CN110423122B - 一种低损耗、高导热氮化硅陶瓷的制备方法 - Google Patents

一种低损耗、高导热氮化硅陶瓷的制备方法 Download PDF

Info

Publication number
CN110423122B
CN110423122B CN201910721461.0A CN201910721461A CN110423122B CN 110423122 B CN110423122 B CN 110423122B CN 201910721461 A CN201910721461 A CN 201910721461A CN 110423122 B CN110423122 B CN 110423122B
Authority
CN
China
Prior art keywords
silicon nitride
powder
loss
preparation
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910721461.0A
Other languages
English (en)
Other versions
CN110423122A (zh
Inventor
曾宇平
姚冬旭
左开慧
夏咏锋
尹金伟
梁汉琴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Zhongke Shangyu Technology Co.,Ltd.
Original Assignee
Shanghai Institute of Ceramics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Ceramics of CAS filed Critical Shanghai Institute of Ceramics of CAS
Priority to CN201910721461.0A priority Critical patent/CN110423122B/zh
Publication of CN110423122A publication Critical patent/CN110423122A/zh
Application granted granted Critical
Publication of CN110423122B publication Critical patent/CN110423122B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明涉及一种低损耗、高导热氮化硅陶瓷的制备方法,包括:(1)将氮化硅粉体和烧结助剂混合,得到混合粉体,所述烧结助剂为稀土氧化物,优选为Yb2O3、Lu2O3、La2O3、Sm2O3中的至少一种;(2)将所得混合粉体置于石墨热压模具中,并在氮气气氛中、20~40MPa压力、1750~1850℃下热压烧结1~4小时,得到氮化硅烧结体;(3)将所得氮化硅烧结体置于氮气气氛中、在1300~1500℃下退火处理12~48小时,得到所述低损耗、高导热的氮化硅陶瓷。

Description

一种低损耗、高导热氮化硅陶瓷的制备方法
技术领域
本发明涉及一种低损耗、高导热氮化硅陶瓷的制备方法,是一种高性能陶瓷材料,可用于芯片封装用陶瓷基板、真空电子器件输能窗、5G用手机陶瓷背板等领域。
背景技术
氮化硅陶瓷具有良好的力-热-电综合性能,是一种优异的介质材料,具有电绝缘性好、介电常数低、介电损耗低、热导率高、强度高等优点。综合性能优于氧化铝、氮化铝等,在对可靠性要求苛刻的领域具有广泛的用途。如大功率芯片封装用陶瓷基板、真空电子器件输能窗、5G用手机陶瓷背板等领域。针对具体的应用环境,对材料性能的要求也有一定的差异。在良好的力-热-电性能的前提下,陶瓷基板、5G用手机陶瓷背板由于可靠性要求高,对材料的强度、韧性要求更苛刻,以确保材料在反复热冲击、摔落等应力状态下的可靠性;而真空电子器件输能窗则对材料的介电损耗要求更苛刻,避免因高损耗导致的局部温度升高进而产生温度梯度,导致输能窗的熔化、热机械损坏以及电绝缘强度衰减。
高导热氮化硅陶瓷的研究相对较多,主要包括原料、烧结助剂、烧结保温时间调控,常规热导率可达80~90W·m-1·K-1,通过定向、长时间保温等手段热导率可达150~170W·m-1·K-1。低损耗氮化硅陶瓷方面研究相对较少,Hiroyuki Miyazaki等(MiyazakiH,Hirao K,Yoshizawa Y I.Effects of MgO addition on the microwave dielectricproperties of high thermal-conductive silicon nitride ceramics sintered withytterbia as sintering additives[J].Journal of the European Ceramic Society,2012,32(12):3297–3301.)通过添加氧化镱作为烧结助剂,通过高压力等静压(450MPa)结合高温气压烧结(1900℃、3小时、0.9MPa N2气氛)及退火处理(1250~1450℃、12~24小时)可以获得热导率~100W·m-1·K-1,介电损耗1.8×10-4的氮化硅陶瓷。但该工艺对设备要求很高,成本高。
发明内容
针对上述问题,本发明提供了一种全新的低损耗、高导热的氮化硅陶瓷及制备方法。
一方面,本发明提供了一种低损耗、高导热的氮化硅陶瓷的制备方法,包括:
(1)将氮化硅粉体和烧结助剂混合,得到混合粉体,所述烧结助剂为稀土氧化物,优选为Yb2O3、Lu2O3、La2O3、Sm2O3中的至少一种;
(2)将所得混合粉体置于石墨热压模具中,并在氮气气氛中、20~40MPa压力、1750~1850℃下热压烧结1~4小时,得到氮化硅烧结体;
(3)将所得氮化硅烧结体置于氮气气氛中、在1300~1500℃下退火处理12~48小时,得到所述低损耗、高导热的氮化硅陶瓷。
在本发明中,采用简单的热压方法,在氮化硅粉体中仅添加至少一种稀土氧化物(Yb2O3、Lu2O3、La2O3、Sm2O3中的至少一种)作为烧结助剂烧结而成制备得到低损耗、高导热的氮化硅陶瓷。优选,通过调控氮化硅粉体原料的纯度、粒度分布以及烧结助剂的种类,实现性能更加优异的低损耗、高导热氮化硅陶瓷的制备。而且,本发明进一步退火处理(在1300~1500℃下退火处理12~48小时)可以促进材料晶界上的非晶相转化为晶相,降低介电损耗。
较佳的,所述氮化硅粉体和烧结助剂的摩尔比为90:10~97:3。
较佳的,所述氮化硅粉体中除氧以外的杂质含量<50ppm。
较佳的,所述氮化硅粉体包括粒径分布为2~5微米氮化硅粗粉和粒径分布为0.3~0.5微米的氮化硅细粉;优选地,所述氮化硅细粉和氮化硅粗粉的质量比为1:9~4:6。为了避免由于热压烧结使材料产生明显的取向性,导致在热压方向上热导率低的缺点。本发明还通过控制添加氮化硅原料中氮化硅粗粉和氮化硅细粉的比例,不仅降低取向性,而且加入低氧化量的粗粉还可以进一步提升材料的热导率。
较佳的,所述混合的方式为球磨混合,所述球磨混合的转速为100~300转/分钟,时间为3~6小时。
又,较佳的,在球磨混合之后,再经烘干和过筛,得到所述混合粉体。
较佳的,在退火处理的升温过程中,当温度升温至1000℃时控制升温速率为0.5~2℃/分钟,直至升温至退火温度。
较佳的,在退火处理完成之后,以0.5~2℃/分钟降温至1000℃后,随炉降至室温。
另一方面,本发明提供了一种根据上述的制备方法制备的低损耗、高导热的氮化硅陶瓷,所述低损耗、高导热的氮化硅陶瓷的介电损耗<2×10-4、热导率>90W·m-1·K-1、强度>700MPa。
有益效果:
在本发明中,采用热压烧结方法,以单一稀土氧化物作为烧结助剂制备高热导、低损耗的氮化硅陶瓷。该制备方法包括:将氮化硅粉体和烧结助剂按比例混合均匀,经过球磨、烘干、过筛工序,得到混合均匀的粉体后;然后通过热压烧结的方法获得高致密的氮化硅陶瓷(氮化硅烧结体),然后经过进一步低温热处理降低材料的损耗,获得介电损耗<2×10-4、热导率>90W·m-1·K-1、强度>700MPa的氮化硅陶瓷。相比于已报到的等静压-气压烧结(1900℃)工艺,本发明采用的热压烧结工艺烧结温度更低(1750~1850℃),而且热压烧结炉相比于气压烧结炉成本更低,更有利于材料制备。针对热压烧结过程中,陶瓷烧结体由于单向受力,晶粒(尤其是小晶粒)易受力偏转,导致材料性能具有取向性。本发明还进一步采用较高含量的粗氮化硅粉为原料,粗粉在单向压力下偏转阻力大,不容易产生明显的取向性。通过引入一定比例的细粉,不会导致取向性的明显改变,但可以改善烧结体的微观形貌,形成晶粒双峰分布,提高材料的强度。从而实现以简单的热压烧结工艺获得获得性能较理想的氮化硅陶瓷。
附图说明
图1为实施例1分别与对比例1(a)和对比例2(b)制备的氮化硅陶瓷的XRD谱图对比图;
图2为实施例5制备的氮化硅陶瓷的SEM照片。
具体实施方式
以下通过下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。
在本公开中,采用简单的热压烧结的方法,通过优选氮化硅粉体原料的纯度、粒度分布以及烧结助剂的种类,实现低损耗、高导热氮化硅陶瓷的制备。以下示例性地说明本发明提供的低损耗、高导热的氮化硅陶瓷的制备方法。
将氮化硅粉体和烧结助剂按比例混合均匀,得到混合粉体。具体来说,将氮化硅粉体和烧结助剂按比例混合均匀后,经过球磨、烘干、过筛工序,得到混合粉体。其中,氮化硅粉体中除氧以外的杂质(例如,Fe、Al、Ca等)的含量<50ppm。烧结助剂可为稀土氧化物,优选为Yb2O3、Lu2O3、La2O3、Sm2O3中的至少一种,进一步优选Yb2O3、Lu2O3、La2O3、Sm2O3中一种。Si3N4粉体与烧结助剂的摩尔比可为90:10~97:3。混合的方式可为球磨混合,所述球磨混合的转速可为100~300转/分钟,时间可为3~6小时。烘干的温度可为50~120℃,直至干燥为止。所述过筛可为过100目筛。
在可选的实施方式中,所述氮化硅粉体包括粒径分布为0.3~0.5微米的氮化硅细粉和粒径分布为2~5微米的氮化硅粗粉。优选,按氮化硅细粉:氮化硅粗粉=1:9~4:6的质量比例进行称量和混料。若是氮化硅粉体粗粉较多,影响氮化硅陶瓷的力学性能。若是氮化硅粗粉的含量较低,小晶粒在热压过程中易产生偏转,氮化硅烧结体产生明显的取向性,导致平行于热压方向的热导率偏低。烧结助剂的粒径可为0.3~1μm。
将混合粉体置于石墨热压模具中,在氮气气氛下进行热压烧结,得到高致密的氮化硅陶瓷(氮化硅烧结体)。其中,热压烧结的温度可为1750~1850℃。热压烧结的时间可为1~4小时。热压烧结的单轴压力可为20~40MPa。
将氮化硅烧结体在氮气气氛下退火处理,获得低损耗、高导热的氮化硅陶瓷。退火处理温度可为1300~1500℃,保温时间可为12~48小时。优选,1000℃以上的升/降温速率可为0.5~2℃/分钟。也就是说,在退火处理的升温过程中,当温度升温至1000℃时控制升温速率为0.5~2℃/分钟,直至升温至退火温度。在退火处理完成之后,以0.5~2℃/分钟降温至1000℃后,随炉降至室温。
在本发明中,所得低损耗、高导热的氮化硅陶瓷的介电损耗<2×10-4、热导率>90W·m-1·K-1、强度>700MPa。
下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。
实施例1-9
按表1中实施例1-9中所用原料组分称取原料,按照表1中制备工艺条件进行烧制,制备得到低损耗、高导热氮化硅陶瓷。
对比例1-4
按表1中对比例1-4中所用原料组分及制备工艺条件,制备得到低损耗、高导热氮化硅陶瓷。具体来说,对比例1中未按本发明中的技术要求进行退火处理。对比例2中未添加一定比例的粗粉,对比例3中氮化硅粉的杂质含量较高。对比例4中未添加一定比例的细粉。
测试实验:
分别用阻抗分析仪、激光导热仪、万能材料试验机、X射线衍射、扫描电镜对材料的介电性能、热导率、强度、相组成、微观形貌进行表征。
表1为本发明中实施例1-9和对比例1-3所用原料组成及其制备工艺条件:
Figure BDA0002157375710000041
Figure BDA0002157375710000051
表2为本发明各实施例和对比例制备的氮化硅陶瓷的性能参数:
Figure BDA0002157375710000052
Figure BDA0002157375710000061
从表2中可以看出,采用本发明技术方案的实施例均可实现氮化硅陶瓷介电损耗<2×10-4、热导率>90W·m-1·K-1、强度>700MPa。而对比例1中未经退火处理,损耗偏高。对比例2中,未添加一定含量的粗粉,热压过程中,取向性高,导致不同方向的热导率差别较大,平行于热压方向的热导率偏低。对比例3中,杂质含量较高,导致损耗增大,热导率偏低。对比例4中,全部选用氮化硅粗粉,没有形成晶粒的双峰分布,所得氮化硅材料力学性能相对较差。
图1中(a)为对比例2和实施例1的XRD谱图,从图中的衍射峰可以看出,材料的主相为β氮化硅。但对比例2和实施例1的明晰差别在于β氮化硅(101)晶面的衍生峰强度,(101)晶面的衍生峰强度越弱,说明材料的取向度越高,从而导致平行于热压方向的热导率偏低。图1中(b)为对比例1和实施例1的XRD谱图,实施例经过退火处理后,晶界相从Yb2SiO5转变为Yb4Si2N2O7,从两种晶界相衍射峰可以看出,Yb4Si2N2O7衍射峰明显增强,说明除了Yb2SiO5与氮化硅反应生成Yb4Si2N2O7外,晶界相中残余的Yb-Si-O-N玻璃相经过退火处理晶化,从而有效降低玻璃相引起的离子极化,降低材料的介电损耗。
图2为实施例5所得氮化硅陶瓷的SEM照片。从图2中可以看出,材料的晶粒呈现明显的双峰分布,即细晶粒包裹粗晶粒的结构。粗晶粒可以为材料提供良好的导热通道,提高导热率,细晶粒包裹粗晶粒的交错结构可以为材料提供良好的力学性能。

Claims (7)

1.一种低损耗、高导热的氮化硅陶瓷的制备方法,其特征在于,包括:
(1)将氮化硅粉体和烧结助剂混合,得到混合粉体,所述烧结助剂为稀土氧化物,选自Yb2O3、Lu2O3、La2O3、Sm2O3中的至少一种;所述氮化硅粉体包括粒径分布为2~5微米氮化硅粗粉和粒径分布为0.3~0.5微米的氮化硅细粉,所述氮化硅粉体中除氧以外的杂质含量<50ppm,所述氮化硅细粉和氮化硅粗粉的质量比为1:9~4:6;
(2)将所得混合粉体置于石墨热压模具中,并在氮气气氛中、20~40MPa压力、1750~1850℃下热压烧结1~4小时,得到氮化硅烧结体;
(3)将所得氮化硅烧结体置于氮气气氛中、在1300~1500℃下退火处理12~48小时,得到所述低损耗、高导热的氮化硅陶瓷。
2.根据权利要求1所述的制备方法,其特征在于,所述氮化硅粉体和烧结助剂的摩尔比为90:10~97:3。
3.根据权利要求1所述的制备方法,其特征在于,所述混合的方式为球磨混合,所述球磨混合的转速为100~300转/分钟,时间为3~6小时。
4.根据权利要求3所述的制备方法,其特征在于,在球磨混合之后,再经烘干和过筛,得到所述混合粉体。
5.根据权利要求1所述的制备方法,其特征在于,在退火处理的升温过程中,当温度升温至1000℃时控制升温速率为0.5~2℃/分钟,直至升温至退火温度。
6.根据权利要求1所述的制备方法,其特征在于,在退火处理完成之后,以0.5~2℃/分钟降温至1000℃后,随炉降至室温。
7.一种根据权利要求1-6中任一项所述的制备方法制备的低损耗、高导热的氮化硅陶瓷,其特征在于,所述低损耗、高导热的氮化硅陶瓷的介电损耗<2×10-4、热导率>90 W·m-1·K-1、强度>700MPa。
CN201910721461.0A 2019-08-06 2019-08-06 一种低损耗、高导热氮化硅陶瓷的制备方法 Active CN110423122B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910721461.0A CN110423122B (zh) 2019-08-06 2019-08-06 一种低损耗、高导热氮化硅陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910721461.0A CN110423122B (zh) 2019-08-06 2019-08-06 一种低损耗、高导热氮化硅陶瓷的制备方法

Publications (2)

Publication Number Publication Date
CN110423122A CN110423122A (zh) 2019-11-08
CN110423122B true CN110423122B (zh) 2021-08-06

Family

ID=68414445

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910721461.0A Active CN110423122B (zh) 2019-08-06 2019-08-06 一种低损耗、高导热氮化硅陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN110423122B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4219428A1 (en) 2017-04-17 2023-08-02 Kabushiki Kaisha Toshiba, Inc. A substrate, a circuit board, and method for manufacturing the substrate
CN111285692A (zh) * 2020-02-21 2020-06-16 武汉理工大学 一种高导热Si3N4陶瓷及其制备方法
CN113307631B (zh) * 2021-05-13 2022-08-23 广东工业大学 一种无压烧结制备高综合性能氮化硅陶瓷的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11116341A (ja) * 1997-10-16 1999-04-27 Nissan Motor Co Ltd 高熱伝導性窒化ケイ素焼結体およびその製造方法
CN1613824A (zh) * 2004-12-01 2005-05-11 山东中材先进材料股份有限公司 天线罩涂层材料及其制备方法
CN1793043A (zh) * 2006-01-06 2006-06-28 清华大学 一种高性能热处理氮化硅陶瓷及其制备方法
CN104098336A (zh) * 2013-04-15 2014-10-15 中国科学院上海硅酸盐研究所 一种制备高热导率、高强度氮化硅陶瓷的方法
CN105152655A (zh) * 2015-07-15 2015-12-16 东莞华南设计创新院 一种陶瓷的织构化方法
CN107164803A (zh) * 2017-04-27 2017-09-15 广东工业大学 一种简单控制相变制备β‑氮化硅晶须的方法
CN109369194A (zh) * 2018-11-09 2019-02-22 济南大学 一种低介电、高强度多孔氮化硅陶瓷及其制备方法
CN109400175A (zh) * 2018-11-15 2019-03-01 中国科学院上海硅酸盐研究所 一种高导热氮化硅陶瓷基片材料的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3137405B2 (ja) * 1991-01-30 2001-02-19 日本特殊陶業株式会社 窒化珪素基セラミックスの製造法
JPH08133857A (ja) * 1994-11-08 1996-05-28 Sumitomo Electric Ind Ltd セラミックス多孔体及びその製造方法
JP2000103680A (ja) * 1998-09-28 2000-04-11 Nissan Motor Co Ltd 高熱伝導性窒化ケイ素質焼結体用成形体およびその製造方法ならびに高熱伝導性窒化ケイ素質焼結体およびその製造方法
DE10165107B3 (de) * 2000-09-20 2015-06-18 Hitachi Metals, Ltd. Substrat mit Siliciumnitrid-Sinterkörper und Leiterplatte
CN109761206A (zh) * 2019-03-18 2019-05-17 青岛瓷兴新材料有限公司 一种高纯低铝类球形β氮化硅粉体、其制造方法及应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11116341A (ja) * 1997-10-16 1999-04-27 Nissan Motor Co Ltd 高熱伝導性窒化ケイ素焼結体およびその製造方法
CN1613824A (zh) * 2004-12-01 2005-05-11 山东中材先进材料股份有限公司 天线罩涂层材料及其制备方法
CN1793043A (zh) * 2006-01-06 2006-06-28 清华大学 一种高性能热处理氮化硅陶瓷及其制备方法
CN104098336A (zh) * 2013-04-15 2014-10-15 中国科学院上海硅酸盐研究所 一种制备高热导率、高强度氮化硅陶瓷的方法
CN105152655A (zh) * 2015-07-15 2015-12-16 东莞华南设计创新院 一种陶瓷的织构化方法
CN107164803A (zh) * 2017-04-27 2017-09-15 广东工业大学 一种简单控制相变制备β‑氮化硅晶须的方法
CN109369194A (zh) * 2018-11-09 2019-02-22 济南大学 一种低介电、高强度多孔氮化硅陶瓷及其制备方法
CN109400175A (zh) * 2018-11-15 2019-03-01 中国科学院上海硅酸盐研究所 一种高导热氮化硅陶瓷基片材料的制备方法

Also Published As

Publication number Publication date
CN110423122A (zh) 2019-11-08

Similar Documents

Publication Publication Date Title
CN110423122B (zh) 一种低损耗、高导热氮化硅陶瓷的制备方法
CN111410524B (zh) 一种ltcc微波介质材料及其制备方法
KR101751531B1 (ko) 질화 규소 기판 제조방법
CN112830788B (zh) 一种氮化硅陶瓷材料及其制备方法
CN109836141B (zh) 一种高热导率低温共烧陶瓷材料及其制备方法
WO1995017355A1 (en) A low temperature sintering route for aluminum nitride ceramics
JP7062229B2 (ja) 板状の窒化ケイ素質焼結体およびその製造方法
CN113943162B (zh) 一种α-SiAlON高熵透明陶瓷材料及其制备方法
CN112939607A (zh) 一种高热导率氮化铝陶瓷及其制备方法
CN104276823A (zh) 高绝缘碳化硅/氮化硼陶瓷材料及其制备方法
JP7062230B2 (ja) 板状の窒化ケイ素質焼結体およびその製造方法
CN115557792A (zh) 具有优异力学性能的高导热氮化硅陶瓷材料及制备方法
CN114394827A (zh) 一种低介电常数硅酸盐微波介质陶瓷及其制备方法
CN114621014A (zh) 一种高强度高热导氮化硅陶瓷材料及其制备方法
CN115894002B (zh) 一种双相陶瓷增强低温共烧陶瓷材料及其制备方法和用途
CN113354418A (zh) 一种真空热压烧结法制备的高性能氮化铝陶瓷基板及制备方法
KR20170055639A (ko) 열전도성이 우수한 질화규소 소결체의 제조방법
CN106116575A (zh) 一种高d33亚微米级Al3+掺杂铌酸钾钠无铅压电陶瓷的热压烧结方法
CN116332515A (zh) 一种基板陶瓷材料的制备方法
KR20140095460A (ko) 질화규소 소결체 및 그 제조방법
Liang et al. The effect of BaTiO3 addition on the dielectric constant of Si3N4 ceramics
CN118164766B (zh) 一种氮化铝陶瓷烧结体及其制备方法和氮化铝陶瓷基板
KR20190063580A (ko) 신규한 질화규소 분말의 제조방법
Wang et al. Improved sintering characteristics and microwave dielectric properties of 0.02 B 2 O 3–0.98 SiO 2 ceramics by SiO 2 nanoparticle additive
CN109734453B (zh) 一种航天防热用氮化硼-锶长石陶瓷基复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220110

Address after: 333032 acceleration base of Changnan new area, Jingdezhen City, Jiangxi Province

Patentee after: Jiangxi Zhongke Shangyu Technology Co.,Ltd.

Address before: 200050 No. 1295 Dingxi Road, Shanghai, Changning District

Patentee before: SHANGHAI INSTITUTE OF CERAMICS, CHINESE ACADEMY OF SCIENCES