CN117550901B - 一种采用核壳结构Si3N4@MgSiN2粉体制备高导热高强度氮化硅陶瓷的方法 - Google Patents

一种采用核壳结构Si3N4@MgSiN2粉体制备高导热高强度氮化硅陶瓷的方法 Download PDF

Info

Publication number
CN117550901B
CN117550901B CN202311505515.2A CN202311505515A CN117550901B CN 117550901 B CN117550901 B CN 117550901B CN 202311505515 A CN202311505515 A CN 202311505515A CN 117550901 B CN117550901 B CN 117550901B
Authority
CN
China
Prior art keywords
powder
silicon nitride
mgsin
heat
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202311505515.2A
Other languages
English (en)
Other versions
CN117550901A (zh
Inventor
王为得
马青松
陈思安
郭蕾
彭峥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University of Defense Technology
Original Assignee
National University of Defense Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University of Defense Technology filed Critical National University of Defense Technology
Priority to CN202311505515.2A priority Critical patent/CN117550901B/zh
Publication of CN117550901A publication Critical patent/CN117550901A/zh
Application granted granted Critical
Publication of CN117550901B publication Critical patent/CN117550901B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/593Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering
    • C04B35/5935Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering obtained by gas pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62828Non-oxide ceramics
    • C04B35/62836Nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/401Alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种采用核壳结构Si3N4@MgSiN2粉体制备高导热高强度氮化硅陶瓷的方法,采用镁粉和氮化硅粉为主要原料制备Si3N4@MgSiN2,原位生成的MgSiN2这种非氧化物烧结助剂可以有效降低液相中的氧含量,阻碍晶格氧的形成,促进致密化及晶粒发育,进而提高Si3N4陶瓷的热导率。

Description

一种采用核壳结构Si3N4@MgSiN2粉体制备高导热高强度氮化 硅陶瓷的方法
技术领域
本发明属于氮化硅陶瓷技术领域,具体涉及一种采用核壳结构Si3N4@MgSiN2粉体制备高导热高强度氮化硅陶瓷的方法。
背景技术
近年来,关于航空航天、电子信息与能源领域的研究飞速发展,半导体器件作为电力电器设备的关键部件也逐渐沿着大功率化、微型化、集成化、高频化的方向发展。但由于半导体器件工作过程中发热严重,严重影响器件的工作稳定性和寿命,因此亟需研制兼具高导热率和高强度特点的基板材料来解决这一关键问题。Si3N4陶瓷是一种综合性能优异的陶瓷材料,具有优异的弯曲强度和断裂韧性,从而大幅提高了力学可靠性,且其理论热导率高达320W/(m·K),这使Si3N4陶瓷成为了最具应用前景的陶瓷散热基板材料。
然而,由于Si3N4自扩散系数低,当烧结温度接近Si3N4分解温度时,离子迁移才有足够的速度,因此固相烧结很难得到致密的Si3N4陶瓷。为了实现Si3N4陶瓷的致密烧结,目前Si3N4陶瓷的烧结大多采用液相烧结,通过液相的润湿溶解作用,促进物质的扩散传质。引入液相的常用方法是添加合适的烧结助剂,高温烧结过程中烧结助剂与表层的二氧化硅反应生成氧氮化物液相从而促进致密。国内外研究人员主要研究以氧化物作为烧结助剂得到性能优异的Si3N4陶瓷,但采用氧化物作为烧结助剂将会增加Si3N4陶瓷中氧元素的含量,导致晶格氧含量升高,从而影响Si3N4陶瓷的热导率。因此,使用非氧化物助剂替代氧化物助剂是解决这一问题的有效方式。
MgSiN2作为一种非氧化物烧结助剂,可以有效降低液相中的氧含量,阻碍晶格氧的形成,进而有效改善Si3N4陶瓷的热导率和力学性能,所以受到了国内外研究学者的广泛关注。目前已有研究报道了MgSiN2粉体的不同制备工艺,如Lences等人[J.Am.Ceram.Soc.,2003,86(7),1088-1093]以Si粉、Mg粉、Mg2Si和α-Si3N4的混合物为原料,在高纯氮气氛围中1350℃直接合成MgSiN2。Uchida等人[J.Ceram.Soc.,1997.,105(11),934-939]以硅酸镁为原料,在1400℃氮气气氛下,通过碳热还原法合成MgSiN2粉体。
但上述制备方法具有成本高、操作过程复杂、产物纯度较低等缺点;此外,后续还需通过球磨混料的方式将烧结助剂与Si3N4粉体混合,该方法易造成团聚和混料不均匀的问题,进而影响Si3N4的致密烧结。
发明内容
针对现有技术中易造成团聚和混料不均匀的问题,进而影响Si3N4的致密烧结的问题,本发明提供了一种采用核壳结构Si3N4@MgSiN2粉体制备高导热高强度氮化硅陶瓷的方法,基于熔盐法制备的具有核壳结构Si3N4@MgSiN2的粉体,并以外层MgSiN2非氧化物作为烧结助剂通过气压烧结制备了高导热率、高力学性能的氮化物陶瓷材料。
本发明的技术原理如下:
3Mg+Si3N4+N2→3MgSiN2
本发明的目的通过以下技术方案实现:
一种采用核壳结构Si3N4@MgSiN2粉体制备高导热高强度氮化硅陶瓷的方法,包括以下步骤:
1)以镁粉和氮化硅为原料,以碱金属盐为熔盐原料,将其与镁粉和氮化硅混合均匀,得到混合原料;
所述镁粉和氮化硅的质量比为1:(10-30);
所述镁粉加氮化硅粉与碱金属盐的质量比为1:(1-3);
所述碱金属盐为钠盐和钾盐中的一种或几种,其中,钠盐为氟化钠、氯化钠、溴化钠中的一种或几种,钾盐为氟化钾、氯化钾中的一种或几种,混合时为任意比例;
2)将上步骤得到的混合原料在保护气氛下,进行高温烧结处理,高温烧结温度为1000-1500℃,高温烧结步骤的升温速率为1-20℃/min,时间为1-10h;再经过洗涤、干燥,过筛后得到具有核壳结构的Si3N4@MgSiN2复合粉体;
3)将上步骤得到的具有核壳结构的Si3N4@MgSiN2复合粉体压制成型后,经烧结处理,所述的烧结处理的方式选自气压烧结,烧结温度为1800-1900℃,烧结保温的时间≥2小时,烧结处理的升温速率为1-10℃/min,在烧结处理完成之后,先以≤20℃/min的降温速率冷却至800-1200℃,然后随炉冷却至室温,得到具有核壳结构Si3N4@MgSiN2粉体制备高导热高强度氮化硅陶瓷,其热导率为62.5-120.5W/(m·K)、抗弯强度为721-967MPa、断裂韧性为6.20-9.23MPa·m1/2
本发明中:
优选的,步骤1)中镁粉和氮化硅的质量比为1:(10-20)。
优选的,步骤1)中所述的碱金属盐由氯化钠和氯化钾按1:(0.5-2)的质量比混合而成。
优选的,步骤2)中所述的的保护气氛,选自氮气。
优选的,步骤2)中所述的高温烧结温度为1100-1400℃,所述高温烧结步骤的升温速率为5-10℃/min,时间为2-6h。
优选的,步骤2)中所述的洗涤、干燥,过筛,具体过程包括:采用浓度为20-25wt%盐酸浸泡0.5-2h后,再用蒸馏水洗涤3-4次至盐被洗干净;抽滤后得到的Si3N4@MgSiN2复合粉体,在50-80℃下进行干燥8-24h,过筛目数采用60-300目。
优选的,步骤3)中所述的压制成型的方式为干压成型和/或等静压处理,更优选为先干压成型后等静压处理;所述的干压成型的压力为10-50MPa,所述的等静压处理的压力为200-300MPa,更优选地,所述的等静压处理为冷等静压处理。
优选地,步骤3)中所述的气压烧结的气氛为氮气,气压≥1MPa,其中,气压烧结时高的N2压力可以避免高温下(1780℃以上)氮化硅的分解,提高了烧结活性,有利于致密化及晶粒生长。
与现有技术相比,本发明具有以下优点:
1、本发明所述的一种采用核壳结构Si3N4@MgSiN2粉体制备高导热高强度氮化硅陶瓷的方法,利用熔盐法制备了Si3N4@MgSiN2复合粉体,在熔盐体系中,Mg的溶解度高,扩散速度快,而Si3N4在熔盐中基本不发生溶解,因此Mg扩散至Si3N4颗粒表面时发生如下反应:3Mg+Si3N4+N2→3MgSiN2,通过控制反应进行的程度可以制备出以Si3N4为核心,产物MgSiN2为壳层的Si3N4@MgSiN2核壳结构粉体。相比常规球磨法将烧结助剂与氮化硅混合,基于熔盐法制备的这种具有核壳结构的复合粉体可以实现MgSiN2助剂在Si3N4表面的均匀分散和负载,有效解决Si3N4和MgSiN2复合过程中产生的团聚和混合不均匀等问题,提高了MgSiN2在Si3N4中分散的均匀性。
2、本发明所述的一种采用核壳结构Si3N4@MgSiN2粉体制备高导热高强度氮化硅陶瓷的方法,采用镁粉和氮化硅粉为主要原料制备Si3N4@MgSiN2,原位生成的MgSiN2这种非氧化物烧结助剂可以有效降低液相中的氧含量,阻碍晶格氧的形成,促进致密化及晶粒发育,进而提高Si3N4陶瓷的热导率。
3、本发明所述的一种采用核壳结构Si3N4@MgSiN2粉体制备高导热高强度氮化硅陶瓷的方法,所制备的氮化硅陶瓷材料的热导率可达120.5W/(m·K)以上,抗弯强度也得以改善(可达967MPa),断裂韧性也得以改善(可达9.23MPa·m1/2),可满足氮化硅陶瓷在高密度、大功率半导体器件、大功率电子电力器件领域的应用要求。
附图说明
图1是本发明实验例3中一种基于熔盐法的Si3N4@MgSiN2复合粉体的XRD图;
图2是本发明实验例3中一种基于熔盐法的Si3N4@MgSiN2复合粉体的SEM图;
图3是本发明实验例3中一种采用核壳结构Si3N4@MgSiN2粉体制备高导热高强度氮化硅陶瓷断面SEM图。
具体实施方式
以下通过实施例进一步详细描述本发明,但这些实施例不应认为是对本发明的限制。
本具体实施方式中:
所述盐酸溶液的浓度为20-25wt%;
所述镁粉的纯度≥99.0wt%;所述镁粉的粒度为10-150μm;
所述氮化硅的纯度≥95.0wt%;所述氮化硅的粒度为0.10-2μm;
所述氯化钾的纯度≥99.5wt%;氯化钾的粒度≤0.1mm;
所述氯化钠的纯度≥99.5wt%;氯化钠的粒度≤0.1mm。
实施例1:
一种采用核壳结构Si3N4@MgSiN2粉体制备高导热高强度氮化硅陶瓷的方法,具体步骤是:
步骤一、以2.27wt%镁粉、22.72wt%氮化硅粉、25wt%的氟化钠和50wt%的氯化钾混合,得到均匀混合的粉体;
步骤二、将步骤一所得混合粉体放入MgO坩埚中,在氮气保护气氛下于1000℃保温1h,升温速率为3℃/min;煅烧结束后,随炉冷却至室温后取出样品;将烧结后的粉体经过研磨后置入浓度为20wt%的盐酸溶液中搅拌洗涤0.5h,再用蒸馏水洗涤3-4次至熔盐清洗干净;然后在50℃烘箱中干燥12h,研磨过筛后制得具有核壳结构的Si3N4@MgSiN2复合粉体;
步骤三、将步骤二所得复合粉体在20MPa压力下干压成型,再在250MPa压力下进行冷等静压处理;将得到的坯体放入BN坩埚中,在N2气氛下于1800℃气压烧结,其中升温速率为10℃/min,N2压力为1MPa,保温时间为4h;烧结结束后,以10℃/min的降温速率冷却至1200℃,然后随炉冷却至室温;
测试结果显示,由该复合粉体制备的氮化硅陶瓷材料的热导率为62.5W/(m·K),三点抗弯强度为795±20MPa,断裂韧性为6.20±0.14MPa·m1/2
实施例2:
一种采用核壳结构Si3N4@MgSiN2粉体制备高导热高强度氮化硅陶瓷的方法,具体步骤是:
步骤一、以3wt%镁粉、37wt%氮化硅粉、40wt%的氯化钠和20wt%的氟化钾混合,得到均匀混合的粉体;
步骤二、将步骤一所得混合粉体放入MgO坩埚中,在氮气保护气氛下于1250℃保温2h,升温速率为5℃/min;煅烧结束后,随炉冷却至室温后取出样品;将烧结后的粉体经过研磨后置入浓度为20wt%的盐酸溶液中搅拌洗涤0.5h,再用蒸馏水洗涤3-4次至熔盐清洗干净;然后在50℃烘箱中干燥12h,研磨过筛后制得具有核壳结构的Si3N4@MgSiN2复合粉体;
步骤三、将步骤二所得复合粉体在20MPa压力下干压成型,再在300MPa压力下进行冷等静压处理;将得到的坯体放入BN坩埚中,在N2气氛下于1850℃气压烧结,其中升温速率为10℃/min,N2压力为1MPa,保温时间为4h;烧结结束后,以10℃/min的降温速率冷却至1200℃,然后随炉冷却至室温;
由实施例2制得的氮化硅陶瓷材料的热导率为85.4W/(m·K),三点抗弯强度为950±45MPa,断裂韧性为7.65±0.23MPa·m1/2
实施例3:
一种采用核壳结构Si3N4@MgSiN2粉体制备高导热高强度氮化硅陶瓷的方法,具体步骤是:
步骤一、以2.5wt%镁粉、47.5wt%氮化硅粉、25wt%的氯化钠和25wt%的氯化钾混合,得到均匀混合的粉体;
步骤二、将步骤一所得混合粉体放入MgO坩埚中,在氮气保护气氛下于1300℃保温2h,升温速率为10℃/min,随炉冷却至室温后取出样品;将烧结后的粉体经过研磨后置入浓度为20wt%的盐酸溶液中搅拌洗涤0.5h,再用蒸馏水洗涤3-4次至熔盐清洗干净;然后在50℃烘箱中干燥12h,研磨过筛后制得具有核壳结构的Si3N4@MgSiN2复合粉体;
步骤三、将步骤二所得复合粉体在30MPa压力下干压成型,再在300MPa压力下进行冷等静压处理;将得到的坯体放入BN坩埚中,在N2气氛下于1900℃气压烧结,其中升温速率为3℃/min,N2压力为5MPa,保温时间为12h;烧结结束后,以2℃/min的降温速率冷却至1000℃,然后随炉冷却至室温。
对实施例3制得的复合粉体进行XRD测试,结果显示粉体中含有Si3N4和MgSiN2晶相,如图1所示;
通过EDS-Mapping也观察到了复合粉体的核壳结构,如图2所示;
由实施例3制得的氮化硅陶瓷材料的热导率为120.5W/(m·K),三点抗弯强度为721±30MPa,断裂韧性为9.23±0.25MPa·m1/2。由实施例3所制得的氮化硅陶瓷材料的断面微观形貌图,如图3所示;微观形貌呈现出大晶粒分布于小晶粒基体中的双峰分布,这有利于提高力学性能。微观形貌无明显气孔,说明致密化完全。
实施例4:
一种采用核壳结构Si3N4@MgSiN2粉体制备高导热高强度氮化硅陶瓷的方法,具体步骤是:
步骤一、以1.3wt%镁粉、38.7wt%氮化硅粉、30wt%的溴化钠和30wt%的氟化钾混合,得到均匀混合的粉体;
步骤二、将步骤一所得混合粉体放入MgO坩埚中,在氮气保护气氛下于1500℃保温3h,升温速率为10℃/min;煅烧结束后,待裂解炉自然冷却至室温后取出样品;将烧结后的粉体经过研磨后置入浓度为20wt%的盐酸溶液中搅拌洗涤0.5h,再用蒸馏水洗涤3-4次至熔盐清洗干净;然后在50℃烘箱中干燥12h,研磨过筛后制得具有核壳结构的Si3N4@MgSiN2复合粉体;
步骤三、将步骤二所得复合粉体在40MPa压力下干压成型,再在250MPa压力下进行冷等静压处理;将得到的坯体放入BN坩埚中,在N2气氛下于1900℃气压烧结,其中升温速率为5℃/min,N2压力为10MPa,保温时间为4h;烧结结束后,以3℃/min的降温速率冷却至1100℃,然后随炉冷却至室温;
由实施例4制得的氮化硅陶瓷材料的热导率为96.8W/(m·K),三点抗弯强度为879±18MPa,断裂韧性为8.76±0.34MPa·m1/2
实施例5:
一种采用核壳结构Si3N4@MgSiN2粉体制备高导热高强度氮化硅陶瓷的方法,具体步骤是:
步骤一、以3wt%镁粉、47wt%氮化硅粉、25wt%的氯化钠和25wt%的氯化钾混合,得到均匀混合的粉体;
步骤二、将步骤一所得混合粉体放入MgO坩埚中,在氮气保护气氛下于1000℃保温4h,升温速率为10℃/min;煅烧结束后,待裂解炉自然冷却至室温后取出样品;将烧结后的粉体经过研磨后置入浓度为20wt%的盐酸溶液中搅拌洗涤0.5h,再用蒸馏水洗涤3-4次至熔盐清洗干净;然后在80℃烘箱中干燥12h,研磨过筛后制得具有核壳结构的Si3N4@MgSiN2复合粉体;
步骤三、将步骤二所得复合粉体在30MPa压力下干压成型,再在300MPa压力下进行冷等静压处理;将得到的坯体放入BN坩埚中,在N2气氛下于1850℃气压烧结,其中升温速率为3℃/min,N2压力为5MPa,保温时间为2h;烧结结束后,以2℃/min的降温速率冷却至1000℃,然后随炉冷却至室温;
由实施例5制得的氮化硅陶瓷材料的热导率为80.7W/(m·K),三点抗弯强度为907±25MPa,断裂韧性为8.78±0.28MPa·m1/2
实施例6:
一种采用核壳结构Si3N4@MgSiN2粉体制备高导热高强度氮化硅陶瓷的方法,具体步骤是:
步骤一、以1.5wt%镁粉、38.5wt%氮化硅粉、20wt%的氯化钠和40wt%的氯化钾混合,得到均匀混合的粉体;
步骤二、将步骤一所得混合粉体放入MgO坩埚中,在氮气保护气氛下于1100℃保温2h,升温速率为10℃/min;煅烧结束后,待裂解炉自然冷却至室温后取出样品;将烧结后的粉体经过研磨后置入浓度为20wt%的盐酸溶液中搅拌洗涤0.5h,再用蒸馏水洗涤3-4次至熔盐清洗干净;然后在70℃烘箱中干燥12h,研磨过筛后制得具有核壳结构的Si3N4@MgSiN2复合粉体;
步骤三、将步骤二所得复合粉体在30MPa压力下干压成型,再在300MPa压力下进行冷等静压处理;将得到的坯体放入BN坩埚中,在N2气氛下于1900℃气压烧结,其中升温速率为3℃/min,N2压力为5MPa,保温时间为2h;烧结结束后,以2℃/min的降温速率冷却至1000℃,然后随炉冷却至室温;
由实施例6制得的氮化硅陶瓷材料的热导率为88.7W/(m·K),三点抗弯强度为967±38MPa,断裂韧性为8.21±0.32MPa·m1/2
对比例:
对比例和实施例的区别在于:
1、对比例采用的是以氧化物MgO为烧结助剂,而实施例中的助剂为原位生成的MgSiN2,是非氧化物助剂,体系中氧含量更低,有利于提高热导率;
2、对比例MgO是通过球磨引入的,实施例MgSiN2是通过熔盐法原位合成的,并且MgSiN2均匀包覆在Si3N4表面,形成均匀的核壳结构。
具体步骤是:
步骤一、以4wt%MgO作为烧结助剂,与96wt%的Si3N4粉体通过球磨混合,烘干后过筛,得到均匀混合的粉体;
步骤二、将步骤一得到的混合粉体30MPa压力下干压成型,再在300MPa压力下进行冷等静压处理;将得到的坯体于1900℃气压烧结,其中升温速率为5℃/min,N2压力为1MPa,保温时间为4h;烧结结束后,以10℃/min的降温速率冷却至1200℃,然后随炉冷却至室温;
由对比例制得的氮化硅陶瓷材料的热导率为80.2W/(m·K),三点抗弯强度为522±9MPa,断裂韧性为7.06±0.15MPa·m1/2
通过对比例与实施例相比较,不难发现,本发明所述的制备Si3N4@MgSiN2复合材料的方法可有效促进致密化及晶粒发育,进而提高Si3N4陶瓷的热导率和力学性能。
结果和讨论:
1、在本发明中,采用阿基米德法测定试样的体积密度;Si3N4陶瓷材料的热导率由如下公式计算得到:k=Cp·ρ·α;式中ρ为试样的体积密度,单位为g·cm-3,α为热扩散系数,单位为cm2·s-1,使用Netzsch LFA 467测得,Cp为氮化硅陶瓷材料的热容,此值随成分和显微结构变化非常小,可以视为常量,本发明中采用0.68J·(g·K)-1;所得氮化硅陶瓷材料的热导率可为62.5-120.5W/(m·K)。
2、在本发明中,采用三点弯曲法,使用Instron-5566万能材料试验机(Instron-5566,Instron Co.Ltd.,USA)测定Si3N4陶瓷材料的抗弯强度,跨距为30mm,加载速率为0.5mm·min-1,每个数据点测试6根试条,然后取其平均值;所得氮化硅陶瓷材料的抗弯强度可为721-967MPa。
3、在本发明中,断裂韧性采用单边切口梁法(SENB)测定,样品加工为3.0×6.0×30.0mm的尺寸,开槽宽约0.25mm、槽深约3mm,采用三点弯曲法在万能材料试验机(Instron-5566,Instron Co.Ltd.,USA)上测试样品的断裂韧性;测试跨距为24.0mm,加载速率为0.05mm/min,每种样品选取6根试样进行测量,求平均值和标准偏差;所得氮化硅陶瓷材料的断裂韧性可为6.20-9.23MPa·m1/2
以上仅是本发明的优选实施方式,本发明的保护范围并不局限于上述实施例,与本发明构思无实质性差异的各种工艺方案均在本发明的保护范围内。

Claims (8)

1.一种采用核壳结构Si3N4@MgSiN2粉体制备高导热高强度氮化硅陶瓷的方法,其特征在于:包括以下步骤:
1)以镁粉和氮化硅为原料,以碱金属盐为熔盐原料,将其与镁粉和氮化硅混合均匀,得到混合原料;
所述镁粉和氮化硅的质量比为1:(10-30);
所述镁粉加氮化硅粉与碱金属盐的质量比为1:(1-3);
所述碱金属盐为钠盐和钾盐中的一种或几种,其中,钠盐为氟化钠、氯化钠、溴化钠中的一种或几种,钾盐为氟化钾、氯化钾中的一种或几种,混合时为任意比例;
2)将上步骤得到的混合原料在保护气氛下,进行高温烧结处理,高温烧结温度为1000-1500℃,高温烧结步骤的升温速率为1-20℃/min,时间为1-10h;再经过洗涤、干燥,过筛后得到具有核壳结构的Si3N4@MgSiN2复合粉体;
3)将上步骤得到的具有核壳结构的Si3N4@MgSiN2复合粉体压制成型后,经烧结处理,所述的烧结处理的方式选自气压烧结,烧结温度为1800-1900℃,烧结保温的时间≥2小时,烧结处理的升温速率为1-10℃/min,在烧结处理完成之后,先以≤20℃/min的降温速率冷却至800-1200℃,然后随炉冷却至室温,得到具有核壳结构Si3N4@MgSiN2粉体制备高导热高强度氮化硅陶瓷,其热导率为62.5-120.5 W/(m·K)、抗弯强度为721-967 MPa、断裂韧性为6.20-9.23 MPa·m1/2
2.根据权利要求1所述的一种采用核壳结构Si3N4@MgSiN2粉体制备高导热高强度氮化硅陶瓷的方法,其特征在于:步骤1)中所述的碱金属盐由氯化钠和氯化钾按1:(0.5-2)的质量比混合而成。
3.根据权利要求1所述的一种采用核壳结构Si3N4@MgSiN2粉体制备高导热高强度氮化硅陶瓷的方法,其特征在于:步骤2)中所述的保护气氛,选自氮气。
4.根据权利要求1所述的一种采用核壳结构Si3N4@MgSiN2粉体制备高导热高强度氮化硅陶瓷的方法,其特征在于:步骤2)中所述的高温烧结温度为1100-1400℃,所述高温烧结步骤的升温速率为5-10℃/min,时间为2-6h。
5.根据权利要求1所述的一种采用核壳结构Si3N4@MgSiN2粉体制备高导热高强度氮化硅陶瓷的方法,其特征在于:步骤2)中所述的洗涤、干燥,过筛,具体过程包括:采用浓度为20-25wt%盐酸浸泡0.5-2h后,再用蒸馏水洗涤3-4次至盐被洗干净;抽滤后得到的Si3N4@MgSiN2复合粉体,在50-80℃下进行干燥8-24h,过筛目数采用60-300目。
6.根据权利要求1所述的一种采用核壳结构Si3N4@MgSiN2粉体制备高导热高强度氮化硅陶瓷的方法,其特征在于:步骤3)中所述的压制成型的方式为干压成型和/或等静压处理;所述干压成型的压力为10-50MPa,所述等静压处理的压力为200-300MPa。
7.根据权利要求6所述的一种采用核壳结构Si3N4@MgSiN2粉体制备高导热高强度氮化硅陶瓷的方法,其特征在于:步骤3)中所述的压制成型的方式为先干压成型后等静压处理;所述等静压处理为冷等静压处理。
8.根据权利要求1所述的一种采用核壳结构Si3N4@MgSiN2粉体制备高导热高强度氮化硅陶瓷的方法,其特征在于:步骤3)中所述的气压烧结的气氛为氮气,气压≥1 MPa。
CN202311505515.2A 2023-11-13 2023-11-13 一种采用核壳结构Si3N4@MgSiN2粉体制备高导热高强度氮化硅陶瓷的方法 Active CN117550901B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311505515.2A CN117550901B (zh) 2023-11-13 2023-11-13 一种采用核壳结构Si3N4@MgSiN2粉体制备高导热高强度氮化硅陶瓷的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311505515.2A CN117550901B (zh) 2023-11-13 2023-11-13 一种采用核壳结构Si3N4@MgSiN2粉体制备高导热高强度氮化硅陶瓷的方法

Publications (2)

Publication Number Publication Date
CN117550901A CN117550901A (zh) 2024-02-13
CN117550901B true CN117550901B (zh) 2024-05-14

Family

ID=89822606

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311505515.2A Active CN117550901B (zh) 2023-11-13 2023-11-13 一种采用核壳结构Si3N4@MgSiN2粉体制备高导热高强度氮化硅陶瓷的方法

Country Status (1)

Country Link
CN (1) CN117550901B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002128569A (ja) * 2000-10-19 2002-05-09 National Institute Of Advanced Industrial & Technology 高熱伝導窒化ケイ素セラミックス並びにその製造方法
JP2003267709A (ja) * 2002-03-13 2003-09-25 National Institute Of Advanced Industrial & Technology 窒化ケイ素マグネシウム粉末の製造方法及びその製品
CN1557709A (zh) * 2004-02-10 2004-12-29 中国科学院上海硅酸盐研究所 自蔓延高温合成氮化硅镁粉体的制备方法
CN1654430A (zh) * 2005-01-14 2005-08-17 中国科学院上海硅酸盐研究所 一种高硬度氮化硅陶瓷的低温烧结方法
CN1654427A (zh) * 2005-01-14 2005-08-17 中国科学院上海硅酸盐研究所 以氮化硅镁为烧结助剂的高热导氮化硅陶瓷的制备方法
CN110240132A (zh) * 2019-05-31 2019-09-17 武汉科技大学 一种基于熔盐法的氮化硅镁粉体及其制备方法
CN111875387A (zh) * 2020-06-24 2020-11-03 广东工业大学 一种用碳包覆制备低氧含量、高热导的氮化硅陶瓷的方法及其应用
CN112142476A (zh) * 2020-09-28 2020-12-29 中国科学院上海硅酸盐研究所 一种提高氮化硅陶瓷基板材料热导率和力学性能的硅热还原方法
CN115557792A (zh) * 2022-10-17 2023-01-03 天津大学 具有优异力学性能的高导热氮化硅陶瓷材料及制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002128569A (ja) * 2000-10-19 2002-05-09 National Institute Of Advanced Industrial & Technology 高熱伝導窒化ケイ素セラミックス並びにその製造方法
JP2003267709A (ja) * 2002-03-13 2003-09-25 National Institute Of Advanced Industrial & Technology 窒化ケイ素マグネシウム粉末の製造方法及びその製品
CN1557709A (zh) * 2004-02-10 2004-12-29 中国科学院上海硅酸盐研究所 自蔓延高温合成氮化硅镁粉体的制备方法
CN1654430A (zh) * 2005-01-14 2005-08-17 中国科学院上海硅酸盐研究所 一种高硬度氮化硅陶瓷的低温烧结方法
CN1654427A (zh) * 2005-01-14 2005-08-17 中国科学院上海硅酸盐研究所 以氮化硅镁为烧结助剂的高热导氮化硅陶瓷的制备方法
CN110240132A (zh) * 2019-05-31 2019-09-17 武汉科技大学 一种基于熔盐法的氮化硅镁粉体及其制备方法
CN111875387A (zh) * 2020-06-24 2020-11-03 广东工业大学 一种用碳包覆制备低氧含量、高热导的氮化硅陶瓷的方法及其应用
CN112142476A (zh) * 2020-09-28 2020-12-29 中国科学院上海硅酸盐研究所 一种提高氮化硅陶瓷基板材料热导率和力学性能的硅热还原方法
CN115557792A (zh) * 2022-10-17 2023-01-03 天津大学 具有优异力学性能的高导热氮化硅陶瓷材料及制备方法

Also Published As

Publication number Publication date
CN117550901A (zh) 2024-02-13

Similar Documents

Publication Publication Date Title
CN112159237B (zh) 一种高导热氮化硅陶瓷材料及其制备方法
US9546114B2 (en) SiAlON bonded silicon carbide material
CN111196728B (zh) 一种高强度、高韧性、高热导率氮化硅陶瓷材料及其制备方法
CN107324809A (zh) 多孔碳化硅陶瓷及其制备方法和应用
CN112142476A (zh) 一种提高氮化硅陶瓷基板材料热导率和力学性能的硅热还原方法
WO2022156637A1 (zh) 一种氮化硅陶瓷材料的制备方法
CN109305816A (zh) 一种常压烧结制备高热导率氮化硅陶瓷的方法
CN113943159B (zh) 一种碳化硼复合陶瓷的制备方法
CN102603344B (zh) 一种碳化硅晶须增韧二硼化锆陶瓷的制备工艺
CN111196727B (zh) 一种高热导率氮化硅陶瓷材料及其制备方法
Lao et al. Effects of various sintering additives on the properties of β-SiAlON–SiC ceramics obtained by liquid phase sintering
CN110627507B (zh) 一种低温碳化硅陶瓷及其制备方法和应用
Fan et al. Fabrication and properties of Si2N2O ceramics for microwave sintering furnace
CN116239387A (zh) 利用中/高熵多元稀土烧结助剂的高强度氮化硅制备方法
CN111302809A (zh) 一种高热导率、高强度氮化硅陶瓷材料及其制备方法
CN108863395B (zh) 一种高热导率、高强度氮化硅陶瓷材料及其制备方法
CN111196730B (zh) 一种高热导率氮化硅陶瓷材料及其制备方法
CN117550901B (zh) 一种采用核壳结构Si3N4@MgSiN2粉体制备高导热高强度氮化硅陶瓷的方法
WO2023024273A1 (zh) 一种非氧化物Y3Si2C2烧结助剂、高性能氮化硅陶瓷基板及其制备方法
CN102731109B (zh) 一种AlON材料的合成方法
CN109694254A (zh) 一种采用单一烧结助剂常压烧结制备致密氮化硅陶瓷的方法
JP2002220282A (ja) 窒化アルミニウム焼結体とその製造方法
CN115321969A (zh) 一种熔融石英陶瓷坩埚的制作方法
CN117550900A (zh) 采用基于熔盐法制备的Si3N4/MgSiN2复合粉体制备高导热氮化硅陶瓷的方法
JP2960591B2 (ja) 炭化ケイ素−窒化ケイ素−混合酸化物系焼結体およびその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant