WO2014073065A1 - ハニカム構造体及びその製造方法 - Google Patents

ハニカム構造体及びその製造方法 Download PDF

Info

Publication number
WO2014073065A1
WO2014073065A1 PCT/JP2012/078943 JP2012078943W WO2014073065A1 WO 2014073065 A1 WO2014073065 A1 WO 2014073065A1 JP 2012078943 W JP2012078943 W JP 2012078943W WO 2014073065 A1 WO2014073065 A1 WO 2014073065A1
Authority
WO
WIPO (PCT)
Prior art keywords
honeycomb
manufacturing
honeycomb structure
alumina
raw material
Prior art date
Application number
PCT/JP2012/078943
Other languages
English (en)
French (fr)
Inventor
康文 深沢
吉村 健
Original Assignee
イビデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=50684203&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2014073065(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by イビデン株式会社 filed Critical イビデン株式会社
Priority to PCT/JP2012/078943 priority Critical patent/WO2014073065A1/ja
Priority to JP2014545498A priority patent/JP5902826B2/ja
Priority to CN201280076879.7A priority patent/CN104768644A/zh
Publication of WO2014073065A1 publication Critical patent/WO2014073065A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0219Coating the coating containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/24Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20723Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20776Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/915Catalyst supported on particulate filters
    • B01D2255/9155Wall flow filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • B01J37/346Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy of microwave energy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3218Aluminium (oxy)hydroxides, e.g. boehmite, gibbsite, alumina sol
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5224Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5228Silica and alumina, including aluminosilicates, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5232Silica or silicates other than aluminosilicates, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide

Definitions

  • the present invention relates to a honeycomb structure which is a denitration catalyst for removing nitrogen oxide (NOx) in exhaust gas and a method for manufacturing the honeycomb structure.
  • a honeycomb structure which is a denitration catalyst for removing nitrogen oxide (NOx) in exhaust gas and a method for manufacturing the honeycomb structure.
  • NOx nitrogen oxide
  • an SCR Selective Catalytic Reduction
  • V 2 O 5 vanadium pentoxide
  • WO 3 tungsten trioxide
  • TiO 2 titanium dioxide
  • the SCR system using the TiO 2 / V 2 O 5 / WO 3 catalyst as described above has the following problems.
  • the NOx purification performance of the TiO 2 / V 2 O 5 / WO 3 catalyst varies depending on the addition amounts of the catalyst species V and W, but becomes an active site when the addition amount and ratio of V and W are not appropriate.
  • V cannot be uniformly dispersed, and a bulk body cannot be formed and used effectively.
  • V forms a bulk body and is deactivated by heat.
  • the cost of the catalyst becomes a problem.
  • the present invention has been made in view of the above-described conventional problems, and an object thereof is a honeycomb structure using a TiO 2 / V 2 O 5 / WO 3 catalyst, which has a NOx purification rate and thermal durability.
  • An excellent honeycomb structure and a method for manufacturing the same are provided.
  • the present invention for solving the above problems is as follows.
  • (1) A shape in which a plurality of cells including at least titanium oxide, vanadium oxide, tungsten oxide, and an inorganic binder and extending from one end face to the other end face along the longitudinal direction are partitioned by cell walls.
  • a method for manufacturing a honeycomb structure including a honeycomb unit, Forming a material containing titanium oxide, vanadium raw material, tungsten raw material and inorganic binder into a honeycomb shape to obtain a honeycomb formed body; and A firing step of firing the honeycomb formed body, A method for manufacturing a honeycomb structured body, wherein, in the firing step, an oxygen concentration is set to 21% or more and a temperature is set to 450 to 650 ° C.
  • the inorganic binder is a solid content contained in one or more selected from the group consisting of alumina sol, silica sol, titania sol, water glass, sepiolite, attapulgite, bentonite and boehmite.
  • molding is performed using a material further including at least one selected from the group consisting of inorganic fibers, scaly substances, tetrapot substances, and three-dimensional acicular substances ( A method for manufacturing a honeycomb structure according to any one of 1) to (5).
  • the inorganic fiber is at least one selected from the group consisting of alumina, silica, silicon carbide, silica alumina, glass, wollastonite, potassium titanate and aluminum borate
  • the scaly substance is at least one selected from the group consisting of glass, muscovite, alumina and silica
  • the tetrapot-like substance is zinc oxide
  • the three-dimensional acicular material is at least one selected from the group consisting of alumina, silica, silicon carbide, silica alumina, glass, wollastonite, potassium titanate, aluminum borate and boehmite.
  • a honeycomb structure using a TiO 2 / V 2 O 5 / WO 3 catalyst, a honeycomb structure excellent in NOx purification rate and thermal durability, and a method for manufacturing the honeycomb structure can be provided.
  • FIG. 5 is a perspective view showing a honeycomb unit constituting the honeycomb structure of Fig. 4.
  • the method for manufacturing a honeycomb structure of the present invention includes at least a titanium oxide, a vanadium oxide, a tungsten oxide, and an inorganic binder, and a plurality of cells extending from one end face to the other end face along the longitudinal direction.
  • a method for manufacturing a honeycomb structure including a honeycomb unit having a shape partitioned by cell walls, wherein a material including a titanium oxide, a vanadium raw material, a tungsten raw material, and an inorganic binder is formed into a honeycomb shape to obtain a honeycomb formed body
  • a firing step of firing the honeycomb formed body wherein the firing step is characterized in that the oxygen concentration is 21% or more and the temperature is 450 to 650 ° C.
  • the honeycomb structure of the present invention is a honeycomb structure obtained by the above-described method for manufacturing a honeycomb structure of the present invention, and the V / g of honeycomb structure by the hydrogen-temperature-reduction method (H 2 -TPR).
  • the hydrogen consumption by is characterized by being 0.6 mmol or more.
  • effective V amount the amount of quantifying the amount (hereinafter referred to as “effective V amount”), the NOx purification rate is improved with an increase in the added amount of W, and further the NOx purification rate is increased with an increase in the effective V amount is 0.3 mmol / g or more. It was found to be saturated at.
  • a hydrogen-temperature reduction method H 2 -TPR
  • the hydrogen consumption in this measurement must be 0.6 mmol / g or more.
  • the hydrogen consumption derived from vanadium reduction in the hydrogen-temperature reduction method is 0.6 mmol or more per 1 g of honeycomb structure (effective V amount is 0.3 mmol / g or more), and the W / V addition amount molar ratio is 0.00.
  • the initial NOx purification performance and thermal durability can be improved by increasing the effective V amount in the TiO 2 / V 2 O 5 / WO 3 catalyst. That is, it is only necessary to uniformly disperse V so that the bulk body does not exist. However, when the oxygen concentration is high when the molded body is fired, the unreacted V raw material is reduced. It was found that V is uniformly dispersed. That is, by setting the oxygen concentration in the firing step to 21% or more and the temperature to 450 to 600 ° C., V can be uniformly dispersed, and the NOx purification performance and thermal durability can be improved.
  • a honeycomb structure 10 shown in FIG. 2 includes titanium oxide, vanadium oxide, tungsten oxide, and an inorganic binder, and a plurality of through holes 11a are arranged in parallel in the longitudinal direction with partition walls 11b interposed therebetween.
  • the honeycomb unit 11 is provided.
  • the outer peripheral coat layer 12 is formed on the outer peripheral surface excluding both end surfaces of the honeycomb unit 11.
  • a titanium oxide, a vanadium raw material, a tungsten raw material, and an inorganic binder are included, and if necessary, one kind selected from the group consisting of inorganic fibers, scaly substances, tetrapot-like substances, and three-dimensional acicular substances Extrusion molding is performed using the raw material paste further including the above, and a cylindrical honeycomb molded body in which a plurality of through holes are arranged in parallel in the longitudinal direction with a partition wall therebetween is manufactured.
  • anatase-type titanium dioxide having a high specific surface area is preferably used.
  • vanadium raw material examples include ammonium metavanadate, sodium metavanadate, potassium metavanadate, vanadyl oxalate, vanadyl acetate, etc.
  • ammonium metavanadate is preferable because it is easy to handle.
  • V 2 O 5 is generated by a decomposition reaction such as ammonium metavanadate (NH 4 VO 3 ), NH 4 VO 3 ⁇ V 2 O 5 + 2NH 3 + H 2 O, and plays a role as a catalyst in the SCR system.
  • Examples of the tungsten raw material include ammonium metatungstate, tungsten oxide, and ammonium paratungstate. Among them, ammonium metatungstate is preferable.
  • the molar ratio (W / V) of vanadium atoms in the vanadium raw material and tungsten atoms in the tungsten raw material is preferably 0.8 to 1.2. This is because the initial NOx purification performance and thermal durability can be improved by setting the W / V addition amount molar ratio in the honeycomb structure to 0.8 to 1.2 as described above.
  • the molar ratio is more preferably 0.9 to 1.1, still more preferably 0.95 to 1.05.
  • the total molar ratio of tungsten atoms and vanadium atoms to titanium atoms ((W + V) / Ti) is preferably 0.02 to 0.2, more preferably 0.05 to 0.1.
  • inorganic fibers In order to improve the strength, it is preferable to add one or more selected from the group consisting of inorganic fibers, scale-like substances, tetrapot-like substances and three-dimensional needle-like substances into the raw material paste.
  • the inorganic fiber is at least one selected from the group consisting of alumina, silica, silicon carbide, silica alumina, glass, wollastonite, potassium titanate and aluminum borate, and the scaly substance is glass, muscovite.
  • One or more selected from the group consisting of alumina and silica, the tetrapot-like substance is zinc oxide, and the three-dimensional needle-like substance is alumina, silica, silicon carbide, silica alumina, glass, wallast It is preferably at least one selected from the group consisting of knight, potassium titanate, aluminum borate and boehmite. This is because all of them have high heat resistance, and even when used as a catalyst carrier in an SCR system, there is no melting damage and the effect as a reinforcing material can be maintained.
  • the aspect ratio of the inorganic fiber is preferably 2 to 1000, more preferably 5 to 800, and still more preferably 10 to 500.
  • the aspect ratio of the inorganic fibers contained in the honeycomb unit 11 is less than 2, the effect of improving the strength of the honeycomb unit 11 is reduced.
  • the aspect ratio of the inorganic fibers contained in the honeycomb unit 11 exceeds 1000, the mold is clogged when the honeycomb unit 11 is extruded, or the inorganic fibers break and the strength of the honeycomb unit 11 is increased. The effect of improving the quality is reduced.
  • the scaly substance means a flat substance, preferably having a thickness of 0.2 to 5.0 ⁇ m, preferably having a maximum length of 10 to 160 ⁇ m, and having a ratio of the maximum length to the thickness. It is preferably 3 to 250.
  • the tetrapot-like substance means a substance in which the needle-like portion extends three-dimensionally, the needle-like portion preferably has an average needle-like length of 5 to 30 ⁇ m, and the needle-like portion has an average diameter of 0.00. It is preferably 5 to 5.0 ⁇ m.
  • the three-dimensional acicular substance means a substance in which the acicular parts are bonded by an inorganic compound such as glass near the center of each acicular part, and the average acicular length of the acicular parts is 5 to 30 ⁇ m. It is preferable that the average diameter of the needle-like portion is 0.5 to 5.0 ⁇ m.
  • the three-dimensional acicular substance may have a plurality of acicular portions that are three-dimensionally connected, and preferably has a needle-like diameter of 0.1 to 5.0 ⁇ m and a length of 0.3 to It is preferably 30.0 ⁇ m, and the ratio of length to diameter is preferably 1.4 to 50.0.
  • the content of the inorganic fiber, scale-like substance, tetrapot-like substance and three-dimensional needle-like substance is preferably 3 to 50% by mass in the honeycomb unit 11, more preferably 3 to 30% by mass. More preferred is mass%.
  • the content of the inorganic fiber, the scale-like substance, the tetrapot-like substance, and the three-dimensional needle-like substance in the honeycomb structure is less than 3% by mass, the effect of improving the strength of the honeycomb structure becomes small.
  • the content of inorganic fibers, scale-like substances, tetrapot-like substances and three-dimensional needle-like substances in the honeycomb structure exceeds 50% by mass, TiO 2 / V 2 O 5 / WO 3 in the honeycomb structure is obtained.
  • the catalyst content decreases, and the NOx purification performance decreases.
  • the inorganic binder is not particularly limited, but from the viewpoint of maintaining the strength as a honeycomb structure, solid content contained in alumina sol, silica sol, titania sol, water glass, sepiolite, attapulgite, bentonite, boehmite and the like is preferable. 2 or more may be used in combination.
  • the content of the inorganic binder is preferably 5 to 30% by mass in the honeycomb unit 11 and more preferably 10 to 20% by mass.
  • the content of the inorganic binder in the honeycomb unit 11 is less than 5% by mass, the strength of the honeycomb structure is lowered.
  • the content of the inorganic binder in the honeycomb structure exceeds 30% by mass, it becomes difficult to extrude the honeycomb formed body.
  • an organic binder, a dispersion medium, a molding aid and the like may be appropriately added to the raw material paste as necessary.
  • the organic binder is not particularly limited, and examples thereof include methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, polyethylene glycol, phenol resin, and epoxy resin, and two or more kinds may be used in combination.
  • the amount of the organic binder added is from 1 to the total mass of titanium oxide, vanadium oxide, tungsten oxide, inorganic binder, inorganic fiber, scaly substance, tetrapot-like substance, and three-dimensional acicular substance. 10% is preferable.
  • the dispersion medium is not particularly limited, and examples thereof include water, organic solvents such as benzene, alcohols such as methanol, and the like.
  • the molding aid is not particularly limited, and examples thereof include ethylene glycol, dextrin, fatty acid, fatty acid soap, polyalcohol and the like, and two or more kinds may be used in combination.
  • the raw material paste it is preferable to mix and knead, and it may be mixed using a mixer, an attritor or the like, or may be kneaded using a kneader or the like.
  • the honeycomb formed body is dried using a dryer such as a microwave dryer, a hot air dryer, a dielectric dryer, a vacuum dryer, a vacuum dryer, or a freeze dryer.
  • a dryer such as a microwave dryer, a hot air dryer, a dielectric dryer, a vacuum dryer, a vacuum dryer, or a freeze dryer.
  • the honeycomb formed body obtained as described above is fired.
  • the oxygen concentration is set to 21% or more, and the temperature is set to 450 to 650 ° C.
  • the oxygen concentration is preferably 30 to 50%, more preferably 35 to 45% from the viewpoint that V can be more uniformly dispersed and NOx purification performance and thermal durability can be improved.
  • a mixed gas containing oxygen gas having the above concentration may be introduced into the firing furnace at an arbitrary flow rate. Components other than oxygen in the mixed gas are not particularly limited, and examples thereof include nitrogen.
  • the firing temperature is 450 to 650 ° C. as described above, but is preferably 500 to 600 ° C.
  • the firing temperature When the firing temperature is less than 450 ° C., the sintering does not proceed and the strength of the honeycomb unit 11 is lowered. On the other hand, if the firing temperature exceeds 650 ° C., the NOx purification performance of TiO 2 / V 2 O 5 / WO 3 decreases due to the progress of sintering.
  • the rate of temperature rise until reaching the firing temperature is preferably 0.1 to 10 ° C./min.
  • the firing time may be set as appropriate until the firing is completed, and may be 1 to 5 hours, for example.
  • the inorganic binder contained in the outer periphery coating layer paste is not particularly limited, but is added as silica sol, alumina sol or the like, and two or more kinds may be used in combination. Among these, it is preferable to add as silica sol.
  • the inorganic particles contained in the outer periphery coating layer paste are not particularly limited, but may include carbide particles such as silicon carbide particles, nitride particles such as silicon nitride particles and boron nitride particles, and the like. Good. Of these, silicon carbide particles are preferred because of their excellent thermal conductivity.
  • the inorganic fiber contained in the outer periphery coat layer paste is not particularly limited, and examples thereof include silica alumina fiber, mullite fiber, alumina fiber, silica fiber and the like, and two or more kinds may be used in combination. Among these, alumina fibers are preferable.
  • the outer periphery coating layer paste may further contain an organic binder.
  • the outer peripheral coat layer paste may further contain balloons, pore formers, and the like, which are fine hollow spheres of oxide ceramics.
  • the balloon contained in the outer periphery coating layer paste is not particularly limited, and examples thereof include alumina balloons, glass micro balloons, shirasu balloons, fly ash balloons, mullite balloons, and the like, and two or more kinds may be used in combination. Among these, an alumina balloon is preferable.
  • a spherical acrylic particle, a graphite, etc. are mentioned, You may use 2 or more types together.
  • the honeycomb unit 11 to which the outer peripheral coat layer paste has been applied is dried and solidified to produce a columnar honeycomb structure 10.
  • the outer peripheral coat layer paste contains an organic binder, it is preferably degreased.
  • the degreasing conditions can be appropriately selected depending on the type and amount of organic matter.
  • the honeycomb unit 11 manufactured as described above preferably has a porosity of 30 to 60%. If the porosity of the honeycomb unit 11 is less than 30%, the exhaust gas hardly enters the partition walls 11b of the honeycomb unit 11, and the TiO 2 / V 2 O 5 / WO 3 catalyst is effectively used for NOx purification. It will not be done. On the other hand, when the porosity of the honeycomb unit 11 exceeds 60%, the strength of the honeycomb unit 11 becomes insufficient.
  • the porosity of the honeycomb unit 11 can be measured using a mercury intrusion method.
  • the honeycomb unit 11 preferably has an opening ratio of a cross section perpendicular to the longitudinal direction of 50 to 75%.
  • the opening ratio of the cross section perpendicular to the longitudinal direction of the honeycomb unit 11 is less than 50%, the TiO 2 / V 2 O 5 / WO 3 catalyst is not effectively used for NOx purification.
  • the opening ratio of the cross section perpendicular to the longitudinal direction of the honeycomb unit 11 exceeds 75%, the strength of the honeycomb unit 11 becomes insufficient.
  • the density of the through holes 11a having a cross section perpendicular to the longitudinal direction is preferably 31 to 155 / cm 2 .
  • the density of the through-holes 11a having a cross section perpendicular to the longitudinal direction of the honeycomb unit 11 is less than 31 / cm 2 , the TiO 2 / V 2 O 5 / WO 3 catalyst and the exhaust gas are less likely to come into contact with each other, thereby purifying NOx. Performance decreases.
  • the density of the through holes 11a having a cross section perpendicular to the longitudinal direction of the honeycomb unit 11 exceeds 155 / cm 2 , the pressure loss of the honeycomb structure 10 increases.
  • the thickness of the partition wall 11b of the honeycomb unit 11 is preferably 0.1 to 0.4 mm, and more preferably 0.1 to 0.3 mm.
  • the thickness of the partition wall 11b of the honeycomb unit 11 is less than 0.1 mm, the strength of the honeycomb unit 11 decreases.
  • the thickness of the partition wall 11b of the honeycomb unit 11 exceeds 0.4 mm, the exhaust gas hardly enters the partition wall 11b of the honeycomb unit 11 and the TiO 2 / V 2 O 5 / WO 3 catalyst is NOx. It will not be used effectively for purification.
  • the outer peripheral coat layer 12 preferably has a thickness of 0.1 to 2.0 mm.
  • the thickness of the outer peripheral coat layer 12 is less than 0.1 mm, the effect of improving the strength of the honeycomb structure 10 becomes insufficient.
  • the thickness of the outer peripheral coat layer 12 exceeds 2.0 mm, the content of the TiO 2 / V 2 O 5 / WO 3 catalyst per unit volume of the honeycomb structure 10 is reduced, and the NOx purification performance is improved. descend.
  • the shape of the honeycomb structure 10 is not limited to a cylindrical shape, and examples thereof include a prismatic shape, an elliptical cylindrical shape, a long cylindrical shape, and a rounded chamfered prismatic shape (for example, a rounded chamfered triangular prism shape).
  • the shape of the through hole 11a is not limited to a quadrangular prism shape, but may be a triangular prism shape, a hexagonal prism shape, or the like.
  • FIG. 3 shows an example of an exhaust gas purifying apparatus having the honeycomb structure of the present invention.
  • the exhaust gas purification apparatus 100 can be manufactured by canning the metal container (shell) 30 in a state where the holding sealing material 20 is disposed on the outer peripheral portion of the honeycomb structure 10. Further, the exhaust gas purification apparatus 100 includes an injection nozzle that injects ammonia or a compound that decomposes to generate ammonia into a pipe (not shown) on the upstream side of the honeycomb structure 10 with respect to the direction in which the exhaust gas flows. Injecting means (not shown) is provided. As a result, ammonia is added to the exhaust gas flowing through the pipe, so that the NOx contained in the exhaust gas is reduced by the TiO 2 / V 2 O 5 / WO 3 catalyst contained in the honeycomb unit 11.
  • the compound that decomposes to generate ammonia is not particularly limited as long as it can be heated by exhaust gas in the pipe and generate ammonia, but urea water is preferable because of excellent storage stability.
  • the urea water is heated by the exhaust gas in the pipe and hydrolyzes to generate ammonia.
  • FIG. 4 shows another example of the honeycomb structure of the present invention.
  • a plurality of honeycomb units 11 ′ in which a plurality of through holes 11 a are arranged in parallel in the longitudinal direction with a partition wall 11 b therebetween are bonded via an adhesive layer 13.
  • the configuration is the same as that of the honeycomb structure 10.
  • the honeycomb unit 11 ′ preferably has a cross-sectional area of 10 to 200 cm 2 in a cross section perpendicular to the longitudinal direction.
  • the cross-sectional area of the cross section perpendicular to the longitudinal direction of the honeycomb unit 11 ′ is less than 10 cm 2 , the pressure loss of the honeycomb structure 10 ′ increases.
  • the cross-sectional area of the cross section perpendicular to the longitudinal direction of the honeycomb unit 11 ′ exceeds 200 cm 2 , the strength against the thermal stress generated in the honeycomb unit 11 ′ becomes insufficient.
  • honeycomb unit 11 ′ has the same configuration as the honeycomb unit 11 except for the cross-sectional area of the cross section perpendicular to the longitudinal direction.
  • the adhesive layer 13 preferably has a thickness of 0.5 to 2.0 mm.
  • the thickness of the adhesive layer 13 is less than 0.5 mm, the adhesive strength of the honeycomb unit 11 ′ becomes insufficient.
  • the thickness of the adhesive layer 13 exceeds 2.0 mm, the pressure loss of the honeycomb structure 10 ′ increases.
  • honeycomb structure 10 ′ First, in the same manner as the honeycomb structure 10, a quadrangular columnar honeycomb unit 11 ′ is manufactured. Next, an adhesive layer paste is applied to the outer peripheral surface excluding both end faces of the honeycomb unit 11 ′, the honeycomb units 11 ′ are sequentially bonded, and dried and solidified to produce an aggregate of the honeycomb units 11 ′.
  • the adhesive layer paste is not particularly limited, and examples thereof include a mixture of inorganic binder and inorganic particles, a mixture of inorganic binder and inorganic fibers, a mixture of inorganic binder, inorganic particles, and inorganic fibers.
  • the inorganic binder contained in the adhesive layer paste is not particularly limited, but is added as silica sol, alumina sol or the like, and two or more kinds may be used in combination. Among these, it is preferable to add as silica sol.
  • the inorganic particles contained in the adhesive layer paste are not particularly limited, and examples thereof include carbide particles such as silicon carbide particles, nitride particles such as silicon nitride particles and boron nitride particles, and the like. . Of these, silicon carbide particles are preferred because of their excellent thermal conductivity.
  • the inorganic fiber contained in the adhesive layer paste is not particularly limited, and examples thereof include silica alumina fiber, mullite fiber, alumina fiber, silica fiber and the like, and two or more kinds may be used in combination. Among these, alumina fibers are preferable.
  • the adhesive layer paste may contain an organic binder.
  • the organic binder contained in the adhesive layer paste is not particularly limited, and examples thereof include polyvinyl alcohol, methyl cellulose, ethyl cellulose, carboxymethyl cellulose and the like, and two or more kinds may be used in combination.
  • the adhesive layer paste may further contain balloons that are fine hollow spheres of oxide ceramics, a pore-forming agent, and the like.
  • the balloon contained in the adhesive layer paste is not particularly limited, and examples thereof include an alumina balloon, a glass microballoon, a shirasu balloon, a fly ash balloon, and a mullite balloon, and two or more kinds may be used in combination. Among these, an alumina balloon is preferable.
  • the pore former contained in the adhesive layer paste is not particularly limited, and examples thereof include spherical acrylic particles and graphite, and two or more kinds may be used in combination.
  • the aggregate of the honeycomb units 11 ′ is cut into a cylindrical shape, the aggregate of the cylindrical honeycomb units 11 ′ is manufactured by polishing as necessary.
  • the honeycomb unit 11 ′ whose cross section perpendicular to the longitudinal direction is formed into a predetermined shape is bonded to the columnar honeycomb unit 11 ′. You may produce the aggregate
  • the shape of the cross section perpendicular to the longitudinal direction of the honeycomb unit 11 ′ is preferably a sector shape with a central angle of 90 °.
  • the outer peripheral coat layer paste is applied to the outer peripheral surface excluding both end surfaces of the aggregate of the cylindrical honeycomb unit 11 ′.
  • the outer periphery coat layer paste may be the same as or different from the adhesive layer paste.
  • a columnar honeycomb structure 10 ′ is manufactured by drying and solidifying the aggregate of columnar honeycomb units 11 ′ coated with the outer periphery coating layer paste.
  • an organic binder is contained in the adhesive layer paste and / or the outer peripheral coat layer paste, it is preferable to degrease.
  • the degreasing conditions can be appropriately selected depending on the type and amount of organic matter.
  • outer peripheral coat layer 12 may not be formed in the honeycomb structures 10 and 10 ′.
  • Example 1 3910 parts by mass of titanium oxide, 210 parts by mass of ammonium metavanadate as a vanadium raw material, 670 parts by mass of ammonium metatungstate (50% solution) as a tungsten raw material, 300 parts by mass of an alumina binder, 170 parts by mass of wollastonite fiber, as a molding aid
  • a raw material paste 1 was prepared by mixing and kneading 300 parts by mass of methyl cellulose, 80 parts by mass of sorbitan trioleate as a molding lubricant, 150 parts by mass of diethanolamine as a pH adjusting agent, and 1750 parts by mass of ion-exchanged water.
  • the molar ratio (W / V) of vanadium atoms in the vanadium raw material and tungsten atoms in the tungsten raw material was 0.80.
  • the raw material paste 1 was extrusion-molded using an extruder to produce a regular quadrangular prism-shaped honeycomb formed body.
  • the honeycomb molded body was dried at a drying pressure of 86.7 kPa for 6 minutes using a batch microwave dryer.
  • the honeycomb formed body was put into a gas flow furnace, heated to 550 ° C. at a temperature rising rate of 5 ° C./min, and fired while maintaining the temperature for 3 hours to produce a honeycomb fired body.
  • a mixed gas having an oxygen concentration of 21% and a nitrogen concentration of 79% was introduced at a gas flow rate of 20 L / min.
  • the honeycomb unit 11 ′ has a regular quadrangular prism shape with a side of 35 mm and a length of 150 mm, the density of the through holes 11 a is 62 / cm 2 , and the thickness of the partition walls 11 b is 0.28 mm.
  • alumina fiber having an average fiber diameter of 0.5 ⁇ m and an average fiber length of 15 ⁇ m 767 parts of alumina fiber having an average fiber diameter of 0.5 ⁇ m and an average fiber length of 15 ⁇ m, 2500 parts of silica glass, 17 parts of carboxymethylcellulose, 600 parts of silica sol having a solid content of 30% by mass, and 167 parts of polyvinyl alcohol Part, 167 parts of surfactant and 17 parts of alumina balloon were mixed and kneaded to prepare an adhesive layer paste.
  • the adhesive layer paste was applied to the outer peripheral surface excluding both ends of the honeycomb unit 11 ′ so that the thickness of the adhesive layer 13 was 2.0 mm, and 16 honeycomb units 11 ′ were adhered to each other at 150 ° C. Solidified for a minute. Next, a diamond cutter was used to cut into a cylindrical shape so that the cross section perpendicular to the longitudinal direction was substantially point-symmetric, thereby producing an aggregate of honeycomb units 11 ′.
  • the microwave dryer and the hot air dryer are applied.
  • the adhesive layer paste was dried and solidified at 150 ° C. for 10 minutes and degreased at 400 ° C. for 2 hours to prepare a cylindrical honeycomb structure 10 ′ having a diameter of 143.8 mm and a length of 150 mm.
  • Example 2 A honeycomb structure 10 ′ was produced in the same manner as in Example 1 except that the oxygen concentration in the mixed gas introduced at the time of firing was 40% (nitrogen concentration: 60%).
  • Example 1 A honeycomb structure 10 ′ was produced in the same manner as in Example 1 except that the oxygen concentration in the mixed gas introduced during firing was 0% (nitrogen concentration: 100%).
  • Example 2 A honeycomb structure 10 ′ was produced in the same manner as in Example 1 except that the oxygen concentration in the mixed gas introduced during firing was 20% (in the air).
  • Table 1 shows that the honeycomb structures of Examples 1 and 2 have a larger effective V amount than the honeycomb structures of Comparative Example 1 and a satisfactory result for NOx purification performance before and after thermal durability. I understand that. Also from this, the effective V amount can be increased by the manufacturing method of the present invention, and the NOx purification performance can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

 TiO/V/WO触媒を用いたハニカム構造体であって、NOx浄化率及び熱耐久性に優れたハニカム構造体を製造し得る製造方法を提供する。チタン酸化物、バナジウム酸化物、タングステン酸化物及び無機バインダを少なくとも含み、長手方向に沿って、一方の端面から他方の端面に延伸する複数のセルが、セル壁によって区画された形状のハニカムユニットを備えたハニカム構造体の製造方法であって、チタン酸化物、バナジウム原料、タングステン原料及び無機バインダを含む材料をハニカム状に成形し、ハニカム成形体を得る成形工程と、前記ハニカム成形体を焼成する焼成工程と、を含み、前記焼成工程において、酸素濃度を21%以上とし、かつ温度を450~650℃とすることを特徴とするハニカム構造体の製造方法である。

Description

ハニカム構造体及びその製造方法
 本発明は、排ガス中の窒素酸化物(NOx)を除去する脱硝触媒たるハニカム構造体及びその製造方法に関する。
 排ガス中のNOxを浄化するためのシステムとして、アンモニアを用いてNOxを窒素と水に還元するSCR(Selective Catalytic Reduction)システムが知られている。このSCRシステムに用いられる触媒として、五酸化バナジウム(V)が高い脱硝性能を有することが知られており、二酸化チタン(TiO)にVや三酸化タングステン(WO)を担持した材料が用いられている。そして、このような、チタン酸化物にV,WOを担持した触媒(以下、「TiO/V/WO触媒」とも呼ぶ。)としては、例えば、特許文献1に開示されている。
特開2005-21780号公報
 しかしながら、上記のようなTiO/V/WO触媒を用いたSCRシステムでは以下の問題を有する。
 TiO/V/WO触媒におけるNOx浄化性能は触媒種であるVとWの添加量に依存し変化するが、VとWの添加量・割合が適当でない場合、活性点となるVが均一に分散できず、バルク体を形成し有効に使用することが出来ない。さらに熱によってもVがバルク体を形成し失活する等の問題がある。また、VおよびWの添加量を多くする場合には触媒のコスト面も問題となる。
 本発明は、上記従来の問題点に鑑みてなされたものであり、その目的は、TiO/V/WO触媒を用いたハニカム構造体であって、NOx浄化率及び熱耐久性に優れたハニカム構造体及びその製造方法を提供することにある。
 前記課題を解決する本発明は以下の通りである。
(1)チタン酸化物、バナジウム酸化物、タングステン酸化物及び無機バインダを少なくとも含み、長手方向に沿って、一方の端面から他方の端面に延伸する複数のセルが、セル壁によって区画された形状のハニカムユニットを備えたハニカム構造体の製造方法であって、
 チタン酸化物、バナジウム原料、タングステン原料及び無機バインダを含む材料をハニカム状に成形し、ハニカム成形体を得る成形工程と、
 前記ハニカム成形体を焼成する焼成工程と、を含み、
 前記焼成工程において、酸素濃度を21%以上とし、かつ温度を450~650℃とすることを特徴とするハニカム構造体の製造方法。
(2)前記焼成工程における酸素濃度を30~50%とすることを特徴とする前記(1)に記載のハニカム構造体の製造方法。
(3)前記バナジウム原料がメタバナジン酸アンモニウムであることを特徴とする前記(1)又は(2)に記載のハニカム構造体の製造方法。
(4)前記バナジウム原料中のバナジウム原子、及び前記タングステン原料中のタングステン原子のモル比(W/V)が0.8~1.2であることを特徴とする前記(1)~(3)のいずれかに記載のハニカム構造体の製造方法。
(5)前記無機バインダが、アルミナゾル、シリカゾル、チタニアゾル、水ガラス、セピオライト、アタパルジャイト、ベントナイト及びベーマイトからなる群より選択される一種以上に含まれる固形分であることを特徴とする前記(1)~(4)のいずれかに記載のハニカム構造体の製造方法。
(6)前記成形工程において、無機繊維、鱗片状物質、テトラポット状物質及び三次元針状物質からなる群より選択される一種以上をさらに含む材料を用いて成形することを特徴とする前記(1)~(5)のいずれかに記載のハニカム構造体の製造方法。
(7)前記無機繊維は、アルミナ、シリカ、炭化ケイ素、シリカアルミナ、ガラス、ワラストナイト、チタン酸カリウム及びホウ酸アルミニウムからなる群より選択される一種以上であり、
 前記鱗片状物質は、ガラス、白雲母、アルミナ及びシリカからなる群より選択される一種以上であり、
 前記テトラポット状物質は、酸化亜鉛であり、
 前記三次元針状物質は、アルミナ、シリカ、炭化ケイ素、シリカアルミナ、ガラス、ワラストナイト、チタン酸カリウム、ホウ酸アルミニウム及びベーマイトからなる群より選択される一種以上であることを特徴とする前記(6)に記載のハニカム構造体の製造方法。
(8)前記(1)~(7)のいずれかに記載のハニカム構造体の製造方法により得られるハニカム構造体であって、
 水素-昇温還元法(H-TPR)によるハニカム構造体1gあたりのVによる水素消費量が0.6mmol以上であり、W/V添加量モル比が0.8~1.2であることを特徴とするハニカム構造体。
 本発明によれば、TiO/V/WO触媒を用いたハニカム構造体であって、NOx浄化率及び熱耐久性に優れたハニカム構造体及びその製造方法を提供することができる。
TiO/V/WO触媒のNOx浄化サイクルを示す図である。 本発明のハニカム構造体の一例を示す斜視図である。 本発明のハニカム構造体を有する排ガス浄化装置の一例を示す断面図である。 本発明のハニカム構造体の他の例を示す斜視図である。 図4のハニカム構造体を構成するハニカムユニットを示す斜視図である。
 本発明のハニカム構造体の製造方法は、チタン酸化物、バナジウム酸化物、タングステン酸化物及び無機バインダを少なくとも含み、長手方向に沿って、一方の端面から他方の端面に延伸する複数のセルが、セル壁によって区画された形状のハニカムユニットを備えたハニカム構造体の製造方法であって、チタン酸化物、バナジウム原料、タングステン原料及び無機バインダを含む材料をハニカム状に成形し、ハニカム成形体を得る成形工程と、前記ハニカム成形体を焼成する焼成工程と、を含み、前記焼成工程において、酸素濃度を21%以上とし、かつ温度を450~650℃とすることを特徴としている。
 また、本発明のハニカム構造体は、上記本発明のハニカム構造体の製造方法により得られるハニカム構造体であって、水素-昇温還元法(H-TPR)によるハニカム構造体1gあたりのVによる水素消費量が0.6mmol以上であることを特徴としている。
 TiO/V/WO触媒に於けるSCR反応は、図1に示すようにTiO上でのV(5価⇔4価)の酸化還元反応により進行することから、TiO上のV(5価)の量を増加させることにより反応性は向上する。TiO上のV(5価)の量を増加させるためには、TiO上でWをVと結合させV-O-Wとすればよく、これによりVの分散状態を維持し、且つ熱によってVがバルク化し失活するのを防ぐことが出来る。すなわち、TiO上でWをVと結合させV-O-Wとすることで、TiO上の5価のVイオンの量を常に多い状態に保つことが出来る。そして、TiO上でVを5価のイオンとして全て有効に使用するためには、TiO上におけるVとWを少なくともモル比1:1となるように結合させる必要があると考えられる。
 本発明者は、自動車排ガスの一般的な条件である250℃、SV(空間速度)60000hr-1、NO/NOx=0の時に、Vの分散状態、すなわち反応に寄与するV(5価)の量(以下、「有効V量」と呼ぶ。)を定量した結果、W添加量の増加に伴い向上すること、さらに有効V量の増加に伴いNOx浄化率は向上し0.3mmol/g以上で飽和することを見出した。
 ここで、有効V量導出の手法としては、水素-昇温還元法(H-TPR)を用いる。そして、ハニカム構造体1gあたりの有効V量0.3mmol以上を満たすためには、5価バナジウム還元由来ピーク(350~580℃)から計算される水素消費量と、それに伴うバナジウム価数変化の関係より、本測定における水素消費量は0.6mmol/g以上でなければならない。
 以上のことから、水素-昇温還元法におけるバナジウム還元由来の水素消費量をハニカム構造体1gあたり0.6mmol以上(有効V量0.3mmol/g以上)、W/V添加量モル比0.8~1.2とすることで、初期のNOx浄化性能と熱耐久性を向上させることができる。
 以上の通り、TiO/V/WO触媒において有効V量を向上させることで、初期のNOx浄化性能と熱耐久性を向上させることができる。つまり、Vを均一に分散し、バルク体が存在しないようにすればよいが、本発明者は、成形体を焼成する時に酸素濃度を高濃度とすると、未反応のVの原料が減少し、Vが均一に分散することを見出した。つまり、焼成工程における酸素濃度を21%以上、温度を450~600℃とすることでVを均一に分散させることができ、ひいてはNOx浄化性能と熱耐久性を向上させることができる。
 以下に、本発明のハニカム構造体の製造方法について説明するに当たり、まず当該ハニカム構造体の一例を図2を参照して説明し、次いで本発明の製造方法の各工程について順次説明する。
 図2に示すハニカム構造体10は、チタン酸化物、バナジウム酸化物、タングステン酸化物、及び無機バインダとを含み、複数の貫通孔11aが隔壁11bを隔てて長手方向に並設されている単一のハニカムユニット11を有する。また、ハニカムユニット11の両端面を除く外周面に外周コート層12が形成されている。
 このようなハニカム構造体を製造する本発明の製造方法の各工程について以下に説明する。
[成形工程]
 本工程においては、チタン酸化物、バナジウム原料、タングステン原料及び無機バインダを含み、必要に応じて、無機繊維、鱗片状物質、テトラポット状物質及び三次元針状物質からなる群より選択される一種以上をさらに含む原料ペーストを用いて押出成形し、複数の貫通孔が隔壁を隔てて長手方向に並設されている円柱状のハニカム成形体を作製する。
 チタン酸化物としては、比表面積が高いアナターゼ型の二酸化チタンを用いることが好ましい。
 バナジウム原料としては、メタバナジン酸アンモニウム、メタバナジン酸ナトリウム、 メタバナジン酸カリウム、シュウ酸バナジル、酢酸バナジル等が挙げられ、中でも、取り扱いが容易であることから、メタバナジン酸アンモニウムであることが好ましい。メタバナジン酸アンモニウム(NHVO)、NHVO→V+2NH+HOといった分解反応によって、Vを生成し、SCRシステムにおける触媒としての役割を果たす。
 タングステン原料としては、メタタングステン酸アンモニウム、酸化タングステン、パラタングステン酸アンモニウム等が挙げられ、中でも、メタタングステン酸アンモニウムが好ましい。
 原料ペースト中、前記バナジウム原料中のバナジウム原子、及び前記タングステン原料中のタングステン原子のモル比(W/V)は0.8~1.2とすることが好ましい。上述したとおり、ハニカム構造体におけるW/V添加量モル比0.8~1.2とすることで、初期のNOx浄化性能と熱耐久性を向上させることができるためである。当該モル比は、より好ましくは0.9~1.1であり、さらに好ましくは0.95~1.05である。
 また、チタン原子に対するタングステン原子及びバナジウム原子の合計のモル比((W+V)/Ti)は、0.02~0.2が好ましく、0.05~0.1がより好ましい。
 強度を向上させるために、無機繊維、鱗片状物質、テトラポット状物質及び三次元針状物質からなる群より選択される一種以上を原料ペースト中に添加することが好ましい。
 前記無機繊維は、アルミナ、シリカ、炭化ケイ素、シリカアルミナ、ガラス、ワラストナイト、チタン酸カリウム及びホウ酸アルミニウムからなる群より選択される一種以上であり、前記鱗片状物質は、ガラス、白雲母、アルミナ及びシリカからなる群より選択される一種以上であり、前記テトラポット状物質は、酸化亜鉛であり、前記三次元針状物質は、アルミナ、シリカ、炭化ケイ素、シリカアルミナ、ガラス、ワラストナイト、チタン酸カリウム、ホウ酸アルミニウム及びベーマイトからなる群より選択される一種以上であることが好ましい。
 いずれも耐熱性が高く、SCRシステムにおける触媒担体として使用した時でも、溶損などがなく、補強材としての効果を持続することができるためである。
 前記無機繊維のアスペクト比は、2~1000であることが好ましく、5~800がより好ましく、10~500がさらに好ましい。ハニカムユニット11に含まれる無機繊維のアスペクト比が2未満であると、ハニカムユニット11の強度を向上させる効果が小さくなる。一方、ハニカムユニット11に含まれる無機繊維のアスペクト比が1000を超えると、ハニカムユニット11を押出成形する際に金型に目詰まり等が発生したり、無機繊維が折れて、ハニカムユニット11の強度を向上させる効果が小さくなったりする。
 前記鱗片状物質は、平たい物質を意味し、厚さが0.2~5.0μmであることが好ましく、最大長さが10~160μmであることが好ましく、厚さに対する最大長さの比が3~250であることが好ましい。
 前記テトラポット状物質は、針状部が三次元に延びている物質を意味し、針状部の平均針状長さが5~30μmであることが好ましく、針状部の平均径が0.5~5.0μmであることが好ましい。
 前記三次元針状物質は、針状部同士がそれぞれの針状部の中央付近でガラス等の無機化合物により結合されている物質を意味し、針状部の平均針状長さが5~30μmであることが好ましく、針状部の平均径が0.5~5.0μmであることが好ましい。
 また、三次元針状物質は、複数の針状部が三次元に連なっていてもよく、針状部の直径が0.1~5.0μmであることが好ましく、長さが0.3~30.0μmであることが好ましく、直径に対する長さの比が1.4~50.0であることが好ましい。
 無機繊維、鱗片状物質、テトラポット状物質及び三次元針状物質の含有量は、ハニカムユニット11中、3~50質量%であることが好ましく、3~30質量%がより好ましく、5~20質量%がさらに好ましい。ハニカム構造体中の無機繊維、鱗片状物質、テトラポット状物質及び三次元針状物質の含有量が3質量%未満であると、ハニカム構造体の強度を向上させる効果が小さくなる。一方、ハニカム構造体中の無機繊維、鱗片状物質、テトラポット状物質及び三次元針状物質の含有量が50質量%を超えると、ハニカム構造体中のTiO/V/WO触媒の含有量が低下して、NOxの浄化性能が低下する。
 前記無機バインダとしては、特に限定されないが、ハニカム構造体としての強度を保つという観点から、アルミナゾル、シリカゾル、チタニアゾル、水ガラス、セピオライト、アタパルジャイト、ベントナイト、ベーマイト等に含まれる固形分が好適なものとして挙げられ、二種以上併用してもよい。
 無機バインダの含有量は、ハニカムユニット11中、5~30質量%であることが好ましく、10~20質量%がより好ましい。ハニカムユニット11中の無機バインダの含有量が5質量%未満であると、ハニカム構造体の強度が低下する。一方、ハニカム構造体中の無機バインダの含有量が30質量%を超えると、ハニカム成形体を押出成形することが困難になる。
 また、原料ペーストには、有機バインダ、分散媒、成形助剤等を、必要に応じて、適宜添加してもよい。
 有機バインダとしては、特に限定されないが、メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリエチレングリコール、フェノール樹脂、エポキシ樹脂等が挙げられ、二種以上併用してもよい。なお、有機バインダの添加量は、チタン酸化物、バナジウム酸化物、タングステン酸化物、無機バインダ、無機繊維、鱗片状物質、テトラポット状物質及び三次元針状物質の総質量に対して、1~10%であることが好ましい。
 分散媒としては、特に限定されないが、水、ベンゼン等の有機溶媒、メタノール等のアルコール等が挙げられ、二種以上併用してもよい。
 成形助剤としては、特に限定されないが、エチレングリコール、デキストリン、脂肪酸、脂肪酸石鹸、ポリアルコール等が挙げられ、二種以上併用してもよい。
 原料ペーストを調製する際には、混合混練することが好ましく、ミキサー、アトライタ等を用いて混合してもよく、ニーダー等を用いて混練してもよい。
 次に、マイクロ波乾燥機、熱風乾燥機、誘電乾燥機、減圧乾燥機、真空乾燥機、凍結乾燥機等の乾燥機を用いて、ハニカム成形体を乾燥する。
[焼成工程]
 焼成工程においては、以上のようにして得られたハニカム成形体を焼成する。焼成工程においては、上述の通り、酸素濃度を21%以上とし、かつ温度を450~650℃とする。当該酸素濃度は、Vをより均一に分散させることができ、NOx浄化性能と熱耐久性を向上させることができるという観点から30~50%とすることが好ましく、35~45%がより好ましい。焼成工程において酸素濃度を上記範囲内として焼成するには、上記濃度の酸素ガスを含む混合ガスを任意の流量で焼成炉内に導入すればよい。当該混合ガス中の酸素以外の成分は特に限定はなく、例えば、窒素が挙げられる。
 また、焼成温度は、上述の通り450~650℃であるが、500~600℃であることが好ましい。焼成温度が450℃未満であると、焼結が進行せず、ハニカムユニット11の強度が低くなる。一方、焼成温度が650℃を超えると、焼結の進行によりTiO/V/WOのNOx浄化性能が低下する。上記焼成温度に到達するまでの昇温速度としては、0.1~10℃/分とすることが好ましい。
 焼成時間は、焼成が完結するまでの時間を適宜設定すればよく、例えば、1~5時間とすることができる。
[その他の工程]
 以上の焼成工程の後に、外周コート層を形成する工程など、その他の工程を設けることができる。
 外周コート層を形成する工程においては、円柱状のハニカムユニット11の両端面を除く外周面に外周コート層用ペーストを塗布する。
 外周コート層用ペーストとしては、特に限定されないが、無機バインダ及び無機粒子の混合物、無機バインダ及び無機繊維の混合物、無機バインダ、無機粒子及び無機繊維の混合物等が挙げられる。
 外周コート層用ペーストに含まれる無機バインダは、特に限定されないが、シリカゾル、アルミナゾル等として添加されており、二種以上併用してもよい。中でも、シリカゾルとして添加されていることが好ましい。
 外周コート層用ペーストに含まれる無機粒子としては、特に限定されないが、炭化ケイ素粒子等の炭化物粒子、窒化ケイ素粒子、窒化ホウ素粒子等の窒化物粒子等が挙げられ、二種以上併用してもよい。中でも、熱伝導性に優れることから、炭化ケイ素粒子が好ましい。
 外周コート層用ペーストに含まれる無機繊維としては、特に限定されないが、シリカアルミナ繊維、ムライト繊維、アルミナ繊維、シリカ繊維等が挙げられ、二種以上併用してもよい。中でも、アルミナ繊維が好ましい。
 外周コート層用ペーストは、有機バインダをさらに含んでいてもよい。
 外周コート層用ペーストに含まれる有機バインダとしては、特に限定されないが、ポリビニルアルコール、メチルセルロース、エチルセルロース、カルボキシメチルセルロース等が挙げられ、二種以上併用してもよい。
 外周コート層用ペーストは、酸化物系セラミックスの微小中空球体であるバルーン、造孔剤等をさらに含んでいてもよい。
 外周コート層用ペーストに含まれるバルーンとしては、特に限定されないが、アルミナバルーン、ガラスマイクロバルーン、シラスバルーン、フライアッシュバルーン、ムライトバルーン等が挙げられ、二種以上併用してもよい。中でも、アルミナバルーンが好ましい。
 外周コート層用ペーストに含まれる造孔剤としては、特に限定されないが、球状アクリル粒子、グラファイト等が挙げられ、二種以上併用してもよい。
 次に、外周コート層用ペーストが塗布されたハニカムユニット11を乾燥固化し、円柱状のハニカム構造体10を作製する。このとき、外周コート層用ペーストに有機バインダが含まれている場合は、脱脂することが好ましい。脱脂条件は、有機物の種類及び量によって適宜選択することができる。
 以上のようにして作製されるハニカムユニット11は、気孔率が30~60%であることが好ましい。ハニカムユニット11の気孔率が30%未満であると、ハニカムユニット11の隔壁11bの内部まで排ガスが侵入しにくくなって、TiO/V/WO触媒がNOxの浄化に有効に利用されなくなる。一方、ハニカムユニット11の気孔率が60%を超えると、ハニカムユニット11の強度が不十分となる。
 なお、ハニカムユニット11の気孔率は、水銀圧入法を用いて測定することができる。
 ハニカムユニット11は、長手方向に垂直な断面の開口率が50~75%であることが好ましい。ハニカムユニット11の長手方向に垂直な断面の開口率が50%未満であると、TiO/V/WO触媒がNOxの浄化に有効に利用されなくなる。一方、ハニカムユニット11の長手方向に垂直な断面の開口率が75%を超えると、ハニカムユニット11の強度が不十分となる。
 ハニカムユニット11は、長手方向に垂直な断面の貫通孔11aの密度が31~155個/cmであることが好ましい。ハニカムユニット11の長手方向に垂直な断面の貫通孔11aの密度が31個/cm未満であると、TiO/V/WO触媒と排ガスが接触しにくくなって、NOxの浄化性能が低下する。一方、ハニカムユニット11の長手方向に垂直な断面の貫通孔11aの密度が155個/cmを超えると、ハニカム構造体10の圧力損失が増大する。
 ハニカムユニット11の隔壁11bの厚さは、0.1~0.4mmであることが好ましく、0.1~0.3mmがより好ましい。ハニカムユニット11の隔壁11bの厚さが0.1mm未満であると、ハニカムユニット11の強度が低下する。一方、ハニカムユニット11の隔壁11bの厚さが0.4mmを超えると、ハニカムユニット11の隔壁11bの内部まで排ガスが侵入しにくくなって、TiO/V/WO触媒がNOxの浄化に有効に利用されなくなる。
 外周コート層12は、厚さが0.1~2.0mmであることが好ましい。外周コート層12の厚さが0.1mm未満であると、ハニカム構造体10の強度を向上させる効果が不十分になる。一方、外周コート層12の厚さが2.0mmを超えると、ハニカム構造体10の単位体積当たりのTiO/V/WO触媒の含有量が低下して、NOxの浄化性能が低下する。
 ハニカム構造体10の形状としては、円柱状に限定されず、角柱状、楕円柱状、長円柱状、丸面取りされている角柱状(例えば、丸面取りされている三角柱状)等が挙げられる。
 貫通孔11aの形状としては、四角柱状に限定されず、三角柱状、六角柱状等が挙げられる。
 図3に、本発明のハニカム構造体を有する排ガス浄化装置の一例を示す。排ガス浄化装置100は、ハニカム構体10の外周部に保持シール材20を配置した状態で、金属容器(シェル)30にキャニングすることにより作製することができる。また、排ガス浄化装置100には、排ガスが流れる方向に対して、ハニカム構造体10の上流側の配管(不図示)内に、アンモニア又は分解してアンモニアを発生させる化合物を噴射する噴射ノズル等の噴射手段(不図示)が設けられている。これにより、配管を流れる排ガス中にアンモニアが添加されるため、ハニカムユニット11に含まれるTiO/V/WO触媒により、排ガス中に含まれるNOxが還元される。
 分解してアンモニアを発生させる化合物としては、配管内で排ガスにより加熱されて、アンモニアを発生させることが可能であれば、特に限定されないが、貯蔵安定性に優れるため、尿素水が好ましい。
 尿素水は、配管内で排ガスにより加熱されて、加水分解し、アンモニアが発生する。 
 図4に、本発明のハニカム構造体の他の例を示す。なお、ハニカム構造体10'は、複数の貫通孔11aが隔壁11bを隔てて長手方向に並設されているハニカムユニット11'(図5参照)が接着層13を介して複数個接着されている以外は、ハニカム構造体10と同一の構成である。
 ハニカムユニット11'は、長手方向に垂直な断面の断面積が10~200cmであることが好ましい。ハニカムユニット11'の長手方向に垂直な断面の断面積が10cm未満であると、ハニカム構造体10'の圧力損失が増大する。一方、ハニカムユニット11'の長手方向に垂直な断面の断面積が200cmを超えると、ハニカムユニット11'に発生する熱応力に対する強度が不十分になる。
 なお、ハニカムユニット11'は、長手方向に垂直な断面の断面積以外は、ハニカムユニット11と同一の構成である。
 接着層13は、厚さが0.5~2.0mmであることが好ましい。接着層13の厚さが0.5mm未満であると、ハニカムユニット11'の接着強度が不十分になる。一方、接着層13の厚さが2.0mmを超えると、ハニカム構造体10'の圧力損失が増大する。
 次に、ハニカム構造体10'の製造方法の一例について説明する。まず、ハニカム構造体10と同様にして、四角柱状のハニカムユニット11'を作製する。次に、ハニカムユニット11'の両端面を除く外周面に接着層用ペーストを塗布して、ハニカムユニット11'を順次接着させ、乾燥固化することにより、ハニカムユニット11'の集合体を作製する。
 接着層用ペーストとしては、特に限定されないが、無機バインダ及び無機粒子の混合物、無機バインダ及び無機繊維の混合物、無機バインダ、無機粒子及び無機繊維の混合物等が挙げられる。
 接着層用ペーストに含まれる無機バインダは、特に限定されないが、シリカゾル、アルミナゾル等として添加されており、二種以上併用してもよい。中でも、シリカゾルとして添加されていることが好ましい。
 接着層用ペーストに含まれる無機粒子としては、特に限定されないが、炭化ケイ素粒子等の炭化物粒子、窒化ケイ素粒子、窒化ホウ素粒子等の窒化物粒子等が挙げられ、二種以上併用してもよい。中でも、熱伝導性に優れることから、炭化ケイ素粒子が好ましい。
 接着層用ペーストに含まれる無機繊維としては、特に限定されないが、シリカアルミナ繊維、ムライト繊維、アルミナ繊維、シリカ繊維等が挙げられ、二種以上併用してもよい。中でも、アルミナ繊維が好ましい。
 また、接着層用ペーストは、有機バインダを含んでいてもよい。
 接着層用ペーストに含まれる有機バインダとしては、特に限定されないが、ポリビニルアルコール、メチルセルロース、エチルセルロース、カルボキシメチルセルロース等が挙げられ、二種以上併用してもよい。
 接着層用ペーストは、酸化物系セラミックスの微小中空球体であるバルーン、造孔剤等をさらに含んでいてもよい。
 接着層用ペーストに含まれるバルーンとしては、特に限定されないが、アルミナバルーン、ガラスマイクロバルーン、シラスバルーン、フライアッシュバルーン、ムライトバルーン等が挙げられ、二種以上併用してもよい。中でも、アルミナバルーンが好ましい。
 接着層用ペーストに含まれる造孔剤としては、特に限定されないが、球状アクリル粒子、グラファイト等が挙げられ、二種以上併用してもよい。
 次に、ハニカムユニット11'の集合体を円柱状に切削加工した後、必要に応じて、研磨することにより、円柱状のハニカムユニット11'の集合体を作製する。
 なお、ハニカムユニット11'の集合体を円柱状に切削加工する代わりに、長手方向に垂直な断面が所定の形状に成形されているハニカムユニット11'を接着させて、円柱状のハニカムユニット11'の集合体を作製してもよい。このとき、ハニカムユニット11'の長手方向に垂直な断面の形状は、中心角が90°の扇形であることが好ましい。
 次に、円柱状のハニカムユニット11'の集合体の両端面を除く外周面に外周コート層用ペーストを塗布する。
 外周コート層用ペーストは、接着層用ペーストと同一であってもよいし、異なっていてもよい。
 次に、外周コート層用ペーストが塗布された円柱状のハニカムユニット11'の集合体を乾燥固化することにより、円柱状のハニカム構造体10'を作製する。このとき、接着層用ペースト及び/又は外周コート層用ペーストに有機バインダが含まれている場合は、脱脂することが好ましい。脱脂条件は、有機物の種類及び量によって適宜選択することができる。
 なお、ハニカム構造体10及び10'は、外周コート層12が形成されていなくてもよい。
 以下に、実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
[実施例1]
 酸化チタン3910質量部、バナジウム原料としてメタバナジン酸アンモニウム210質量部、タングステン原料としてメタタングステン酸アンモニウム(50%溶液)670質量部、アルミナバインダー300質量部、ワラストナイトファイバー170質量部、成形助剤としてメチルセルロース300質量部、成形潤滑剤としてソルビタントリオレエート80質量部、pH調整剤としてジエタノールアミン150質量部、イオン交換水1750質量部を混合混練して、原料ペースト1を調製した。バナジウム原料中のバナジウム原子、及びタングステン原料中のタングステン原子のモル比(W/V)は0.80であった。
 次に、押出成形機を用いて、原料ペースト1を押出成形して、正四角柱状のハニカム成形体を作製した。そして、バッチマイクロ波乾燥機を用いてハニカム成形体を、乾燥圧力86.7kPaにて6分間で乾燥させた。次に、ハニカム成形体をガス流通炉に投入し、昇温速度5℃/分にて550℃まで昇温し、その温度を3時間保持して焼成し、ハニカム焼成体を作製した。なお、焼成時においては、酸素濃度21%、窒素濃度79%の混合ガスをガス流量20L/分にて導入した。
 ハニカムユニット11'は、一辺が35mm、長さが150mmの正四角柱状であり、貫通孔11aの密度が62個/cm、隔壁11bの厚さが0.28mmであった。
 次に、平均繊維径が0.5μm、平均繊維長が15μmのアルミナ繊維を767部、シリカガラスを2500部、カルボキシメチルセルロースを17部、固形分30質量%のシリカゾルを600部、ポリビニルアルコールを167部、界面活性剤を167部及びアルミナバルーンを17部、混合混練して、接着層用ペーストを作製した。
 ハニカムユニット11'の両端部を除く外周面に、接着層13の厚さが2.0mmになるように接着層用ペーストを塗布して、ハニカムユニット11'を16個接着させ、150℃で10分間乾燥固化した。次に、ダイヤモンドカッターを用いて、長手方向に垂直な断面が略点対称になるように円柱状に切削加工して、ハニカムユニット11'の集合体を作製した。
 さらに、ハニカムユニット11'の集合体の両端部を除く外周面に、外周コート層12の厚さが1.0mmになるように接着層用ペーストを塗布した後、マイクロ波乾燥機及び熱風乾燥機を用いて、接着層用ペーストを150℃で10分間乾燥固化し、400℃で2時間脱脂して、直径が143.8mm、長さが150mmの円柱状のハニカム構造体10'を作製した。
[実施例2]
 焼成時に導入する混合ガス中の酸素濃度を40%(窒素濃度:60%)としたこと以外は実施例1と同様にしてハニカム構造体10’を作製した。
[比較例1]
 焼成時に導入する混合ガス中の酸素濃度を0%(窒素濃度:100%)としたこと以外は実施例1と同様にしてハニカム構造体10’を作製した。
[比較例2]
 焼成時に導入する混合ガス中の酸素濃度を20%(空気中)としたこと以外は実施例1と同様にしてハニカム構造体10’を作製した。
[有効V量]
 実施例1及び2、比較例1及び2で作製したハニカムユニットを粉砕して粉末状とし、以下の手順にてH-TPR測定を行った。測定結果たる水素消費量の1/2を有効V量とした。結果を表1に示す。
(1)前処理として、Heを50cm/分の流量で炉内に導入して、100℃から昇温速度10℃/分で500℃まで昇温し、その温度を1時間保持した。次いで、100℃まで降温した。
(2)次に、H:5.04%、Ar;94.96%の混合ガスを30cm/分の流量で炉内に導入して、100℃から昇温速度10℃/分で700℃まで昇温し、その温度を20分間保持した。次いで、Heを50cm/分の流量で炉内に導入して100℃まで降温した。
[NOxの浄化性能]
 実施例1及び2、比較例1及び2で作製したハニカムユニットから、ダイヤモンドカッターを用いて、一辺が30mm、長さが40mmの正四角柱状の試験片を切り出した。これらの試験片に、200℃の模擬ガスを空間速度(SV)80000/hrで流しながら、触媒評価装置(堀場製作所社製、SIGU-2000/MEXA-6000FT)を用いて、試料から流出するNOxの流出量を測定し、式
 (NOxの流入量-NOxの流出量)/(NOxの流入量)×100
で表されるNOxの浄化率[%]を算出した。算出結果を表1に示す。なお、模擬ガスの構成成分は、一酸化窒素350ppm、アンモニア350ppm、酸素14%、水10%、窒素(balance)である。
[熱耐久性]
 実施例1及び2、比較例1及び2で作製したハニカムユニットから、ダイヤモンドカッターを用いて、一辺が30mm、長さが40mmの正四角柱状の試験片を切り出した。これらの試験片に、触媒耐久装置(堀場製作所社製、SIGU-1000)を用いて550℃で100時間熱処理をし、上記NOx浄化率測定条件にて性能評価を実施した。
 熱処理時の模擬ガス条件は酸素20%、水10%、窒素(balance)、流量1L/分である。
Figure JPOXMLDOC01-appb-T000001
 表1より、実施例1及び2のハニカム構造体は、比較例1及びのハニカム構造体と比較して、有効V量が多く、熱耐久前後のNOx浄化性能がともに満足できる結果が得られたことが分かる。このことからも、本発明の製造方法により、有効V量を増加させることができ、ひいてはNOx浄化性能を向上させることができる。
 10、10'  ハニカム構造体
 11、11'  ハニカムユニット
 11a  貫通孔
 11b  隔壁
 12  外周コート層
 13  接着層
 20  保持シール材
 30  金属容器
 100  排ガス浄化装置

Claims (8)

  1.  チタン酸化物、バナジウム酸化物、タングステン酸化物及び無機バインダを少なくとも含み、長手方向に沿って、一方の端面から他方の端面に延伸する複数のセルが、セル壁によって区画された形状のハニカムユニットを備えたハニカム構造体の製造方法であって、
     チタン酸化物、バナジウム原料、タングステン原料及び無機バインダを含む材料をハニカム状に成形し、ハニカム成形体を得る成形工程と、
     前記ハニカム成形体を焼成する焼成工程と、を含み、
     前記焼成工程において、酸素濃度を21%以上とし、かつ温度を450~650℃とすることを特徴とするハニカム構造体の製造方法。
  2.  前記焼成工程における酸素濃度を30~50%とすることを特徴とする請求項1に記載のハニカム構造体の製造方法。
  3.  前記バナジウム原料がメタバナジン酸アンモニウムであることを特徴とする請求項1又は2に記載のハニカム構造体の製造方法。
  4.  前記バナジウム原料中のバナジウム原子、及び前記タングステン原料中のタングステン原子のモル比(W/V)が0.8~1.2であることを特徴とする請求項1~3のいずれか1項に記載のハニカム構造体の製造方法。
  5.  前記無機バインダが、アルミナゾル、シリカゾル、チタニアゾル、水ガラス、セピオライト、アタパルジャイト、ベントナイト及びベーマイトからなる群より選択される一種以上に含まれる固形分であることを特徴とする請求項1~4のいずれか1項に記載のハニカム構造体の製造方法。
  6.  前記成形工程において、無機繊維、鱗片状物質、テトラポット状物質及び三次元針状物質からなる群より選択される一種以上をさらに含む材料を用いて成形することを特徴とする請求項1~5のいずれか1項に記載のハニカム構造体の製造方法。
  7.  前記無機繊維は、アルミナ、シリカ、炭化ケイ素、シリカアルミナ、ガラス、ワラストナイト、チタン酸カリウム及びホウ酸アルミニウムからなる群より選択される一種以上であり、
     前記鱗片状物質は、ガラス、白雲母、アルミナ及びシリカからなる群より選択される一種以上であり、
     前記テトラポット状物質は、酸化亜鉛であり、
     前記三次元針状物質は、アルミナ、シリカ、炭化ケイ素、シリカアルミナ、ガラス、ワラストナイト、チタン酸カリウム、ホウ酸アルミニウム及びベーマイトからなる群より選択される一種以上であることを特徴とする請求項6に記載のハニカム構造体の製造方法。
  8.  請求項1~7のいずれか1項に記載のハニカム構造体の製造方法により得られるハニカム構造体であって、
     水素-昇温還元法(H-TPR)によるハニカム構造体1gあたりのVによる水素消費量が0.6mmol以上であり、W/V添加量モル比が0.8~1.2であることを特徴とするハニカム構造体。
PCT/JP2012/078943 2012-11-08 2012-11-08 ハニカム構造体及びその製造方法 WO2014073065A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2012/078943 WO2014073065A1 (ja) 2012-11-08 2012-11-08 ハニカム構造体及びその製造方法
JP2014545498A JP5902826B2 (ja) 2012-11-08 2012-11-08 ハニカム構造体及びその製造方法
CN201280076879.7A CN104768644A (zh) 2012-11-08 2012-11-08 蜂窝结构体及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/078943 WO2014073065A1 (ja) 2012-11-08 2012-11-08 ハニカム構造体及びその製造方法

Publications (1)

Publication Number Publication Date
WO2014073065A1 true WO2014073065A1 (ja) 2014-05-15

Family

ID=50684203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078943 WO2014073065A1 (ja) 2012-11-08 2012-11-08 ハニカム構造体及びその製造方法

Country Status (3)

Country Link
JP (1) JP5902826B2 (ja)
CN (1) CN104768644A (ja)
WO (1) WO2014073065A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108014799A (zh) * 2017-12-14 2018-05-11 盱眙县中材凹凸棒石粘土有限公司 钛酸镍/凹凸棒石复合材料的制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112892488A (zh) * 2021-01-20 2021-06-04 常州大学 一种蜂窝型凹凸棒石黏土材料、制备方法及应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02290250A (ja) * 1989-02-28 1990-11-30 Degussa Ag 酸化窒素をアンモニアで選択的に還元する触媒
JPH05244A (ja) * 1991-01-29 1993-01-08 Mitsubishi Heavy Ind Ltd 窒素酸化物除去用触媒
JP2000189756A (ja) * 1998-10-23 2000-07-11 Mitsubishi Chemicals Corp 燃焼排ガスの処理方法
JP2001038206A (ja) * 1999-08-03 2001-02-13 Mitsubishi Heavy Ind Ltd 排ガス処理用触媒、排ガス処理方法及び処理装置
JP2003053147A (ja) * 2001-08-22 2003-02-25 Nkk Corp 有機塩素化合物、窒素酸化物の除去方法
JP2004000943A (ja) * 2002-04-18 2004-01-08 Catalysts & Chem Ind Co Ltd ハニカム状排ガス処理触媒用二酸化チタン粉末およびその二酸化チタン粉末を使用したハニカム状排ガス処理触媒
JP2006255641A (ja) * 2005-03-18 2006-09-28 Nippon Shokubai Co Ltd 排ガス処理触媒、その製造方法および排ガス処理方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100441287C (zh) * 2002-04-18 2008-12-10 触媒化成工业株式会社 蜂窝状废气处理催化剂用二氧化钛粉末及废气处理催化剂
CN101676024A (zh) * 2008-09-17 2010-03-24 晶锐瓷业(北京)有限公司 一种蜂窝状氨法选择性催化还原脱硝催化剂及其制备方法
CN101474565B (zh) * 2009-01-06 2012-03-28 上海瀛正科技有限公司 一种蜂窝式scr脱硝催化剂及其制备方法和设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02290250A (ja) * 1989-02-28 1990-11-30 Degussa Ag 酸化窒素をアンモニアで選択的に還元する触媒
JPH05244A (ja) * 1991-01-29 1993-01-08 Mitsubishi Heavy Ind Ltd 窒素酸化物除去用触媒
JP2000189756A (ja) * 1998-10-23 2000-07-11 Mitsubishi Chemicals Corp 燃焼排ガスの処理方法
JP2001038206A (ja) * 1999-08-03 2001-02-13 Mitsubishi Heavy Ind Ltd 排ガス処理用触媒、排ガス処理方法及び処理装置
JP2003053147A (ja) * 2001-08-22 2003-02-25 Nkk Corp 有機塩素化合物、窒素酸化物の除去方法
JP2004000943A (ja) * 2002-04-18 2004-01-08 Catalysts & Chem Ind Co Ltd ハニカム状排ガス処理触媒用二酸化チタン粉末およびその二酸化チタン粉末を使用したハニカム状排ガス処理触媒
JP2006255641A (ja) * 2005-03-18 2006-09-28 Nippon Shokubai Co Ltd 排ガス処理触媒、その製造方法および排ガス処理方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108014799A (zh) * 2017-12-14 2018-05-11 盱眙县中材凹凸棒石粘土有限公司 钛酸镍/凹凸棒石复合材料的制备方法

Also Published As

Publication number Publication date
CN104768644A (zh) 2015-07-08
JP5902826B2 (ja) 2016-04-13
JPWO2014073065A1 (ja) 2016-09-08

Similar Documents

Publication Publication Date Title
WO2009141895A1 (ja) 排ガス浄化装置
WO2011061841A1 (ja) ハニカム構造体及び排ガス浄化装置
WO2011061836A1 (ja) ハニカム構造体及び排ガス浄化装置
JP5560158B2 (ja) ハニカム構造体及び排ガス浄化装置
JP5317959B2 (ja) ハニカム構造体
WO2009141885A1 (ja) ハニカム構造体
WO2014073066A1 (ja) ハニカム構造体及びその製造方法
WO2009141886A1 (ja) ハニカム構造体
JP2011125849A (ja) ハニカム構造体及び排ガス浄化装置
JP5873562B2 (ja) ハニカム構造体
WO2009141898A1 (ja) ハニカム構造体
JP6204751B2 (ja) ハニカム触媒及び排ガス浄化装置
JP5746061B2 (ja) ハニカム構造体及びハニカム構造体の製造方法
WO2009141894A1 (ja) ハニカム構造体
WO2011061839A1 (ja) ハニカム構造体及び排ガス浄化装置
JP2011125846A (ja) ハニカム構造体及び排ガス浄化装置
JP2010000499A (ja) ハニカム構造体
JP2010279849A (ja) ハニカム構造体
JP5814373B2 (ja) ハニカム構造体及びその製造方法、排ガス浄化装置並びにシリコアルミノホスフェート粒子
JP5814372B2 (ja) 複合粒子、ハニカム構造体及びその製造方法並びに排ガス浄化装置
WO2013024547A1 (ja) ハニカム構造体及びその製造方法、排ガス浄化装置並びにシリコアルミノホスフェート粒子
JP5902826B2 (ja) ハニカム構造体及びその製造方法
WO2014073067A1 (ja) ハニカム構造体
US8685331B2 (en) Honeycomb structural body and exhaust gas conversion apparatus
JP5563952B2 (ja) ハニカム構造体及び排ガス浄化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12887877

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014545498

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12887877

Country of ref document: EP

Kind code of ref document: A1