WO2009141886A1 - ハニカム構造体 - Google Patents

ハニカム構造体 Download PDF

Info

Publication number
WO2009141886A1
WO2009141886A1 PCT/JP2008/059273 JP2008059273W WO2009141886A1 WO 2009141886 A1 WO2009141886 A1 WO 2009141886A1 JP 2008059273 W JP2008059273 W JP 2008059273W WO 2009141886 A1 WO2009141886 A1 WO 2009141886A1
Authority
WO
WIPO (PCT)
Prior art keywords
zeolite
group
exchanged
ion
honeycomb structure
Prior art date
Application number
PCT/JP2008/059273
Other languages
English (en)
French (fr)
Inventor
一茂 大野
雅文 国枝
貴彦 井戸
Original Assignee
イビデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社 filed Critical イビデン株式会社
Priority to PCT/JP2008/059273 priority Critical patent/WO2009141886A1/ja
Priority to EP09006084A priority patent/EP2123614A3/en
Priority to US12/511,075 priority patent/US20090305873A1/en
Publication of WO2009141886A1 publication Critical patent/WO2009141886A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • C04B38/0009Honeycomb structures characterised by features relating to the cell walls, e.g. wall thickness or distribution of pores in the walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/16Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing arsenic, antimony, bismuth, vanadium, niobium tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/60Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the type L, as exemplified by patent document US3216789
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/60Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the type L, as exemplified by patent document US3216789
    • B01J29/61Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the type L, as exemplified by patent document US3216789 containing iron group metals, noble metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/60Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the type L, as exemplified by patent document US3216789
    • B01J29/64Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the type L, as exemplified by patent document US3216789 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/65Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively
    • B01J29/66Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively containing iron group metals, noble metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/65Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively
    • B01J29/69Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7007Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/78Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/80Mixtures of different zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0246Coatings comprising a zeolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/104Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20723Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/2073Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20746Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9202Linear dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9205Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/60Discontinuous, uneven properties of filter material, e.g. different material thickness along the longitudinal direction; Higher filter capacity upstream than downstream in same housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2370/00Selection of materials for exhaust purification
    • F01N2370/02Selection of materials for exhaust purification used in catalytic reactors
    • F01N2370/04Zeolitic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2370/00Selection of materials for exhaust purification
    • F01N2370/22Selection of materials for exhaust purification used in non-catalytic purification apparatus
    • F01N2370/24Zeolitic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2450/00Methods or apparatus for fitting, inserting or repairing different elements
    • F01N2450/28Methods or apparatus for fitting, inserting or repairing different elements by using adhesive material, e.g. cement

Definitions

  • the present invention relates to a honeycomb structure.
  • an SCR (Selective Catalytic Reduction) system that uses ammonia to reduce NOx to nitrogen and water is known as one of the systems for purifying automobile exhaust gas (see below).
  • zeolite is known as a material that adsorbs ammonia in the SCR system.
  • Patent Document 1 as a method for converting NOx into a harmless product, an iron-ZSM-5 monolithic having a silica to alumina molar ratio of at least about 10 and an iron content of about 1 to 5% by weight.
  • a method comprising making a structured zeolite and contacting said zeolite with a NOx-containing work stream in the presence of ammonia at a temperature of at least about 200 ° C.
  • the honeycomb unit includes inorganic particles and inorganic fibers and / or whiskers, and the inorganic particles are selected from the group consisting of alumina, silica, zirconia, titania, ceria, mullite, and zeolite.
  • the honeycomb structure is disclosed. JP-A-9-103653 WO 06/137149 Pamphlet
  • the purification rate is higher than the NOx purification rate expected from the amount of zeolite contained in the honeycomb structure.
  • the present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide a honeycomb structure capable of improving the NOx purification rate in a wide temperature range in the SCR system.
  • a honeycomb structure of the present invention is a honeycomb structure including a honeycomb unit including a zeolite and an inorganic binder and having a plurality of through holes arranged in parallel in a longitudinal direction with a partition wall therebetween.
  • the ratio of the weight of the zeolite ion-exchanged with one or more selected from the group consisting of V and V is larger in the center of the partition wall than in the surface of the partition wall, Cu Fe, relative to the total weight of one or more
  • the center of the partition wall is selected from the group consisting of the above-described Fe, Ti and Co, and the ion-exchanged zeolite selected from one or more types selected from the group consisting of Cu, Mn, Ag and V.
  • the ratio of the weight of the ion-exchanged zeolite selected from the group consisting of Cu, Mn, Ag and V to the total weight of the ion-exchanged zeolite is 0.90 or more and 1.00 or less. It is desirable that *
  • the surface of the partition wall is selected from the group consisting of the above-described Fe, Ti and Co, and the ion-exchanged zeolite selected from one or more types selected from the group consisting of Cu, Mn, Ag and V.
  • the ratio of the weight of the ion-exchanged zeolite selected from the group consisting of Fe, Ti and Co to the total weight of the ion-exchanged zeolite is 0.90 or more and 1.00 or less. It is desirable.
  • the zeolite content per apparent volume is preferably 230 g / L or more and 270 g / L or less.
  • the apparent volume of the honeycomb unit means a volume including the through holes.
  • the zeolite is preferably at least one selected from the group consisting of ⁇ zeolite, Y zeolite, ferrierite, ZSM-5 zeolite, mordenite, forgesite, zeolite A and zeolite L. *
  • the above zeolite preferably has a silica to alumina molar ratio of 30 or more and 50 or less.
  • the above zeolite preferably includes secondary particles, and the average particle size of the secondary particles is preferably 0.5 ⁇ m to 10 ⁇ m.
  • the honeycomb unit preferably further includes inorganic particles excluding zeolite, and the inorganic particles are one or more selected from the group consisting of alumina, silica, titania, zirconia, ceria, mullite, and precursors thereof. It is desirable that
  • the inorganic binder is preferably a solid content contained in one or more selected from the group consisting of alumina sol, silica sol, titania sol, water glass, sepiolite and attapulgite.
  • the honeycomb unit preferably further includes an inorganic fiber, and the inorganic fiber is at least one selected from the group consisting of alumina, silica, silicon carbide, silica alumina, glass, potassium titanate, and aluminum borate. It is desirable to be.
  • the honeycomb unit preferably has a porosity of 25% or more and 40% or less.
  • the honeycomb unit preferably has an opening ratio of a cross section perpendicular to the longitudinal direction of 50% or more and 65% or less.
  • the present invention it is possible to provide a honeycomb structure capable of improving the NOx purification rate in a wide temperature range in the SCR system.
  • FIG. 1B is a schematic view showing a cross section in the longitudinal direction of the honeycomb structure of FIG. 1A.
  • FIG. It is a perspective view which shows the other example of the honeycomb structure of this invention. It is a perspective view which shows the honeycomb unit of FIG. 2A.
  • 1A and 1B show an example of the honeycomb structure of the present invention.
  • 1A and 1B are a perspective view and a schematic view showing a cross section in the longitudinal direction of the honeycomb structure 10, respectively.
  • the honeycomb structure 10 includes zeolite and an inorganic binder, and an outer peripheral coat layer 14 is formed on the outer peripheral surface of a single honeycomb unit 11 in which a plurality of through holes 12 are arranged in parallel in the longitudinal direction with a partition wall 15 therebetween. ing.
  • the zeolite is a zeolite ion-exchanged with one or more selected from the group consisting of Cu, Mn, Ag and V, and a zeolite ion-exchanged with one or more selected from the group consisting of Fe, Ti and Co And a zeolite not ion-exchanged and a zeolite ion-exchanged with a metal other than the above.
  • the total weight of the zeolite ion-exchanged with one or more selected from the group consisting of Cu, Mn, Ag and V and the zeolite ion-exchanged with one or more selected from the group consisting of Fe, Ti and Co The ratio of the weight of the zeolite ion-exchanged with one or more selected from the group consisting of Cu, Mn, Ag and V to the center B of the partition wall 15 is larger than the surface A of the partition wall 15.
  • the total weight of the zeolite ion-exchanged with one or more selected from the group consisting of Cu, Mn, Ag and V and the zeolite ion-exchanged with one or more selected from the group consisting of Fe, Ti and Co The ratio of the weight of the zeolite ion-exchanged with one or more selected from the group consisting of Fe, Ti and Co to the surface A of the partition wall 15 is larger than the center B of the partition wall 15.
  • the present inventors at the center of the partition wall of the honeycomb structure, zeolite exchanged with one or more selected from the group consisting of Cu, Mn, Ag and V, on the partition wall surface of the honeycomb structure, It has been found that a high NOx purification ability can be obtained over a wide temperature range by arranging zeolite ion-exchanged with at least one selected from the group consisting of Fe, Ti and Co. This is because the zeolite ion-exchanged with one or more selected from the group consisting of Cu, Mn, Ag and V is compared with the zeolite ion-exchanged with one or more selected from the group consisting of Fe, Ti and Co.
  • the NOx purification ability in a low temperature region (for example, 150 to 250 ° C.) is high.
  • an SCR system for example, an SCR system that uses ammonia to reduce NOx to nitrogen and water
  • the surface A of the partition wall 15 tends to be relatively hot due to the flow of exhaust gas.
  • the center B of the partition wall 15 tends to be relatively low in temperature
  • the zeolite in the honeycomb unit 11 can be effectively used for NOx purification.
  • the NOx purification rate of the honeycomb structure 10 in a wide temperature range (for example, 200 to 500 ° C.) can be improved.
  • the honeycomb structure 10 is ion-exchanged with one or more types of zeolite selected from the group consisting of Fe, Ti and Co, with zeolite ion-exchanged with one or more types selected from the group consisting of Cu, Mn, Ag and V.
  • the ratio of the weight of the zeolite ion-exchanged with one or more selected from the group consisting of Cu, Mn, Ag and V to the total weight of the zeolite is constant between the surface A and the center B of the partition wall 15. There may be, and it may change continuously or discontinuously. At this time, the closer to the surface A of the partition wall 15, the higher the temperature due to the flow of the exhaust gas. It is preferable that the ratio of zeolite is large. Also, the closer to the center B of the partition wall 15, the lower the temperature tends to become, due to the flow of the exhaust gas. It is preferred that the proportion of the zeolite produced is large.
  • the surface A of the partition wall 15 was ion-exchanged with one or more kinds of zeolite selected from the group consisting of Fe, Ti and Co with one or more kinds of zeolite selected from the group consisting of Cu, Mn, Ag and V.
  • the ratio of the weight of the zeolite ion-exchanged with one or more selected from the group consisting of Fe, Ti and Co to the total weight of the zeolite is preferably 0.90 to 1.00. If the weight ratio is less than 0.90, the zeolite on the surface A of the partition wall 15 may not be used effectively for NOx purification.
  • the center B of the partition wall 15 was ion-exchanged with one or more types of zeolite selected from the group consisting of Fe, Ti and Co with one or more types of zeolite selected from the group consisting of Cu, Mn, Ag and V.
  • the ratio of the weight of the zeolite ion-exchanged with one or more selected from the group consisting of Cu, Mn, Ag and V to the total weight of the zeolite is preferably 0.90 to 1.00. If the weight ratio is less than 0.90, the zeolite at the center B of the partition wall 15 may not be effectively used for NOx purification.
  • the honeycomb unit 11 preferably has a zeolite content of 230 to 270 g / L per apparent volume. If the zeolite content per apparent volume of the honeycomb unit 11 is less than 230 g / L, the apparent volume of the honeycomb unit 11 may have to be increased in order to obtain a sufficient NOx purification rate. If it exceeds / L, the strength of the honeycomb unit 11 may be insufficient. Zeolite means all zeolite, that is, zeolite that has been ion-exchanged and zeolite that has not been ion-exchanged.
  • the zeolite ion-exchanged with one or more selected from the group consisting of Cu, Mn, Ag and V and the zeolite ion-exchanged with one or more selected from the group consisting of Fe, Ti and Co are independently ionized.
  • the exchange amount is preferably 1.0 to 10.0% by weight, more preferably 1.0 to 5.0% by weight. If the ion exchange amount is less than 1.0% by weight, the change in the adsorption capacity of ammonia due to ion exchange may be insufficient. If the ion exchange amount exceeds 10.0% by weight, the structure is increased when heat is applied. May become unstable. In addition, what is necessary is just to immerse a zeolite in the aqueous solution containing a cation when ion-exchanging a zeolite.
  • Zeolite is not particularly limited, and ⁇ -type zeolite, ZSM-5 type zeolite, mordenite, forgesite, zeolite A, zeolite L, and the like may be used, and two or more types may be used in combination. Zeolite means all zeolite.
  • the zeolite preferably has a silica to alumina molar ratio of 30-50. Zeolite means all zeolite.
  • the zeolite preferably contains secondary particles, and the average particle size of the secondary particles of the zeolite is preferably 0.5 to 10 ⁇ m.
  • the average particle size of the secondary particles of the zeolite is less than 0.5 ⁇ m, it is necessary to add a large amount of an inorganic binder. As a result, it may be difficult to perform extrusion molding.
  • the average particle size exceeds 10 ⁇ m, the specific surface area of the zeolite May decrease, and the NOx purification rate may decrease.
  • Zeolite means all zeolite.
  • the honeycomb unit 11 may further contain inorganic particles excluding zeolite in order to improve the strength.
  • the inorganic particles excluding zeolite are not particularly limited, and examples thereof include alumina, silica, titania, zirconia, ceria, mullite, and precursors thereof, and two or more of them may be used in combination. Of these, alumina and zirconia are particularly preferable.
  • Zeolite means all zeolite.
  • the inorganic particles excluding zeolite preferably have an average particle size of 0.5 to 10 ⁇ m. When this average particle size is less than 0.5 ⁇ m, it is necessary to add a large amount of an inorganic binder. As a result, extrusion molding may be difficult. When the average particle size exceeds 10 ⁇ m, the strength of the honeycomb unit 11 is improved. May become insufficient.
  • the inorganic particles excluding zeolite may contain secondary particles.
  • the ratio of the average particle size of the secondary particles of the inorganic particles excluding zeolite to the average particle size of the secondary particles of the zeolite is preferably 1 or less, particularly preferably 0.1 to 1. When this ratio exceeds 1, the effect of improving the strength of the honeycomb unit 11 may be insufficient.
  • Zeolite means all zeolite.
  • the content of inorganic particles excluding zeolite is preferably 3 to 30% by weight, and more preferably 5 to 20% by weight. If the content is less than 3% by weight, the effect of improving the strength of the honeycomb unit 11 may be insufficient. If the content exceeds 30% by weight, the content of zeolite in the honeycomb unit 11 is reduced. , NOx purification rate may decrease.
  • the inorganic binder is not particularly limited, but includes solids contained in alumina sol, silica sol, titania sol, water glass, sepiolite, attapulgite, etc., and two or more kinds may be used in combination.
  • the honeycomb unit 11 preferably has an inorganic binder content of 5 to 30% by weight, more preferably 10 to 20% by weight.
  • the content of the inorganic binder is less than 5% by weight, the strength of the honeycomb unit 11 may be reduced, and when it exceeds 30% by weight, molding may be difficult.
  • the honeycomb unit 11 preferably further contains inorganic fibers in order to improve the strength.
  • the inorganic fiber is not particularly limited as long as the strength of the honeycomb unit 11 can be improved, and examples thereof include alumina, silica, silicon carbide, silica alumina, glass, potassium titanate, and aluminum borate. Two or more species may be used in combination.
  • the inorganic fibers preferably have an aspect ratio of 2 to 1000, more preferably 5 to 800, and particularly preferably 10 to 500. If the aspect ratio is less than 2, the effect of improving the strength of the honeycomb unit 11 may be reduced. On the other hand, if the aspect ratio exceeds 1000, the mold may be clogged at the time of molding such as extrusion molding, and the effect of improving the strength of the honeycomb unit 11 is small due to breakage of inorganic fibers at the time of molding. May be.
  • the honeycomb unit 11 has an inorganic fiber content of preferably 3 to 50% by weight, more preferably 3 to 30% by weight, and particularly preferably 5 to 20% by weight.
  • the inorganic fiber content is less than 3% by weight, the effect of improving the strength of the honeycomb unit 11 may be reduced.
  • the inorganic fiber content exceeds 50% by weight, the zeolite content in the honeycomb unit 11 decreases. , NOx purification rate may decrease.
  • the honeycomb unit 11 preferably has a porosity of 25 to 40%. If the porosity is less than 25%, the exhaust gas hardly penetrates into the partition walls 15 and the zeolite may not be used effectively for NOx purification. If it exceeds 40%, the strength of the honeycomb unit 11 increases. It may be insufficient.
  • the honeycomb unit 11 preferably has an opening ratio of a cross section perpendicular to the longitudinal direction of 50 to 65%. If the opening ratio is less than 50%, the zeolite may not be effectively used for NOx purification, and if it exceeds 65%, the strength of the honeycomb structure 10 may be insufficient.
  • the density of the through-holes 12 having a cross section perpendicular to the longitudinal direction is preferably 31 to 124 / cm 2 . If the density of the through holes 12 is less than 31 / cm 2, exhaust gas and zeolite becomes difficult to contact, may NOx purification ability of the honeycomb unit 11 is reduced, and when it exceeds 124 pieces / cm 2, the honeycomb The pressure loss of the unit 11 may increase.
  • the partition wall 15 of the honeycomb unit 11 preferably has a thickness of 0.10 to 0.50 mm, and more preferably 0.15 to 0.35 mm.
  • the thickness of the partition wall 15 is less than 0.10 mm, the strength of the honeycomb unit 11 may decrease.
  • the thickness exceeds 0.50 mm, the exhaust gas hardly penetrates into the partition wall 15, and the zeolite is NOx. It may not be used effectively for purification.
  • the outer peripheral coat layer 14 preferably has a thickness of 0.1 to 2 mm. If the thickness of the outer peripheral coat layer 14 is less than 0.1 mm, the effect of improving the strength of the honeycomb structure 10 may be insufficient. If it exceeds 2 mm, the zeolite per unit volume of the honeycomb structure 10 As a result, the NOx purification ability of the honeycomb structure 10 may decrease.
  • the honeycomb structure 10 has a cylindrical shape, but the shape of the honeycomb structure of the present invention is not particularly limited, and examples thereof include a prismatic shape and an elliptical columnar shape.
  • the shape of the through hole 12 is a quadrangular prism shape
  • the shape of the through hole is not particularly limited, and examples thereof include a triangular prism shape and a hexagonal prism shape.
  • the honeycomb structure 10 includes a zeolite ion exchanged with one or more selected from the group consisting of Cu, Mn, Ag and V and an inorganic binder, and if necessary, one or more selected from the group consisting of Fe, Ti and Co
  • a raw material paste further containing ion-exchanged zeolite, inorganic particles other than zeolite, inorganic fibers, and the like is used to perform extrusion molding or the like, and a plurality of through holes are arranged in parallel in the longitudinal direction with the partition wall 15 therebetween.
  • a cylindrical honeycomb formed body is produced. Thereby, even if the firing temperature is lowered, the cylindrical honeycomb unit 11 having sufficient strength can be obtained.
  • the inorganic binder is added to the raw material paste as alumina sol, silica sol, titania sol, water glass, sepiolite, attapulgite, etc., and two or more kinds may be used in combination.
  • an organic binder, a dispersion medium, a molding aid and the like may be appropriately added to the raw material paste as necessary.
  • the organic binder is not particularly limited, and examples thereof include methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, polyethylene glycol, phenol resin, and epoxy resin, and two or more kinds may be used in combination.
  • the addition amount of the organic binder is preferably 1 to 10% with respect to the total weight of zeolite, inorganic particles excluding zeolite, inorganic fibers, and inorganic binder.
  • Zeolite means all zeolite.
  • the dispersion medium is not particularly limited, and examples thereof include water, organic solvents such as benzene, alcohols such as methanol, and the like.
  • the molding aid is not particularly limited, and examples thereof include ethylene glycol, dextrin, fatty acid, fatty acid soap, polyalcohol and the like, and two or more kinds may be used in combination.
  • the raw material paste it is preferable to mix and knead, and it may be mixed using a mixer, an attritor or the like, or may be kneaded using a kneader or the like.
  • the obtained honeycomb formed body is dried using a dryer such as a microwave dryer, a hot air dryer, a dielectric dryer, a vacuum dryer, a vacuum dryer, or a freeze dryer.
  • a dryer such as a microwave dryer, a hot air dryer, a dielectric dryer, a vacuum dryer, a vacuum dryer, or a freeze dryer.
  • the obtained honeycomb formed body is degreased.
  • the degreasing conditions are not particularly limited and can be appropriately selected depending on the type and amount of the organic substance contained in the molded body, but it is preferably 400 ° C. for 2 hours.
  • the firing temperature is preferably 600 to 1200 ° C, more preferably 600 to 1000 ° C.
  • the firing temperature is less than 600 ° C., the sintering does not proceed, and the strength of the honeycomb structure 10 may be lowered.
  • the firing temperature exceeds 1200 ° C., the sintering proceeds too much and the reaction sites of the zeolite decrease. There are things to do.
  • the outer peripheral coat layer paste is applied to the outer peripheral surface of the columnar honeycomb unit 11.
  • a paste for outer periphery coating layers The mixture of an inorganic binder and an inorganic particle, the mixture of an inorganic binder and an inorganic fiber, the mixture of an inorganic binder, an inorganic particle, and an inorganic fiber etc. are mentioned.
  • the outer periphery coat layer paste may contain an organic binder.
  • an organic binder Polyvinyl alcohol, methylcellulose, ethylcellulose, carboxymethylcellulose, etc. are mentioned, You may use 2 or more types together.
  • the outer peripheral coat layer paste contains an organic binder, it is preferably degreased.
  • the degreasing conditions can be appropriately selected depending on the kind and amount of the organic matter, but it is preferably 20 minutes at 700 ° C.
  • the honeycomb structure 10 is obtained by forming a coat layer on the surface of the partition wall 15 of the obtained honeycomb structure.
  • a method for forming the coat layer is not particularly limited, and examples thereof include an impregnation method.
  • it when forming the coat layer, it includes zeolite ion-exchanged with one or more selected from the group consisting of Fe, Ti and Co, and an inorganic binder, and if necessary, Cu, Mn, Ag and V
  • a dispersion further containing zeolite ion-exchanged with one or more selected from the group consisting of: inorganic particles excluding zeolite, and inorganic fibers can be used.
  • the honeycomb structure 10 is ion-exchanged with one or more types of zeolite selected from the group consisting of Fe, Ti, and Co, with the zeolite ion-exchanged with one or more types selected from the group consisting of Cu, Mn, Ag and V. It is also possible to produce a raw columnar honeycomb formed body by double extrusion using two kinds of raw material pastes having different zeolite ratios.
  • the honeycomb structure 20 is the same as the honeycomb structure 10 except that a plurality of honeycomb units 11 in which a plurality of through holes 12 are arranged in parallel in the longitudinal direction with a partition wall 15 therebetween are bonded via an adhesive layer 13. It is the same.
  • the honeycomb unit 11 preferably has a cross-sectional area of a cross section perpendicular to the longitudinal direction of 5 to 50 cm 2 .
  • the cross-sectional area is less than 5 cm 2 , the specific surface area of the honeycomb structure 10 may be reduced and the pressure loss may be increased.
  • the cross-sectional area exceeds 50 cm 2 , the strength against thermal stress generated in the honeycomb unit 11 is increased. May become insufficient.
  • the adhesive layer 13 to which the honeycomb unit 11 is bonded is preferably 0.5 to 2 mm in thickness. If the thickness of the adhesive layer 13 is less than 0.5 mm, the adhesive strength may be insufficient. On the other hand, if the thickness of the adhesive layer 13 exceeds 2 mm, the specific surface area of the honeycomb structure 10 may decrease and the pressure loss may increase.
  • the honeycomb unit 11 has a quadrangular prism shape, but in the present invention, the shape of the honeycomb unit is not particularly limited, and is preferably a shape in which the honeycomb units are easily bonded to each other, and examples thereof include a hexagonal column shape. It is done.
  • a quadrangular columnar honeycomb unit 11 is manufactured in the same manner as the honeycomb structure 10.
  • an adhesive layer paste is applied to the outer peripheral surface of the honeycomb unit 11, the honeycomb units 11 are sequentially bonded, and dried and solidified, whereby an aggregate of the honeycomb units 11 is manufactured.
  • the aggregate of the honeycomb units 11 it may be cut into a cylindrical shape and polished.
  • a honeycomb unit 11 having a columnar shape may be manufactured by bonding the honeycomb units 11 having a cross-section formed in a fan shape or a square shape.
  • the adhesive layer paste is not particularly limited, and examples thereof include a mixture of inorganic binder and inorganic particles, a mixture of inorganic binder and inorganic fibers, a mixture of inorganic binder, inorganic particles, and inorganic fibers.
  • the adhesive layer paste may contain an organic binder. Although it does not specifically limit as an organic binder, Polyvinyl alcohol, methylcellulose, ethylcellulose, carboxymethylcellulose, etc. are mentioned, You may use 2 or more types together.
  • the outer peripheral coat layer paste is applied to the outer peripheral surface of the aggregate of the cylindrical honeycomb units 11.
  • the outer periphery coating layer paste is not particularly limited, it may contain the same material as the adhesive layer paste or may contain a different material. Further, the outer peripheral coat layer paste may have the same composition as the adhesive layer paste.
  • a cylindrical honeycomb structure is obtained.
  • an organic binder is contained in the adhesive layer paste and / or the outer peripheral coat layer paste, it is preferable to degrease.
  • the degreasing conditions can be appropriately selected depending on the kind and amount of the organic matter, but it is preferably 20 minutes at 700 ° C.
  • a honeycomb structure 20 is obtained by forming a coating layer on the surface of the partition wall 15 of the obtained honeycomb structure in the same manner as the honeycomb structure 10.
  • the honeycomb structure 20 was ion-exchanged with one or more kinds selected from the group consisting of Fe, Ti and Co with zeolite ion-exchanged with one or more kinds selected from the group consisting of Cu, Mn, Ag and V.
  • the outer peripheral coat layer may be formed or may not be formed.
  • Example 1 First, 2600 g of ⁇ -type zeolite having an average particle diameter of 2 ⁇ m, a silica / alumina ratio of 40, and a specific surface area of 110 m 2 / g, ion-exchanged with 3 wt% of Cu, and a solid content of 20 weight as an inorganic binder-containing component %
  • Alumina sol 2600 g, inorganic fibers 780 g of average fiber diameter and average fiber length 100 ⁇ m of alumina fibers 780 g, and organic cellulose 410 g of organic binder were mixed and kneaded to obtain a raw material paste.
  • the zeolite particles were impregnated with an aqueous copper nitrate solution to exchange ions with Cu.
  • the ion exchange amount of the zeolite was determined by IPC emission analysis using ICPS-8100 (manufactured by Shimadzu Corporation).
  • the raw material paste was extruded using an extrusion molding machine to obtain a raw cylindrical honeycomb formed body.
  • the honeycomb formed body was dried using a microwave dryer and a hot air dryer, and then degreased at 400 ° C. for 2 hours. Next, it was fired at 700 ° C. for 2 hours to produce a cylindrical honeycomb structure having a diameter of 30 mm and a length of 50 mm.
  • ⁇ -type zeolite having an average particle diameter of 2 ⁇ m, a silica / alumina ratio of 40, and a specific surface area of 110 m 2 / g, ion-exchanged with 3% by weight of Fe.
  • a coating layer dispersion having a solid content of 35% by weight in which 17.5 parts by weight of alumina sol having a solid content of 20% by weight was dispersed the coating layer was held at 600 ° C. for 1 hour to form a coating layer on the partition walls.
  • the zeolite particles were ion-exchanged with Fe by impregnating the ammonium iron nitrate solution.
  • the obtained honeycomb structure had an opening ratio of a cross section perpendicular to the longitudinal direction of 60%, a density of through holes of 93 holes / cm 2 , a partition wall thickness of 0.10 mm, and an apparent volume.
  • the content of per zeolite was 250 g / L, and the porosity was 30% (see Table 1).
  • the aperture ratio was determined by calculating the area of the through hole in the 10 cm square region of the honeycomb structure using an optical microscope.
  • the density of the through holes was determined by measuring the number of through holes in a 10 cm square region of the honeycomb structure using an optical microscope.
  • the partition wall thickness is an average value obtained by measuring the partition wall thickness (5 locations) of the honeycomb structure using an optical microscope.
  • the porosity was determined by a mercury intrusion method.
  • Example 2 and 3 A honeycomb structure was produced in the same manner as in Example 1 except that the structure of the mold of the extruder was changed (see Table 1).
  • the raw material paste was extruded using an extrusion molding machine to obtain a raw honeycomb molded body. Then, the honeycomb formed body was dried using a microwave dryer and a hot air dryer, and then degreased at 400 ° C. for 2 hours. Next, it was fired at 700 ° C. for 2 hours to produce a cylindrical honeycomb structure having a diameter of 30 mm and a length of 50 mm (see Table 1).
  • the constituent components of the simulated gas are nitrogen, carbon dioxide (5% by volume), oxygen (14% by volume), nitric oxide (350 ppm), ammonia (350 ppm), and water (5% by volume).
  • the measurement results are shown in Table 1. From Table 1, it can be seen that the honeycomb structures of Examples 1 to 3 are superior in NOx purification rate at 200 to 500 ° C. to the honeycomb structure of Comparative Example 1.
  • zeolite ion-exchanged with one or more selected from the group consisting of Cu, Mn, Ag and V, and zeolite ion-exchanged with one or more selected from the group consisting of Fe, Ti and Co The ratio of the weight of the zeolite ion-exchanged with one or more selected from the group consisting of Cu, Mn, Ag and V to the total weight of is greater in the center of the partition wall than the surface of the partition wall, Cu, Mn, Ag and From the total weight of the ion-exchanged zeolite selected from the group consisting of V and the ion-exchanged zeolite selected from the group consisting of Fe, Ti and Co from Fe, Ti and Co
  • the ratio of the weight of the zeolite ion-exchanged with one or more selected from the group consisting of the surface of the partition wall is larger than the center of the partition wall. It can be seen that it is possible to improve the NOx cleaning ratio in a wide temperature range of the body.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

 本発明のハニカム構造体は、ゼオライトと、無機バインダとを含み、複数の貫通孔が隔壁を隔てて長手方向に並設されたハニカムユニットを有するハニカム構造体であって、ゼオライトは、Cu、Mn、Ag及びVからなる群より選択される一種以上でイオン交換されたゼオライトと、Fe、Ti及びCoからなる群より選択される一種以上でイオン交換されたゼオライトとを含み、Cu、Mn、Ag及びVからなる群より選択される一種以上でイオン交換されたゼオライトと、Fe、Ti及びCoからなる群より選択される一種以上でイオン交換されたゼオライトとの総重量に対する、Cu、Mn、Ag及びVからなる群より選択される一種以上でイオン交換されたゼオライトの重量の比は、隔壁の表面よりも隔壁の中心が大きく、Cu、Mn、Ag及びVからなる群より選択される一種以上でイオン交換されたゼオライトと、Fe、Ti及びCoからなる群より選択される一種以上でイオン交換されたゼオライトとの総重量に対する、Fe、Ti及びCoからなる群より選択される一種以上でイオン交換されたゼオライトの重量の比は、隔壁の中心よりも隔壁の表面が大きい。

Description

ハニカム構造体
 本発明は、ハニカム構造体に関する。
 従来、自動車の排ガスを浄化するシステムの一つとして、アンモニアを用いて、NOxを窒素と水に還元するSCR(Selective Catalytic Reduction)システムが知られている(下記参照)。
 4NO+4NH+O→4N+6H
 6NO+8NH→7N+12H
 NO+NO+2NH→2N+3H
また、SCRシステムにおいて、アンモニアを吸着する材料として、ゼオライトが知られている。
 特許文献1には、NOxを無害の生成物に変換する方法として、アルミナに対するシリカのモル比が少なくとも約10であり、鉄の含有量が約1~5重量%である鉄・ZSM-5モノリシック構造ゼオライトを作成し、少なくとも約200℃の温度においてアンモニアの存在する状態で、NOxを含んだワークストリームに上記のゼオライトを接触させることよりなる方法が開示されている。
 また、特許文献2には、ハニカムユニットが無機粒子と、無機繊維及び/又はウィスカを含んでなり、無機粒子は、アルミナ、シリカ、ジルコニア、チタニア、セリア、ムライト及びゼオライトからなる群より選択される一種以上であるハニカム構造体が開示されている。
特開平9-103653号公報 国際公開第06/137149号パンフレット
 しかしながら、主原料として、Feでイオン交換されたゼオライトを用いたハニカム構造体をSCRシステムで使用すると、ハニカム構造体に含まれるゼオライト量から期待されるNOxの浄化率と比較して、浄化率が低くなるという問題がある。これは、排ガスがハニカム構造体に流れることにより、ハニカム構造体の隔壁の表面部と中心部に温度差が生じる、即ち、隔壁の中心部が比較的低温となり、Feでイオン交換されたゼオライトのNOx浄化能が不十分となる温度を有する領域が形成されるためであると考えられる。
 本発明は、上記の従来技術が有する問題に鑑み、SCRシステムにおいて、広い温度範囲におけるNOxの浄化率を向上させることが可能なハニカム構造体を提供することを目的とする。
 本発明のハニカム構造体は、ゼオライトと、無機バインダとを含み、複数の貫通孔が隔壁を隔てて長手方向に並設されたハニカムユニットを有するハニカム構造体であって、ゼオライトは、Cu、Mn、Ag及びVからなる群より選択される一種以上でイオン交換されたゼオライトと、Fe、Ti及びCoからなる群より選択される一種以上でイオン交換されたゼオライトとを含み、Cu、Mn、Ag及びVからなる群より選択される一種以上でイオン交換されたゼオライトと、Fe、Ti及びCoからなる群より選択される一種以上でイオン交換されたゼオライトとの総重量に対する、Cu、Mn、Ag及びVからなる群より選択される一種以上でイオン交換されたゼオライトの重量の比は、隔壁の表面よりも隔壁の中心が大きく、Cu、Mn、Ag及びVからなる群より選択される一種以上でイオン交換されたゼオライトと、Fe、Ti及びCoからなる群より選択される一種以上でイオン交換されたゼオライトとの総重量に対する、Fe、Ti及びCoからなる群より選択される一種以上でイオン交換されたゼオライトの重量の比は、隔壁の中心よりも隔壁の表面が大きい。なお、隔壁の表面とは、隔壁の表面及びその近傍を含む領域を意味し、隔壁の中心とは、隔壁の中心及びその近傍を含む領域を意味する。
また、上記の隔壁の中心は、上記のCu、Mn、Ag及びVからなる群より選択される一種以上でイオン交換されたゼオライトと、上記のFe、Ti及びCoからなる群より選択される一種以上でイオン交換されたゼオライトとの総重量に対する、上記のCu、Mn、Ag及びVからなる群より選択される一種以上でイオン交換されたゼオライトの重量の比が0.90以上1.00以下であることが望ましい。 
また、上記の隔壁の表面は、上記のCu、Mn、Ag及びVからなる群より選択される一種以上でイオン交換されたゼオライトと、上記のFe、Ti及びCoからなる群より選択される一種以上でイオン交換されたゼオライトとの総重量に対する、上記のFe、Ti及びCoからなる群より選択される一種以上でイオン交換されたゼオライトの重量の比が0.90以上1.00以下であることが望ましい。 
また、上記のハニカムユニットは、見掛けの体積当たりのゼオライトの含有量が230g/L以上270g/L以下であることが望ましい。なお、ハニカムユニットの見掛けの体積は、貫通孔を含む体積を意味する。 
また、上記のゼオライトは、β型ゼオライト、Y型ゼオライト、フェリエライト、ZSM-5型ゼオライト、モルデナイト、フォージサイト、ゼオライトA及びゼオライトLからなる群より選択される一種以上であることが望ましい。 
また、上記のゼオライトは、アルミナに対するシリカのモル比が30以上50以下であることが望ましい。 
また、上記のゼオライトは、二次粒子を含み、二次粒子の平均粒径が0.5μm以上10μm以下であることが望ましい。
 また、上記のハニカムユニットは、ゼオライトを除く無機粒子をさらに含有することが望ましく、無機粒子は、アルミナ、シリカ、チタニア、ジルコニア、セリア、ムライト及びこれらの前駆体からなる群より選択される一種以上であることが望ましい。
 また、上記の無機バインダは、アルミナゾル、シリカゾル、チタニアゾル、水ガラス、セピオライト及びアタパルジャイトからなる群より選択される一種以上に含まれる固形分であることが望ましい。
 また、上記のハニカムユニットは、無機繊維をさらに含むことが望ましく、無機繊維は、アルミナ、シリカ、炭化ケイ素、シリカアルミナ、ガラス、チタン酸カリウム及びホウ酸アルミニウムからなる群より選択される一種以上であることが望ましい。
また、上記のハニカムユニットは、気孔率が25%以上40%以下であることが望ましい。 
また、上記のハニカムユニットは、上記の長手方向に垂直な断面の開口率が50%以上65%以下であることが望ましい。 
また、上記のハニカム構造体は、複数の上記のハニカムユニットが接着層を介して接着されていることが望ましい。
 本発明によれば、SCRシステムにおいて、広い温度範囲におけるNOxの浄化率を向上させることが可能なハニカム構造体を提供することができる。
本発明のハニカム構造体の一例を示す斜視図である。 図1Aのハニカム構造体の長手方向の断面を示す模式図である。 本発明のハニカム構造体の他の例を示す斜視図である。 図2Aのハニカムユニットを示す斜視図である。
符号の説明
10、20  ハニカム構造体11  ハニカムユニット12  貫通孔13  接着層14  外周コート層15  隔壁A  隔壁の表面B  隔壁の中心
 次に、本発明を実施するための最良の形態を図面と共に説明する。
 図1A及び図1Bに、本発明のハニカム構造体の一例を示す。なお、図1A及び図1Bは、それぞれハニカム構造体10の斜視図及び長手方向の断面を示す模式図である。ハニカム構造体10は、ゼオライトと、無機バインダとを含み、複数の貫通孔12が隔壁15を隔てて長手方向に並設された単一のハニカムユニット11の外周面に外周コート層14が形成されている。このとき、ゼオライトは、Cu、Mn、Ag及びVからなる群より選択される一種以上でイオン交換されたゼオライトと、Fe、Ti及びCoからなる群より選択される一種以上でイオン交換されたゼオライトとを含み、イオン交換されていないゼオライト、上記以外の金属でイオン交換されたゼオライトをさらに含んでもよい。また、Cu、Mn、Ag及びVからなる群より選択される一種以上でイオン交換されたゼオライトと、Fe、Ti及びCoからなる群より選択される一種以上でイオン交換されたゼオライトとの総重量に対する、Cu、Mn、Ag及びVからなる群より選択される一種以上でイオン交換されたゼオライトの重量の比は、隔壁15の表面Aよりも隔壁15の中心Bが大きい。さらに、Cu、Mn、Ag及びVからなる群より選択される一種以上でイオン交換されたゼオライトと、Fe、Ti及びCoからなる群より選択される一種以上でイオン交換されたゼオライトとの総重量に対する、Fe、Ti及びCoからなる群より選択される一種以上でイオン交換されたゼオライトの重量の比は、隔壁15の中心Bよりも隔壁15の表面Aが大きい。
 本発明者らは、ハニカム構造体の隔壁の中心部に、Cu、Mn、Ag及びVからなる群より選択される一種以上でイオン交換されたゼオライトを、ハニカム構造体の隔壁の表面部に、Fe、Ti及びCoからなる群より選択される一種以上でイオン交換されたゼオライトを配置することにより、広い温度範囲で高いNOx浄化能が得られることを見出した。これは、Cu、Mn、Ag及びVからなる群より選択される一種以上でイオン交換されたゼオライトが、Fe、Ti及びCoからなる群より選択される一種以上でイオン交換されたゼオライトと比較して、低温領域(例えば、150~250℃)におけるNOx浄化能が高いためであると考えられる。このため、ハニカム構造体10をSCRシステム(例えば、アンモニアを用いて、NOxを窒素と水に還元するSCRシステム)に適用すると、排ガスの流れにより、隔壁15の表面Aが比較的高温になりやすく、隔壁15の中心Bが比較的低温になりやすいため、ハニカムユニット11中のゼオライトをNOxの浄化に有効に使用することができる。その結果、ハニカム構造体10の広い温度範囲(例えば、200~500℃)におけるNOxの浄化率を向上させることができる。
 なお、ハニカム構造体10は、Cu、Mn、Ag及びVからなる群より選択される一種以上でイオン交換されたゼオライトと、Fe、Ti及びCoからなる群より選択される一種以上でイオン交換されたゼオライトとの総重量に対する、Cu、Mn、Ag及びVからなる群より選択される一種以上でイオン交換されたゼオライトの重量の比が、隔壁15の表面A及び中心Bの間で、一定であってもよいし、連続的又は不連続的に変化してもよい。このとき、排ガスの流れにより、隔壁15の表面Aに近い程、高温になりやすいため、隔壁15の表面Aに近い程、Fe、Ti及びCoからなる群より選択される一種以上でイオン交換されたゼオライトの比率が大きいことが好ましい。また、排ガスの流れにより、隔壁15の中心Bに近い程、低温になりやすいため、隔壁15の中心Bに近い程、Cu、Mn、Ag及びVからなる群より選択される一種以上でイオン交換されたゼオライトの比率が大きいことが好ましい。
 隔壁15の表面Aは、Cu、Mn、Ag及びVからなる群より選択される一種以上でイオン交換されたゼオライトと、Fe、Ti及びCoからなる群より選択される一種以上でイオン交換されたゼオライトとの総重量に対する、Fe、Ti及びCoからなる群より選択される一種以上でイオン交換されたゼオライトの重量の比が0.90~1.00であることが好ましい。この重量の比が0.90未満であると、隔壁15の表面AのゼオライトがNOxの浄化に有効に使用されないことがある。
 隔壁15の中心Bは、Cu、Mn、Ag及びVからなる群より選択される一種以上でイオン交換されたゼオライトと、Fe、Ti及びCoからなる群より選択される一種以上でイオン交換されたゼオライトとの総重量に対する、Cu、Mn、Ag及びVからなる群より選択される一種以上でイオン交換されたゼオライトの重量の比が0.90~1.00であることが好ましい。この重量の比が0.90未満であると、隔壁15の中心BのゼオライトがNOxの浄化に有効に使用されないことがある。
 ハニカムユニット11は、見掛けの体積当たりのゼオライトの含有量が230~270g/Lであることが好ましい。ハニカムユニット11の見掛けの体積当たりのゼオライトの含有量が230g/L未満であると、十分なNOxの浄化率を得るためにハニカムユニット11の見掛けの体積を大きくしなければならないことがあり、270g/Lを超えると、ハニカムユニット11の強度が不十分になることがある。なお、ゼオライトとは、全ゼオライト、即ち、イオン交換されているゼオライト及びイオン交換されていないゼオライトを意味する。
 Cu、Mn、Ag及びVからなる群より選択される一種以上でイオン交換されたゼオライト及びFe、Ti及びCoからなる群より選択される一種以上でイオン交換されたゼオライトは、それぞれ独立に、イオン交換量が1.0~10.0重量%であることが好ましく、1.0~5.0重量%がさらに好ましい。イオン交換量が1.0重量%未満であると、イオン交換によるアンモニアの吸着能の変化が不十分となることがあり、10.0重量%を超えると、熱を加えた際に、構造的に不安定になることがある。なお、ゼオライトをイオン交換する際には、カチオンを含有する水溶液中にゼオライトを浸漬すればよい。
 ゼオライトとしては、特に限定されないが、β型ゼオライト、ZSM-5型ゼオライト、モルデナイト、フォージサイト、ゼオライトA、ゼオライトL等が挙げられ、二種以上併用してもよい。なお、ゼオライトとは、全ゼオライトを意味する。
 また、ゼオライトは、アルミナに対するシリカのモル比が30~50であることが好ましい。なお、ゼオライトとは、全ゼオライトを意味する。
 さらに、ゼオライトは、二次粒子を含むことが好ましく、ゼオライトの二次粒子の平均粒径が0.5~10μmであることが好ましい。ゼオライトの二次粒子の平均粒径が0.5μm未満であると、無機バインダを多量に添加する必要があり、その結果、押出成形しにくくなることがあり、10μmを超えると、ゼオライトの比表面積が低下して、NOxの浄化率が低下することがある。なお、ゼオライトとは、全ゼオライトを意味する。
 さらに、ハニカムユニット11は、強度を向上させるために、ゼオライトを除く無機粒子をさらに含有してもよい。ゼオライトを除く無機粒子としては、特に限定されないが、アルミナ、シリカ、チタニア、ジルコニア、セリア、ムライト及びこれらの前駆体等が挙げられ、二種以上併用してもよい。中でも、アルミナ、ジルコニアが特に好ましい。なお、ゼオライトとは、全ゼオライトを意味する。
 ゼオライトを除く無機粒子は、平均粒径が0.5~10μmであることが好ましい。この平均粒径が0.5μm未満であると、無機バインダを多量に添加する必要があり、その結果、押出成形しにくくなることがあり、10μmを超えると、ハニカムユニット11の強度を向上させる効果が不十分になることがある。なお、ゼオライトを除く無機粒子は、二次粒子を含んでいてもよい。
 また、ゼオライトの二次粒子の平均粒径に対するゼオライトを除く無機粒子の二次粒子の平均粒径の比は、1以下であることが好ましく、0.1~1が特に好ましい。この比が1を超えると、ハニカムユニット11の強度を向上させる効果が不十分になることがある。なお、ゼオライトとは、全ゼオライトを意味する。
 ハニカムユニット11は、ゼオライトを除く無機粒子の含有量が3~30重量%であることが好ましく、5~20重量%がさらに好ましい。この含有量が3重量%未満であると、ハニカムユニット11の強度を向上させる効果が不十分となることがあり、30重量%を超えると、ハニカムユニット11中のゼオライトの含有量が低下して、NOxの浄化率が低下することがある。
 無機バインダとしては、特に限定されないが、アルミナゾル、シリカゾル、チタニアゾル、水ガラス、セピオライト、アタパルジャイト等に含まれる固形分が挙げられ、二種以上併用してもよい。
 ハニカムユニット11は、無機バインダの含有量が5~30重量%であることが好ましく、10~20重量%がさらに好ましい。無機バインダの含有量が5重量%未満であると、ハニカムユニット11の強度が低下することがあり、30重量%を超えると、成形が困難になることがある。
 ハニカムユニット11は、強度を向上させるために、無機繊維をさらに含むことが好ましい。
 無機繊維としては、ハニカムユニット11の強度を向上させることが可能であれば、特に限定されないが、アルミナ、シリカ、炭化ケイ素、シリカアルミナ、ガラス、チタン酸カリウム、ホウ酸アルミニウム等が挙げられ、二種以上併用してもよい。
 無機繊維は、アスペクト比が2~1000であることが好ましく、5~800がさらに好ましく、10~500が特に好ましい。アスペクト比が2未満であると、ハニカムユニット11の強度を向上させる効果が小さくなることがある。一方、アスペクト比が1000を超えると、押出成形等の成形時に金型に目詰まり等が発生することがあり、また、成形時に無機繊維が折れて、ハニカムユニット11の強度を向上させる効果が小さくなることがある。
 ハニカムユニット11は、無機繊維の含有量が3~50重量%であることが好ましく、3~30重量%がさらに好ましく、5~20重量%が特に好ましい。無機繊維の含有量が3重量%未満であると、ハニカムユニット11の強度を向上させる効果が小さくなることがあり、50重量%を超えると、ハニカムユニット11中のゼオライトの含有量が低下して、NOxの浄化率が低下することがある。
 ハニカムユニット11は、気孔率が25~40%であることが好ましい。気孔率が25%未満であると、排ガスが隔壁15の内部まで浸透しにくくなって、ゼオライトがNOxの浄化に有効に使用されなくなることがあり、40%を超えると、ハニカムユニット11の強度が不十分となることがある。
 ハニカムユニット11は、長手方向に垂直な断面の開口率が50~65%であることが好ましい。開口率が50%未満であると、ゼオライトがNOxの浄化に有効に使用されなくなることがあり、65%を超えると、ハニカム構造体10の強度が不十分となることがある。
 ハニカムユニット11は、長手方向に垂直な断面の貫通孔12の密度が31~124個/cmであることが好ましい。貫通孔12の密度が31個/cm未満であると、排ガスとゼオライトが接触しにくくなって、ハニカムユニット11のNOx浄化能が低下することがあり、124個/cmを超えると、ハニカムユニット11の圧力損失が増大することがある。
 ハニカムユニット11の隔壁15は、厚さが0.10~0.50mmであることが好ましく、0.15~0.35mmがさらに好ましい。隔壁15の厚さが0.10mm未満であると、ハニカムユニット11の強度が低下することがあり、0.50mmを超えると、排ガスが隔壁15の内部まで浸透しにくくなって、ゼオライトがNOxの浄化に有効に使用されないことがある。
 外周コート層14は、厚さが0.1~2mmであることが好ましい。外周コート層14の厚さが0.1mm未満であると、ハニカム構造体10の強度を向上させる効果が不十分になることがあり、2mmを超えると、ハニカム構造体10の単位体積当たりのゼオライトの含有量が低下して、ハニカム構造体10のNOx浄化能が低下することがある。
 ハニカム構造体10は、円柱状であるが、本発明のハニカム構造体の形状としては、特に限定されず、角柱状、楕円柱状等が挙げられる。
 さらに、貫通孔12の形状は、四角柱状であるが、本発明において、貫通孔の形状としては、特に限定されず、三角柱状、六角柱状等が挙げられる。
 次に、ハニカム構造体10の製造方法の一例について説明する。まず、Cu、Mn、Ag及びVからなる群より選択される一種以上でイオン交換されたゼオライト及び無機バインダを含み、必要に応じて、Fe、Ti及びCoからなる群より選択される一種以上でイオン交換されたゼオライト、ゼオライトを除く無機粒子、無機繊維等をさらに含む原料ペーストを用いて押出成形等の成形を行い、複数の貫通孔が隔壁15を隔てて長手方向に並設された生の円柱状のハニカム成形体を作製する。これにより、焼成温度を低くしても、十分な強度を有する円柱状のハニカムユニット11が得られる。
 なお、無機バインダは、原料ペースト中に、アルミナゾル、シリカゾル、チタニアゾル、水ガラス、セピオライト、アタパルジャイト等として添加されており、二種以上併用されていてもよい。
 また、原料ペーストには、有機バインダ、分散媒、成形助剤等を、必要に応じて、適宜添加してもよい。
 有機バインダとしては、特に限定されないが、メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリエチレングリコール、フェノール樹脂、エポキシ樹脂等が挙げられ、二種以上併用してもよい。なお、有機バインダの添加量は、ゼオライト、ゼオライトを除く無機粒子、無機繊維及び無機バインダの総重量に対して、1~10%であることが好ましい。なお、ゼオライトとは、全ゼオライトを意味する。
 分散媒としては、特に限定されないが、水、ベンゼン等の有機溶媒、メタノール等のアルコール等が挙げられ、二種以上併用してもよい。
 成形助剤としては、特に限定されないが、エチレングリコール、デキストリン、脂肪酸、脂肪酸石鹸、ポリアルコール等が挙げられ、二種以上併用してもよい。
 原料ペーストを調製する際には、混合混練することが好ましく、ミキサー、アトライタ等を用いて混合してもよく、ニーダー等を用いて混練してもよい。
 次に、マイクロ波乾燥機、熱風乾燥機、誘電乾燥機、減圧乾燥機、真空乾燥機、凍結乾燥機等の乾燥機を用いて、得られたハニカム成形体を乾燥する。
 さらに、得られたハニカム成形体を脱脂する。脱脂条件は、特に限定されず、成形体に含まれる有機物の種類や量によって適宜選択することができるが、400℃で2時間であることが好ましい。
 次に、得られたハニカム成形体を焼成することにより、円柱状のハニカムユニット11が得られる。焼成温度は、600~1200℃であることが好ましく、600~1000℃がさらに好ましい。焼成温度が600℃未満であると、焼結が進行せず、ハニカム構造体10の強度が低くなることがあり、1200℃を超えると、焼結が進行しすぎて、ゼオライトの反応サイトが減少することがある。
 次に、円柱状のハニカムユニット11の外周面に外周コート層用ペーストを塗布する。外周コート層用ペーストとしては、特に限定されないが、無機バインダ及び無機粒子の混合物、無機バインダ及び無機繊維の混合物、無機バインダ、無機粒子及び無機繊維の混合物等が挙げられる。
 また、外周コート層用ペーストは、有機バインダを含有してもよい。有機バインダとしては、特に限定されないが、ポリビニルアルコール、メチルセルロース、エチルセルロース、カルボキシメチルセルロース等が挙げられ、二種以上併用してもよい。
 次に、外周コート層用ペーストが塗布されたハニカムユニット11を乾燥固化することにより、円柱状のハニカム構造体が得られる。このとき、外周コート層用ペーストに有機バインダが含まれている場合は、脱脂することが好ましい。脱脂条件は、有機物の種類や量によって適宜選択することができるが、700℃で20分間であることが好ましい。
 次に、得られたハニカム構造体の隔壁15の表面に、コート層を形成することにより、ハニカム構造体10が得られる。コート層を形成する方法としては、特に限定されないが、含浸法等が挙げられる。このとき、コート層を形成する際には、Fe、Ti及びCoからなる群より選択される一種以上でイオン交換されたゼオライト及び無機バインダを含み、必要に応じて、Cu、Mn、Ag及びVからなる群より選択される一種以上でイオン交換されたゼオライト、ゼオライトを除く無機粒子及び無機繊維をさらに含む分散液を用いることができる。
 なお、ハニカム構造体10は、Cu、Mn、Ag及びVからなる群より選択される一種以上でイオン交換されたゼオライトと、Fe、Ti及びCoからなる群より選択される一種以上でイオン交換されたゼオライトの比率が異なる二種の原料ペーストを用いて二重押出して生の円柱状のハニカム成形体を作製することにより作製することもできる。
 図2A及び図2Bに、本発明のハニカム構造体の他の例を示す。なお、ハニカム構造体20は、複数の貫通孔12が隔壁15を隔てて長手方向に並設されたハニカムユニット11が接着層13を介して複数個接着されている以外は、ハニカム構造体10と同様である。
 ハニカムユニット11は、長手方向に垂直な断面の断面積が5~50cmであることが好ましい。断面積が5cm未満であると、ハニカム構造体10の比表面積が低下すると共に、圧力損失が増大することがあり、断面積が50cmを超えると、ハニカムユニット11に発生する熱応力に対する強度が不十分になることがある。
 ハニカムユニット11を接着させる接着層13は、厚さが0.5~2mmであることが好ましい。接着層13の厚さが0.5mm未満であると、接着強度が不十分になることがある。一方、接着層13の厚さが2mmを超えると、ハニカム構造体10の比表面積が低下すると共に、圧力損失が増大することがある。
 また、ハニカムユニット11は、四角柱状であるが、本発明において、ハニカムユニットの形状としては、特に限定されず、ハニカムユニット同士を接着しやすい形状であることが好ましく、例えば、六角柱状等が挙げられる。
 次に、ハニカム構造体20の製造方法の一例について説明する。まず、ハニカム構造体10と同様にして、四角柱状のハニカムユニット11を作製する。次に、ハニカムユニット11の外周面に接着層用ペーストを塗布して、ハニカムユニット11を順次接着させ、乾燥固化することにより、ハニカムユニット11の集合体を作製する。このとき、ハニカムユニット11の集合体を作製した後に、円柱状に切削加工し、研磨してもよい。また、断面が扇形状や正方形状に成形されたハニカムユニット11を接着させて円柱状のハニカムユニット11の集合体を作製してもよい。
 接着層用ペーストとしては、特に限定されないが、無機バインダ及び無機粒子の混合物、無機バインダ及び無機繊維の混合物、無機バインダ、無機粒子及び無機繊維の混合物等が挙げられる。
 また、接着層用ペーストは、有機バインダを含有してもよい。有機バインダとしては、特に限定されないが、ポリビニルアルコール、メチルセルロース、エチルセルロース、カルボキシメチルセルロース等が挙げられ、二種以上併用してもよい。
 次に、円柱状のハニカムユニット11の集合体の外周面に外周コート層用ペーストを塗布する。外周コート層用ペーストは、特に限定されないが、接着層用ペーストと同じ材料を含有してもよいし、異なる材料を含有してもよい。また、外周コート層用ペーストは、接着層用ペーストと同一の組成であってもよい。
 次に、外周コート層用ペーストが塗布されたハニカムユニット11の集合体を乾燥固化することにより、円柱状のハニカム構造体が得られる。このとき、接着層用ペースト及び/又は外周コート層用ペーストに有機バインダが含まれている場合は、脱脂することが好ましい。脱脂条件は、有機物の種類や量によって適宜選択することができるが、700℃で20分間であることが好ましい。
 次に、得られたハニカム構造体の隔壁15の表面に、ハニカム構造体10と同様にして、コート層を形成することにより、ハニカム構造体20が得られる。
 なお、ハニカム構造体20は、Cu、Mn、Ag及びVからなる群より選択される一種以上でイオン交換されたゼオライトとFe、Ti及びCoからなる群より選択される一種以上でイオン交換されたゼオライトの比率が異なる二種の原料ペーストを用いて二重押出して生の四角柱状のハニカムユニット11を作製することにより作製してもよい。
 本発明のハニカム構造体は、外周コート層が形成されていてもよいし、形成されていなくてもよい。
 [実施例1]
 まず、Cuで3重量%イオン交換された、平均粒径が2μm、シリカ/アルミナ比が40、比表面積が110m/gであるβ型ゼオライト2600g、無機バインダ含有成分としての、固形分20重量%のアルミナゾル2600g、無機繊維としての、平均繊維径が6μm、平均繊維長が100μmのアルミナ繊維780g、有機バインダとしての、メチルセルロース410gを混合混練して、原料ペーストを得た。なお、ゼオライト粒子を硝酸銅水溶液に含浸させることにより、Cuでイオン交換した。また、ゼオライトのイオン交換量は、ICPS-8100(島津製作所社製)を用いて、IPC発光分析することにより求めた。次に、押出成形機を用いて、原料ペーストを押出成形し、生の円柱状のハニカム成形体を得た。そして、マイクロ波乾燥機及び熱風乾燥機を用いて、ハニカム成形体を乾燥させた後、400℃で2時間脱脂した。次に、700℃で2時間焼成し、直径30mm、長さ50mmの円柱状のハニカム構造体を作製した。
 さらに、得られたハニカム構造体に、Feで3重量%イオン交換された、平均粒径が2μm、シリカ/アルミナ比が40、比表面積が110m/gであるβ型ゼオライト82.5重量部、固形分20重量%のアルミナゾル17.5重量部が分散されている固形分35重量%のコート層用分散液を含浸させた後、600℃で1時間保持し、隔壁にコート層を形成した。なお、ゼオライト粒子を硝酸鉄アンモニウム溶液に含浸させることにより、Feでイオン交換した。得られたハニカム構造体は、長手方向に垂直な断面の開口率が60%であり、貫通孔の密度が93個/cmであり、隔壁の厚さが0.10mmであり、見掛けの体積当たりのゼオライトの含有量が250g/Lであり、気孔率が30%であった(表1参照)。
 ここで、開口率は、光学顕微鏡を用いて、ハニカム構造体の10cm角の領域の貫通孔の面積を算出することにより求めた。また、貫通孔の密度は、光学顕微鏡を用いて、ハニカム構造体の10cm角の領域の貫通孔の数を計測することにより求めた。さらに、隔壁の厚さは、光学顕微鏡を用いて、ハニカム構造体の隔壁の厚さ(5箇所)を測定することにより得られた平均値である。また、気孔率は、水銀圧入法により求めた。
 [実施例2、3]
 押出成型機の金型の構造を変化させた以外は、実施例1と同様にして、ハニカム構造体を作製し、隔壁にコート層を形成した(表1参照)。
 [比較例1]
 まず、Feで3重量%イオン交換された、平均粒径が2μm、シリカ/アルミナ比が40、比表面積が110m/gであるβ型ゼオライト2600g、無機バインダ含有成分としての、固形分20重量%のアルミナゾル2600g、無機繊維としての、平均繊維径が6μm、平均繊維長が100μmのアルミナ繊維780g、有機バインダとしての、メチルセルロース410gを混合混練して、原料ペーストを得た。次に、押出成形機を用いて、原料ペーストを押出成形し、生のハニカム成形体を得た。そして、マイクロ波乾燥機及び熱風乾燥機を用いて、ハニカム成形体を乾燥させた後、400℃で2時間脱脂した。次に、700℃で2時間焼成し、直径30mm、長さ50mmの円柱状のハニカム構造体を作製した(表1参照)。
Figure JPOXMLDOC01-appb-T000001
 
 [NOx浄化率の測定]
 実施例1~3又は比較例1のハニカム構造体に、200℃及び500℃の模擬ガスを空間速度(SV)35000/hrで流しながら、MEXA-7100D(HORIBA社製)を用いて、ハニカム構造体から流出する一酸化窒素(NO)の流出量を測定し、式
 (NOの流入量-NOの流出量)/(NOの流入量)×100
で表されるNOx浄化率[%]を測定した(検出限界0.1ppm)。なお、模擬ガスの構成成分は、窒素(balance)、二酸化炭素(5体積%)、酸素(14体積%)、一酸化窒素(350ppm)、アンモニア(350ppm)、水(5体積%)である。測定結果を表1に示す。表1より、実施例1~3のハニカム構造体は、比較例1のハニカム構造体よりも、200~500℃におけるNOxの浄化率が優れることがわかる。
 以上のことから、Cu、Mn、Ag及びVからなる群より選択される一種以上でイオン交換されたゼオライトと、Fe、Ti及びCoからなる群より選択される一種以上でイオン交換されたゼオライトとの総重量に対する、Cu、Mn、Ag及びVからなる群より選択される一種以上でイオン交換されたゼオライトの重量の比が、隔壁の表面よりも隔壁の中心が大きく、Cu、Mn、Ag及びVからなる群より選択される一種以上でイオン交換されたゼオライトと、Fe、Ti及びCoからなる群より選択される一種以上でイオン交換されたゼオライトとの総重量に対する、Fe、Ti及びCoからなる群より選択される一種以上でイオン交換されたゼオライトの重量の比が、隔壁の中心よりも隔壁の表面が大きいことにより、ハニカム構造体の広い温度範囲におけるNOxの浄化率を向上させることができることがわかる。

Claims (15)

  1.  ゼオライトと、無機バインダとを含み、複数の貫通孔が隔壁を隔てて長手方向に並設されたハニカムユニットを有するハニカム構造体であって、
     該ゼオライトは、Cu、Mn、Ag及びVからなる群より選択される一種以上でイオン交換されたゼオライトと、Fe、Ti及びCoからなる群より選択される一種以上でイオン交換されたゼオライトとを含み、
     該Cu、Mn、Ag及びVからなる群より選択される一種以上でイオン交換されたゼオライトと、該Fe、Ti及びCoからなる群より選択される一種以上でイオン交換されたゼオライトとの総重量に対する、該Cu、Mn、Ag及びVからなる群より選択される一種以上でイオン交換されたゼオライトの重量の比は、該隔壁の表面よりも該隔壁の中心が大きく、該Cu、Mn、Ag及びVからなる群より選択される一種以上でイオン交換されたゼオライトと、該Fe、Ti及びCoからなる群より選択される一種以上でイオン交換されたゼオライトとの総重量に対する、該Fe、Ti及びCoからなる群より選択される一種以上でイオン交換されたゼオライトの重量の比は、該隔壁の中心よりも該隔壁の表面が大きいことを特徴とするハニカム構造体。
  2. 前記隔壁の中心は、前記Cu、Mn、Ag及びVからなる群より選択される一種以上でイオン交換されたゼオライトと、前記Fe、Ti及びCoからなる群より選択される一種以上でイオン交換されたゼオライトとの総重量に対する、前記Cu、Mn、Ag及びVからなる群より選択される一種以上でイオン交換されたゼオライトの重量の比が0.90以上1.00以下であることを特徴とする請求項1に記載のハニカム構造体。
  3. 前記隔壁の表面は、前記Cu、Mn、Ag及びVからなる群より選択される一種以上でイオン交換されたゼオライトと、前記Fe、Ti及びCoからなる群より選択される一種以上でイオン交換されたゼオライトとの総重量に対する、前記Fe、Ti及びCoからなる群より選択される一種以上でイオン交換されたゼオライトの重量の比が0.90以上1.00以下であることを特徴とする請求項1又は2に記載のハニカム構造体。
  4. 前記ハニカムユニットは、見掛けの体積当たりのゼオライトの含有量が230g/L以上270g/L以下であることを特徴とする請求項1乃至3のいずれか一項に記載のハニカム構造体。
  5. 前記ゼオライトは、β型ゼオライト、Y型ゼオライト、フェリエライト、ZSM-5型ゼオライト、モルデナイト、フォージサイト、ゼオライトA及びゼオライトLからなる群より選択される一種以上であることを特徴とする請求項1乃至4のいずれか一項に記載のハニカム構造体。
  6.  前記ゼオライトは、それぞれ独立に、アルミナに対するシリカのモル比が30以上50以下であることを特徴とする請求項1乃至5のいずれか一項に記載のハニカム構造体。
  7. 前記ゼオライトは、二次粒子を含み、 該二次粒子の平均粒径が0.5μm以上10μm以下であることを特徴とする請求項1乃至6のいずれか一項に記載のハニカム構造体。
  8.  前記ハニカムユニットは、ゼオライトを除く無機粒子をさらに含有することを特徴とする請求項1乃至7のいずれか一項に記載のハニカム構造体。
  9.  前記無機粒子は、アルミナ、シリカ、チタニア、ジルコニア、セリア、ムライト及びこれらの前駆体からなる群より選択される一種以上であることを特徴とする請求項8に記載のハニカム構造体。
  10. 前記無機バインダは、アルミナゾル、シリカゾル、チタニアゾル、水ガラス、セピオライト及びアタパルジャイトからなる群より選択される一種以上に含まれる固形分であることを特徴とする請求項1乃至9のいずれか一項に記載のハニカム構造体。
  11. 前記ハニカムユニットは、無機繊維をさらに含むことを特徴とする請求項1乃至10のいずれか一項に記載のハニカム構造体。
  12. 前記無機繊維は、アルミナ、シリカ、炭化ケイ素、シリカアルミナ、ガラス、チタン酸カリウム及びホウ酸アルミニウムからなる群より選択される一種以上であることを特徴とする請求項11に記載のハニカム構造体。
  13. 前記ハニカムユニットは、気孔率が25%以上40%以下であることを特徴とする請求項1乃至12のいずれか一項に記載のハニカム構造体。
  14. 前記ハニカムユニットは、前記長手方向に垂直な断面の開口率が50%以上65%以下であることを特徴とする請求項1乃至13のいずれか一項に記載のハニカム構造体。
  15. 複数の前記ハニカムユニットが接着層を介して接着されていることを特徴とする請求項1乃至14のいずれか一項に記載のハニカム構造体。
PCT/JP2008/059273 2008-05-20 2008-05-20 ハニカム構造体 WO2009141886A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2008/059273 WO2009141886A1 (ja) 2008-05-20 2008-05-20 ハニカム構造体
EP09006084A EP2123614A3 (en) 2008-05-20 2009-05-04 Honeycomb structure
US12/511,075 US20090305873A1 (en) 2008-05-20 2009-07-29 Honeycomb structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/059273 WO2009141886A1 (ja) 2008-05-20 2008-05-20 ハニカム構造体

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/511,075 Continuation US20090305873A1 (en) 2008-05-20 2009-07-29 Honeycomb structure

Publications (1)

Publication Number Publication Date
WO2009141886A1 true WO2009141886A1 (ja) 2009-11-26

Family

ID=40786495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/059273 WO2009141886A1 (ja) 2008-05-20 2008-05-20 ハニカム構造体

Country Status (3)

Country Link
US (1) US20090305873A1 (ja)
EP (1) EP2123614A3 (ja)
WO (1) WO2009141886A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010000499A (ja) * 2008-05-20 2010-01-07 Ibiden Co Ltd ハニカム構造体
EP2368632A1 (en) 2010-03-25 2011-09-28 NGK Insulators, Ltd. Zeolite structure and manufacturing method thereof
JP2011207749A (ja) * 2010-03-12 2011-10-20 Ngk Insulators Ltd ゼオライト構造体及びその製造方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9079162B2 (en) 2008-04-28 2015-07-14 BASF SE Ludwigshafen Fe-BEA/Fe-MFI mixed zeolite catalyst and process for the treatment of NOX in gas streams
JP5537350B2 (ja) * 2009-11-05 2014-07-02 日本碍子株式会社 ゼオライト構造体及びその製造方法
WO2011061842A1 (ja) * 2009-11-19 2011-05-26 イビデン株式会社 ハニカム構造体の製造方法
JP5419769B2 (ja) 2010-03-25 2014-02-19 日本碍子株式会社 ゼオライト構造体及びその製造方法
JP5369035B2 (ja) * 2010-03-25 2013-12-18 日本碍子株式会社 ゼオライトハニカム成形体及びゼオライトハニカム焼成体
US9352307B2 (en) 2010-04-08 2016-05-31 Basf Corporation Cu-CHA/Fe-MFI mixed zeolite catalyst and process for the treatment of NOx in gas streams
GB2506776B (en) 2011-08-03 2016-01-06 Johnson Matthey Plc Extruded honeycomb catalyst
US9999877B2 (en) 2011-10-05 2018-06-19 Basf Se Cu-CHA/Fe-BEA mixed zeolite catalyst and process for the treatment of NOx in gas streams
DE102015204012A1 (de) 2015-03-05 2016-09-08 Clariant International Ltd. SCR-Katalysator mit verbesserter Haftung
JP6326548B2 (ja) * 2015-03-12 2018-05-16 ラサ工業株式会社 フィルタベント用充填剤、及びフィルタベント装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03284355A (ja) * 1990-03-30 1991-12-16 Cosmo Sogo Kenkyusho:Kk 炭化水素油の水素化脱硫触媒組成物の製造方法
JPH0538452A (ja) * 1991-08-07 1993-02-19 Toyota Motor Corp 排気ガス浄化用触媒
JPH10141047A (ja) * 1996-11-11 1998-05-26 Nissan Motor Co Ltd 内燃機関の排気浄化用触媒装置
JP2005095762A (ja) * 2003-09-24 2005-04-14 Toyota Motor Corp 排ガス浄化装置
JP2006061803A (ja) * 2004-08-26 2006-03-09 Toyota Motor Corp 排ガス浄化用触媒
JP2007296514A (ja) * 2006-04-07 2007-11-15 Ngk Insulators Ltd 触媒体とその製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6869573B2 (en) * 1990-11-09 2005-03-22 Ngk Insulators, Ltd. Heater and catalytic converter
JP3098083B2 (ja) * 1991-12-26 2000-10-10 マツダ株式会社 排気ガス浄化用触媒
EP0756891A1 (en) 1995-07-26 1997-02-05 Corning Incorporated Iron zeolite for conversion of NOx
WO2006137149A1 (ja) 2005-06-24 2006-12-28 Ibiden Co., Ltd. ハニカム構造体
JP5091673B2 (ja) * 2005-06-24 2012-12-05 イビデン株式会社 ハニカム構造体及びその製造方法
US20100166628A1 (en) * 2006-02-15 2010-07-01 Nicola Soeger Catalyst for reducing nitrogen-containing pollutants from the exhaust gases of diesel engines
JP2007260595A (ja) * 2006-03-29 2007-10-11 Ngk Insulators Ltd ハニカム構造体
DE102006020158B4 (de) * 2006-05-02 2009-04-09 Argillon Gmbh Extrudierter Vollkatalysator sowie Verfahren zu seiner Herstellung
JP5345530B2 (ja) * 2006-07-08 2013-11-20 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト 還元剤としてのアンモニアの使用下でリーンバーンエンジンの排ガス中の窒素酸化物を還元するための構造化scr触媒
US8389432B2 (en) * 2006-09-25 2013-03-05 Umicore Ag & Co. Kg Structured automotive catalyst with improved thermal ageing stability

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03284355A (ja) * 1990-03-30 1991-12-16 Cosmo Sogo Kenkyusho:Kk 炭化水素油の水素化脱硫触媒組成物の製造方法
JPH0538452A (ja) * 1991-08-07 1993-02-19 Toyota Motor Corp 排気ガス浄化用触媒
JPH10141047A (ja) * 1996-11-11 1998-05-26 Nissan Motor Co Ltd 内燃機関の排気浄化用触媒装置
JP2005095762A (ja) * 2003-09-24 2005-04-14 Toyota Motor Corp 排ガス浄化装置
JP2006061803A (ja) * 2004-08-26 2006-03-09 Toyota Motor Corp 排ガス浄化用触媒
JP2007296514A (ja) * 2006-04-07 2007-11-15 Ngk Insulators Ltd 触媒体とその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010000499A (ja) * 2008-05-20 2010-01-07 Ibiden Co Ltd ハニカム構造体
JP2011207749A (ja) * 2010-03-12 2011-10-20 Ngk Insulators Ltd ゼオライト構造体及びその製造方法
EP2368632A1 (en) 2010-03-25 2011-09-28 NGK Insulators, Ltd. Zeolite structure and manufacturing method thereof
US8871667B2 (en) 2010-03-25 2014-10-28 Ngk Insulators, Ltd. Zeolite structure and manufacturing method thereof

Also Published As

Publication number Publication date
EP2123614A2 (en) 2009-11-25
US20090305873A1 (en) 2009-12-10
EP2123614A3 (en) 2010-03-03

Similar Documents

Publication Publication Date Title
WO2009141886A1 (ja) ハニカム構造体
WO2009141895A1 (ja) 排ガス浄化装置
WO2009141885A1 (ja) ハニカム構造体
JP5317959B2 (ja) ハニカム構造体
WO2009141894A1 (ja) ハニカム構造体
WO2011061841A1 (ja) ハニカム構造体及び排ガス浄化装置
WO2009141898A1 (ja) ハニカム構造体
WO2011061836A1 (ja) ハニカム構造体及び排ガス浄化装置
US20100055386A1 (en) Honeycomb structure
JP5560158B2 (ja) ハニカム構造体及び排ガス浄化装置
JP2011125849A (ja) ハニカム構造体及び排ガス浄化装置
JP2010000499A (ja) ハニカム構造体
WO2009118869A1 (ja) ハニカム構造体および排ガス処理装置
WO2011061835A1 (ja) ハニカム構造体及び排ガス浄化装置
WO2011061839A1 (ja) ハニカム構造体及び排ガス浄化装置
JP5746061B2 (ja) ハニカム構造体及びハニカム構造体の製造方法
WO2009141884A1 (ja) ハニカム構造体
WO2009141883A1 (ja) ハニカム構造体
JP2010279849A (ja) ハニカム構造体
JP5317958B2 (ja) ハニカム構造体及び排ガス浄化装置
WO2009141876A1 (ja) ハニカム構造体
JP5563952B2 (ja) ハニカム構造体及び排ガス浄化装置
JP2010227923A (ja) ハニカム構造体
WO2012131914A1 (ja) ハニカム構造体及び排ガス浄化装置
JP5175797B2 (ja) ハニカム構造体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08764411

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08764411

Country of ref document: EP

Kind code of ref document: A1