CN114394827A - 一种低介电常数硅酸盐微波介质陶瓷及其制备方法 - Google Patents

一种低介电常数硅酸盐微波介质陶瓷及其制备方法 Download PDF

Info

Publication number
CN114394827A
CN114394827A CN202111621061.6A CN202111621061A CN114394827A CN 114394827 A CN114394827 A CN 114394827A CN 202111621061 A CN202111621061 A CN 202111621061A CN 114394827 A CN114394827 A CN 114394827A
Authority
CN
China
Prior art keywords
powder
ball
sintering
ceramic
milling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111621061.6A
Other languages
English (en)
Other versions
CN114394827B (zh
Inventor
吕学鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Institute of Technology
Original Assignee
Nanjing Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Institute of Technology filed Critical Nanjing Institute of Technology
Priority to CN202111621061.6A priority Critical patent/CN114394827B/zh
Publication of CN114394827A publication Critical patent/CN114394827A/zh
Application granted granted Critical
Publication of CN114394827B publication Critical patent/CN114394827B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种低介电常数硅酸盐微波介质陶瓷及其制备方法,该陶瓷的化学表达式为Ca1‑xy/2AxMg1‑y/2B y Si3O9zBa5Si8O21,其中A=Sr、Ba;B=Zn、Co、Mn;0.02≤x≤0.10;0.10≤y≤0.50;0.30≤z≤0.50。该陶瓷材料制备工艺依次如下:合成Ca1‑xy/2AxMg1‑y/2B y Si3O9粉体、合成Ba5Si8O21粉体、复合粉末配制、球磨、DCS快速烧结成瓷。本发明一方面通过微量Sr离子取代提高CaMgSi3O9晶相的Qf值,另一方面通过Zn或Co获Mn离子共取代A、B位调控CaMgSi3O9结构的层状结构,进而调控其Qf值和τ f 值。此外,本发明制备所得Ca1‑xy/2AxMg1‑y/2B y Si3O9zBa5Si8O21陶瓷材料的介电常数为5.5~8.2,Qf值为28500~76450GHz,τ f 值在±15 ppm/℃以内,且制备工艺简单,制备周期短,工艺稳定好,抗还原特性好,可耐还原气氛烧结而使用贱金属内电极,适合制造温度补偿型MLCC电容器。

Description

一种低介电常数硅酸盐微波介质陶瓷及其制备方法
技术领域
本发明属于微波介质陶瓷领域,尤其涉及一种低介电常数硅酸盐微波介质陶瓷及其制备方法。
背景技术
随着通信技术逐渐向毫米波方向发展,MLCC对电介质材料的微波介电性能要求越来越高,要求其具有低的介电常数(εr<10)以提高器件的信息传输速率、较低的高频介电损耗(tanδ<0.001,f=10GHz)以增强其选频性和降低能耗、近零的谐振频率温度系数(τ f ~±10ppm/℃)来保证谐振与传输时信号的工作稳定性。目前,国内外低介电常数材料的研究工作主要集中在Al2O3、Mg2SiO4、AWO4(A=Ca, Sr, Ba)、磷酸盐和R2BaCuO5(R=Y, Sm, Yb)等材料体系。这些材料体系存在着烧结温度范围窄,微观组织不够致密,相控制困难,低介电常数、高品质因数、近零温度系数难以得到统一,抗还原性较差等各种问题,限制了其在高频元器件中的实际应用。考虑到环境友好和低成本等因素,低介电常数硅酸盐微波介质陶瓷在MLCC元器件制备方面具有重要的研究意义。
辉石结构硅酸盐化合物(ABSi2O6)具有低廉的原料成本、良好的生物相容性、良好的光致发光性能和优异的微波介电性能成为生物材料、稀土无机发光材料和电介质材料的研究热点。Zhang等(Sun H, Zhang Q, Yang H, et al. (Ca1−xMgx)SiO3: A low-permittivity microwave dielectric ceramic system. Materials Science andEngineering B, 2007, 138: 46-50.)研究发现辉石结构的CaMgSi2O6陶瓷经1290℃烧结后具有优异的微波介电性能:ε r = 7.46, Q×f = 59638 GHz, τ f = -46 ppm/℃,其晶体结构为单斜辉石结构,空间群为C2/c。CaMgSi2O6陶瓷具有低的介电常数和介电损耗,但其烧结温度范围窄,烧结成瓷较难,限制了其实际应用。虽然通过Co2+、Ni2+、Al3+等离子置换可以降低材料的介电损耗,但对其烧结特性的改善非常有限。我们前期研究发现CaMgSi3O9化合物同样具有层状辉石结构,且其烧结温度范围相对较宽,成瓷温度从1150℃到1300℃,可以极大地降低陶瓷的烧结难度,但其谐振频率温度系数负的较大,需要调节近零。基于上述背景,本发明提出了一种低介硅基微波介质陶瓷(Ca1-x-y/2AxMg1-y/2B y Si3O9-zBa5Si8O21)及其制备方法。
发明内容
本发明的目的在于克服辉石结构硅酸盐化合物烧结温度范围窄、成瓷较难、谐振频率温度系数负的较大的问题,提供一种低介电常数硅酸盐微波介质陶瓷及其制备方法,该金属陶瓷的主晶相为辉石结构Ca1-x-y/2AxMg1-y/2B y Si3O9固溶体相和Ba5Si8O21相,具有低成本、低介电常数、低介电损耗、温度稳定型好、优异的抗还原性,且烧结温度范围宽、制备工艺稳定。
为解决现有技术问题,本发明公开了一种低介电常数硅酸盐微波介质陶瓷,该陶瓷的化学表达式为Ca1-x-y/2AxMg1-y/2B y Si3O9-zBa5Si8O21,其中A=Sr、Ba;B=Zn、Co、Mn;0.02≤x≤0.10;0.10≤y ≤0.50;0.30≤ z ≤0.50。
本发明还公开了一种低介电常数硅酸盐微波介质陶瓷的制备方法,其特征在于包括如下步骤:
步骤一、合成Ca1-x-y/2AxMg1-y/2B y Si3O9粉体:以CaCO3、BaCO3、SrCO3、Mg(OH)2·4MgCO3·5H2O、ZnO、CoO、MnO和SiO2粉末为原料,按照化学表达式为Ca1-x-y/2AxMg1- y/2B y Si3O9(A=Sr、Ba;B=Zn、Co、Mn;0.02≤x ≤0.10;0.10≤y ≤0.50)进行称量配料形成混合粉末,湿法球磨12小时,干燥后置于氧化铝坩埚,在高温箱式电炉中1050~1150℃预烧2~6小时,得到Ca1-x-y/2AxMg1-y/2B y Si3O9粉体;
步骤二、合成Ba5Si8O21粉体:以BaCO3和SiO2粉末为原料,按照化学表达式为Ba5Si8O21进行称量配料形成混合粉末,湿法球磨12小时,干燥后置于氧化铝坩埚,在高温箱式电炉中1050~1150℃预烧3~5小时,得到Ba5Si8O21粉体;
步骤三、复合粉末配制:将上述合成制得的Ca1-x-y/2AxMg1- y/2B y Si3O9粉体和Ba5Si8O21粉体按照化学组成表达式Ca1-x-y/2AxMg1-y/2B y Si3O9-zBa5Si8O21(0.30≤ z ≤0.50)配制复合粉末;
步骤四、球磨:将配置好的复合粉末置于行星式球磨机中进行球磨,球磨介质为无水乙醇,磨球材质为二氧化锆,混合料、磨球与无水乙醇的质量比为1:5:1.2,球磨时间12~24小时,球磨机转速为250~350 rpm;
步骤五、DCS快速烧结:将球磨料浆烘干后置于石墨模具中,在DCS快速烧结炉中烧结成瓷,烧结温度1100~1200℃,保温时间5~15min,升温速率100~150℃/min。
本发明具有的有益效果:
(1)本发明中Sr离子微量取代可以调控CaMgSi3O9晶相的晶格畸变和原子堆积密度,提高其Qf值,进而保证电子元器件良好的信号选择性。
(2)本发明中Zn或Co获Mn离子取代时,该离子一方面取代Mg进入[MgO6]八面体的中心位置,另一方面取代Ca离子进入配位多面体的中心位置,进而对CaMgSi3O9结构中层状结构进行调控,进而调控其Qf值和τ f 值。
(3)本发明采用DCS快速烧结制备陶瓷材料,该方法制备工艺简单、制备周期短、工艺稳定好、烧结温度相对较低,且无需造粒、压制成型等工序,在MLCC叠层陶瓷的快速烧结方面具有较大的工业应用价值。
(4)本发明通过Ba5Si8O21调节Ca1-x-y/2AxMg1-y/2B y Si3O9陶瓷的谐振频率温度系数近零,一方面可以保证电子元器件的工作稳定性,另一方面可以保证陶瓷材料的抗还原特性,可耐还原气氛烧结而使用贱金属内电极,因而可降低MLCC电容器的制造成本。
(5)本发明制备所得Ca1-x-y/2AxMg1-y/2B y Si3O9-zBa5Si8O21陶瓷材料的介电常数为5.5~8.2,Qf值为28500~76450GHz,τ f 值在±15 ppm/℃以内,且不含铅、镉、 铋等有毒成分,适合制造温度补偿型MLCC电容器。
附图说明
图1是本发明实施例三制得Ca0.84Sr0.06Mg0.90Zn0.20Si3O9-zBa5Si8O21(0.30≤ z ≤0.50)陶瓷的XRD图谱。
图2是本发明实施例三制得Ca0.84Sr0.06Mg0.90Zn0.20Si3O9-zBa5Si8O21(0.30≤ z ≤0.50)陶瓷的SEM图。
具体实施方式
下面对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
表1是4种成分配方的混合料末。采用不同的工艺参数将其制备成低介电常数硅酸盐微波介质陶瓷,并分别测定其微波介电性能。
表1 四种成分配方
Figure 561657DEST_PATH_IMAGE001
实施例一
步骤一、合成Ca1-x-y/2AxMg1-y/2B y Si3O9粉体:以CaCO3、BaCO3、SrCO3、Mg(OH)2·4MgCO3·5H2O、ZnO、CoO、MnO和SiO2粉末为原料,按照化学表达式为Ca1-x-y/2AxMg1- y/2B y Si3O9(A=Sr、Ba;B=Zn、Co、Mn;0.02≤x ≤0.10;0.10≤y ≤0.50)进行称量配料形成混合粉末,湿法球磨12小时,干燥后置于氧化铝坩埚,在高温箱式电炉中1050℃预烧2小时,得到Ca1-x-y/ 2AxMg1-y/2B y Si3O9粉体;
步骤二、合成Ba5Si8O21粉体:以BaCO3和SiO2粉末为原料,按照化学表达式为Ba5Si8O21进行称量配料形成混合粉末,湿法球磨12小时,干燥后置于氧化铝坩埚,在高温箱式电炉中1050℃预烧3小时,得到Ba5Si8O21粉体;
步骤三、复合粉末配制:将上述合成制得的Ca1-x-y/2AxMg1- y/2B y Si3O9粉体和Ba5Si8O21粉体按照化学组成表达式Ca1-x-y/2AxMg1-y/2B y Si3O9-zBa5Si8O21(0.30≤ z ≤0.50)配制复合粉末;
步骤四、球磨:将配置好的复合粉末置于行星式球磨机中进行球磨,球磨介质为无水乙醇,磨球材质为二氧化锆,混合料、磨球与无水乙醇的质量比为1:5:1.2,球磨时间12小时,球磨机转速为350 rpm;
步骤五、DCS快速烧结:将球磨料浆烘干后置于石墨模具中,在DCS快速烧结炉中烧结成瓷,烧结温度1100℃,保温时间15min,升温速率100℃/min。
对本实施例获得的材料进行性能检测,检测结果如表2所示。
表2 采用实施例一制备出陶瓷材料的介电性能
Figure 433798DEST_PATH_IMAGE002
实施例二
步骤一、合成Ca1-x-y/2AxMg1-y/2B y Si3O9粉体:以CaCO3、BaCO3、SrCO3、Mg(OH)2·4MgCO3·5H2O、ZnO、CoO、MnO和SiO2粉末为原料,按照化学表达式为Ca1-x-y/2AxMg1- y/2B y Si3O9(A=Sr、Ba;B=Zn、Co、Mn;0.02≤x ≤0.10;0.10≤y ≤0.50)进行称量配料形成混合粉末,湿法球磨12小时,干燥后置于氧化铝坩埚,在高温箱式电炉中11150℃预烧6小时,得到Ca1-x-y/2AxMg1-y/2B y Si3O9粉体;
步骤二、合成Ba5Si8O21粉体:以BaCO3和SiO2粉末为原料,按照化学表达式为Ba5Si8O21进行称量配料形成混合粉末,湿法球磨12小时,干燥后置于氧化铝坩埚,在高温箱式电炉中1150℃预烧5小时,得到Ba5Si8O21粉体;
步骤三、复合粉末配制:将上述合成制得的Ca1-x-y/2AxMg1- y/2B y Si3O9粉体和Ba5Si8O21粉体按照化学组成表达式Ca1-x-y/2AxMg1-y/2B y Si3O9-zBa5Si8O21(0.30≤ z ≤0.50)配制复合粉末;
步骤四、球磨:将配置好的复合粉末置于行星式球磨机中进行球磨,球磨介质为无水乙醇,磨球材质为二氧化锆,混合料、磨球与无水乙醇的质量比为1:5:1.2,球磨时间24小时,球磨机转速为350 rpm;
步骤五、DCS快速烧结:将球磨料浆烘干后置于石墨模具中,在DCS快速烧结炉中烧结成瓷,烧结温度1200℃,保温时间5min,升温速率150℃/min。
对本实施例获得的材料进行性能检测,检测结果如表3所示。
表3 采用实施例二制备出陶瓷材料的介电性能
Figure 896004DEST_PATH_IMAGE004
实施例三
步骤一、合成Ca1-x-y/2AxMg1-y/2B y Si3O9粉体:以CaCO3、BaCO3、SrCO3、Mg(OH)2·4MgCO3·5H2O、ZnO、CoO、MnO和SiO2粉末为原料,按照化学表达式为Ca1-x-y/2AxMg1- y/2B y Si3O9(A=Sr、Ba;B=Zn、Co、Mn;0.02≤x ≤0.10;0.10≤y ≤0.50)进行称量配料形成混合粉末,湿法球磨12小时,干燥后置于氧化铝坩埚,在高温箱式电炉中1100℃预烧4小时,得到Ca1-x-y/ 2AxMg1-y/2B y Si3O9粉体;
步骤二、合成Ba5Si8O21粉体:以BaCO3和SiO2粉末为原料,按照化学表达式为Ba5Si8O21进行称量配料形成混合粉末,湿法球磨12小时,干燥后置于氧化铝坩埚,在高温箱式电炉中110℃预烧4小时,得到Ba5Si8O21粉体;
步骤三、复合粉末配制:将上述合成制得的Ca1-x-y/2AxMg1- y/2B y Si3O9粉体和Ba5Si8O21粉体按照化学组成表达式Ca1-x-y/2AxMg1-y/2B y Si3O9-zBa5Si8O21(0.30≤ z ≤0.50)配制复合粉末;
步骤四、球磨:将配置好的复合粉末置于行星式球磨机中进行球磨,球磨介质为无水乙醇,磨球材质为二氧化锆,混合料、磨球与无水乙醇的质量比为1:5:1.2,球磨时间20小时,球磨机转速为300rpm;
步骤五、DCS快速烧结:将球磨料浆烘干后置于石墨模具中,在DCS快速烧结炉中烧结成瓷,烧结温度1150℃,保温时间10min,升温速率125℃/min。
对本实施例获得的材料进行性能检测,检测结果如表4所示。
表4 采用实施例三制备出陶瓷材料的介电性能
Figure 853596DEST_PATH_IMAGE006
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (6)

1.一种低介电常数硅酸盐微波介质陶瓷,其特征在于,该陶瓷的化学表达式为Ca1-x-y/ 2AxMg1-y/2B y Si3O9-zBa5Si8O21,其中A=Sr、Ba;B=Zn、Co、Mn;0.02≤x ≤0.10;0.10≤y ≤0.50;0.30≤ z ≤0.50。
2.一种低介电常数硅酸盐微波介质陶瓷的制备方法,其特征在于包括如下步骤:
步骤一、合成Ca1-x-y/2AxMg1-y/2B y Si3O9粉体:以CaCO3、BaCO3、SrCO3、Mg(OH)2·4MgCO3·5H2O、ZnO、CoO、MnO和SiO2粉末为原料,按照化学表达式为Ca1-x-y/2AxMg1- y/2B y Si3O9(A=Sr、Ba;B=Zn、Co、Mn;0.02≤x ≤0.10;0.10≤y ≤0.50)进行称量配料形成混合粉末,湿法球磨12小时,干燥后置于氧化铝坩埚,在高温箱式电炉中预烧得到Ca1-x-y/2AxMg1-y/2B y Si3O9粉体;
步骤二、合成Ba5Si8O21粉体:以BaCO3和SiO2粉末为原料,按照化学表达式为Ba5Si8O21进行称量配料形成混合粉末,湿法球磨12小时,干燥后置于氧化铝坩埚,在高温箱式电炉中预烧得到Ba5Si8O21粉体;
步骤三、复合粉末配制:将上述合成制得的Ca1-x-y/2AxMg1- y/2B y Si3O9粉体和Ba5Si8O21粉体按照化学组成表达式Ca1-x-y/2AxMg1-y/2B y Si3O9-zBa5Si8O21(0.30≤ z ≤0.50)配制复合粉末;
步骤四、球磨:将配置好的复合粉末置于行星式球磨机中进行球磨,球磨介质为无水乙醇,磨球材质为二氧化锆,混合料、磨球与无水乙醇的质量比为1:5:1.2,球磨时间12~24小时,球磨机转速为250~350 rpm;
步骤五、DCS快速烧结:将球磨料浆烘干后置于石墨模具中,在DCS快速烧结炉中烧结成瓷,烧结温度1100~1200℃,保温时间5~15min,升温速率100~150℃/min。
3.根据权利要求2所述的一种低介电常数硅酸盐微波介质陶瓷的制备方法,其特征在于步骤一中CaCO3、BaCO3、SrCO3、Mg(OH)2·4MgCO3·5H2O、ZnO、CoO、MnO和SiO2粉末的粒度为2~5μm,纯度≥99.5%。
4.根据权利要求2所述的一种低介电常数硅酸盐微波介质陶瓷的制备方法,其特征在于步骤一中Ca1-x-y/2AxMg1-y/2B y Si3O9粉体的预烧工艺为1050~1150℃保温2~6小时,升温速率为5℃/min。
5.根据权利要求2所述的一种低介电常数硅酸盐微波介质陶瓷的制备方法,其特征在于步骤二中BaCO3和SiO2粉末的粒度为2~5μm,纯度≥99.5%。
6.根据权利要求2所述的一种低介电常数硅酸盐微波介质陶瓷的制备方法,其特征在于步骤二中Ba5Si8O21粉体的预烧工艺为1050~1150℃保温3~5小时,升温速率为5℃/min。
CN202111621061.6A 2021-12-28 2021-12-28 一种低介电常数硅酸盐微波介质陶瓷及其制备方法 Active CN114394827B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111621061.6A CN114394827B (zh) 2021-12-28 2021-12-28 一种低介电常数硅酸盐微波介质陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111621061.6A CN114394827B (zh) 2021-12-28 2021-12-28 一种低介电常数硅酸盐微波介质陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN114394827A true CN114394827A (zh) 2022-04-26
CN114394827B CN114394827B (zh) 2022-12-23

Family

ID=81228577

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111621061.6A Active CN114394827B (zh) 2021-12-28 2021-12-28 一种低介电常数硅酸盐微波介质陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN114394827B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115286375A (zh) * 2022-07-14 2022-11-04 桂林理工大学 低介电常数Ba-Ca-R-Si基微波介质陶瓷材料及其制备方法
CN115536373A (zh) * 2022-10-28 2022-12-30 杭州电子科技大学 一种高熵化微波介质陶瓷材料及其制备方法和应用
CN115925401A (zh) * 2022-11-10 2023-04-07 华中科技大学 一种低介硅酸盐微波介质陶瓷材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001097773A (ja) * 1999-09-30 2001-04-10 Tdk Corp 誘電体磁器組成物の製造方法および電子部品の製造方法
JP2006261351A (ja) * 2005-03-16 2006-09-28 Ngk Spark Plug Co Ltd 積層セラミック部品及びその製造方法
CN108249902A (zh) * 2018-02-06 2018-07-06 华中科技大学 一种硅酸盐基低介微波介质陶瓷及其制备方法
CN111410524A (zh) * 2020-03-17 2020-07-14 广东风华高新科技股份有限公司 一种ltcc微波介质材料及其制备方法
CN112079631A (zh) * 2020-09-22 2020-12-15 研创光电科技(赣州)有限公司 一种近零温度系数低介ltcc材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001097773A (ja) * 1999-09-30 2001-04-10 Tdk Corp 誘電体磁器組成物の製造方法および電子部品の製造方法
JP2006261351A (ja) * 2005-03-16 2006-09-28 Ngk Spark Plug Co Ltd 積層セラミック部品及びその製造方法
CN108249902A (zh) * 2018-02-06 2018-07-06 华中科技大学 一种硅酸盐基低介微波介质陶瓷及其制备方法
CN111410524A (zh) * 2020-03-17 2020-07-14 广东风华高新科技股份有限公司 一种ltcc微波介质材料及其制备方法
CN112079631A (zh) * 2020-09-22 2020-12-15 研创光电科技(赣州)有限公司 一种近零温度系数低介ltcc材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HYUN JU LEE等: "Optical Properties of Blue-Light-Emitting (Ca,Sr)Mg Si O :Eu2+ Phosphor", 《JAPANESE JOURNAL OF APPLIED PHYSICS》 *
R.MITTAL等: "Lattice dynamics calculations of the phononspectra and thermodynamic properties of the aluminosilicate garnets pyrope,grossular,and spessartine M3Al2Si3O12 „MÄMg,Ca,andMn", 《PHYSICALREVIEWB》 *
丁士华等: "低介Ba(Al_(0.98)Co_(0.02))_2Si_2O_8-Ba_5Si_8O_(21)基LTCC微波介质陶瓷的研究", 《西华大学学报(自然科学版)》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115286375A (zh) * 2022-07-14 2022-11-04 桂林理工大学 低介电常数Ba-Ca-R-Si基微波介质陶瓷材料及其制备方法
CN115536373A (zh) * 2022-10-28 2022-12-30 杭州电子科技大学 一种高熵化微波介质陶瓷材料及其制备方法和应用
CN115925401A (zh) * 2022-11-10 2023-04-07 华中科技大学 一种低介硅酸盐微波介质陶瓷材料及其制备方法

Also Published As

Publication number Publication date
CN114394827B (zh) 2022-12-23

Similar Documents

Publication Publication Date Title
CN114394827B (zh) 一种低介电常数硅酸盐微波介质陶瓷及其制备方法
CN108358632B (zh) 一种超低温烧结高Q×f值微波介质材料及其制备方法
CN102050484B (zh) 六方晶系钛酸钡粉末、其制造方法、电介质陶瓷组合物和电子部件
CN112194483B (zh) 一种高强度钙镁钛系微波介质陶瓷材料及其制备方法
CN107188557A (zh) 一种微波介质陶瓷材料及其制备方法
CN102976751B (zh) 低温烧结微波介质陶瓷材料及其制备方法
CN111410526B (zh) 一种掺杂钙钛矿锡酸钡材料及其制备方法与应用
CN111302787A (zh) 一种具有高Qf高强度的微波介质陶瓷材料及其制备方法
CN105399405B (zh) 一种低介微波铁电陶瓷及其制备方法
US11958781B2 (en) Potassium sodium bismuth niobate tantalate zirconate ferrite ceramics with non-stoichiometric Nb5+ and preparation method therefor
CN113354412B (zh) 温度稳定型低温烧结微波介质陶瓷材料及其制备方法
CN112266238B (zh) 一种微波器件用的低介电常数陶瓷材料及其制备方法
CN113072373A (zh) 一种适用于5g毫米波通讯应用的温度稳定型低介陶瓷材料及其制备方法
CN107382305B (zh) 微波介质陶瓷材料及制备方法
CN117486609B (zh) 单相复合钙钛矿陶瓷粉体、微波介质陶瓷材料及其制备方法
CN117447202B (zh) 单相微波介质陶瓷粉体、微波介质陶瓷材料及其制备方法
CN115925401B (zh) 一种低介硅酸盐微波介质陶瓷材料及其制备方法
CN113149628B (zh) 一种可提高抗还原能力的微波陶瓷介质材料及其制备方法
CN113072091B (zh) 一种五元铈钕钇基高熵稀土氧化物及其制备方法
Wang et al. Sintering Behavior and Microwave Dielectric Properties of Li2O-B2O3-SiO2 Doped 0.67 CaTiO3-0.33 LaAlO3 Ceramics
CN118290137A (zh) 一种低损耗高居里点铁酸铋-钛酸钡无铅压电陶瓷材料及制备方法
CN117865662A (zh) 一种低介电常数微波介质陶瓷材料及其制备方法和应用
CN116425536A (zh) 具有非公度调制结构的Ti掺杂铌酸锶钡钆铁电陶瓷材料及制备方法
Yue et al. Microwave Dielectric Properties and Sintering Behavior of K20 Series Temperature‐Stable 0.91 MgTiO 3‐0.09 (Ca 0.8 Na 0.1 Ce 0.1) TiO 3 Composite Ceramics.
Lu et al. Synthesis and Dielectric Characterization of Pyrochlore-Free Pb 1− x Ba x (Zn 1/3 Nb 2/3) O 3 Ceramics

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant