, it becomes difficult to extrude the honeycomb unit 11.
  • the raw material paste preferably further includes at least one selected from the group consisting of inorganic fibers, scale-like substances, tetrapot-like substances, and three-dimensional needle-like substances.
  • the material constituting the inorganic fiber contained in the raw material paste is not particularly limited, and examples thereof include alumina, silica, silicon carbide, silica alumina, glass, potassium titanate, aluminum borate and the like. Good.
  • the aspect ratio of the inorganic fibers contained in the raw material paste is preferably 2 to 1000, more preferably 5 to 800, and even more preferably 10 to 500.
  • the aspect ratio of the inorganic fibers contained in the raw material paste is less than 2, the effect of improving the strength of the honeycomb unit 11 is reduced.
  • the aspect ratio of the inorganic fiber contained in the raw material paste exceeds 1000, the die may be clogged when the honeycomb unit 11 is extruded, or the inorganic fiber breaks and the strength of the honeycomb unit 11 is increased. The effect to improve becomes small.
  • the scaly substance means a flat substance, preferably having a thickness of 0.2 to 5.0 ⁇ m, preferably having a maximum length of 10 to 160 ⁇ m, and a ratio of the maximum length to the thickness of 3 It is preferable that it is -250.
  • the tetrapot-like substance means a substance in which the needle-like portion extends three-dimensionally.
  • the average needle-like length of the needle-like portion is preferably 5 to 30 ⁇ m, and the average diameter of the needle-like portion is 0.5. It is preferable that the thickness is ⁇ 5.0 ⁇ m.
  • Zinc oxide Although it does not specifically limit as a material which comprises the tetrapot-like substance contained in a raw material paste, Zinc oxide etc. are mentioned, You may use 2 or more types together.
  • the three-dimensional acicular substance means a substance in which the acicular parts are bonded by an inorganic compound such as glass near the center of each acicular part, and the average acicular length of the acicular parts is 5 to 30 ⁇ m. It is preferable that the average diameter of the needle-shaped part is 0.5 to 5.0 ⁇ m.
  • the three-dimensional acicular substance may have a plurality of acicular portions that are three-dimensionally connected, and preferably has a needle-like diameter of 0.1 to 5.0 ⁇ m and a length of 0.3 to It is preferably 30.0 ⁇ m, and the ratio of length to diameter is preferably 1.4 to 50.0.
  • the material constituting the three-dimensional acicular substance contained in the raw material paste is not particularly limited, and examples thereof include alumina, silica, silicon carbide, silica alumina, glass, potassium titanate, aluminum borate, boehmite, and the like. You may use together.
  • the content of inorganic fiber, scale-like substance, tetrapot-like substance and three-dimensional needle-like substance in the solid content of the raw material paste is preferably 3 to 50% by mass, more preferably 3 to 30% by mass. More preferred is 20% by mass.
  • the content of the inorganic fiber, the scale-like substance, the tetrapot-like substance, and the three-dimensional needle-like substance in the solid content of the raw material paste is less than 3% by mass, the effect of improving the strength of the honeycomb unit 11 becomes small.
  • the honeycomb unit 11 preferably has a porosity of 40 to 60%.
  • the porosity of the honeycomb unit 11 is less than 40%, the exhaust gas hardly penetrates into the partition walls 11b, and the silicoaluminophosphate particles are not effectively used for the purification of NOx.
  • the porosity of the honeycomb unit 11 exceeds 60%, the strength of the honeycomb unit 11 becomes insufficient.
  • the porosity of the honeycomb unit 11 can be measured using a mercury intrusion method.
  • the honeycomb unit 11 preferably has an opening ratio of a cross section perpendicular to the longitudinal direction of 50 to 75%.
  • the opening ratio of the cross section perpendicular to the longitudinal direction of the honeycomb unit 11 is less than 50%, the silicoaluminophosphate particles are not effectively used for the purification of NOx.
  • the opening ratio of the cross section perpendicular to the longitudinal direction of the honeycomb unit 11 exceeds 75%, the strength of the honeycomb unit 11 becomes insufficient.
  • the density of the through holes 11a having a cross section perpendicular to the longitudinal direction is preferably 31 to 155 / cm 2 .
  • the density of the through-holes 11a having a cross section perpendicular to the longitudinal direction of the honeycomb unit 11 is less than 31 / cm 2 , it becomes difficult for the silicoaluminophosphate particles and the exhaust gas to come into contact with each other, and the NOx purification performance is lowered.
  • the density of the through holes 11a having a cross section perpendicular to the longitudinal direction of the honeycomb unit 11 exceeds 155 / cm 2 , the pressure loss of the honeycomb structure 10 increases.
  • the thickness of the partition wall 11b of the honeycomb unit 11 is preferably 0.10 to 0.50 mm, and more preferably 0.15 to 0.35 mm. When the thickness of the partition wall 11b is less than 0.10 mm, the strength of the honeycomb unit 11 is lowered. On the other hand, if the thickness of the partition wall 11b exceeds 0.50 mm, the exhaust gas hardly penetrates into the partition wall 11b, and the silicoaluminophosphate particles are not effectively used for the purification of NOx.
  • the outer peripheral coat layer 12 preferably has a thickness of 0.1 to 2.0 mm.
  • the thickness of the outer peripheral coat layer 12 is less than 0.1 mm, the effect of improving the strength of the honeycomb structure 10 becomes insufficient.
  • the thickness of the outer peripheral coat layer 12 exceeds 2.0 mm, the content of the silicoaluminophosphate particles per unit volume of the honeycomb structure 10 is lowered, and the NOx purification performance is lowered.
  • the shape of the honeycomb structure 10 is not limited to a cylindrical shape, and examples thereof include a prismatic shape, an elliptical cylindrical shape, a long cylindrical shape, and a rounded chamfered prismatic shape (for example, a rounded chamfered triangular prism shape).
  • the shape of the through hole 11a is not limited to a quadrangular prism shape, but may be a triangular prism shape, a hexagonal prism shape, or the like.
  • the honeycomb structure 10 preferably has a NOx purification rate of 85% or more when a simulated gas of 200 ° C. is flowed so that the space velocity is 80000 / h.
  • the space velocity is the ratio of the flow rate [m 3 / h] of the simulated gas to the apparent volume [m 3 ] of the honeycomb structure 10, and the simulated gas has a nitrogen monoxide concentration of 350 ppm, ammonia
  • the concentration of oxygen is 350 ppm, the concentration of oxygen is 10%, the concentration of water is 5%, the concentration of carbon dioxide is 5%, and the nitrogen balance.
  • honeycomb structure 10 First, using a raw material paste containing silicoaluminophosphate particles and an inorganic binder, and further containing at least one selected from the group consisting of inorganic fibers, scaly substances, tetrapot-like substances, and three-dimensional acicular substances, if necessary A cylindrical honeycomb formed body in which a plurality of through holes are arranged in parallel in the longitudinal direction with a partition wall therebetween is manufactured.
  • the raw material paste may further contain an organic binder, a dispersion medium, a molding aid and the like, if necessary.
  • the organic binder is not particularly limited, and examples thereof include methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, polyethylene glycol, phenol resin, and epoxy resin, and two or more kinds may be used in combination.
  • the content of the organic binder in the raw material paste is 1 to 10% by mass with respect to the total amount of silicoaluminophosphate particles, inorganic binder, inorganic fiber, scale-like substance, tetrapot-like substance and three-dimensional needle-like substance. Is preferred.
  • the dispersion medium is not particularly limited, and examples thereof include water, organic solvents such as benzene, alcohols such as methanol, and the like.
  • the molding aid is not particularly limited, and examples thereof include ethylene glycol, dextrin, fatty acid, fatty acid soap, polyalcohol and the like, and two or more kinds may be used in combination.
  • the raw material paste it is preferable to mix and knead, and it may be mixed using a mixer, an attritor or the like, or may be kneaded using a kneader or the like.
  • the honeycomb formed body is dried by using a dryer such as a microwave dryer, a hot air dryer, a dielectric dryer, a vacuum dryer, a vacuum dryer, a freeze dryer or the like to prepare a honeycomb dried body.
  • a dryer such as a microwave dryer, a hot air dryer, a dielectric dryer, a vacuum dryer, a vacuum dryer, a freeze dryer or the like to prepare a honeycomb dried body.
  • honeycomb dried body is degreased to produce a honeycomb degreased body.
  • the degreasing conditions can be appropriately selected depending on the type and amount of the organic substance contained in the dried honeycomb body, but it is preferably 2 hours at 400 ° C.
  • honeycomb degreased body is fired to produce a cylindrical honeycomb unit 11.
  • the firing atmosphere is preferably an oxygen concentration of 1 to 10%. If the concentration of oxygen in the firing atmosphere is less than 1%, the organic matter contained in the honeycomb degreased body remains without being sufficiently oxidized, and the strength of the honeycomb unit 11 decreases. On the other hand, when the oxygen concentration in the firing atmosphere exceeds 10%, the organic matter contained in the honeycomb degreased body burns.
  • the firing temperature is preferably 600 to 1000 ° C., and the firing time is preferably 7 to 10 hours.
  • the firing temperature is less than 600 ° C. or when the firing time is less than 7 hours, the sintering does not proceed and the strength of the honeycomb unit 11 decreases.
  • the firing temperature exceeds 1000 ° C. or when the firing time exceeds 10 hours, the sintering proceeds too much and the reaction sites of the silicoaluminophosphate particles decrease.
  • the outer peripheral coat layer paste is applied to the outer peripheral surface excluding both end surfaces of the cylindrical honeycomb unit 11.
  • a solid content contained in silica sol, an alumina sol, etc. is mentioned, You may use 2 or more types together. Among these, a solid content contained in silica sol is preferable.
  • the material constituting the inorganic particles contained in the outer peripheral coat layer paste is not particularly limited, but examples thereof include carbides such as silicon carbide, nitrides such as silicon nitride and boron nitride, and two or more kinds may be used in combination. . Of these, silicon carbide is preferred because of its excellent thermal conductivity.
  • a silica alumina, a mullite, an alumina, a silica etc. are mentioned, You may use 2 or more types together. Of these, alumina is preferable.
  • the outer periphery coating layer paste may further contain an organic binder.
  • the outer peripheral coat layer paste may further contain balloons, pore formers, and the like, which are fine hollow spheres of oxide ceramics.
  • the balloon contained in the outer periphery coating layer paste is not particularly limited, and examples thereof include alumina balloons, glass micro balloons, shirasu balloons, fly ash balloons, mullite balloons, and the like, and two or more kinds may be used in combination. Among these, an alumina balloon is preferable.
  • a spherical acrylic particle, a graphite, etc. are mentioned, You may use 2 or more types together.
  • the honeycomb unit 11 to which the outer peripheral coat layer paste has been applied is dried and solidified to produce a columnar honeycomb structure 10.
  • the outer peripheral coat layer paste contains an organic binder, it is preferably degreased.
  • the degreasing conditions can be appropriately selected depending on the kind and amount of the organic substance, but it is preferably 1 hour at 600 ° C.
  • the silicoaluminophosphate particles can be ion-exchanged by immersing the honeycomb unit 11 in an aqueous solution containing copper ions and / or iron ions.
  • a raw material paste containing silicoaluminophosphate particles ion-exchanged with copper ions and / or iron ions may be used.
  • FIG. 2 shows an example of the exhaust gas purifying apparatus of the present invention.
  • the honeycomb structure 10 is accommodated in a metal container (shell) 30 in a state where the holding sealing material 20 is disposed on the outer peripheral surface excluding both end surfaces.
  • the exhaust gas purification apparatus 100 includes an injection nozzle that injects ammonia or a compound that generates ammonia by decomposition into a pipe (not shown) on the upstream side of the honeycomb structure 10 with respect to the direction in which the exhaust gas flows.
  • An injection means (not shown) is installed.
  • ammonia is added to the exhaust gas flowing through the pipe, so that NOx contained in the exhaust gas is reduced by the silicoaluminophosphate particles contained in the honeycomb unit 11.
  • the compound that decomposes to generate ammonia is not particularly limited as long as it is a compound that is heated by exhaust gas in a pipe and generates ammonia, but urea water is preferable because of excellent storage stability.
  • the urea water is heated by the exhaust gas in the pipe and hydrolyzes to generate ammonia.
  • FIG. 3 shows another example of the honeycomb structure of the present invention.
  • a plurality of honeycomb units 11 ′ in which a plurality of through holes 11 a are arranged in parallel in the longitudinal direction with a partition wall 11 b interposed therebetween are bonded via an adhesive layer 13.
  • the configuration is the same as that of the honeycomb structure 10.
  • the honeycomb unit 11 ′ preferably has a cross-sectional area of a cross section perpendicular to the longitudinal direction of 5 to 50 cm 2 .
  • the cross-sectional area of the cross section perpendicular to the longitudinal direction of the honeycomb unit 11 ′ is less than 5 cm 2 , the pressure loss of the honeycomb structure 10 ′ increases.
  • the cross-sectional area of the cross section perpendicular to the longitudinal direction of the honeycomb unit 11 ′ exceeds 50 cm 2 , the strength against the thermal stress generated in the honeycomb unit 11 ′ becomes insufficient.
  • the shape of the honeycomb unit 11 ′ excluding the honeycomb unit 11 ′ located on the outer peripheral portion of the honeycomb structure 10 ′ is not limited to a rectangular column shape, and includes a hexagonal column shape.
  • the honeycomb unit 11 ′ has the same configuration as the honeycomb unit 11 except for the cross-sectional area and shape of a cross section perpendicular to the longitudinal direction.
  • the adhesive layer 13 preferably has a thickness of 0.5 to 2.0 mm.
  • the thickness of the adhesive layer 13 is less than 0.5 mm, the adhesive strength of the honeycomb unit 11 ′ becomes insufficient.
  • the thickness of the adhesive layer 13 exceeds 2.0 mm, the pressure loss of the honeycomb structure 10 ′ increases.
  • a quadrangular columnar honeycomb unit 11 ' is manufactured.
  • an adhesive layer paste is applied to the outer peripheral surface excluding both end faces of the plurality of honeycomb units 11 ′, bonded, and then dried and solidified to produce an aggregate of the honeycomb units 11 ′.
  • the adhesive layer paste is not particularly limited, and examples thereof include a mixture of inorganic binder and inorganic particles, a mixture of inorganic binder and inorganic fibers, a mixture of inorganic binder, inorganic particles, and inorganic fibers.
  • the inorganic binder contained in the adhesive layer paste is not particularly limited, and examples thereof include solids contained in silica sol, alumina sol and the like, and two or more kinds may be used in combination. Among these, a solid content contained in silica sol is preferable.
  • the material constituting the inorganic particles contained in the adhesive layer paste is not particularly limited, and examples thereof include carbides such as silicon carbide, nitrides such as silicon nitride and boron nitride, and two or more kinds may be used in combination. Of these, silicon carbide is preferred because of its excellent thermal conductivity.
  • the material constituting the inorganic fibers contained in the adhesive layer paste is not particularly limited, and examples thereof include silica alumina, mullite, alumina, silica and the like, and two or more kinds may be used in combination. Of these, alumina is preferable.
  • the adhesive layer paste may further contain an organic binder.
  • the organic binder contained in the adhesive layer paste is not particularly limited, and examples thereof include polyvinyl alcohol, methyl cellulose, ethyl cellulose, carboxymethyl cellulose and the like, and two or more kinds may be used in combination.
  • the adhesive layer paste may further contain balloons that are fine hollow spheres of oxide ceramics, a pore-forming agent, and the like.
  • the balloon contained in the adhesive layer paste is not particularly limited, and examples thereof include an alumina balloon, a glass microballoon, a shirasu balloon, a fly ash balloon, and a mullite balloon, and two or more kinds may be used in combination. Among these, an alumina balloon is preferable.
  • the pore former contained in the adhesive layer paste is not particularly limited, and examples thereof include spherical acrylic particles and graphite, and two or more kinds may be used in combination.
  • the aggregate of the honeycomb units 11 ′ is cut into a cylindrical shape, the aggregate of the cylindrical honeycomb units 11 ′ is manufactured by polishing as necessary.
  • the honeycomb unit 11 ′ and a honeycomb unit whose cross section perpendicular to the longitudinal direction has a predetermined shape are bonded to each other so that the columnar honeycomb unit Aggregates may be produced.
  • the outer peripheral coat layer paste is applied to the outer peripheral surface excluding both end surfaces of the aggregate of the cylindrical honeycomb units 11 ′.
  • the outer peripheral coat layer paste may be the same as or different from the adhesive layer paste.
  • a columnar honeycomb structure 10 ′ is manufactured by drying and solidifying the aggregate of columnar honeycomb units 11 ′ coated with the outer periphery coating layer paste.
  • an organic binder is contained in the adhesive layer paste and / or the outer peripheral coat layer paste, it is preferable to degrease.
  • the degreasing conditions can be appropriately selected depending on the kind and amount of the organic substance, but it is preferably 1 hour at 600 ° C.
  • FIG. 5 shows another example of the honeycomb structure of the present invention.
  • the honeycomb structure 10 ′′ is a honeycomb structure except that four honeycomb units 11 ′′ (see FIG. 6) having a cross-sectional shape perpendicular to the longitudinal direction and having a sector shape with a central angle of 90 ° are bonded.
  • the structure is the same as that of the structure 10 ′.
  • outer peripheral coat layer 12 may not be formed in the honeycomb structures 10, 10 ′ and 10 ′′.
  • part means “part by mass”.
  • Example 1 In water, 9.8 parts of an aqueous phosphoric acid solution having a concentration of 85% by mass, 7.0 parts of an aluminum hydroxide aqueous solution having a concentration of 95% by mass, 5.5 parts of silica sol having a solid content of 30% by mass, and a structure directing agent 11.3 parts of morpholine was sequentially added and stirred to obtain a precursor gel. Next, after encapsulating the precursor gel in an autoclave (200 ml), while rotating at a rotation speed of 10 rpm, the temperature was increased to 200 ° C. at a temperature increase rate of 5 ° C./min and held for 24 hours. Produced.
  • the Si content relative to the sum of the amounts of Al and P was determined.
  • the substance amount ratio was 0.16, and the specific surface area was 320 m 2 / g.
  • Example 2 In water, 9.8 parts of an aqueous phosphoric acid solution having a concentration of 85% by mass, 7.0 parts of an aqueous aluminum hydroxide solution having a concentration of 95% by mass, 5.5 parts of silica sol having a solid content of 30% by mass, and 11.3 parts of morpholine as a structure directing agent was sequentially added and stirred to obtain a precursor gel. Next, after encapsulating the precursor gel in an autoclave (200 ml), while rotating at a rotation speed of 10 rpm, the temperature was increased to 200 ° C. at a temperature increase rate of 5 ° C./min and held for 24 hours. Produced.
  • the Si content relative to the sum of the amounts of Al and P was reduced.
  • the substance amount ratio was 0.16, and the specific surface area was 355 m 2 / g.
  • Example 3 In water, 9.8 parts of a phosphoric acid aqueous solution having a concentration of 85% by mass, 7.0 parts of an aluminum hydroxide aqueous solution having a concentration of 95% by mass, 5.5 parts of silica sol having a solid content of 30% by mass, and 11.3 parts of morpholine as a structure directing agent was sequentially added and stirred to obtain a precursor gel. Next, after encapsulating the precursor gel in an autoclave (200 ml), while rotating at a rotation speed of 10 rpm, the temperature was increased to 200 ° C. at a temperature increase rate of 5 ° C./min and held for 24 hours. Produced.
  • the Si content relative to the sum of the amounts of Al and P was determined.
  • the substance amount ratio was 0.16, and the specific surface area was 310 m 2 / g.
  • Example 4 In water, 9.8 parts of a phosphoric acid aqueous solution having a concentration of 85% by mass, 7.0 parts of an aluminum hydroxide aqueous solution having a concentration of 95% by mass, 5.5 parts of silica sol having a solid content of 30% by mass, and 11.3 parts of morpholine as a structure directing agent was sequentially added and stirred to obtain a precursor gel. Next, after encapsulating the precursor gel in an autoclave (200 ml), while rotating at a rotation speed of 10 rpm, the temperature was increased to 200 ° C. at a temperature increase rate of 5 ° C./min and held for 24 hours. Produced.
  • the Si content relative to the sum of the amounts of Al and P was determined.
  • the substance amount ratio was 0.16, and the specific surface area was 210 m 2 / g.
  • Example 5 In water, 9.8 parts of a phosphoric acid aqueous solution having a concentration of 85% by mass, 7.0 parts of an aluminum hydroxide aqueous solution having a concentration of 95% by mass, 8.2 parts of silica sol having a solid content of 30% by mass, and 11.3 parts of morpholine as a structure directing agent was sequentially added and stirred to obtain a precursor gel. Next, after encapsulating the precursor gel in an autoclave (200 ml), while rotating at a rotation speed of 10 rpm, the temperature was increased to 200 ° C. at a temperature increase rate of 5 ° C./min and held for 24 hours. Produced.
  • the Si content relative to the sum of the amounts of Al and P was determined.
  • the substance amount ratio was 0.24, and the specific surface area was 330 m 2 / g.
  • Example 6 In water, 9.8 parts of an aqueous phosphoric acid solution having a concentration of 85% by mass, 7.0 parts of an aqueous aluminum hydroxide solution having a concentration of 95% by mass, 8.2 parts of silica sol having a solid content of 30% by mass, and 11.3 parts of morpholine as a structure directing agent was sequentially added and stirred to obtain a precursor gel. Next, after encapsulating the precursor gel in an autoclave (200 ml), while rotating at a rotation speed of 10 rpm, the temperature was increased to 200 ° C. at a temperature increase rate of 5 ° C./min and held for 24 hours. Produced.
  • the Si content relative to the sum of the amounts of Al and P was determined.
  • the substance amount ratio was 0.24, and the specific surface area was 280 m 2 / g.
  • Example 7 In water, 9.8 parts of a phosphoric acid aqueous solution having a concentration of 85% by mass, 7.0 parts of an aluminum hydroxide aqueous solution having a concentration of 95% by mass, 9.6 parts of silica sol having a solid content of 30% by mass, and 11.3 parts of morpholine as a structure directing agent was sequentially added and stirred to obtain a precursor gel. Next, after encapsulating the precursor gel in an autoclave (200 ml), while rotating at a rotation speed of 10 rpm, the temperature was increased to 200 ° C. at a temperature increase rate of 5 ° C./min and held for 24 hours. Produced.
  • the particles were treated in an aqueous ammonia solution having a concentration of 3% by mass for 40 minutes.
  • the substance amount ratio was 0.28, and the specific surface area was 385 m 2 / g.
  • Comparative Example 1 In water, 9.8 parts of a phosphoric acid aqueous solution having a concentration of 85% by mass, 7.0 parts of an aluminum hydroxide aqueous solution having a concentration of 95% by mass, 5.1 parts of silica sol having a solid content of 30% by mass, and 11.3 parts of morpholine as a structure directing agent was sequentially added and stirred to obtain a precursor gel. Next, after encapsulating the precursor gel in an autoclave (200 ml), while rotating at a rotation speed of 10 rpm, the temperature was increased to 200 ° C. at a temperature increase rate of 5 ° C./min and held for 24 hours. Produced.
  • the Si content relative to the sum of the amounts of Al and P was determined.
  • the substance amount ratio was 0.15, and the specific surface area was 420 m 2 / g.
  • the Si content relative to the sum of the amounts of Al and P was determined.
  • the substance amount ratio was 0.15, and the specific surface area was 345 m 2 / g.
  • Comparative Example 3 In water, 9.8 parts of a phosphoric acid aqueous solution having a concentration of 85% by mass, 7.0 parts of an aluminum hydroxide aqueous solution having a concentration of 95% by mass, 5.5 parts of silica sol having a solid content of 30% by mass, and 11.3 parts of morpholine as a structure directing agent was sequentially added and stirred to obtain a precursor gel. Next, after encapsulating the precursor gel in an autoclave (200 ml), while rotating at a rotation speed of 10 rpm, the temperature was increased to 200 ° C. at a temperature increase rate of 5 ° C./min and held for 24 hours. Produced.
  • the Si content relative to the sum of the amounts of Al and P was determined.
  • the ratio of the amounts of substances was 0.16, and the specific surface area was 415 m 2 / g.
  • the Si content relative to the sum of the amounts of Al and P was determined.
  • the ratio of the amount of substances was 0.16, and the specific surface area was 320 m 2 / g.
  • the Si content relative to the sum of the amounts of Al and P was determined.
  • the mass ratio was 0.24, and the specific surface area was 287 m 2 / g.
  • the Si content relative to the sum of the amounts of Al and P was determined.
  • the mass ratio was 0.28, and the specific surface area was 190 m 2 / g.
  • Average primary particle size The average primary particle size of the silicoaluminophosphate particles was measured using a laser diffraction particle size distribution analyzer MAS5001 (manufactured by Malvern).
  • the raw material paste was extrusion-molded using an extrusion molding machine to produce a fan-shaped columnar honeycomb molded body. Then, using a microwave dryer and a hot air dryer, the honeycomb formed body was dried at 110 ° C. for 10 minutes to produce a honeycomb dried body. Furthermore, the honeycomb formed body was degreased at 400 ° C. for 5 hours to prepare a honeycomb degreased body. Next, the honeycomb degreased body was fired at 700 ° C. for 8 hours in an atmosphere having an oxygen concentration of 1% to produce a honeycomb unit.
  • the honeycomb unit had a fan-shaped column shape with a radius of 132 mm, a central angle of 90 °, and a length of 76.2 mm, a partition wall thickness of 0.20 mm, and a density of through holes of 124 holes / cm 2 .
  • an adhesive layer paste was prepared.
  • the adhesive layer paste was applied to the outer peripheral surface excluding the end face of the honeycomb unit so that the thickness of the adhesive layer 13 was 1.0 mm, and the four honeycomb units were bonded together, and then dried at 150 ° C. for 10 minutes. By solidifying, an aggregate of cylindrical honeycomb units was produced.
  • the adhesive layer paste was dried and solidified at 150 ° C. for 10 minutes, and degreased at 600 ° C. for 1 hour to prepare a honeycomb structure.
  • the space velocity (SV) is the ratio of the flow rate [m 3 / h] of the simulated gas to the apparent volume [m 3 ] of the sample.
  • the simulated gas has a nitrogen monoxide concentration of 350 ppm and an ammonia concentration of 350 ppm, oxygen concentration 10%, water concentration 5%, carbon dioxide concentration 5%, nitrogen balance.
  • Table 1 shows the evaluation results of Si / (Al + P), specific surface area, average primary particle size, honeycomb structure cracks, and NOx purification rate of the silicoaluminophosphate particles of Examples 1 to 7 and Comparative Examples 1 to 6. Show.
  • Si / (Al + P) means the ratio of the substance amount of Si to the sum of the substance quantities of Al and P.
  • the silicoaluminophosphate particles of Examples 1 to 7 have Si / (Al + P) of 0.16 to 0.28, a specific surface area of 210 to 385 m 2 / g, and an average primary particle size of 2
  • the honeycomb structure manufactured using the silicoaluminophosphate particles of Examples 1 to 7 has no cracks in the honeycomb unit. For this reason, it is considered that the occurrence of cracks in the honeycomb unit due to shrinkage or expansion caused by the adsorption or desorption of water by the silicoaluminophosphate particles of Examples 1 to 7 can be suppressed. Further, it can be seen that the honeycomb structures manufactured using the silicoaluminophosphate particles of Examples 1 to 7 have excellent NOx purification performance because the NOx purification rate is 85 to 95%.
  • the silicoaluminophosphate particles of Comparative Example 1 have a Si / (Al + P) of 0.15 and a specific surface area of 420 m 2 / g.
  • the honeycomb structure manufactured using the silicoaluminophosphate particles of Comparative Example 1 It can be seen that cracks occur in the honeycomb unit. For this reason, it is considered that the occurrence of cracks in the honeycomb unit due to shrinkage or expansion due to the adsorption or desorption of water by the silicoaluminophosphate particles of Comparative Example 1 cannot be suppressed.
  • the silicoaluminophosphate particles of Comparative Example 2 have Si / (Al + P) of 0.15, and it can be seen that the honeycomb structure produced using the silicoaluminophosphate particles of Comparative Example 2 generates cracks in the honeycomb unit. . For this reason, it is considered that the occurrence of cracks in the honeycomb unit due to shrinkage or expansion due to the adsorption or desorption of water by the silicoaluminophosphate particles of Comparative Example 1 cannot be suppressed. Further, it can be seen that the honeycomb structure manufactured using the silicoaluminophosphate particles of Comparative Example 2 has a NOx purification rate of 78%, so that the NOx purification performance is lowered.
  • the silicoaluminophosphate particles of Comparative Example 3 have a specific surface area of 415 m 2 / g, and it can be seen that the honeycomb structure manufactured using the silicoaluminophosphate particles of Comparative Example 3 generates cracks in the honeycomb unit. For this reason, it is considered that the occurrence of cracks in the honeycomb unit due to shrinkage or expansion due to the adsorption or desorption of water by the silicoaluminophosphate particles of Comparative Example 1 cannot be suppressed.
  • the silicoaluminophosphate particles of Comparative Example 4 have an average primary particle size of 1.0 ⁇ m, and the honeycomb structure manufactured using the silicoaluminophosphate particles of Comparative Example 4 has a NOx purification rate of 80%. It can be seen that the NOx purification performance decreases.
  • the average primary particle size of the silicoaluminophosphate particles of Comparative Example 5 is 8.0 ⁇ m, and the honeycomb structure manufactured using the silicoaluminophosphate particles of Comparative Example 5 has a NOx purification rate of 77%. It can be seen that the NOx purification performance decreases.
  • the silicoaluminophosphate particles of Comparative Example 6 have a specific surface area of 190 m 2 / g, and the honeycomb structure manufactured using the silicoaluminophosphate particles of Comparative Example 6 has a NOx purification rate of 75%. It can be seen that the purification performance is reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Structural Engineering (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

本発明は、NOx の浄化性能に優れ、水を吸着又は脱着することによるハニカムユニットの破損を抑制することが可能なハニカム構造体、該ハニカム構造体の製造方法、該ハニカム構造体を有する排ガス浄化装置の提供を目的・課題とする。そして、本発明のハニカム構造体は、複数の貫通孔が隔壁を隔てて長手方向に並設されているハニカムユニットを有するハニカム構造体であって、前記ハニカムユニットは、シリコアルミノホスフェート粒子及び無機バインダを含む原料ペーストを押出成形した後、焼成して作製されており、前記シリコアルミノホスフェート粒子は、Al 及びP の物質量の和に対するSi の物質量の比が0.16 以上0.33 以下であり、比表面積が200m2/g 以上400m2/g 以下であり、平均一次粒径が2.0μm 以上6.0μm 以下であることを特徴とする。 

Description

ハニカム構造体及びその製造方法、排ガス浄化装置並びにシリコアルミノホスフェート粒子
 本発明は、ハニカム構造体、ハニカム構造体の製造方法、排ガス浄化装置及びシリコアルミノホスフェート粒子に関する。
 従来、自動車の排ガスを浄化するシステムの一つとして、アンモニアを用いて、NOxを窒素と水に還元する選択触媒還元(SCR)システムが知られている。
 また、選択触媒還元システムにおいて、アンモニアを吸着する材料として、ゼオライトが知られている。
 特許文献1には、ゼオライトと、無機繊維及び/又はウィスカと、無機バインダを含むハニカムユニットを有するハニカム構造体が開示されている。
 一方、NOxの浄化性能に優れるゼオライトとして、SAPO-34が知られている。
国際公開第06/137149号
 しかしながら、SAPO-34は、水を吸着又は脱着することにより、収縮又は膨張して格子定数が変化する。このため、SAPO-34を含むハニカムユニットを有するハニカム構造体は、SAPO-34が水を吸着又は脱着することにより、ハニカムユニットが破損しやすいという問題がある。
 本発明は、上記の従来技術が有する問題に鑑み、NOxの浄化性能に優れ、水を吸着又は脱着することによるハニカムユニットの破損を抑制することが可能なハニカム構造体、該ハニカム構造体の製造方法、該ハニカム構造体を有する排ガス浄化装置を提供することを目的とする。
 また、本発明は、NOxの浄化性能に優れ、水を吸着することによる収縮及び水を脱着することによる膨張を抑制することが可能なシリコアルミノホスフェート粒子を提供することを目的とする。
本発明のハニカム構造体は、複数の貫通孔が隔壁を隔てて長手方向に並設されているハニカムユニットを有するハニカム構造体であって、前記ハニカムユニットは、シリコアルミノホスフェート粒子及び無機バインダを含む原料ペーストを押出成形した後、焼成して作製されており、前記シリコアルミノホスフェート粒子は、Al及びPの物質量の和に対するSiの物質量の比が0.16以上0.33以下であり、比表面積が200m/g以上400m/g以下であり、平均一次粒径が2.0μm以上6.0μm以下である。 
前記シリコアルミノホスフェート粒子は、銅イオン及び/又は鉄イオンによりイオン交換されていることが望ましい。 
前記ハニカムユニットは、見掛けの体積当たりの前記シリコアルミノホスフェート粒子の含有量が230g/L以上360g/L以下であることが望ましい。なお、前記見掛けの体積は、空隙の体積を含む外周の体積である。 
前記無機バインダは、アルミナゾル、シリカゾル、チタニアゾル、水ガラス、セピオライト、アタパルジャイト及びベーマイトからなる群より選択される一種以上に含まれる固形分であることが望ましい。 
前記原料ペーストは、無機繊維、鱗片状物質、テトラポット状物質及び三次元針状物質からなる群より選択される一種以上をさらに含むことが望ましい。 
前記無機繊維は、アルミナ、シリカ、炭化ケイ素、シリカアルミナ、ガラス、チタン酸カリウム及びホウ酸アルミニウムからなる群より選択される一種以上であり、前記鱗片状物質は、ガラス、白雲母、アルミナ及びシリカからなる群より選択される一種以上であり、前記テトラポット状物質は、酸化亜鉛であり、前記三次元針状物質は、アルミナ、シリカ、炭化ケイ素、シリカアルミナ、ガラス、チタン酸カリウム、ホウ酸アルミニウム及びベーマイトからなる群より選択される一種以上であることが望ましい。 
本発明のハニカム構造体は、複数の前記ハニカムユニットを有することが望ましい。 
本発明のハニカム構造体は、空間速度が80000/hとなるように200℃の模擬ガスを当該ハニカム構造体に流した場合のNOxの浄化率が85%以上であり、前記空間速度は、当該ハニカム構造体の見掛けの体積[m]に対する前記模擬ガスの流量[m/h]の比であり、前記模擬ガスは、一酸化窒素の濃度が350ppmであり、アンモニアの濃度が350ppmであり、酸素の濃度が10%であり、水の濃度が5%であり、二酸化炭素の濃度が5%であり、窒素バランスであることが望ましい。 
本発明のハニカム構造体の製造方法は、複数の貫通孔が隔壁を隔てて長手方向に並設されているハニカムユニットを有するハニカム構造体を製造する方法であって、シリコアルミノホスフェート粒子及び無機バインダを含む原料ペーストを押出成形する工程と、該押出成形された原料ペーストを焼成して前記ハニカムユニットを作製する工程を有し、前記シリコアルミノホスフェート粒子は、Al及びPの物質量の和に対するSiの物質量の比が0.16以上0.33以下であり、比表面積が200m/g以上400m/g以下であり、平均一次粒径が2μm以上6μm以下である。 
前記押出成形された原料ペーストを焼成する雰囲気は、酸素の濃度が1%以上10%以下であり、前記押出成形された原料ペーストを焼成する温度が600℃以上1000℃以下であり、前記押出成形された原料ペーストを焼成する時間が7時間以上10時間以下であることが望ましい。
 本発明の排ガス浄化装置は、本発明のハニカム構造体の両端面を除く外周面に保持シール材が配置されている状態で、金属容器に収容されている。
本発明のシリコアルミノホスフェート粒子は、Al及びPの物質量の和に対するSiの物質量の比が0.16以上0.33以下であり、比表面積が200m/g以上400m/g以下であり、平均一次粒径が2.0μm以上6.0μm以下である。
 本発明によれば、NOxの浄化性能に優れ、水を吸着又は脱着することによるハニカムユニットの破損を抑制することが可能なハニカム構造体、該ハニカム構造体の製造方法、該ハニカム構造体を有する排ガス浄化装置を提供することができる。
 また、本発明によれば、NOxの浄化性能に優れ、水を吸着することによる収縮及び水を脱着することによる膨張を抑制することが可能なシリコアルミノホスフェート粒子を提供することができる。
本発明のハニカム構造体の一例を示す斜視図である。 本発明の排ガス浄化装置の一例を示す断面図である。 本発明のハニカム構造体の他の例を示す斜視図である。 図3のハニカム構造体を構成するハニカムユニットを示す斜視図である。 本発明のハニカム構造体の他の例を示す斜視図である。 図5のハニカム構造体を構成するハニカムユニットを示す斜視図である。
 次に、本発明を実施するための形態を図面と共に説明する。
 図1に、本発明のハニカム構造体の一例を示す。ハニカム構造体10は、複数の貫通孔11aが隔壁11bを隔てて長手方向に並設されている単一のハニカムユニット11を有する。また、ハニカムユニット11は、シリコアルミノホスフェート(SAPO)粒子及び無機バインダを含む原料ペーストを押出成形した後、焼成して作製されている。さらに、ハニカムユニット11の両端面を除く外周面に外周コート層12が形成されている。
 以下、シリコアルミノホスフェート粒子は、原料ペーストに含まれるシリコアルミノホスフェート粒子を意味する。
シリコアルミノホスフェート粒子のAl及びPの物質量の和に対するSiの物質量の比は、0.16~0.33であり、0.16~0.28が好ましく、0.20~0.28がより好ましく、0.22~0.26がさらに好ましい。シリコアルミノホスフェート粒子のAl及びPの物質量の和に対するSiの物質量の比が0.16未満であると、シリコアルミノホスフェート粒子が水を吸着することによる収縮及びシリコアルミノホスフェート粒子が水を脱着することによる膨張を抑制することが困難になる。一方、シリコアルミノホスフェート粒子のAl及びPの物質量の和に対するSiの物質量の比が0.33を超えると、シリコアルミノホスフェート粒子がアモルファスになり、ハニカムユニット11を作製することが困難になる。 
なお、本発明における物質量の単位はmolであり、シリコアルミノホスフェート粒子のAl及びPの物質量[mol]の和に対するSiの物質量[mol]の比(モル比)は、エネルギー分散型X線分析装置(EDS)を用いて測定することができる。
 シリコアルミノホスフェート粒子の比表面積は、200~400m/gであり、210~385m/gが好ましく、250~360m/gがより好ましく、280~330m/gがさらに好ましい。シリコアルミノホスフェート粒子の比表面積が200m/g未満であると、ハニカムユニット11中の気孔の数が少なくなるため、ハニカムユニット11の隔壁11bの内部まで排ガスが侵入しにくくなり、シリコアルミノホスフェート粒子がNOxの浄化に有効に利用されなくなる。一方、シリコアルミノホスフェート粒子の比表面積が400m/gを超えると、シリコアルミノホスフェート粒子が水を吸着することによる収縮及びシリコアルミノホスフェート粒子が水を脱着することによる膨張を抑制することが困難になる。
 シリコアルミノホスフェート粒子は、通常、比表面積が500m/g程度であるが、本発明においては、シリコアルミノホスフェート粒子をアルカリ処理して結晶の一部をアモルファス化することにより、シリコアルミノホスフェート粒子の比表面積を400m/g以下にすることができる。
 アルカリ処理に用いられるアルカリとしては、特に限定されないが、アンモニア、水酸化ナトリウム等が挙げられる。
 なお、シリコアルミノホスフェート粒子の比表面積は、BET多点法(N吸着法)を用いて測定することができる。また、シリコアルミノホスフェート粒子の比表面積を測定する際には、例えば、自動比表面積/細孔分布測定装置トライスター3000(島津製作所社製)を用いることができる。
 シリコアルミノホスフェート粒子の平均一次粒径は、2.0~6.0μmであり、3.0~5.0μmが好ましく、3.5~4.5μmがより好ましい。シリコアルミノホスフェート粒子の平均一次粒径が2.0μm未満であると、排ガスが隔壁11bの内部まで浸透しにくくなって、シリコアルミノホスフェート粒子がNOxの浄化に有効に利用されにくくなる。一方、シリコアルミノホスフェート粒子の平均一次粒径が6.0μmを超えると、ハニカムユニット11の気孔率が大きくなって、ハニカムユニット11の強度が低下したり、シリコアルミノホスフェート粒子の比表面積が小さくなって、NOxの浄化性能が低下したりする。
 シリコアルミノホスフェート粒子の平均一次粒径は、通常、20μm程度であるが、シリコアルミノホスフェート粒子を粉砕することにより、平均一次粒径を小さくすることができる。
なお、シリコアルミノホスフェート粒子の平均一次粒径は、レーザー回折式粒度分布測定装置を用いて測定することができる。 
シリコアルミノホスフェート粒子は、Al及びPの物質量の和に対するSiの物質量の比が0.16~0.28であり、比表面積が210~385m/gであり、平均一次粒径が2.0~6.0μmであることが好ましい。これにより、NOxの浄化性能にさらに優れ、水を吸着又は脱着することによるハニカムユニットの破損をさらに抑制することが可能なハニカム構造体10が得られる。 
シリコアルミノホスフェート粒子は、水中に、リン酸、水酸化アルミニウム、シリカ及び構造規定剤(SDA)を加えて前駆体ゲルを作製した後、加熱し、アルカリ処理することにより作製することができる。 
なお、構造規定剤は、シリコアルミノホスフェート粒子を作製する際に、規則的な細孔構造を形成するために用いられる鋳型である。 
このとき、リン酸及び水酸化アルミニウムの物質量の和に対するシリカの物質量の比を調整することにより、シリコアルミノホスフェート粒子のAl及びPの物質量の和に対するSiの物質量の比を制御することができる。また、アルカリ処理する条件を調整することにより、シリコアルミノホスフェート粒子の比表面積を制御することができる。 
構造規定剤としては、特に限定されないが、モルホリン、ジエチルアミン、テトラエチルアンモニウムヒドロキシド、トリエチルアミン等が挙げられ、二種以上併用してもよい。
 シリコアルミノホスフェート粒子は、NOxの浄化性能を考慮すると、銅イオン及び/又は鉄イオンによりイオン交換されていることが好ましい。
 銅イオン及び/又は鉄イオンによりイオン交換されているシリコアルミノホスフェート粒子は、イオン交換量が1.0~5.0質量%であることが好ましい。シリコアルミノホスフェート粒子のイオン交換量が1.0質量%未満であると、NOxの浄化性能を向上させる効果が小さくなる。一方、シリコアルミノホスフェート粒子のイオン交換量が5.0質量%を超えると、水熱耐久性が低下し、例えば、500℃以上の高温におけるNOxの浄化性能が低下する。
 なお、シリコアルミノホスフェート粒子は、上記以外の金属イオンによりイオン交換されていてもよい。
 ハニカムユニット11は、見掛けの体積当たりのシリコアルミノホスフェート粒子の含有量が230~360g/Lであることが好ましい。ハニカムユニット11の見掛けの体積当たりのシリコアルミノホスフェート粒子の含有量が230g/L未満であると、NOxの浄化性能を向上させるためにハニカムユニット11の見掛けの体積を大きくしなければならない。一方、ハニカムユニット11の見掛けの体積当たりのシリコアルミノホスフェート粒子の含有量が360g/Lを超えると、ハニカムユニット11の強度が不十分になったり、ハニカムユニット11の開口率が小さくなったりする。
 なお、見掛けの体積とは、空隙の体積を含む外周の体積を意味する。
 原料ペーストに含まれる無機バインダとしては、特に限定されないが、アルミナゾル、シリカゾル、チタニアゾル、水ガラス、セピオライト、アタパルジャイト、ベーマイト等に含まれる固形分が挙げられ、二種以上併用してもよい。
 原料ペーストの固形分中の無機バインダの含有量は、5~30質量%であることが好ましく、10~20質量%がより好ましい。原料ペーストの固形分中の無機バインダの含有量が5質量%未満であると、ハニカムユニット11の強度が低下する。一方、原料ペーストの固形分中の無機バインダの固形分の含有量が30質量%を超えると、ハニカムユニット11を押出成形することが困難になる。
 原料ペーストは、ハニカムユニット11の強度を向上させるために、無機繊維、鱗片状物質、テトラポット状物質及び三次元針状物質からなる群より選択される一種以上をさらに含むことが好ましい。
 原料ペーストに含まれる無機繊維を構成する材料としては、特に限定されないが、アルミナ、シリカ、炭化ケイ素、シリカアルミナ、ガラス、チタン酸カリウム、ホウ酸アルミニウム等が挙げられ、二種以上併用してもよい。
 原料ペーストに含まれる無機繊維のアスペクト比は、2~1000であることが好ましく、5~800がより好ましく、10~500がさらに好ましい。原料ペーストに含まれる無機繊維のアスペクト比が2未満であると、ハニカムユニット11の強度を向上させる効果が小さくなる。一方、原料ペーストに含まれる無機繊維のアスペクト比が1000を超えると、ハニカムユニット11を押出成形する際に金型に目詰まり等が発生したり、無機繊維が折れて、ハニカムユニット11の強度を向上させる効果が小さくなったりする。
 鱗片状物質は、平たい物質を意味し、厚さが0.2~5.0μmであることが好ましく、最大長さが10~160μmであることが好ましく、厚さに対する最大長さの比が3~250であることが好ましい。
 原料ペーストに含まれる鱗片状物質を構成する材料としては、特に限定されないが、ガラス、白雲母、アルミナ、シリカ等が挙げられ、二種以上併用してもよい。
 テトラポット状物質は、針状部が三次元に延びている物質を意味し、針状部の平均針状長さが5~30μmであることが好ましく、針状部の平均径が0.5~5.0μmであることが好ましい。
 原料ペーストに含まれるテトラポット状物質を構成する材料としては、特に限定されないが、酸化亜鉛等が挙げられ、二種以上併用してもよい。
 三次元針状物質は、針状部同士がそれぞれの針状部の中央付近でガラス等の無機化合物により結合されている物質を意味し、針状部の平均針状長さが5~30μmであることが好ましく、針状部の平均径が0.5~5.0μmであることが好ましい。
 また、三次元針状物質は、複数の針状部が三次元に連なっていてもよく、針状部の直径が0.1~5.0μmであることが好ましく、長さが0.3~30.0μmであることが好ましく、直径に対する長さの比が1.4~50.0であることが好ましい。
 原料ペーストに含まれる三次元針状物質を構成する材料としては、特に限定されないが、アルミナ、シリカ、炭化ケイ素、シリカアルミナ、ガラス、チタン酸カリウム、ホウ酸アルミニウム、ベーマイト等が挙げられ、二種以上併用してもよい。
 原料ペーストの固形分中の無機繊維、鱗片状物質、テトラポット状物質及び三次元針状物質の含有量は、3~50質量%であることが好ましく、3~30質量%がより好ましく、5~20質量%がさらに好ましい。原料ペーストの固形分中の無機繊維、鱗片状物質、テトラポット状物質及び三次元針状物質の含有量が3質量%未満であると、ハニカムユニット11の強度を向上させる効果が小さくなる。一方、原料ペーストの固形分中の無機繊維、鱗片状物質、テトラポット状物質及び三次元針状物質の含有量が50質量%を超えると、ハニカムユニット11中のシリコアルミノホスフェート粒子の含有量が低下して、NOxの浄化性能が低下する。
 ハニカムユニット11は、気孔率が40~60%であることが好ましい。ハニカムユニット11の気孔率が40%未満であると、排ガスが隔壁11bの内部まで浸透しにくくなって、シリコアルミノホスフェート粒子がNOxの浄化に有効に利用されなくなる。一方、ハニカムユニット11の気孔率が60%を超えると、ハニカムユニット11の強度が不十分となる。
 なお、ハニカムユニット11の気孔率は、水銀圧入法を用いて測定することができる。
 ハニカムユニット11は、長手方向に垂直な断面の開口率が50~75%であることが好ましい。ハニカムユニット11の長手方向に垂直な断面の開口率が50%未満であると、シリコアルミノホスフェート粒子がNOxの浄化に有効に利用されなくなる。一方、ハニカムユニット11の長手方向に垂直な断面の開口率が75%を超えると、ハニカムユニット11の強度が不十分となる。
 ハニカムユニット11は、長手方向に垂直な断面の貫通孔11aの密度が31~155個/cmであることが好ましい。ハニカムユニット11の長手方向に垂直な断面の貫通孔11aの密度が31個/cm未満であると、シリコアルミノホスフェート粒子と排ガスが接触しにくくなって、NOxの浄化性能が低下する。一方、ハニカムユニット11の長手方向に垂直な断面の貫通孔11aの密度が155個/cmを超えると、ハニカム構造体10の圧力損失が増大する。
 ハニカムユニット11の隔壁11bの厚さは、0.10~0.50mmであることが好ましく、0.15~0.35mmがさらに好ましい。隔壁11bの厚さが0.10mm未満であると、ハニカムユニット11の強度が低下する。一方、隔壁11bの厚さが0.50mmを超えると、排ガスが隔壁11bの内部まで浸透しにくくなって、シリコアルミノホスフェート粒子がNOxの浄化に有効に利用されなくなる。
 外周コート層12は、厚さが0.1~2.0mmであることが好ましい。外周コート層12の厚さが0.1mm未満であると、ハニカム構造体10の強度を向上させる効果が不十分になる。一方、外周コート層12の厚さが2.0mmを超えると、ハニカム構造体10の単位体積当たりのシリコアルミノホスフェート粒子の含有量が低下して、NOxの浄化性能が低下する。
 ハニカム構造体10の形状としては、円柱状に限定されず、角柱状、楕円柱状、長円柱状、丸面取りされている角柱状(例えば、丸面取りされている三角柱状)等が挙げられる。
 貫通孔11aの形状としては、四角柱状に限定されず、三角柱状、六角柱状等が挙げられる。
ハニカム構造体10は、空間速度が80000/hとなるように200℃の模擬ガスを流した場合のNOxの浄化率が85%以上であることが好ましい。このとき、空間速度は、ハニカム構造体10の見掛けの体積[m]に対する模擬ガスの流量[m/h]の比であり、模擬ガスは、一酸化窒素の濃度が350ppmであり、アンモニアの濃度が350ppmであり、酸素の濃度が10%であり、水の濃度が5%であり、二酸化炭素の濃度が5%であり、窒素バランスである。
 次に、ハニカム構造体10の製造方法の一例について説明する。まず、シリコアルミノホスフェート粒子及び無機バインダを含み、必要に応じて、無機繊維、鱗片状物質、テトラポット状物質及び三次元針状物質からなる群より選択される一種以上をさらに含む原料ペーストを用いて押出成形し、複数の貫通孔が隔壁を隔てて長手方向に並設されている円柱状のハニカム成形体を作製する。
 このとき、原料ペーストは、必要に応じて、有機バインダ、分散媒、成形助剤等をさらに含んでいてもよい。
 有機バインダとしては、特に限定されないが、メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリエチレングリコール、フェノール樹脂、エポキシ樹脂等が挙げられ、二種以上併用してもよい。
 原料ペースト中の有機バインダの含有量は、シリコアルミノホスフェート粒子、無機バインダ、無機繊維、鱗片状物質、テトラポット状物質及び三次元針状物質の総量に対して、1~10質量%であることが好ましい。
 分散媒としては、特に限定されないが、水、ベンゼン等の有機溶媒、メタノール等のアルコール等が挙げられ、二種以上併用してもよい。
 成形助剤としては、特に限定されないが、エチレングリコール、デキストリン、脂肪酸、脂肪酸石鹸、ポリアルコール等が挙げられ、二種以上併用してもよい。
 原料ペーストを調製する際には、混合混練することが好ましく、ミキサー、アトライタ等を用いて混合してもよく、ニーダー等を用いて混練してもよい。
 次に、マイクロ波乾燥機、熱風乾燥機、誘電乾燥機、減圧乾燥機、真空乾燥機、凍結乾燥機等の乾燥機を用いて、ハニカム成形体を乾燥してハニカム乾燥体を作製する。
 さらに、ハニカム乾燥体を脱脂してハニカム脱脂体を作製する。脱脂条件は、ハニカム乾燥体に含まれる有機物の種類及び量によって適宜選択することができるが、400℃で2時間であることが好ましい。
 次に、ハニカム脱脂体を焼成することにより、円柱状のハニカムユニット11を作製する。
 焼成する雰囲気は、酸素の濃度が1~10%であることが好ましい。焼成する雰囲気の酸素の濃度が1%未満であると、ハニカム脱脂体に含まれる有機物が十分に酸化されずに残留し、ハニカムユニット11の強度が低下する。一方、焼成する雰囲気の酸素の濃度が10%を超えると、ハニカム脱脂体に含まれる有機物が燃焼する。
 焼成温度が600~1000℃であり、焼成時間が7~10時間であることが好ましい。焼成温度が600℃未満である場合又は焼成時間が7時間未満である場合は、焼結が進行せず、ハニカムユニット11の強度が低下する。一方、焼成温度が1000℃を超える場合又は焼成時間が10時間を超える場合は、焼結が進行しすぎて、シリコアルミノホスフェート粒子の反応サイトが減少する。
 次に、円柱状のハニカムユニット11の両端面を除く外周面に外周コート層用ペーストを塗布する。
 外周コート層用ペーストとしては、特に限定されないが、無機バインダ及び無機粒子の混合物、無機バインダ及び無機繊維の混合物、無機バインダ、無機粒子及び無機繊維の混合物等が挙げられる。
 外周コート層用ペーストに含まれる無機バインダとしては、特に限定されないが、シリカゾル、アルミナゾル等に含まれる固形分が挙げられ、二種以上併用してもよい。中でも、シリカゾルに含まれる固形分が好ましい。
 外周コート層用ペーストに含まれる無機粒子を構成する材料としては、特に限定されないが、炭化ケイ素等の炭化物、窒化ケイ素、窒化ホウ素等の窒化物等が挙げられ、二種以上併用してもよい。中でも、熱伝導性に優れることから、炭化ケイ素が好ましい。
 外周コート層用ペーストに含まれる無機繊維を構成する材料としては、特に限定されないが、シリカアルミナ、ムライト、アルミナ、シリカ等が挙げられ、二種以上併用してもよい。中でも、アルミナが好ましい。
 外周コート層用ペーストは、有機バインダをさらに含んでいてもよい。
 外周コート層用ペーストに含まれる有機バインダとしては、特に限定されないが、ポリビニルアルコール、メチルセルロース、エチルセルロース、カルボキシメチルセルロース等が挙げられ、二種以上併用してもよい。
 外周コート層用ペーストは、酸化物系セラミックスの微小中空球体であるバルーン、造孔剤等をさらに含んでいてもよい。
 外周コート層用ペーストに含まれるバルーンとしては、特に限定されないが、アルミナバルーン、ガラスマイクロバルーン、シラスバルーン、フライアッシュバルーン、ムライトバルーン等が挙げられ、二種以上併用してもよい。中でも、アルミナバルーンが好ましい。
 外周コート層用ペーストに含まれる造孔剤としては、特に限定されないが、球状アクリル粒子、グラファイト等が挙げられ、二種以上併用してもよい。
 次に、外周コート層用ペーストが塗布されたハニカムユニット11を乾燥固化し、円柱状のハニカム構造体10を作製する。このとき、外周コート層用ペーストに有機バインダが含まれている場合は、脱脂することが好ましい。脱脂条件は、有機物の種類及び量によって適宜選択することができるが、600℃で1時間であることが好ましい。
 なお、ハニカムユニット11を銅イオン及び/又は鉄イオンを含む水溶液中に浸漬することにより、シリコアルミノホスフェート粒子をイオン交換することができる。
 また、銅イオン及び/又は鉄イオンによりイオン交換されているシリコアルミノホスフェート粒子を含む原料ペーストを用いてもよい。
 図2に、本発明の排ガス浄化装置の一例を示す。排ガス浄化装置100において、ハニカム構造体10は、両端面を除く外周面に保持シール材20が配置されている状態で、金属容器(シェル)30に収容されている。また、排ガス浄化装置100には、排ガスが流れる方向に対して、ハニカム構造体10の上流側の配管(不図示)内に、アンモニア又は分解してアンモニアが発生する化合物を噴射する噴射ノズル等の噴射手段(不図示)が設置されている。これにより、配管を流れる排ガス中にアンモニアが添加されるため、ハニカムユニット11に含まれるシリコアルミノホスフェート粒子により、排ガス中に含まれるNOxが還元される。
 分解してアンモニアが発生する化合物としては、配管内で排ガスにより加熱されて、アンモニアが発生する化合物であれば、特に限定されないが、貯蔵安定性に優れるため、尿素水が好ましい。
 尿素水は、配管内で排ガスにより加熱されて、加水分解し、アンモニアが発生する。
 図3に、本発明のハニカム構造体の他の例を示す。なお、ハニカム構造体10’は、複数の貫通孔11aが隔壁11bを隔てて長手方向に並設されているハニカムユニット11’(図4参照)が接着層13を介して複数個接着されている以外は、ハニカム構造体10と同一の構成である。
 ハニカムユニット11’は、長手方向に垂直な断面の断面積が5~50cmであることが好ましい。ハニカムユニット11’の長手方向に垂直な断面の断面積が5cm未満であると、ハニカム構造体10’の圧力損失が増大する。一方、ハニカムユニット11’の長手方向に垂直な断面の断面積が50cmを超えると、ハニカムユニット11’に発生する熱応力に対する強度が不十分になる。
 ハニカム構造体10’の外周部に位置するハニカムユニット11’を除くハニカムユニット11’の形状としては、四角柱状に限定されず、六角柱状等が挙げられる。
 なお、ハニカムユニット11’は、長手方向に垂直な断面の断面積及び形状以外は、ハニカムユニット11と同一の構成である。
 接着層13は、厚さが0.5~2.0mmであることが好ましい。接着層13の厚さが0.5mm未満であると、ハニカムユニット11’の接着強度が不十分になる。一方、接着層13の厚さが2.0mmを超えると、ハニカム構造体10’の圧力損失が増大する。
 次に、ハニカム構造体10’の製造方法の一例について説明する。まず、ハニカム構造体10と同様にして、四角柱状のハニカムユニット11’を作製する。次に、複数個のハニカムユニット11’の両端面を除く外周面に接着層用ペーストを塗布して、接着させた後、乾燥固化することにより、ハニカムユニット11’の集合体を作製する。
 接着層用ペーストとしては、特に限定されないが、無機バインダ及び無機粒子の混合物、無機バインダ及び無機繊維の混合物、無機バインダ、無機粒子及び無機繊維の混合物等が挙げられる。
 接着層用ペーストに含まれる無機バインダとしては、特に限定されないが、シリカゾル、アルミナゾル等に含まれる固形分が挙げられ、二種以上併用してもよい。中でも、シリカゾルに含まれる固形分が好ましい。
 接着層用ペーストに含まれる無機粒子を構成する材料としては、特に限定されないが、炭化ケイ素等の炭化物、窒化ケイ素、窒化ホウ素等の窒化物等が挙げられ、二種以上併用してもよい。中でも、熱伝導性に優れることから、炭化ケイ素が好ましい。
 接着層用ペーストに含まれる無機繊維を構成する材料としては、特に限定されないが、シリカアルミナ、ムライト、アルミナ、シリカ等が挙げられ、二種以上併用してもよい。中でも、アルミナが好ましい。
 また、接着層用ペーストは、有機バインダをさらに含んでいてもよい。
 接着層用ペーストに含まれる有機バインダとしては、特に限定されないが、ポリビニルアルコール、メチルセルロース、エチルセルロース、カルボキシメチルセルロース等が挙げられ、二種以上併用してもよい。
 接着層用ペーストは、酸化物系セラミックスの微小中空球体であるバルーン、造孔剤等をさらに含んでいてもよい。
 接着層用ペーストに含まれるバルーンとしては、特に限定されないが、アルミナバルーン、ガラスマイクロバルーン、シラスバルーン、フライアッシュバルーン、ムライトバルーン等が挙げられ、二種以上併用してもよい。中でも、アルミナバルーンが好ましい。
 接着層用ペーストに含まれる造孔剤としては、特に限定されないが、球状アクリル粒子、グラファイト等が挙げられ、二種以上併用してもよい。
 次に、ハニカムユニット11’の集合体を円柱状に切削加工した後、必要に応じて、研磨することにより、円柱状のハニカムユニット11’の集合体を作製する。
 なお、ハニカムユニット11’の集合体を円柱状に切削加工する代わりに、ハニカムユニット11’と、長手方向に垂直な断面が所定の形状であるハニカムユニットを接着させて、円柱状のハニカムユニットの集合体を作製してもよい。
 次に、円柱状のハニカムユニット11’の集合体の両端面を除く外周面に外周コート層用ペーストを塗布する。
 外周コート層用ペーストは、接着層用ペーストと同一であってもよいし、異なっていてもよい。
 次に、外周コート層用ペーストが塗布された円柱状のハニカムユニット11’の集合体を乾燥固化することにより、円柱状のハニカム構造体10’を作製する。このとき、接着層用ペースト及び/又は外周コート層用ペーストに有機バインダが含まれている場合は、脱脂することが好ましい。脱脂条件は、有機物の種類及び量によって適宜選択することができるが、600℃で1時間であることが好ましい。
 図5に、本発明のハニカム構造体の他の例を示す。なお、ハニカム構造体10’’は、長手方向に垂直な断面の形状が、中心角が90°の扇形であるハニカムユニット11’’(図6参照)が4個接着されている以外は、ハニカム構造体10’と同一の構成である。
 なお、ハニカム構造体10、10’及び10’’は、外周コート層12が形成されていなくてもよい。
 本実施例において、部は質量部を意味する。
 [実施例1]
 水中に、濃度が85質量%のリン酸水溶液9.8部、濃度が95質量%の水酸化アルミニウム水溶液7.0部、固形分が30質量%のシリカゾル5.5部及び構造規定剤としてのモルホリン11.3部を順次添加して、撹拌し、前駆体ゲルを得た。次に、前駆体ゲルをオートクレーブ(200ml)に封入した後、回転速度10rpmで回転させながら、昇温速度5℃/分で200℃まで昇温して、24時間保持し、シリコアルミノホスフェート粒子を作製した。さらに、シリコアルミノホスフェート粒子を平均一次粒径が4.0μmとなるように粉砕した後、濃度が5質量%のアンモニア水溶液中で30分間処理したところ、Al及びPの物質量の和に対するSiの物質量の比が0.16、比表面積が320m/gであった。 
[実施例2] 水中に、濃度が85質量%のリン酸水溶液9.8部、濃度が95質量%の水酸化アルミニウム水溶液7.0部、固形分が30質量%のシリカゾル5.5部及び構造規定剤としてのモルホリン11.3部を順次添加して、撹拌し、前駆体ゲルを得た。次に、前駆体ゲルをオートクレーブ(200ml)に封入した後、回転速度10rpmで回転させながら、昇温速度5℃/分で200℃まで昇温して、24時間保持し、シリコアルミノホスフェート粒子を作製した。さらに、シリコアルミノホスフェート粒子を平均一次粒径が2.0μmとなるように粉砕した後、濃度が3質量%のアンモニア水溶液中で50分間処理したところ、Al及びPの物質量の和に対するSiの物質量の比が0.16、比表面積が355m/gであった。 
[実施例3] 水中に、濃度が85質量%のリン酸水溶液9.8部、濃度が95質量%の水酸化アルミニウム水溶液7.0部、固形分が30質量%のシリカゾル5.5部及び構造規定剤としてのモルホリン11.3部を順次添加して、撹拌し、前駆体ゲルを得た。次に、前駆体ゲルをオートクレーブ(200ml)に封入した後、回転速度10rpmで回転させながら、昇温速度5℃/分で200℃まで昇温して、24時間保持し、シリコアルミノホスフェート粒子を作製した。さらに、シリコアルミノホスフェート粒子を平均一次粒径が6.0μmとなるように粉砕した後、濃度が5質量%のアンモニア水溶液中で30分間処理したところ、Al及びPの物質量の和に対するSiの物質量の比が0.16、比表面積が310m/gであった。 
[実施例4] 水中に、濃度が85質量%のリン酸水溶液9.8部、濃度が95質量%の水酸化アルミニウム水溶液7.0部、固形分が30質量%のシリカゾル5.5部及び構造規定剤としてのモルホリン11.3部を順次添加して、撹拌し、前駆体ゲルを得た。次に、前駆体ゲルをオートクレーブ(200ml)に封入した後、回転速度10rpmで回転させながら、昇温速度5℃/分で200℃まで昇温して、24時間保持し、シリコアルミノホスフェート粒子を作製した。さらに、シリコアルミノホスフェート粒子を平均一次粒径が4.0μmとなるように粉砕した後、濃度が5質量%のアンモニア水溶液中で60分間処理したところ、Al及びPの物質量の和に対するSiの物質量の比が0.16、比表面積が210m/gであった。 
[実施例5] 水中に、濃度が85質量%のリン酸水溶液9.8部、濃度が95質量%の水酸化アルミニウム水溶液7.0部、固形分が30質量%のシリカゾル8.2部及び構造規定剤としてのモルホリン11.3部を順次添加して、撹拌し、前駆体ゲルを得た。次に、前駆体ゲルをオートクレーブ(200ml)に封入した後、回転速度10rpmで回転させながら、昇温速度5℃/分で200℃まで昇温して、24時間保持し、シリコアルミノホスフェート粒子を作製した。さらに、シリコアルミノホスフェート粒子を平均一次粒径が4.0μmとなるように粉砕した後、濃度が3質量%のアンモニア水溶液中で60分間処理したところ、Al及びPの物質量の和に対するSiの物質量の比が0.24、比表面積が330m/gであった。 
[実施例6] 水中に、濃度が85質量%のリン酸水溶液9.8部、濃度が95質量%の水酸化アルミニウム水溶液7.0部、固形分が30質量%のシリカゾル8.2部及び構造規定剤としてのモルホリン11.3部を順次添加して、撹拌し、前駆体ゲルを得た。次に、前駆体ゲルをオートクレーブ(200ml)に封入した後、回転速度10rpmで回転させながら、昇温速度5℃/分で200℃まで昇温して、24時間保持し、シリコアルミノホスフェート粒子を作製した。さらに、シリコアルミノホスフェート粒子を平均一次粒径が6.0μmとなるように粉砕した後、濃度が5質量%のアンモニア水溶液中で40分間処理したところ、Al及びPの物質量の和に対するSiの物質量の比が0.24、比表面積が280m/gであった。 
[実施例7] 水中に、濃度が85質量%のリン酸水溶液9.8部、濃度が95質量%の水酸化アルミニウム水溶液7.0部、固形分が30質量%のシリカゾル9.6部及び構造規定剤としてのモルホリン11.3部を順次添加して、撹拌し、前駆体ゲルを得た。次に、前駆体ゲルをオートクレーブ(200ml)に封入した後、回転速度10rpmで回転させながら、昇温速度5℃/分で200℃まで昇温して、24時間保持し、シリコアルミノホスフェート粒子を作製した。さらに、シリコアルミノホスフェート粒子を平均一次粒径が2.0μmとなるように粉砕した後、濃度が3質量%のアンモニア水溶液中で40分間処理したところ、Al及びPの物質量の和に対するSiの物質量の比が0.28、比表面積が385m/gであった。 
[比較例1] 水中に、濃度が85質量%のリン酸水溶液9.8部、濃度が95質量%の水酸化アルミニウム水溶液7.0部、固形分が30質量%のシリカゾル5.1部及び構造規定剤としてのモルホリン11.3部を順次添加して、撹拌し、前駆体ゲルを得た。次に、前駆体ゲルをオートクレーブ(200ml)に封入した後、回転速度10rpmで回転させながら、昇温速度5℃/分で200℃まで昇温して、24時間保持し、シリコアルミノホスフェート粒子を作製した。さらに、シリコアルミノホスフェート粒子を平均一次粒径が4.0μmとなるように粉砕した後、濃度が3質量%のアンモニア水溶液中で30分間処理したところ、Al及びPの物質量の和に対するSiの物質量の比が0.15、比表面積が420m/gであった。 
[比較例2] 水中に、濃度が85質量%のリン酸水溶液9.8部、濃度が95質量%の水酸化アルミニウム水溶液7.0部、固形分が30質量%のシリカゾル5.1部及び構造規定剤としてのモルホリン11.3部を順次添加して、撹拌し、前駆体ゲルを得た。次に、前駆体ゲルをオートクレーブ(200ml)に封入した後、回転速度10rpmで回転させながら、昇温速度5℃/分で200℃まで昇温して、24時間保持し、シリコアルミノホスフェート粒子を作製した。さらに、シリコアルミノホスフェート粒子を平均一次粒径が4.0μmとなるように粉砕した後、濃度が3質量%のアンモニア水溶液中で50分間処理したところ、Al及びPの物質量の和に対するSiの物質量の比が0.15、比表面積が345m/gであった。 
[比較例3] 水中に、濃度が85質量%のリン酸水溶液9.8部、濃度が95質量%の水酸化アルミニウム水溶液7.0部、固形分が30質量%のシリカゾル5.5部及び構造規定剤としてのモルホリン11.3部を順次添加して、撹拌し、前駆体ゲルを得た。次に、前駆体ゲルをオートクレーブ(200ml)に封入した後、回転速度10rpmで回転させながら、昇温速度5℃/分で200℃まで昇温して、24時間保持し、シリコアルミノホスフェート粒子を作製した。さらに、シリコアルミノホスフェート粒子を平均一次粒径が4.0μmとなるように粉砕した後、濃度が3質量%のアンモニア水溶液中で30分間処理したところ、Al及びPの物質量の和に対するSiの物質量の比が0.16、比表面積が415m/gとなった。 
[比較例4] 水中に、濃度が85質量%のリン酸水溶液9.8部、濃度が95質量%の水酸化アルミニウム水溶液7.0部、固形分が30質量%のシリカゾル5.5部及び構造規定剤としてのモルホリン11.3部を順次添加して、撹拌し、前駆体ゲルを得た。次に、前駆体ゲルをオートクレーブ(200ml)に封入した後、回転速度10rpmで回転させながら、昇温速度5℃/分で200℃まで昇温して、24時間保持し、シリコアルミノホスフェート粒子を作製した。さらに、シリコアルミノホスフェート粒子を平均一次粒径が1.0μmとなるように粉砕した後、濃度が5質量%のアンモニア水溶液中で30分間処理したところ、Al及びPの物質量の和に対するSiの物質量の比が0.16、比表面積が320m/gとなった。 
[比較例5] 水中に、濃度が85質量%のリン酸水溶液9.8部、濃度が95質量%の水酸化アルミニウム水溶液7.0部、固形分が30質量%のシリカゾル8.2部及び構造規定剤としてのモルホリン11.3部を順次添加して、撹拌し、前駆体ゲルを得た。次に、前駆体ゲルをオートクレーブ(200ml)に封入した後、回転速度10rpmで回転させながら、昇温速度5℃/分で200℃まで昇温して、24時間保持し、シリコアルミノホスフェート粒子を作製した。さらに、シリコアルミノホスフェート粒子を平均一次粒径が8.0μmとなるように粉砕した後、濃度が5質量%のアンモニア水溶液中で40分間処理したところ、Al及びPの物質量の和に対するSiの物質量の比が0.24、比表面積が287m/gとなった。 
[比較例6] 水中に、濃度が85質量%のリン酸水溶液9.8部、濃度が95質量%の水酸化アルミニウム水溶液7.0部、固形分が30質量%のシリカゾル9.6部及び構造規定剤としてのモルホリン11.3部を順次添加して、撹拌し、前駆体ゲルを得た。次に、前駆体ゲルをオートクレーブ(200ml)に封入した後、回転速度10rpmで回転させながら、昇温速度5℃/分で200℃まで昇温して、24時間保持し、シリコアルミノホスフェート粒子を作製した。さらに、シリコアルミノホスフェート粒子を平均一次粒径が4.0μmとなるように粉砕した後、濃度が8質量%のアンモニア水溶液中で30分間処理したところ、Al及びPの物質量の和に対するSiの物質量の比が0.28、比表面積が190m/gとなった。
 [Al及びPの物質量の和に対するSiの物質量の比]
 シリコンドリフトエネルギー分散型X線分析装置XFlash5030(Bruker社製)を用いて、シリコアルミノホスフェート粒子のAl及びPの物質量の和に対するSiの物質量の比を測定した。
 [比表面積]
 自動比表面積/細孔分布測定装置トライスター3000(島津製作所社製)を用いて、相対圧P/Pに対する吸着量V[cm(STP)・g-1]のプロット、即ち、窒素吸脱着等温線を作成し、BET多点法を用いて、シリコアルミノホスフェート粒子の比表面積を求めた。具体的には、相対圧P/Pに対するP/V(P-P)[g・cm(STP)-1]のプロット、即ち、BETプロットから求めた。
 [平均一次粒径]
 レーザー回折式粒度分布測定装置MAS5001(マルバーン社製)を用いて、シリコアルミノホスフェート粒子の平均一次粒径を測定した。
 [ハニカム構造体の作製]
 まず、実施例及び比較例のシリコアルミノホスフェート粒子を硝酸銅水溶液中に浸漬することにより、銅イオンでイオン交換した。ICPS-8100(島津製作所社製)を用いて、ICP発光分析することによりシリコアルミノホスフェート粒子の銅イオンによる交換量を測定したところ、2.7質量%であった。
 銅イオンによりイオン交換されているシリコアルミノホスフェート粒子3000部、ベーマイト1190部、平均繊維径が6μm、平均繊維長が100μmのアルミナ繊維720部、メチルセルロース290部、オレイン酸310部及びイオン交換水1820部を混合混練して、原料ペーストを作製した。
 次に、押出成形機を用いて、原料ペーストを押出成形し、扇形柱状のハニカム成形体を作製した。そして、マイクロ波乾燥機及び熱風乾燥機を用いて、ハニカム成形体を110℃で10分間乾燥させて、ハニカム乾燥体を作製した。さらに、ハニカム成形体を400℃で5時間脱脂して、ハニカム脱脂体を作製した。次に、ハニカム脱脂体を、酸素の濃度が1%の雰囲気下、700℃で8時間焼成して、ハニカムユニットを作製した。ハニカムユニットは、半径が132mm、中心角が90°、長さが76.2mmの扇形柱状であり、隔壁の厚さが0.20mm、貫通孔の密度が124個/cmであった。
 一方、平均繊維径が6μm、平均繊維長が100μmのアルミナ繊維767部、シリカガラス2500部、カルボキシメチルセルロース17部、固形分が30質量%のシリカゾル600部、ポリビニルアルコール167部及びアルミナバルーン17部を混合混練して、接着層用ペーストを作製した。
 ハニカムユニットの端面を除く外周面に、接着層13の厚さが1.0mmになるように接着層用ペーストを塗布して、4個のハニカムユニットを接着させた後、150℃で10分間乾燥固化させて、円柱状のハニカムユニットの集合体を作製した。
 さらに、ハニカムユニットの集合体の端面を除く外周面に、外周コート層12の厚さが1.0mmになるように接着層用ペーストを塗布した後、マイクロ波乾燥機及び熱風乾燥機を用いて、接着層用ペーストを150℃で10分間乾燥固化させ、600℃で1時間脱脂して、ハニカム構造体を作製した。
 [クラック]
 ハニカムユニットにクラックが発生しているかどうかを目視で評価した。なお、クラックが発生している場合を×、クラックが発生していない場合を○として、判定した。
 [NOxの浄化率]
 ハニカムユニットから、ダイヤモンドカッターを用いて、直径が25.4mm、長さが76.2mmの円柱状の試料を切り出した。
 空間速度(SV)80000/hで200℃の模擬ガスを試料に流しながら、自動車排ガス測定装置MEXA-6000FT(堀場製作所社製)を用いて、試料から流出するNOxの流出量を測定し、式
 (NOxの流入量-NOxの流出量)/(NOxの流入量)×100
で表されるNOxの浄化率[%]を算出した。
 なお、空間速度(SV)は、試料の見掛けの体積[m]に対する模擬ガスの流量[m/h]の比であり、模擬ガスは、一酸化窒素の濃度が350ppm、アンモニアの濃度が350ppm、酸素の濃度が10%、水の濃度が5%であり、二酸化炭素の濃度が5%であり、窒素バランスである。
 表1に、実施例1~7及び比較例1~6のシリコアルミノホスフェート粒子のSi/(Al+P)、比表面積、平均一次粒径と、ハニカム構造体のクラック、NOxの浄化率の評価結果を示す。
Figure JPOXMLDOC01-appb-T000001
なお、Si/(Al+P)は、Al及びPの物質量の和に対するSiの物質量の比を意味する。
 表1より、実施例1~7のシリコアルミノホスフェート粒子は、Si/(Al+P)が0.16~0.28であり、比表面積が210~385m/gであり、平均一次粒径が2.0~6.0μmであり、実施例1~7のシリコアルミノホスフェート粒子を用いて作製したハニカム構造体は、ハニカムユニットにクラックが発生しないことがわかる。このため、実施例1~7のシリコアルミノホスフェート粒子が水を吸着又は脱着することによる収縮又は膨張に起因するハニカムユニットのクラックの発生を抑制できると考えられる。また、実施例1~7のシリコアルミノホスフェート粒子を用いて作製したハニカム構造体は、NOxの浄化率が85~95%であるため、NOxの浄化性能が優れることがわかる。
 一方、比較例1のシリコアルミノホスフェート粒子は、Si/(Al+P)が0.15であり、比表面積が420m/gであり、比較例1のシリコアルミノホスフェート粒子を用いて作製したハニカム構造体は、ハニカムユニットにクラックが発生することがわかる。このため、比較例1のシリコアルミノホスフェート粒子が水を吸着又は脱着することによる収縮又は膨張に起因するハニカムユニットのクラックの発生を抑制できないと考えられる。
 比較例2のシリコアルミノホスフェート粒子は、Si/(Al+P)が0.15であり、比較例2のシリコアルミノホスフェート粒子を用いて作製したハニカム構造体は、ハニカムユニットにクラックが発生することがわかる。このため、比較例1のシリコアルミノホスフェート粒子が水を吸着又は脱着することによる収縮又は膨張に起因するハニカムユニットのクラックの発生を抑制できないと考えられる。また、比較例2のシリコアルミノホスフェート粒子を用いて作製したハニカム構造体は、NOxの浄化率が78%であるため、NOxの浄化性能が低下することがわかる。
 比較例3のシリコアルミノホスフェート粒子は、比表面積が415m/gであり、比較例3のシリコアルミノホスフェート粒子を用いて作製したハニカム構造体は、ハニカムユニットにクラックが発生することがわかる。このため、比較例1のシリコアルミノホスフェート粒子が水を吸着又は脱着することによる収縮又は膨張に起因するハニカムユニットのクラックの発生を抑制できないと考えられる。
 比較例4のシリコアルミノホスフェート粒子は、平均一次粒径が1.0μmであり、比較例4のシリコアルミノホスフェート粒子を用いて作製したハニカム構造体は、NOxの浄化率が80%であるため、NOxの浄化性能が低下することがわかる。
 比較例5のシリコアルミノホスフェート粒子は、平均一次粒径が8.0μmであり、比較例5のシリコアルミノホスフェート粒子を用いて作製したハニカム構造体は、NOxの浄化率が77%であるため、NOxの浄化性能が低下することがわかる。
 比較例6のシリコアルミノホスフェート粒子は、比表面積が190m/gであり、比較例6のシリコアルミノホスフェート粒子を用いて作製したハニカム構造体は、NOxの浄化率が75%であるため、NOxの浄化性能が低下することがわかる。
 10、10’、10’’  ハニカム構造体
 11、11’、11’’  ハニカムユニット
 11a  貫通孔
 11b  隔壁
 12  外周コート層
 13  接着層
 20  保持シール材
 30  金属容器
 100  排ガス浄化装置

Claims (12)

  1. 複数の貫通孔が隔壁を隔てて長手方向に並設されているハニカムユニットを有するハニカム構造体であって、 前記ハニカムユニットは、シリコアルミノホスフェート粒子及び無機バインダを含む原料ペーストを押出成形した後、焼成して作製されており、 前記シリコアルミノホスフェート粒子は、Al及びPの物質量の和に対するSiの物質量の比が0.16以上0.33以下であり、比表面積が200m/g以上400m/g以下であり、平均一次粒径が2.0μm以上6.0μm以下であることを特徴とするハニカム構造体。
  2. 前記シリコアルミノホスフェート粒子は、銅イオン及び/又は鉄イオンによりイオン交換されていることを特徴とする請求項1に記載のハニカム構造体。
  3. 前記ハニカムユニットは、見掛けの体積当たりの前記シリコアルミノホスフェート粒子の含有量が230g/L以上360g/L以下であり、 前記見掛けの体積は、空隙の体積を含む外周の体積であることを特徴とする請求項1又は2に記載のハニカム構造体。
  4. 前記無機バインダは、アルミナゾル、シリカゾル、チタニアゾル、水ガラス、セピオライト、アタパルジャイト及びベーマイトからなる群より選択される一種以上に含まれる固形分であることを特徴とする請求項1乃至3のいずれか一項に記載のハニカム構造体。
  5. 前記原料ペーストは、無機繊維、鱗片状物質、テトラポット状物質及び三次元針状物質からなる群より選択される一種以上をさらに含むことを特徴とする請求項1乃至4のいずれか一項に記載のハニカム構造体。
  6. 前記無機繊維は、アルミナ、シリカ、炭化ケイ素、シリカアルミナ、ガラス、チタン酸カリウム及びホウ酸アルミニウムからなる群より選択される一種以上であり、 前記鱗片状物質は、ガラス、白雲母、アルミナ及びシリカからなる群より選択される一種以上であり、 前記テトラポット状物質は、酸化亜鉛であり、 前記三次元針状物質は、アルミナ、シリカ、炭化ケイ素、シリカアルミナ、ガラス、チタン酸カリウム、ホウ酸アルミニウム及びベーマイトからなる群より選択される一種以上であることを特徴とする請求項5に記載のハニカム構造体。
  7. 複数の前記ハニカムユニットを有することを特徴とする請求項1乃至6のいずれか一項に記載のハニカム構造体。
  8. 空間速度が80000/hとなるように200℃の模擬ガスを当該ハニカム構造体に流した場合のNOxの浄化率が85%以上であり、 前記空間速度は、当該ハニカム構造体の見掛けの体積[m]に対する前記模擬ガスの流量[m/h]の比であり、 前記模擬ガスは、一酸化窒素の濃度が350ppmであり、アンモニアの濃度が350ppmであり、酸素の濃度が10%であり、水の濃度が5%であり、二酸化炭素の濃度が5%であり、窒素バランスであることを特徴とする請求項1乃至7のいずれか一項に記載のハニカム構造体。
  9. 複数の貫通孔が隔壁を隔てて長手方向に並設されているハニカムユニットを有するハニカム構造体を製造する方法であって、 シリコアルミノホスフェート粒子及び無機バインダを含む原料ペーストを押出成形する工程と、 該押出成形された原料ペーストを焼成して前記ハニカムユニットを作製する工程を有し、 前記シリコアルミノホスフェート粒子は、Al及びPの物質量の和に対するSiの物質量の比が0.16以上0.33以下であり、比表面積が200m/g以上400m/g以下であり、平均一次粒径が2.0μm以上6.0μm以下であることを特徴とするハニカム構造体の製造方法。
  10. 前記押出成形された原料ペーストを焼成する雰囲気は、酸素の濃度が1%以上10%以下であり、 前記押出成形された原料ペーストを焼成する温度が600℃以上1000℃以下であり、 前記押出成形された原料ペーストを焼成する時間が7時間以上10時間以下であることを特徴とする請求項9に記載のハニカム構造体の製造方法。
  11. 請求項1乃至8のいずれか一項に記載のハニカム構造体の両端面を除く外周面に保持シール材が配置されている状態で、金属容器に収容されていることを特徴とする排ガス浄化装置。
  12. Al及びPの物質量の和に対するSiの物質量の比が0.16以上0.33以下であり、 比表面積が200m/g以上400m/g以下であり、 平均一次粒径が2.0μm以上6.0μm以下であることを特徴とするシリコアルミノホスフェート粒子。
PCT/JP2011/068707 2011-08-18 2011-08-18 ハニカム構造体及びその製造方法、排ガス浄化装置並びにシリコアルミノホスフェート粒子 WO2013024548A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11870891.6A EP2745933B1 (en) 2011-08-18 2011-08-18 Honeycomb structure, method for manufacturing the same, exhaust gas purifying apparatus and silicoaluminophosphate particles
JP2013528897A JP5814373B2 (ja) 2011-08-18 2011-08-18 ハニカム構造体及びその製造方法、排ガス浄化装置並びにシリコアルミノホスフェート粒子
US14/128,565 US20140147673A1 (en) 2011-08-18 2011-08-18 Honeycomb structure, method for manufacturing the same exhaust gas purifying apparatus and silicoaluminophosphate particles
PCT/JP2011/068707 WO2013024548A1 (ja) 2011-08-18 2011-08-18 ハニカム構造体及びその製造方法、排ガス浄化装置並びにシリコアルミノホスフェート粒子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/068707 WO2013024548A1 (ja) 2011-08-18 2011-08-18 ハニカム構造体及びその製造方法、排ガス浄化装置並びにシリコアルミノホスフェート粒子

Publications (1)

Publication Number Publication Date
WO2013024548A1 true WO2013024548A1 (ja) 2013-02-21

Family

ID=47714891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068707 WO2013024548A1 (ja) 2011-08-18 2011-08-18 ハニカム構造体及びその製造方法、排ガス浄化装置並びにシリコアルミノホスフェート粒子

Country Status (4)

Country Link
US (1) US20140147673A1 (ja)
EP (1) EP2745933B1 (ja)
JP (1) JP5814373B2 (ja)
WO (1) WO2013024548A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014205760A1 (de) 2014-03-27 2015-10-01 Johnson Matthey Public Limited Company Verfahren zum Herstellen eines Katalysator sowie Katalysator
US9221694B1 (en) 2014-10-22 2015-12-29 Gradiant Corporation Selective scaling in desalination water treatment systems and associated methods
CN105152655B (zh) * 2015-07-15 2018-01-16 东莞华南设计创新院 一种陶瓷的织构化方法
JP6771005B2 (ja) * 2018-09-12 2020-10-21 イビデン株式会社 ハニカム構造体の製造方法
JP6764451B2 (ja) * 2018-09-12 2020-09-30 イビデン株式会社 ハニカム構造体の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006273710A (ja) * 2005-03-03 2006-10-12 Mitsubishi Chemicals Corp アルミノフォスフェート類の合成方法
US20100310440A1 (en) * 2009-06-08 2010-12-09 Basf Se PROCESS FOR THE DIRECT SYNTHESIS OF Cu CONTAINING SILICOALUMINOPHOSPHATE (Cu-SAPO-34)
JP2011510899A (ja) * 2008-01-31 2011-04-07 ビー・エイ・エス・エフ、コーポレーション Cha結晶構造を有する分子篩を含む非沸石系金属を利用する触媒、システム、および方法
JP2011125846A (ja) * 2009-11-19 2011-06-30 Ibiden Co Ltd ハニカム構造体及び排ガス浄化装置
JP2011125849A (ja) * 2009-11-19 2011-06-30 Ibiden Co Ltd ハニカム構造体及び排ガス浄化装置
JP2011125848A (ja) * 2009-11-19 2011-06-30 Ibiden Co Ltd ハニカム構造体
JP2011125851A (ja) * 2009-11-19 2011-06-30 Ibiden Co Ltd ハニカム構造体及び排ガス浄化装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006289237A (ja) * 2005-04-08 2006-10-26 Ibiden Co Ltd ハニカム構造体
KR100915024B1 (ko) * 2007-06-27 2009-09-02 한국화학연구원 혼합 유기주형체를 이용한 경질 올레핀 제조용 실리코알루미노포스페이트 (sapo)-34 분자체 촉매의 제조방법
WO2011042990A1 (ja) * 2009-10-09 2011-04-14 イビデン株式会社 ハニカムフィルタ
CN102665910B (zh) * 2009-11-19 2014-07-02 揖斐电株式会社 蜂窝结构体以及尾气净化装置
RU2505355C1 (ru) * 2010-02-01 2014-01-27 Джонсон Мэтти Плс Окислительный катализатор

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006273710A (ja) * 2005-03-03 2006-10-12 Mitsubishi Chemicals Corp アルミノフォスフェート類の合成方法
JP2011510899A (ja) * 2008-01-31 2011-04-07 ビー・エイ・エス・エフ、コーポレーション Cha結晶構造を有する分子篩を含む非沸石系金属を利用する触媒、システム、および方法
US20100310440A1 (en) * 2009-06-08 2010-12-09 Basf Se PROCESS FOR THE DIRECT SYNTHESIS OF Cu CONTAINING SILICOALUMINOPHOSPHATE (Cu-SAPO-34)
JP2011125846A (ja) * 2009-11-19 2011-06-30 Ibiden Co Ltd ハニカム構造体及び排ガス浄化装置
JP2011125849A (ja) * 2009-11-19 2011-06-30 Ibiden Co Ltd ハニカム構造体及び排ガス浄化装置
JP2011125848A (ja) * 2009-11-19 2011-06-30 Ibiden Co Ltd ハニカム構造体
JP2011125851A (ja) * 2009-11-19 2011-06-30 Ibiden Co Ltd ハニカム構造体及び排ガス浄化装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2745933A4 *

Also Published As

Publication number Publication date
EP2745933B1 (en) 2019-05-01
JP5814373B2 (ja) 2015-11-17
JPWO2013024548A1 (ja) 2015-03-05
US20140147673A1 (en) 2014-05-29
EP2745933A1 (en) 2014-06-25
EP2745933A4 (en) 2015-04-29

Similar Documents

Publication Publication Date Title
WO2012029159A1 (ja) シリコアルミナリン酸塩、ハニカム構造体及び排ガス浄化装置
WO2011061836A1 (ja) ハニカム構造体及び排ガス浄化装置
JP5756714B2 (ja) シリコアルミノリン酸塩、ハニカム構造体及び排ガス浄化装置
JP5560158B2 (ja) ハニカム構造体及び排ガス浄化装置
JP6204751B2 (ja) ハニカム触媒及び排ガス浄化装置
JP5746061B2 (ja) ハニカム構造体及びハニカム構造体の製造方法
JP5837408B2 (ja) ハニカム構造体及び排ガス浄化装置
JP6245896B2 (ja) ハニカム触媒及び排ガス浄化装置
WO2011061835A1 (ja) ハニカム構造体及び排ガス浄化装置
JP5814373B2 (ja) ハニカム構造体及びその製造方法、排ガス浄化装置並びにシリコアルミノホスフェート粒子
JP5814372B2 (ja) 複合粒子、ハニカム構造体及びその製造方法並びに排ガス浄化装置
WO2013024547A1 (ja) ハニカム構造体及びその製造方法、排ガス浄化装置並びにシリコアルミノホスフェート粒子
JP5814374B2 (ja) シリコアルミノホスフェート粒子、ハニカム構造体及びその製造方法並びに排ガス浄化装置
JP5563952B2 (ja) ハニカム構造体及び排ガス浄化装置
WO2012131914A1 (ja) ハニカム構造体及び排ガス浄化装置
WO2014073065A1 (ja) ハニカム構造体及びその製造方法
JP2012213753A (ja) ハニカム構造体およびハニカム構造体の製造方法
JPWO2013024547A1 (ja) ハニカム構造体及びその製造方法、排ガス浄化装置並びにシリコアルミノホスフェート粒子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11870891

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14128565

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013528897

Country of ref document: JP

Kind code of ref document: A