CN115557792A - 具有优异力学性能的高导热氮化硅陶瓷材料及制备方法 - Google Patents

具有优异力学性能的高导热氮化硅陶瓷材料及制备方法 Download PDF

Info

Publication number
CN115557792A
CN115557792A CN202211264872.XA CN202211264872A CN115557792A CN 115557792 A CN115557792 A CN 115557792A CN 202211264872 A CN202211264872 A CN 202211264872A CN 115557792 A CN115557792 A CN 115557792A
Authority
CN
China
Prior art keywords
silicon nitride
nitride ceramic
oxygen
powder
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211264872.XA
Other languages
English (en)
Other versions
CN115557792B (zh
Inventor
李晓雷
刘云
周淼
林彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN202211264872.XA priority Critical patent/CN115557792B/zh
Publication of CN115557792A publication Critical patent/CN115557792A/zh
Application granted granted Critical
Publication of CN115557792B publication Critical patent/CN115557792B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3804Borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3856Carbonitrides, e.g. titanium carbonitride, zirconium carbonitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • C04B2235/3878Alpha silicon nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3891Silicides, e.g. molybdenum disilicide, iron silicide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/46Gases other than oxygen used as reactant, e.g. nitrogen used to make a nitride phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)

Abstract

本发明涉及一种具有优异力学性能的高导热氮化硅陶瓷材料及制备方法。以α‑Si3N4粉和Si粉为主要原料,以无氧稀土化合物/无氧镁化合物为二元复合烧结助剂,通过两步烧结方式制备氮化硅陶瓷。通过优化原料和烧结助剂的配比来减少体系内氧的引入,降低了氧在氮化硅陶瓷晶相晶格中的固溶量,减少了氧缺陷造成的声子散射;通过两步烧结方式调控氮化硅陶瓷的微观结构,使其微观结构具有晶粒双峰分布、玻璃相在三叉晶界处分布且晶粒连续的特点。以上特点使本发明所制备的氮化硅陶瓷具有较优的导热和力学性能,其热导率为95~140W·m‑1·K‑1,弯曲强度为640~950MPa,断裂韧性为6.5~8.3MPa·m1/2

Description

具有优异力学性能的高导热氮化硅陶瓷材料及制备方法
技术领域
本发明涉及一种具有优异力学性能的高导热氮化硅陶瓷材料及制备方法,具体涉及一种以α-Si3N4粉和Si粉为主要原料,以无氧稀土化合物/无氧镁化合物为二元复合烧结助剂,通过两步烧结制备氮化硅陶瓷的方法,属于陶瓷材料技术领域。
背景技术
随着5G通讯系统、高速铁路、新能源汽车、航空航天、太阳能及风力发电等技术的飞速发展要求大功率器件朝着小型化和高度集成化方向发展,然而体积越小、集成度越高将导致系统在工作中产生极高的热量,如果热量不及时扩散到外界,将导致功率器件的性能急剧下降,这要求大功率器件中的陶瓷基片具有高导热性能。同时,由于使用工况不同,如功率器件可能在高低温循环、震动、腐蚀等恶劣条件下使用,除了要求导热陶瓷基片具有高热导性能外、还应具有高机械强度、高断裂韧性等特性。目前,市面上常用的陶瓷基板有氮化铝(AlN)、氧化铝(Al2O3)、氮化硅(Si3N4)等。其中氮化铝(AlN)陶瓷具有很高的理论热导率(320W·m-1·K-1)被广泛用作电子器件的主要陶瓷基板。但其力学性能较差,如弯曲强度为300~400MPa,断裂韧性为3~4MPa·m1/2,导致氮化铝基板的可靠性低,使用寿命较短。而应用较为广泛的Al2O3陶瓷因为热导率较低已经不适合新型大功率半导体器件的高要求。而氮化硅(Si3N4)陶瓷作为综合性能最好的陶瓷材料,其具有高导热(理论热导率200~320W·m-1·K-1)、高强度(600~800MPa)、高韧性(6.0~8.0MPa·m1/2)和高可靠性(-40~150℃条件下循环≥5000次)等优点,在高导热陶瓷材料领域显示出巨大的应用潜力。
然而,目前氮化硅陶瓷在高导热陶瓷材料领域的发展仍然受限。根据现有技术的调研发现限制氮化硅大规模应用的核心问题在于实际制备得到的氮化硅陶瓷热导率较低,而限制其热导率的主要因素为晶格氧含量。目前,高导热氮化硅陶瓷主要是通过长时间保温热处理延长溶解析出过程使晶粒充分长大,纯化晶格,减少晶界相含量的方法制备得到的。这种方法不仅能耗高、周期长,而且高温下长时间热处理使得晶粒过分生长,恶化了强度,削弱了其可靠性,不能很好的兼顾力学性能和导热性能。专利CN 112159237 B公开了一种高导热氮化硅陶瓷材料及其制备方法,以α-Si3N4为原料,稀土氧化物和金属镁为烧结助剂,制备出的氮化硅陶瓷材料热导率为77.56~130.20W·m-1·K-1,抗弯强度为605~1021MPa。专利CN 112661518 A公开了一种高导热氮化硅陶瓷绝缘板及其制备方法,以α-Si3N4为原料结合三种氧化物烧结助剂通过气压烧结保温12~24h制备氮化硅陶瓷绝缘板抗弯强度≥600MPa,热导率≥100W·m-1·K-1,介电常数为7~9。Zhou You等人(Zhou Y,HyugaH,Dai K,et al.A Tough Silicon Nitride Ceramic with High Thermal Conductivity[J].Advanced Materials,2011,23(39):4563-4567.)通过使用Si粉为原料,Y2O3和MgO为烧结助剂,反应结合重烧结保温60h制备出热导率177W·m-1·K-1的氮化硅陶瓷。王为得等人(Wang,W,Yao,D,Liang,H,etal.Effect of the binary nonoxide additives on thedensification behavior and thermal conductivity of Si3N4 ceramics.J Am CeramSoc.2020;103:5891–5899.)以ZrSi2-MgSiN2为烧结助剂,通过气压烧结保温12h制备了热导率为117.32W·m-1·K-1的氮化硅陶瓷,而相同条件下以ZrO2-MgO为烧结的氮化硅陶瓷的热导率仅为88.81W·m-1·K-1。这些现有技术主要存在以下不足:一、大部分现有技术研究使用的都是单一原料。由于α-Si3N4具有比Si粉更高的氧含量,因此,单独使用α-Si3N4粉会使体系的含氧量增高。而单独使用Si粉虽含氧量较低,但容易发生融硅现象,影响氮化硅陶瓷的致密化过程。二、双氧化物烧结助剂或氧化物/非氧化物烧结助剂的使用都会引入额外的氧,使液相N/O降低,液相量增加,造成声子散射,从而使氮化硅陶瓷的热导率降低。三、二元无氧化物烧结助剂ZrSi2-MgSiN2虽已经被现有技术证明其可以有效地降低体系内的氧含量,提高氮化硅陶瓷的热导率,但目前关于二元无氧化物烧结助剂的研究还十分少,并且还没有关于无氧稀土化合物/无氧镁化合物二元复合烧结助剂的相关技术报道。四、大部分现有技术通过长时间保温(超过12h,最高达到60h)以获得高导热氮化硅陶瓷,这样做无疑恶化了其力学性能,降低了其可靠性。
发明内容
基于以上问题,本发明提供了一种以α-Si3N4粉和Si粉为主要原料,以无氧稀土化合物/无氧镁化合物为二元复合烧结助剂,通过两步烧结制备具有优异力学性能的高导热氮化硅陶瓷的方法。通过优化原料和烧结助剂的配比来减少体系内氧的引入,降低了氧在氮化硅陶瓷晶相晶格中的固溶量,减少了氧缺陷造成的声子散射,有利于导热系数提升。通过两步烧结方式对氮化硅微观结构进行调控。在第一步预烧结过程后,Si粉氮化生成的β-Si3N4晶粒分布在预烧结坯体中。在第二步气压烧结过程中,这些形成的β-Si3N4在溶解析出过程中作为晶种,促进了长柱状β-Si3N4晶粒的生长,同时晶种周围新生成的晶核生长为较小晶粒,形成了突出的双峰形貌。此外,本发明所制备的氮化硅陶瓷其微观结构具有玻璃相分布在三叉晶界处且晶粒连续的特点。图1和图2分别为实施例3和实施例6试样的断面SEM图,图中标注对应了上述得到的微观结构特征。图1箭头说明玻璃相集中在三叉晶界处,晶粒呈现双峰粒度分布。图2箭头同样说明玻璃相集中在三叉晶界处,晶粒呈现双峰粒度分布,并且第二相含量减少的同时晶粒间连续性现象明显。本发明在保证高热导率的情况下,尽可能的缩短保温时间,防止晶粒过分长大恶化其力学性能,使热导率与力学性能达到最佳的平衡状态。该制备方法从根本上解决现有技术中氮化硅陶瓷热导率低、力学可靠性差等问题。本发明制备出的氮化硅陶瓷对新能源汽车中绝缘栅双极型晶体管(IGBT)的发展具有十分重要的现实意义。
为了实现上述目的,本发明提供以下技术方案:
针对氮化硅陶瓷晶格氧含量高导致其实际热导率低以及长时间保温导致其力学性能下降的问题,本发明提供了一种全新的具有优异力学性能的高导热氮化硅陶瓷材料及其制备方法。以α-Si3N4粉和Si粉为主要原料,以无氧稀土化合物和无氧镁化合物的混合物为二元复合烧结助剂,通过两步烧结的方法制备氮化硅陶瓷。该方法有效解决了现有技术中氮化硅陶瓷晶格氧含量高导致其实际热导率低以及长时间保温导致其力学性能下降的问题。
一种具有优异力学性能的高导热氮化硅陶瓷材料,以α-Si3N4粉和Si粉为主要原料,高导热氮化硅陶瓷的主晶相是β-Si3N4,其来源于两个方面,一是由原料中的α-Si3N4粉在烧成过程中相转变而来,二是由原料中的Si粉在高温过程中氮化得到,Si粉生成Si3N4的摩尔当量比为3:1。
所述的氮化硅陶瓷材料的主晶相β-Si3N4,其中来自原料中α-Si3N4的份数占其总量的90%-50%;来自原料中的Si粉氮化生成的份数占其总量的10%-50%。
所述的氮化硅陶瓷材料,其主晶相β-Si3N4与烧结助剂的摩尔比为85:15-95:5。
优选的,所述的氮化硅陶瓷材料的主晶相β-Si3N4,其中来自原料中α-Si3N4的份数占其总量的90%-75%;来自原料中的Si粉氮化生成的份数占其总量的10%-25%。
优选的,所述的氮化硅陶瓷材料,其主晶相β-Si3N4与烧结助剂的摩尔比为85:15-90:10。
所述的无氧稀土化合物/无氧镁化合物二元复合烧结助剂,其中,无氧稀土化合物为YB2C2、Y2Si2C2、Y2Si4N6C中的一种;无氧镁化合物为Mg2Si、MgSiN2中的一种。所述的二元复合烧结助剂中无氧稀土化合物和无氧镁化合物的摩尔比为0.1~0.5:1。
优选的,所述的二元复合烧结助剂中无氧稀土化合物和无氧镁化合物的摩尔比为0.2~0.4:1。
本发明的一种具有优异力学性能的高导热氮化硅陶瓷材料的制备方法;包括如下步骤:包括:
1)将原料α-Si3N4粉和Si粉与无氧稀土化合物/无氧镁化合物二元复合烧结助剂按照上述比例进行配料,经过球磨、烘干、过筛工序,得到混合粉体;采用两步成型方式得到较为致密的氮化硅坯体;
2)成型后的氮化硅坯体采用两步烧结方式得到氮化硅陶瓷;在两步烧结过程中,均采用在坩埚中埋粉烧结的方式,其中埋粉的粉料为氮气气氛烧结后的氮化硼和氮化硅粉。
步骤1)所述的两步成型方式:第一步为干压成型,得到初步致密素坯,第二步为冷等静压成型,压力为180~350MPa,得到较为致密的氮化硅坯体。
步骤2)所述的两步烧结方式:第一步为预烧结,采用氮气气氛常压烧结,以5~10℃/min升温至1350~1500℃,保温1~4小时。
步骤2)所述的两步烧结方式:第二步烧结为氮气气氛气压烧结:其中氮气气氛压力为1~6MPa,以5~10℃/min升温至1450℃,再以2~5℃/min升温至1800~1950℃,保温2~10小时。
本发明所制备一种具有优异力学性能的高导热氮化硅陶瓷材料,其主要技术指标为:热导率95~140W·m-1·K-1,弯曲强度640~950MPa,断裂韧性6.5~8.3MPa·m1/2
本发明的有益效果如下:
在本发明中,以α-Si3N4粉和Si粉为主要原料,以无氧稀土化合物/无氧镁化合物为二元复合烧结助剂,通过两步法烧结制备氮化硅陶瓷。所制备的氮化硅陶瓷热导率95~140W·m-1·K-1,弯曲强度640~950MPa,断裂韧性6.5~8.3MPa·m1/2
1.通过优化原料和烧结助剂的配比来减少体系内氧的引入,降低了氧在氮化硅陶瓷晶相晶格中的固溶量,减少了氧缺陷造成的声子散射,有利于导热系数提升。
2.通过两步烧结方式对氮化硅微观结构进行调控。在第一步预烧结过程后,Si粉氮化生成的β-Si3N4晶粒分布在预烧结坯体中。在第二步气压烧结过程中,这些形成的β-Si3N4在溶解析出过程中作为晶种,促进了长柱状β-Si3N4晶粒的生长,同时晶种周围新生成的晶核生长为较小晶粒,形成了突出的双峰形貌。此外,本发明所制备的氮化硅陶瓷其微观结构具有玻璃相分布在三叉晶界处且晶粒连续的特点,具体见附图1和2烧结样品的SEM图分析。其中图1为实施例3的烧结样品的断面SEM图,箭头部分晶粒尺寸比较大,大晶粒周围分布着一些小晶粒,说明两步烧结制度使得体系中存在更多的β-Si3N4,这些β-Si3N4可以优先发育成较大晶粒,形成双峰粒度分布。并且图中箭头部分说明玻璃相集中在三叉晶界处。图2为实施例6烧结样品的断面SEM图。图中出现了大量棒晶,箭头部分表明玻璃相分布在三叉晶界,晶粒连续性和双峰粒度分布现象明显。
3.由于Si粉的价格低,且结合两步法烧结方式的较短保温时间可以大大降低生产成本。
附图说明
图1为实施例3烧结样品的断面SEM图。
图2为实施例6烧结样品的断面SEM图。
具体实施方式
为了更清楚地说明本专利的优点,下面结合实施例对本发明实施方式与效果做进一步阐述。应清楚,以下实施方式仅用于说明本发明,而非限制本发明。
在本发明中,通过优化原料和烧结助剂的配比,采用两步烧结的方式制备出具有优异力学性能的高导热氮化硅陶瓷。以下示例性地说明本发明所提供的氮化硅陶瓷的制备方法。具体制备步骤如下:
将α-Si3N4粉、Si粉、无氧稀土化合物和无氧镁化合物按照比例进行称重,经过球磨、烘干、过筛工序,得到混合粉体。
本发明中,以α-Si3N4粉和Si粉为主要原料,高导热氮化硅陶瓷的主晶相是β-Si3N4,其来源于两个方面,一是由原料中的α-Si3N4粉在烧成过程中相转变而来,二是由原料中的Si粉在高温过程中氮化得到。所述的氮化硅陶瓷材料的主晶相β-Si3N4,其中来自原料中α-Si3N4的份数占其总量的90%-50%;来自原料中的Si粉氮化生成的份数占其总量的10%-50%。所述氮化硅主晶相β-Si3N4与烧结助剂的摩尔比为85:15-95:5。所述的二元复合烧结助剂中无氧稀土化合物和无氧镁化合物的摩尔比为0.1~0.5:1。
将过筛后得到的混合粉料经干压成型得到初步致密的素坯,经冷等静压成型得到致密氮化硅坯料。其中,冷等静压成型的压力为180~350MPa。
坯料两步烧结时使用的坩埚均为涂有氮化硼的石墨坩埚,两步烧结过程采用埋粉烧结,其中埋粉的粉料为氮气气氛烧结后的氮化硼和氮化硅粉。两步烧结方式中的第一步为预烧结,采用N2气氛常压烧结,以5~10℃/min升温至1350~1500℃,保温1~4小时。第二步为烧结为氮气气氛气压烧结:其中氮气气氛压力为1~6MPa,以5~10℃/min升温至1450℃,再以2~5℃/min升温至1800~1950℃,保温2~10小时。
本发明所获得的高力学性能、高导热氮化硅陶瓷主要技术指标为:热导率95~140W·m-1·K-1,弯曲强度640~950MPa,断裂韧性6.5~8.3MPa·m1/2
下面进一步举例实施例以详细说明本发明,显然,此处所描述的实施例,不是全部的实施例,所示具体工艺参数也仅是合适范围的一个示例。基于本发明的实施例,本领域普通技术人员所获得的所有其它实施例,都属于本发明的保护范围。
实施例1-9
按表1中实施例1-9中所示原料和烧结助剂的进行配比,按上述制备流程及表1的制备条件进行烧结,最终获得高力学性能、高导热氮化硅陶瓷。
测试手段:
分别采用阿基米德排水法、激光热导仪、氧氮分析仪、万能材料试验机及扫描电子显微镜分别对氮化硅陶瓷的密度、热导率、弯曲强度和断裂韧性、微观形貌进行表征。
表1本发明中实施例1-9所用原料和烧结助剂的配比及制备工艺。
Figure BDA0003892684590000061
Figure BDA0003892684590000071
表2本发明中实施例1-9所制备氮化硅陶瓷的性能。
Figure BDA0003892684590000072
Figure BDA0003892684590000081
从表1和表2可以看出,采用本发明技术方案所制备的氮化硅陶瓷,其热导率为95~140W·m-1·K-1,弯曲强度为640~950MPa,断裂韧性为6.5~8.3MPa·m1/2。从所制备氮化硅的性能来看,使用无氧稀土化合物/无氧镁化合物二元复合烧结助剂的氮化硅陶瓷在合适的配比下结合两步烧结可以很好的兼顾力学性能和热导率。因此,本发明很好的解决了现有技术中热导率和力学性能不能兼顾的问题。
图1为实施例3的断面SEM图,从图中我们可以看出,图中标注部分可以看出大量棒晶产生,大晶粒周围分布着一些小晶粒,这是由于两步烧结制度使得体系中存在更多的β-Si3N4,这些β-Si3N4可以优先发育成较大晶粒,形成双峰粒度分布。并且图中箭头部分可以看出,晶界相集中在三叉晶界处。这表明通过配方优化结合两步烧结制度可以很好的调控氮化硅的微观结构,使其在较短的保温时间仍可以获得优异的力学性能和导热性能。
图2为实施例6的断面SEM图。同样图中可以看出,出现了大量棒晶且玻璃相的含量较少,箭头部分表明晶粒间连续性和双峰粒度分布现象明显以及玻璃相位于三叉晶界处。这也充分说明了使用无氧稀土化合物/无氧镁化合物复合烧结助剂的氮化硅陶瓷在合适的配比下结合两步烧结方式可以对氮化硅陶瓷的微观结构进行调控。
本发明公开和提出的技术方案,本领域技术人员可通过借鉴本文内容,适当改变条件路线等环节实现,尽管本发明的方法和制备技术已通过较佳实施例子进行了描述,相关技术人员明显能在不脱离本发明内容、精神和范围内对本文所述的方法和技术路线进行改动或重新组合,来实现最终的制备技术。特别需要指出的是,所有相类似的替换和改动对本领域技术人员来说是显而易见的,他们都被视为包括在本发明精神、范围和内容中。

Claims (9)

1.一种具有优异力学性能的高导热氮化硅陶瓷材料,其特征是,以α-Si3N4粉和Si粉为主要原料,以无氧稀土化合物/无氧镁化合物为二元复合烧结助剂,通过两步烧结的方法制备氮化硅陶瓷材料。
2.如权利要求1所述的氮化硅陶瓷材料,其特征是,所制备氮化硅陶瓷的主晶相是β-Si3N4,其来源于两个方面,一是由原料中的α-Si3N4粉在烧成过程中相转变而来,二是由原料中的Si粉在高温过程中氮化得到;所述的氮化硅陶瓷的主晶相β-Si3N4,其中来自原料中α-Si3N4的份数占其总量的90%-50%;来自原料中的Si粉氮化生成的份数占其总量的10%-50%。
3.如权利要求1所述的氮化硅陶瓷材料,其特征是,其主晶相β-Si3N4与烧结助剂的摩尔比为85:15-95:5。
4.如权利要求1所述的氮化硅陶瓷材料,其特征是,所述的二元复合烧结助剂是由无氧稀土化合物和无氧镁化合物组成的;其中,无氧稀土化合物为YB2C2、Y2Si2C2、Y2Si4N6C中的一种;无氧镁化合物为Mg2Si、MgSiN2中的一种。
5.如权利要求1所述的氮化硅陶瓷材料,其特征是,所述的二元复合烧结助剂中无氧稀土化合物和无氧镁化合物的摩尔比为0.1~0.5:1。
6.权利要求1所述的一种具有优异力学性能的高导热氮化硅陶瓷材料的制备方法;其特征是采用两步烧结方式制备氮化硅陶瓷。
7.如权利要求6中所述的两步烧结方式,其特征是,第一步采用氮气气氛常压烧结,以5~10℃/min升温至1350~1500℃,保温1~4小时。
8.如权利要求6中所述的两步烧结方式,其特征是,第二步采用氮气气氛气压烧结,以5~10℃/min升温至1450℃,再以2~5℃/min升温至1800~1950℃,保温2~10小时;烧结过程中氮气气氛压力范围为1~6MPa。
9.如权利要求1具有优异力学性能的高导热氮化硅陶瓷材料,其特征是,热导率95~140W·m-1·K-1,弯曲强度640~950MPa,断裂韧性6.5~8.3MPa·m1/2
CN202211264872.XA 2022-10-17 2022-10-17 具有优异力学性能的高导热氮化硅陶瓷材料及制备方法 Active CN115557792B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211264872.XA CN115557792B (zh) 2022-10-17 2022-10-17 具有优异力学性能的高导热氮化硅陶瓷材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211264872.XA CN115557792B (zh) 2022-10-17 2022-10-17 具有优异力学性能的高导热氮化硅陶瓷材料及制备方法

Publications (2)

Publication Number Publication Date
CN115557792A true CN115557792A (zh) 2023-01-03
CN115557792B CN115557792B (zh) 2023-11-03

Family

ID=84767481

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211264872.XA Active CN115557792B (zh) 2022-10-17 2022-10-17 具有优异力学性能的高导热氮化硅陶瓷材料及制备方法

Country Status (1)

Country Link
CN (1) CN115557792B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116217235A (zh) * 2023-02-10 2023-06-06 湖南星鑫航天新材料股份有限公司 一种氮化硅质大尺寸高温结构件及其制备方法
CN116496093A (zh) * 2023-06-27 2023-07-28 季华实验室 一种氮化硅陶瓷材料及其制备方法
CN116639985A (zh) * 2023-06-07 2023-08-25 湖南湘瓷科艺有限公司 一种高导热率氮化硅陶瓷基板及其应用
CN117303917A (zh) * 2023-09-23 2023-12-29 南通三责精密陶瓷有限公司 一种氮化硅陶瓷烧结助剂、高导热氮化硅陶瓷及制备方法
CN117550901A (zh) * 2023-11-13 2024-02-13 中国人民解放军国防科技大学 一种采用核壳结构Si3N4@MgSiN2粉体制备高导热高强度氮化硅陶瓷的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0940377A1 (en) * 1998-03-05 1999-09-08 Sumitomo Electric Industries, Ltd. Si3N4 Sintered body with high thermal conductivity and method for producing the same
US6143677A (en) * 1997-09-03 2000-11-07 Sumitomo Electric Industries, Ltd. Silicon nitride sinter having high thermal conductivity and process for preparing the same
JP2007197226A (ja) * 2006-01-24 2007-08-09 National Institute Of Advanced Industrial & Technology 高い信頼性を持つ高熱伝導窒化ケイ素セラミックス及びその製造方法
CN105016738A (zh) * 2014-04-30 2015-11-04 广东工业大学 氮化硅陶瓷及其制备方法
CN109627014A (zh) * 2019-01-14 2019-04-16 中国科学院上海硅酸盐研究所 一种高强度、高导热性的Si3N4陶瓷材料及其制备方法
CN111196728A (zh) * 2019-11-20 2020-05-26 中国科学院上海硅酸盐研究所 一种高强度、高韧性、高热导率氮化硅陶瓷材料及其制备方法
CN112142476A (zh) * 2020-09-28 2020-12-29 中国科学院上海硅酸盐研究所 一种提高氮化硅陶瓷基板材料热导率和力学性能的硅热还原方法
CN113636844A (zh) * 2021-08-25 2021-11-12 北京科技大学 一种两步烧结制备高强高导热氮化硅陶瓷的方法
WO2022156637A1 (zh) * 2021-01-20 2022-07-28 中国科学院上海硅酸盐研究所 一种氮化硅陶瓷材料的制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6143677A (en) * 1997-09-03 2000-11-07 Sumitomo Electric Industries, Ltd. Silicon nitride sinter having high thermal conductivity and process for preparing the same
EP0940377A1 (en) * 1998-03-05 1999-09-08 Sumitomo Electric Industries, Ltd. Si3N4 Sintered body with high thermal conductivity and method for producing the same
JP2007197226A (ja) * 2006-01-24 2007-08-09 National Institute Of Advanced Industrial & Technology 高い信頼性を持つ高熱伝導窒化ケイ素セラミックス及びその製造方法
CN105016738A (zh) * 2014-04-30 2015-11-04 广东工业大学 氮化硅陶瓷及其制备方法
CN109627014A (zh) * 2019-01-14 2019-04-16 中国科学院上海硅酸盐研究所 一种高强度、高导热性的Si3N4陶瓷材料及其制备方法
CN111196728A (zh) * 2019-11-20 2020-05-26 中国科学院上海硅酸盐研究所 一种高强度、高韧性、高热导率氮化硅陶瓷材料及其制备方法
CN112142476A (zh) * 2020-09-28 2020-12-29 中国科学院上海硅酸盐研究所 一种提高氮化硅陶瓷基板材料热导率和力学性能的硅热还原方法
WO2022156637A1 (zh) * 2021-01-20 2022-07-28 中国科学院上海硅酸盐研究所 一种氮化硅陶瓷材料的制备方法
CN113636844A (zh) * 2021-08-25 2021-11-12 北京科技大学 一种两步烧结制备高强高导热氮化硅陶瓷的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YINSHENG LI等: "Enhanced thermal conductivity in Si3N4 ceramic with the addition of Y2Si4N6C", vol. 101, no. 9, pages 4128 - 4136, XP055832150, DOI: 10.1111/jace.15544 *
张景贤;席红安;段于森;刘宁;马瑞欣;江东亮;杨建;李晓云;丘泰;: "高导热氮化硅陶瓷的快速制备和性能控制", 真空电子技术, no. 01 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116217235A (zh) * 2023-02-10 2023-06-06 湖南星鑫航天新材料股份有限公司 一种氮化硅质大尺寸高温结构件及其制备方法
CN116217235B (zh) * 2023-02-10 2024-03-01 湖南星鑫航天新材料股份有限公司 一种氮化硅质大尺寸高温结构件及其制备方法
CN116639985A (zh) * 2023-06-07 2023-08-25 湖南湘瓷科艺有限公司 一种高导热率氮化硅陶瓷基板及其应用
CN116639985B (zh) * 2023-06-07 2024-05-28 湖南湘瓷科艺有限公司 一种高导热率氮化硅陶瓷基板及其应用
CN116496093A (zh) * 2023-06-27 2023-07-28 季华实验室 一种氮化硅陶瓷材料及其制备方法
CN116496093B (zh) * 2023-06-27 2023-09-15 季华实验室 一种氮化硅陶瓷材料及其制备方法
CN117303917A (zh) * 2023-09-23 2023-12-29 南通三责精密陶瓷有限公司 一种氮化硅陶瓷烧结助剂、高导热氮化硅陶瓷及制备方法
CN117550901A (zh) * 2023-11-13 2024-02-13 中国人民解放军国防科技大学 一种采用核壳结构Si3N4@MgSiN2粉体制备高导热高强度氮化硅陶瓷的方法
CN117550901B (zh) * 2023-11-13 2024-05-14 中国人民解放军国防科技大学 一种采用核壳结构Si3N4@MgSiN2粉体制备高导热高强度氮化硅陶瓷的方法

Also Published As

Publication number Publication date
CN115557792B (zh) 2023-11-03

Similar Documents

Publication Publication Date Title
CN115557792B (zh) 具有优异力学性能的高导热氮化硅陶瓷材料及制备方法
CN112142476B (zh) 一种提高氮化硅陶瓷基板材料热导率和力学性能的硅热还原方法
CN109851369B (zh) 一种制备高热导率氮化硅陶瓷的方法
CN100432016C (zh) 一种制备氮化铝/氮化硼复相陶瓷的方法
CN112830788B (zh) 一种氮化硅陶瓷材料及其制备方法
CN100355701C (zh) 一种高热导氮化硅陶瓷的制备方法
CN112159237A (zh) 一种高导热氮化硅陶瓷材料及其制备方法
CN111875387A (zh) 一种用碳包覆制备低氧含量、高热导的氮化硅陶瓷的方法及其应用
CN112645726B (zh) 一种具有典型长颗粒形貌、富含层错和孪晶的碳化硅晶须陶瓷及其制备方法
CN111196727B (zh) 一种高热导率氮化硅陶瓷材料及其制备方法
CN111196728A (zh) 一种高强度、高韧性、高热导率氮化硅陶瓷材料及其制备方法
CN111302809B (zh) 一种高热导率、高强度氮化硅陶瓷材料及其制备方法
CN111285692A (zh) 一种高导热Si3N4陶瓷及其制备方法
CN108863395B (zh) 一种高热导率、高强度氮化硅陶瓷材料及其制备方法
US11807582B1 (en) Silicon nitride ceramic sintered body and preparation method thereof
CN111196730B (zh) 一种高热导率氮化硅陶瓷材料及其制备方法
WO2023024273A1 (zh) 一种非氧化物Y3Si2C2烧结助剂、高性能氮化硅陶瓷基板及其制备方法
CN113735591A (zh) 采用放电等离子烧结制备氮掺杂导电碳化硅陶瓷的方法
CN115010499A (zh) 一种稀土氟化物与氧化钪双掺制备高性能氮化铝陶瓷基板的方法
CN110937903B (zh) 一种高强度、高导热性的氮化硅陶瓷材料及其制备方法
CN114394837A (zh) 一种抗氧化性的二硼化物-碳化物固溶体陶瓷的制备方法和应用
JP3942280B2 (ja) 六方晶窒化ほう素焼結体の製造方法
CN116903378A (zh) 一种微波低温预处理制备高强度低晶格氧缺陷氮化铝陶瓷的方法
CN115784752A (zh) 一种制备高导热氮化硅陶瓷的方法
CN117209289A (zh) 氮化硅陶瓷、用于制备其的组合物及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant