CN105399405B - 一种低介微波铁电陶瓷及其制备方法 - Google Patents

一种低介微波铁电陶瓷及其制备方法 Download PDF

Info

Publication number
CN105399405B
CN105399405B CN201510963435.0A CN201510963435A CN105399405B CN 105399405 B CN105399405 B CN 105399405B CN 201510963435 A CN201510963435 A CN 201510963435A CN 105399405 B CN105399405 B CN 105399405B
Authority
CN
China
Prior art keywords
low dielectric
preparation
microwave
ferroelectric ceramics
dielectric microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510963435.0A
Other languages
English (en)
Other versions
CN105399405A (zh
Inventor
雷文
邹正雨
吕文中
范桂芬
汪小红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN201510963435.0A priority Critical patent/CN105399405B/zh
Publication of CN105399405A publication Critical patent/CN105399405A/zh
Application granted granted Critical
Publication of CN105399405B publication Critical patent/CN105399405B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/761Unit-cell parameters, e.g. lattice constants
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/767Hexagonal symmetry, e.g. beta-Si3N4, beta-Sialon, alpha-SiC or hexa-ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明公开了一种低介微波铁电陶瓷及其制备方法,该低介微波铁电陶瓷的化学通式为xBaO‑yZnO‑zSiO2;其中,1≤x≤2,0≤y≤2,1≤z≤2;其制备方法,包括如下步骤:(1)对BaO、ZnO和SiO2的混合物进行湿法球磨处理,并烘干后进行预烧,获得xBaO‑yZnO‑zSiO2基体陶瓷粉体;(2)对基体陶瓷粉体进行湿法球磨处理,烘干后加入聚乙烯醇造粒,压片后烧结,获得低介微波铁电陶瓷;在球磨处理中采用去离子水作分散剂,能制备出致密的铁电体单相,且制备温度低于Cu或Ni的熔点,所制备的低介微波铁电陶瓷具有优异的微波介电性能和抗还原特性,具有介电常数小、微波介电损耗低的特点,可通过改变其晶格结构来调控其τf值,适于作BME‑MLCC的介质材料。

Description

一种低介微波铁电陶瓷及其制备方法
技术领域
本发明属微波介质陶瓷技术领域,更具体地,涉及一种弱铁电性并且介电常数很低的微波介质陶瓷及其制备方法。
背景技术
微波介质陶瓷是指应用于微波频段(300MHz~30GHz)电路中作为介质材料的陶瓷材料。而低介微波铁电陶瓷是指可应用在微波频段下,具有良好微波介电性能的弱铁电性陶瓷材料,可通过调节居里温度的位置来调控其谐振频率温度系数,具有介电常数低、介质损耗低、弱铁电性以及温度特性易调控的特点。
微波铁电陶瓷典型应用于微波多层陶瓷电容器。多层陶瓷电容器(Multi-LayerCeramic Capacitor,MLCC)是通过陶瓷电介质和金属内电极交替堆叠并经过共烧制成的电容器;其中,两个相邻的金属内电极构成一个平板电容,一个MLCC就相当于若干个这样的平行板电容器并联。电容的层数、介质材料的厚度及介电常数决定了整个MLCC的容量,而内电极种类则影响MLCC的生产成本。
MLCC按照电极材料的种类可分为贵金属内电极多层陶瓷电容器(PME-MLCC)和贱金属内电极多层陶瓷电容器(BME-MLCC)。PME-MLCC通常采用昂贵的Pd或Ag作为内电极,优点是在空气中烧结不氧化,但价格昂贵。BME-MLCC则采用价格较低的Cu或Ni作为内电极,但是在空气中烧结易氧化,必须在还原气氛中进行烧结,要求介质陶瓷材料具有良好的抗还原特性(即在还原气氛下仍具有良好的微波介电性能)。而具有良好抗还原性的微波介质陶瓷材料很少,实用过程中常选用介电常数约为30的陶瓷材料。这相比于相同电容量的低介电常数MLCC介质层数会更少,带来的不利影响是每一层的误差对整个元件精度的影响会更大,不利于元件的高精度要求。因此,为了提高微波电容器的制作精度,应选用介电常数更小的微波介质陶瓷材料。
低介电常数微波介质陶瓷材料的谐振频率温度系数(Temperature Coefficientof Resonant Frequency,τf)通常为负值,需要掺入如TiO2、CaTiO3和SrTiO3等τf为正的Ti基材料来调控材料的温度稳定性,但是材料在还原性气氛下容易产生氧空位,为了保证电价平衡,易变价的Ti4+会获得弱束缚电子,形成载流子的定向迁移,导致整个材料半导化,从而降低了MLCC的绝缘电阻和可靠性。
发明内容
针对现有技术的以上缺陷或改进需求,本发明提供了一种低介微波铁电陶瓷及其制备方法,其目的在于解决现有低介微波介质陶瓷主要依靠添加Ti基材料调控其τf值的问题。
为实现上述目的,按照本发明的一个方面,提供了一种低介微波铁电陶瓷的制备方法,包括如下步骤:
(1)对BaO、ZnO和SiO2的混合物进行湿法球磨处理,并烘干后进行预烧,获得xBaO-yZnO-zSiO2基体陶瓷粉体;
(2)对上述基体陶瓷粉体进行湿法球磨处理,烘干后加入聚乙烯醇(PVA)造粒,压片后烧结,获得低介微波铁电陶瓷;
其中,湿法球磨处理中采用去离子水作分散剂;与现有技术中采用酒精作为分散剂的方式相比较而言,采用去离子水能制备出致密的铁电体单相,而采用酒精则不能;而材料的高致密度是获得优异微波介电性能的关键因素,否则材料只具有弱铁电性而不具备微波介电性能。
优选地,上述低介微波铁电陶瓷的制备方法,混合物中BaO、ZnO、SiO2的比例为x:y:z;其中,1≤x≤2,0≤y≤2,1≤z≤2。
优选地,上述低介微波铁电陶瓷的制备方法,其烧结温度为1150℃~1250℃;烧结温度在该范围内,所获得的低介微波铁电陶瓷具有较高的致密度。
优选地,上述低介微波铁电陶瓷的制备方法,具体如下:
(1)采用锆球为介质、去离子水为溶剂,对比例为1:1:1的BaO、ZnO、SiO2的混合物进行湿法球磨处理;将获得的浆料烘干后在1100℃下预烧3h,获得基体陶瓷粉体;
(2)将上述基体陶瓷粉体再次进行球磨处理,烘干后加入3wt%的聚乙烯醇(PVA)粘接剂进行造粒;并在100MPa压力下将其压制成厚度与直径比为0.4~0.6的生坯试样;
(3)将上述生坯试样在550℃温度下排胶后,以5℃/min的升温速率升高到1200℃,在空气中烧结3h;再以2℃/min的速率降温至800℃后随炉冷却到室温,获得化学式为BaO-ZnO-SiO2的低介微波铁电陶瓷。
优选地,上述低介微波铁电陶瓷的制备方法,步骤(3)中的烧结气氛采用氧气或氮气;采用该烧结气氛具有改变晶体结构参数和调控谐振频率温度系数的作用。
为实现本发明目的,按照本发明的另一个方面,提供了一种由上述制备方法制备得的低介微波铁电陶瓷,其化学通式为xBaO-yZnO-zSiO2;其中,1≤x≤2,0≤y≤2,1≤z≤2;
该低介微波铁电陶瓷,具有易发生微弱自发极化的[ZnO4]2-和[SiO4]四面体,以及中低级晶体学对称性:当x=1、y=1、z=1时,该材料为中级对称性的六方晶系;当x=2、y=1、z=2时,该材料为低级对称性的单斜晶系;当x=2、y=0、z=2时,该材料为低级对称性的正交晶系;当x=1、y=2、z=2时,该材料为低级对称性的单斜晶系;具有弱铁电性,也具有与其它长石结构材料相类似的低介微波介电性能;
现有的自发极化的铁电体具有高介电常数、高介电损耗、低品质因数的特征,其铁电性与微波介电性能相互制约:具有铁电性则不具备微波介电性能,具有微波介电性能则不具有铁电性,不适用于微波频段。
而本发明提供的这种具有长石结构的陶瓷材料,具有微波介电性能的同时,具有弱铁电性,铁电性与微波介电性能在这种材料内共存;而这种性能的统一,与本发明提供的低介微波铁电陶瓷材料所具有的特殊晶体结构有关:该材料具有易发生微弱自发极化的[ZnO4]2-和[SiO4]四面体及其特有的中低级晶体学对称性。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,能够取得下列有益效果:`
(1)本发明提供的低介微波铁电陶瓷的制备方法,采用去离子水作分散剂;与现有技术中采用酒精作为分散剂的方式相比较而言,采用去离子水能制备出致密的铁电体单相,且制备温度低于Cu或Ni的熔点,所制备得的低介微波铁电陶瓷材料具有优异的微波介电性能和抗还原特性,能和Cu或Ni在还原性气氛下共烧,适于作为BME-MLCC的介质材料;
(2)本发明提供的低介微波铁电陶瓷材料,具有介电常数小、微波介电损耗低的特点,可用于高频领域;
(3)本发明提供的低介微波铁电陶瓷材料,可通过改变其晶格结构参数或对称性来调控其谐振频率温度系数τf值;更重要的是,可将其居里温度点调节至MLCC工作温度以下,这样就能使得低介微波铁电陶瓷材料工作在顺电相下,可降低材料的损耗,进一步增加MLCC元件的可靠性。
附图说明
图1是实施例1制备得的陶瓷材料的的介温曲线;
图2是实施例2制备得的陶瓷材料的介温曲线;
图3是实施例7制备得的陶瓷材料的介温曲线;
图4是实施例1制备得的陶瓷材料的电滞回线;
图5是实施例2制备得的陶瓷材料的电滞回线;
图6是实施例7制备得的陶瓷材料的电滞回线;
图7是实施例16制备得的陶瓷材料的电滞回线。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
本发明提供的低介微波铁电陶瓷材料的化学通式为xBaO-yZnO-zSiO2,其中,1≤x≤2,0≤y≤2,1≤z≤2。
上述低介微波铁电陶瓷的制备方法包括如下步骤:
(1)将BaO、ZnO和SiO2混合后进行湿法球磨处理,并烘干后在1100℃进行预烧,得到xBaO-yZnO-zSiO2基体陶瓷粉体;
(2)将上述xBaO-yZnO-zSiO2基体陶瓷粉体进行湿法球磨处理,烘干后加入聚乙烯醇(PVA)造粒,压片后烧结,制得微波铁电材料。
以下结合实施例具体阐述本发明提供的低介微波铁电陶瓷的制备方法:
实施例1:制备化学式为BaO-ZnO-SiO2的低介微波铁电陶瓷;
(1)采用分析纯的BaO、ZnO和SiO2粉末作为原料,按照1:1:1的比例混合后,以锆球为介质、去离子水为溶剂,利用球磨机将粉末混合搅拌3h,转速为360r/min;将获得的浆料烘干后在1100℃下预烧3h,得到基体陶瓷粉体;
(2)将获得的基体陶瓷粉体再次球磨,烘干后将3wt%的聚乙烯醇(PVA)粘接剂加入干燥的粉末中造粒,在100MPa压力下将其压制成厚度与直径比为0.4~0.6的圆柱形生坯试样;
(3)将上述生坯试样在550℃温度下排胶后,以5℃/min的升温速率升高到1200℃,在空气中烧结3h;再以2℃/min的速率降温至800℃后随炉冷却到室温,获得化学式为BaO-ZnO-SiO2的低介微波铁电陶瓷。
实施例2~6提供的制备方法,其制备步骤及工艺与实施例1相同,区别在于各实施例步骤(1)里采用的BaO、ZnO和SiO2原料的比例,以及步骤(2)里采用的烧结气氛不同;实施例1~6的原料配比及烧结气氛以及制备得的低介微波铁电陶瓷的性能,如下表1所示:
表1实施例1~6的参数列表
实施例1~6表明,在三种气氛下烧结获得的化学式为xBaO-yZnO-zSiO2的陶瓷材料均有微波介电性能;其中实施例2制得的陶瓷材料的综合微波性能最佳:介电常数εr=8.09、品质因数Q×f=26634GHz、谐振频率温度系数τf=-40.6ppm/℃;实施例4的温度稳定性最好,其τf值为-26.3ppm/℃。
实施例7~16提供的制备方法,与实施例1的制备步骤及工艺相同,区别在于各实施例步骤(1)里采用的BaO、ZnO和SiO2原料的比例;实施例7~16的原料配比以及制备的低介微波铁电陶瓷的性能,如下表2所示:
表2实施例7~16的参数列表
从上述列表2可以看出,随着原材料里ZnO比例的增加,所制备的陶瓷材料的Q×f值先增大后减小,εr先减小后增大,τf一直增大;由此获得的结论为:Zn对于调控该陶瓷材料的微波性能、调整居里峰的位置具有重要作用。
实施例1、2、7制备的陶瓷材料的介温曲线如图1~3所示;由图1~3看出,实施例1、2、7制备的陶瓷材料均存在居里峰,实施例1的居里峰在128℃,实施例2的居里峰在497℃,实施例7的居里峰在88℃;居里峰峰值对应的温度点是材料从铁电相转变为顺电相的温度;上述数据表明,实施例1、2和7制备得的陶瓷材料均具有铁电性。
如图4~7所示,是实施例1、实施例2、实施例7和实施例16所制备的陶瓷材料分别在常温下测出的电滞回线;图4~7的电滞回线图表明,在没有外电场作用下,实施例1、实施例2、实施例7和实施例16所制备的陶瓷材料的极化强度不为零,即存在自发极化现象,表明实施例1、2、7和16制备的陶瓷材料均为铁电体。其他实施例所制备的陶瓷材料均由实施例1、2和7中的两相组成,也均为铁电体。
实施例1所制备的陶瓷材料的剩余极化强度Pr=0.056μC/cm2、矫顽场Er=7.99kV/cm;实施例2的剩余极化强度Pr=0.103μC/cm2,矫顽场Er=16.46kV/cm;实施例7的剩余极化强度Pr=0.053μC/cm2,矫顽场Er=7.41kV/cm;实施例16的剩余极化强度Pr=0.090μC/cm2,矫顽场Er=11.11kV/cm。
通过对上述实施例的分析表明,本发明提供的制备方法,所制备的钡锌硅陶瓷材料在具有良好微波介电性能的同时,还具有弱铁电性;既兼顾了低介电常数,又能够通过调节居里峰位置来调控τf值;其低介电常数的特性有利于提高微波MLCC的制造精度,其通过调节居里峰位置来调控τf值的特性有助于摆脱单一依赖Ti基添加剂的束缚,特别适用于BME-MLCC领域。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (3)

1.一种低介微波铁电陶瓷的制备方法,其特征在于,所述制备方法包括如下步骤:
(1)对BaO、ZnO和SiO2的混合物进行湿法球磨处理,并烘干后进行预烧,获得xBaO-yZnO-zSiO2基体陶瓷粉体;
(2)对所述基体陶瓷粉体进行湿法球磨处理,烘干后加入粘结剂造粒,压片后烧结,获得低介微波铁电陶瓷;所述湿法球磨处理中采用去离子水作分散剂,所述低介微波铁电陶瓷的晶体结构具有易发生微弱自发极化的[ZnO4]2-和[SiO4]四面体及中低级晶体学对称性;
所述混合物中BaO、ZnO、SiO2的比例为x:y:z;其中,1≤x≤2,0≤y≤2,1≤z≤2;所述烧结温度为1150℃~1250℃。
2.如权利要求1所述的制备方法,其特征在于,所述制备方法具体如下:
(1)采用锆球为介质、去离子水为溶剂,对比例为1:1:1的BaO、ZnO、SiO2的混合物进行湿法球磨处理;将获得的浆料烘干后进行预烧,获得基体陶瓷粉体;
(2)将所述基体陶瓷粉体再次进行球磨处理,烘干后加入3wt%的聚乙烯醇粘接剂进行造粒;并在100MPa压力下将其压制成厚度与直径比为0.4~0.6的生坯试样;
(3)将所述生坯试样排胶后,以5℃/min的升温速率升高到1200℃,在空气、氧气或氮气中烧结;再以2℃/min的速率降温至800℃后随炉冷却到室温,完成低介微波铁电陶瓷制备。
3.一种低介微波铁电陶瓷,其特征在于,所述低介微波铁电陶瓷通过权利要求1所述的低介微波铁电陶瓷的制备方法制备得到。
CN201510963435.0A 2015-12-21 2015-12-21 一种低介微波铁电陶瓷及其制备方法 Active CN105399405B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510963435.0A CN105399405B (zh) 2015-12-21 2015-12-21 一种低介微波铁电陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510963435.0A CN105399405B (zh) 2015-12-21 2015-12-21 一种低介微波铁电陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN105399405A CN105399405A (zh) 2016-03-16
CN105399405B true CN105399405B (zh) 2018-02-23

Family

ID=55465215

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510963435.0A Active CN105399405B (zh) 2015-12-21 2015-12-21 一种低介微波铁电陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN105399405B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107340164B (zh) * 2017-07-12 2020-01-10 西南科技大学 一种钙华介电常数测试样品的制备方法
CN108727022B (zh) * 2018-07-04 2020-11-27 电子科技大学 一种超低损耗铌酸镁锂体系微波介质陶瓷材料及其制备方法
CN109935530B (zh) * 2018-10-31 2023-05-12 湘潭大学 一种用于铁电器件中铁电薄膜可靠性评估的实验方法
CN113754419A (zh) * 2021-08-11 2021-12-07 桂林理工大学 一种硅基可低温烧结的低介高品质因数微波介质陶瓷的制备及应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1320576A (zh) * 2000-04-26 2001-11-07 松下电器产业株式会社 介电陶瓷组合物及其制造方法和在通讯设备器件中的应用
CN103113105A (zh) * 2013-01-18 2013-05-22 电子科技大学 低温烧结的高介电常数微波介电陶瓷及制备方法
CN103420670A (zh) * 2013-08-09 2013-12-04 电子科技大学 一种低温烧结微波陶瓷材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1320576A (zh) * 2000-04-26 2001-11-07 松下电器产业株式会社 介电陶瓷组合物及其制造方法和在通讯设备器件中的应用
CN103113105A (zh) * 2013-01-18 2013-05-22 电子科技大学 低温烧结的高介电常数微波介电陶瓷及制备方法
CN103420670A (zh) * 2013-08-09 2013-12-04 电子科技大学 一种低温烧结微波陶瓷材料及其制备方法

Also Published As

Publication number Publication date
CN105399405A (zh) 2016-03-16

Similar Documents

Publication Publication Date Title
CN106927804B (zh) 一种微波介质陶瓷温频特性调控剂及其ltcc材料
CN103601488B (zh) 一种调控陶瓷电介质微观结构及介电性能的方法
JP5322429B2 (ja) 磁性体と誘電体との複合焼結体およびlc複合電子部品
CN105399405B (zh) 一种低介微波铁电陶瓷及其制备方法
WO2001081269A1 (en) Low temperature sinterable and low loss dielectric ceramic compositions and method thereof
KR101161614B1 (ko) 비유리계 마이크로파 유전체 세라믹스 및 그 제조방법
CA1193835A (en) Method of manufacturing a dielectric
KR20100133905A (ko) 유전물질용 소결체 및 이의 제조 방법
CN105801112A (zh) Nd、Al共掺杂取代Ba0.4Sr0.6TiO3巨介电陶瓷及其制备方法
CN105272213B (zh) 高介低损微波介质陶瓷材料及其制备方法
KR101732422B1 (ko) 유전체 제조용 소결 전구체 분말 및 이의 제조 방법
CN105198423A (zh) Sr-La-Al基微波介质陶瓷材料及其制备方法
CN106187166B (zh) 一种用于中温烧结具有偏压特性的中高压瓷介电容器材料
KR100546993B1 (ko) 유전체 세라믹용 원료 분말의 제조 방법, 유전체 세라믹및 적층 세라믹 커패시터
CN108863349A (zh) 一种钛酸钡基无铅高介温度稳定型陶瓷材料及其制备方法
WO2020209039A1 (ja) 誘電性無機組成物
KR100557853B1 (ko) 인산염계 저유전율 세라믹 조성물
CN106145932B (zh) 一种高介电常数的多层陶瓷电容器介质材料及其制备方法
CN105819850A (zh) 一种y8r型电容器陶瓷介质材料及其制备方法
JP2020152630A (ja) 低い誘電損失を有する誘電体の製造方法及びそれによって製造される誘電体
JP4765367B2 (ja) 誘電体磁器組成物
CN110304916A (zh) 一种抗还原BaTiO3基介质陶瓷及制备方法
JP2006273616A (ja) 誘電体磁器組成物
JPH0521266A (ja) 粒界絶縁型半導体磁器物質の製造方法
JPH08239262A (ja) 誘電体磁器組成物

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant