CN105039523A - 用于疾病诊断的分子表达谱的方法和组合物 - Google Patents

用于疾病诊断的分子表达谱的方法和组合物 Download PDF

Info

Publication number
CN105039523A
CN105039523A CN201510355884.7A CN201510355884A CN105039523A CN 105039523 A CN105039523 A CN 105039523A CN 201510355884 A CN201510355884 A CN 201510355884A CN 105039523 A CN105039523 A CN 105039523A
Authority
CN
China
Prior art keywords
sample
gene
gene expression
cancer
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510355884.7A
Other languages
English (en)
Inventor
G·C·肯尼迪
B·安德森
D·I·丘多瓦
E·T·王
王辉
M·帕甘
N·拉比
J·I·威尔德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Veracyte Inc
Original Assignee
Veracyte Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Veracyte Inc filed Critical Veracyte Inc
Publication of CN105039523A publication Critical patent/CN105039523A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/0096Casings for storing test samples
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B50/00Containers, covers, furniture or holders specially adapted for surgical or diagnostic appliances or instruments, e.g. sterile covers
    • A61B50/30Containers specially adapted for packaging, protecting, dispensing, collecting or disposing of surgical or diagnostic appliances or instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B25/00ICT specially adapted for hybridisation; ICT specially adapted for gene or protein expression
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B25/00ICT specially adapted for hybridisation; ICT specially adapted for gene or protein expression
    • G16B25/10Gene or protein expression profiling; Expression-ratio estimation or normalisation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/02Instruments for taking cell samples or for biopsy
    • A61B10/0233Pointed or sharp biopsy instruments
    • A61B10/0283Pointed or sharp biopsy instruments with vacuum aspiration, e.g. caused by retractable plunger or by connected syringe
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/112Disease subtyping, staging or classification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/178Oligonucleotides characterized by their use miRNA, siRNA or ncRNA

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Oncology (AREA)
  • Microbiology (AREA)
  • Hospice & Palliative Care (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Theoretical Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • Evolutionary Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)

Abstract

本发明涉及用于分子表达谱和癌症诊断学的组合物、试剂盒和方法,包括但不限于与癌症相关的基因表达产物标志物、可选择的外显子使用标志物和DNA多态性。具体而言,本发明提供了与甲状腺癌相关的分子表达谱、确定分子表达谱的方法和分析结果以提供诊断的方法。

Description

用于疾病诊断的分子表达谱的方法和组合物
本申请是2009年11月17日提交的发明名称为“用于疾病诊断的分子表达谱的方法和组合物”的200980153735.5号(国际申请号PCT/US2009/006162)中国专利申请的分案申请。
交叉引用
本申请要求于2008年11月17日提交的名为“MethodsandCompositionsofMolecularProfilingforDiagnosisofCancer”的美国临时申请No.61/199,585和于2009年7月13日提交的名为“MethodsandCompositionsofMolecularProfilingforDiagnosisofCancer”的美国临时申请No.61/270,812的优先权,这两个申请的全部通过引用方式结合在本文中。
发明背景
癌症是美国第二位的主要死亡原因,也是全球的重要死亡原因之一。目前,将近有2500万人患有癌症,而每年新诊断的案例就达1100万。此外,随着总体人群持续老化,癌症更将成为日益严重的问题。世界卫生组织预期,到2020年,全球的癌症率将增长50%。
成功的癌症治疗从早期和准确的诊断开始。目前的诊断方法包括由活组织检查所采集的组织样品的细胞学检查或组织和器官的成像以证实异常的细胞增殖。尽管这些技术已证实为有益和经济的,但它们也具有一些缺点。第一,用于癌症诊断的细胞学分析和成像技术通常需要主观评估以确定恶性的可能性。第二,这些技术日益增加的使用已使得不确定性结果的数目大量急剧增加,其中不能做出明确的诊断。第三,这些常规诊断方法缺少用于确定准确诊断的概率的严格方法。第四,这些技术可能不能够在非常早的阶段检测出恶性的生长。第五,这些技术没有提供有关异常细胞增殖的基础的信息。
许多新生代的癌症治疗方法在显示出极大降低的副作用的同时特异性地靶向于特定代谢或信号传导途径,且将仅有效对抗依赖于该途径的癌症。此外,任何治疗的费用可能对于个体、保险提供商或政府机关而言是过高的。该费用可以至少部分地通过在早期阶段准确地诊断癌症和癌症所依赖的途径的改进方法所抵消。这些改进的方法对于防止不必要的治疗干预和指导治疗均是有用的。
在甲状腺癌的情况中,据估计在美国每年由于怀疑恶性肿瘤而进行的大约130,000例甲状腺切除手术中,仅有约54,000例是必要的。因此,每年进行约76,000例不必要的手术。此外,由于需要终身的药物治疗来替代丧失的甲状腺功能,存在持续的治疗费用和并发症。因此,需要改进的检测手段和商业行为,它们可改进目前的癌症诊断方法。
甲状腺具有至少两种产生激素的细胞。滤泡细胞产生甲状腺激素,其影响心率、体温和能量水平。C细胞产生降钙素(cacitonin),其是一种帮助控制血液中的钙水平的激素。甲状腺的异常生长可导致形成可为良性或恶性的结节。甲状腺癌包括至少四种不同种类的甲状腺的恶性肿瘤:乳头状、滤泡性、髓样和未分化的甲状腺恶性肿瘤。
发明内容
本发明包括在受试者中诊断甲状腺疾病的方法,该方法包括:(a)提供来自受试者的核酸样品;(b)检测选自表2中列举的基因或转录本或它们的互补物的一种或多种基因、基因产物或转录本的量;和(c)基于步骤(b)的结果确定所述受试者是否具有或可能具有恶性或良性甲状腺状况。
本发明还包括包含一种或多种结合试剂的组合物,该结合试剂特异性地结合一种或多种选自表中列举的多态体(polymorphism)的多态体。
具体而言,本发明还包括下述技术方案:
1.一种诊断受试者中的甲状腺癌的方法,包括以下步骤:
(a)从所述受试者获得包含基因表达产物的生物样品;
(b)确定所述生物样品中的一种或多种基因表达产物的表达水平,其中,所述一种或多种基因表达产物对应于选自图6的基因;和
(c)通过在所述生物样品中将基因表达水平与甲状腺癌的存在相关联来鉴定生物样品为癌性的。
2.如项1所述的方法,其中所述生物样品包含甲状腺细胞。
3.如项1所述的方法,其中所述生物样品包含组织样品。
4.如项1所述的方法,其中所述样品通过针式吸取、细针吸取、芯针活组织检查、真空辅助活组织检查、大芯活组织检查、切开式活组织检查、切除活组织检查、钻取活组织检查、刮取活组织检查或皮肤活组织检查获得。
5.如项1所述的方法,其中所述基因表达产物是RNA。
6.如项5所述的方法,其中所述基因表达产物是mRNA、rRNA、tRNA或miRNA。
7.如项5所述的方法,其中所述RNA的表达水平通过微阵列、SAGE、印迹、RT-PCR或定量PCR测量。
8.如项1所述的方法,其中所述基因表达产物是蛋白质。
9.如项8所述的方法,其中所述蛋白质的基因表达水平通过ELISA、质谱分析、印迹、蛋白质组学技术或免疫组织化学方法确定。
10.如项1所述的方法,还包括将所述一种或多种基因表达产物的表达水平与对照样品中各基因产物的对照表达水平相比较的步骤,其中如果所述生物样品和所述对照样品之间的基因表达产物的基因表达水平存在差异的话,该生物样品被鉴定为癌性的。
11.如项10所述的方法,其中使用训练的算法来比较生物样品和对照样品之间的mRNA水平的差异。
12.如项1所述的方法,其中所述一种或多种基因表达产物对应于选自表3、表4或表5的基因。
13.如项1所述的方法,其中所述一种或多种基因表达产物对应于选自列表1-31或表6中的任何一种或多种基因。
14.如项1所述的方法,其中所述基因表达产物是来自急性骨髓性白血病、生长激素抑制素受体2、cAMP介导的细胞周期和DNA损伤检验点、G蛋白偶联受体、整联蛋白、黑素瘤细胞、松弛肽或甲状腺癌信号传导途径。
15.如项1所述的方法,其中所述一种或多种基因表达产物是来自adherens、ECM、甲状腺癌、粘着斑、细胞凋亡、p53、紧密连接、TGFbeta、ErbB、Wnt、癌症概览中的途径、细胞周期、VEGF、Jak/STAT、MAPK、PPAR、mTOR或自身免疫性甲状腺途径。
16.如项15所述的方法,其中所述基因表达产物是来自adherens途径。
17.如项15所述的方法,其中至少两种基因表达产物被测定,且所述基因表达产物是来自至少两种不同的途径。
18.如项17所述的方法,其中至少一种基因表达产物是来自adherens途径,且至少一种基因表达产物是来自粘着斑途径。
19.如项18所述的方法,还包括来自紧密连接途径的第二基因表达产物。
20.如项15所述的方法,其中所述基因表达产物归类为多于一种途径。
21.如项20所述的方法,其中所述基因表达产物归类为adherens途径和粘着斑途径。
22.如项21所述的方法,其中所述基因表达产物还归类为紧密连接途径。
23.如项1所述的方法,其中所述基因表达产物是来自细胞衰老、细胞皮层、细胞周期、细胞死亡/细胞凋亡、细胞分化、细胞分裂、细胞连接、细胞迁移、细胞形态发生、细胞运动、细胞投射、细胞增殖、细胞识别、细胞本体、细胞表面、细胞表面连接受体的信号转导、细胞粘附、转录、免疫应答、血管生成、细胞膜、罕见膜成分、顶端细胞膜、基侧或侧细胞膜、整联蛋白、细胞表面、细胞外间隙、细胞骨架或炎症本体论的组。
24.如项1所述的方法,其中图6中所列的一种或多种基因包含对应于指示癌症的一组代谢途径或信号传导途径的代表性序列。
25.如项1所述的方法,其中步骤(d)的结果进一步包括提供建议的治疗干预。
26.如项1所述的方法,其中所述表达分析的结果提供了表明特定诊断正确的大于90%的统计学置信水平。
27.如项1所述的方法,其中所述表达分析的结果提供了表明特定诊断正确的大于95%的统计学置信水平。
28.如项1所述的方法,还包括在步骤(a)后在部分生物样品上进行细胞学分析的步骤,以获得初步诊断。
29.如项28所述的方法,其中具有中间样品和非诊断样品的初步诊断的样品还通过步骤(b)和(c)的方法进行分析。
30.如项1所述的方法,其中选自图6的基因还选自图2、图3、图4或图5中所列的基因。
31.如项1所述的方法,包括测定所述生物样品的基因表达产物中至少两种的表达水平。
32.如项1所述的方法,包括测定所述生物样品的基因表达产物中至少五种的表达水平。
33.如项1所述的方法,包括测定所述生物样品的基因表达产物中至少十种的表达水平。
34.如项1所述的方法,其中所述基因表达水平的差异为至少10%。
35.如项1所述的方法,其中所述基因表达水平的差异为至少25%。
36.如项1所述的方法,其中所述基因表达水平的差异为至少50%。
37.如项1所述的方法,其中所述基因表达水平的差异为至少两倍。
38.如项1所述的方法,其中所述基因表达水平的差异为至少五倍。
39.如项1所述的方法,其中所述基因表达水平的差异为至少十倍。
40.如项1所述的方法,其中所述生物样品以大于75%的准确性被鉴定为癌性的。
41.如项1所述的方法,其中所述生物样品以大于70%的灵敏度被鉴定为癌性的。
42.如项1所述的方法,其中所述生物样品以大于70%的特异性被鉴定为癌性的。
43.如项1所述的方法,其中所述生物样品以大于70%的灵敏度和大于70%的特异性被鉴定为癌性的。
44.如项1所述的方法,其中所述生物样品以大于95%的阳性预测值被鉴定为癌性的。
45.如项1所述的方法,其中所述生物样品以大于95%的阴性预测值被鉴定为癌性的。
46.如项40-45中任一项所述的方法,其中使用训练的算法计算所述准确性。
47.如项1所述的方法,其中所述对照样品获自于与测试样品相同的个体、与测试样品不同的个体、组织或细胞库。
48.如项1所述的方法,其中所述对照样品的基因表达产物基因水平来自数据库。
49.如项1所述的方法,其中所述样品是手术前标本。
50.如项1所述的方法,其中所述样品是手术后标本。
51.如项1所述的方法,其中所述方法将恶性甲状腺癌与良性甲状腺疾病区分开。
52.如项1所述的方法,其中所述方法鉴定生物样品中的滤泡性腺瘤、滤泡性癌、淋巴细胞性甲状腺炎、滤泡性变型乳头状甲状腺癌、乳头状甲状腺癌、结节性增生、甲状腺髓样癌、许特莱氏细胞癌、许特莱氏细胞腺瘤或未分化甲状腺癌。
53.如项1所述的方法,其中所述方法鉴定生物样品中的转移性非甲状腺癌。
54.如项1所述的方法,其中所述方法鉴定生物样品中的转移性甲状旁腺癌、转移性黑素瘤、转移性肾癌、转移性乳腺癌或转移性B细胞淋巴瘤。
55.如项1所述的方法,还包括传送一组具有鉴定信息的结果的步骤。
56.如项55所述的方法,其中所述信息通过互联网传送。
57.一种分类癌症的方法,包括步骤:
(a)获得包含基因表达产物的生物样品;
(b)测定所述生物样品中一种或多种基因表达产物的表达水平,其中所述一种或多种基因表达产物对应于选自图6的基因;
(c)将所述一种或多种基因表达产物的表达水平与对照样品中各基因表达产物的对照表达水平相比较;和
(d)如果在特定置信水平下所述生物样品和所述对照样品之间的基因表达水平存在差异的话,该生物样品被鉴定为对于癌症亚型是阳性的。
58.如项57所述的方法,其中所述方法鉴定所述生物样品中的滤泡性腺瘤、滤泡性癌、淋巴细胞性甲状腺炎、滤泡性变型乳头状甲状腺癌、乳头状甲状腺癌、结节性增生、甲状腺髓样癌、许特莱氏细胞癌、许特莱氏细胞腺瘤或未分化甲状腺癌。
59.如项57所述的方法,其中所述方法鉴定所述生物样品中的转移性非甲状腺癌。
60.如项57所述的方法,其中所述方法鉴定所述生物样品中的转移性甲状旁腺癌、转移性黑素瘤、转移性肾癌、转移性乳腺癌或转移性B细胞淋巴瘤。
61.一种用于诊断癌症的组合物,包含结合图6中所列的一种或多种基因表达产物或它们的互补物的一部分的探针。
62.如项61所述的组合物,其中所述探针是抗体。
63.如项61所述的组合物,其中所述探针是寡核苷酸。
64.如项61所述的组合物,还包含所述探针共价连接于其上的基底。
65.如项64所述的组合物,其中所述组合物适用于在特定置信度水平下使用训练的算法来诊断癌症。
66.如项65所述的组合物,其中所述癌症是甲状腺癌。
67.如项61所述的组合物,其中所述探针结合一种或多种对应于选自表3、表4或表5的基因的基因表达产物。
68.如项61所述的组合物,其中所述探针结合一种或多种对应于选自列表1-30或表6中的任何一种或多种基因的基因表达产物。
69.如项61所述的组合物,其中所述探针结合来自急性骨髓性白血病、生长激素抑制素受体2、cAMP-介导的细胞周期和DNA损伤检验点、G蛋白偶联受体、整联蛋白、黑素瘤细胞、松弛肽或甲状腺癌信号传导途径的所述一种或多种基因的一部分。
70.如项61所述的组合物,其中所述探针结合来自adherens、ECM、甲状腺癌、粘着斑、细胞凋亡、p53、紧密连接、TGFbeta、ErbB、Wnt、癌症概览中的途径、细胞周期、VEGF、Jak/STAT、MAPK、PPAR、mTOR或自身免疫性甲状腺途径的所述一种或多种基因的一部分。
71.如项61所述的组合物,其中存在至少两种结合来自至少两种不同的途径的基因表达产物的探针。
72.如项71所述的组合物,其中至少一种基因表达产物是来自adherens途径,和至少一种基因表达产物是来自粘着斑途径。
73.如项72所述的组合物,还包含来自紧密连接途径的基因表达产物。
74.如项61所述的组合物,其中所述基因表达产物归类为多于一种途径。
75.如项74所述的组合物,其中所述基因表达产物归类为adherens和粘着斑途径。
76.如项75所述的组合物,其中所述基因表达产物也归类为紧密连接途径。
77.如项61所述的组合物,其中所述基因表达产物包含来自细胞衰老、细胞皮层、细胞周期、细胞死亡/细胞凋亡、细胞分化、细胞分裂、细胞连接、细胞迁移、细胞形态发生、细胞运动、细胞投射、细胞增殖、细胞识别、细胞本体、细胞表面、细胞表面连接受体的信号转导、细胞粘附、转录、免疫应答、血管生成、细胞膜、罕见膜成分、顶端细胞膜、基侧或侧细胞膜、整联蛋白、细胞表面、细胞外间隙、细胞骨架或炎症本体论的组的一种或多种所述基因的一部分。
78.一种运营分子表达谱业务的方法,包括:
(a)提供通过测定项1的基因表达产物水平来诊断或监控癌症的服务;或
(b)使用项61的组合物来测定项1的一种或多种基因表达产物的量;
(c)基于(a)或(b)的获得数据来提供诊断、预后和指示的疗法的咨询;和
(d)协作或独立地向医生、医院和诊所销售(a)、(b)或(c)的服务。
以引用方式的结合
本说明书所提到的所有出版物和专利申请均通过引用方式结合在本文中,就好像每个出版物或专利申请均具体和单独地表明通过引用方式结合在本文中一样。
附图简述
本发明的新特征特别描述在所附权利要求书中。通过参考下面给出了采用本发明原理的说明性实施方式的具体描述和附图将会更好地理解本发明的特征和优势,附图为:
图1为列举了75种甲状腺样品的表,这些甲状腺样品使用AffymetrixHumanExon10ST阵列被用于基因表达分析的检验,以鉴定在恶性、良性和正常样品之间显著差异表达的或可可选择地剪接的基因。列出了各样品的名称和病理学分类。
图2是列举了在基因水平上前100种差异表达的基因的表。数据来自良性、恶性和正常的甲状腺样品在基因水平进行比较的数据集。在错误发现率(FDR)的Benjamini和Hochberg校正后,基于统计学显著性来选择标志物(maker)。正数表示表达的上调,而负数表示表达的下调。
图3是列举了前100种可选择剪接的基因的表。数据来自良性、恶性和正常的甲状腺样品在基因水平上进行比较的数据集。在错误发现率(FDR)的Benjamini和Hochberg校正后,基于统计学显著性来选择标志物。
图4是列举了在探针组(probe-set)水平的前100种差异表达的基因的表。数据来自探针组数据集。正数表示基因表达的上调,而负数表示基因表达的下调。
图5是列举了通过基因水平分析确定的前100种重要的诊断标志物的表。在该列表中的标志物既显示差异的基因表达,也显示可选择外显子剪接。正数表示上调,而负数表示下调。该表列举了对于任何特定标志的三组计算的倍数改变,以允许恶性对良性组、良性对正常组和恶性对正常组之间的比较。
图6是列举了被确定为有益于通过基因表达水平的分子表达谱和/或选择性外显子剪接的甲状腺癌诊断的基因的表。从其中良性、恶性和正常的样品在基因水平被分析的数据集中鉴定的标志物在数据源栏中被称为BMN;类似地,从其中良性和恶性样品在基因水平被分析的数据集中鉴定的标志物在数据源栏中被称为BM。同理,从其中良性和恶性样品被分析的数据集中在探针组水平鉴定的标志物在数据源栏中被称为探针组。
图7是列举了被检验用于基因表达分析的组织样品的表。这些样品通过病理学分析被分类为良性(B)或恶性(M)。良性样品被进一步分类为滤泡性腺瘤(FA)、淋巴细胞性甲状腺炎(LCT)或结节性增生(NHP)。恶性样品被进一步分类为许特莱氏细胞癌(Hurthlecellcarcinoma)(HC)、滤泡性癌(FC)、乳头状甲状腺癌的滤泡性变型(FVPTC)、乳头状甲状腺癌(PTC)、甲状腺髓样癌(MTC)或未分化甲状腺癌(ATC)。
图8是列举了被检验用于基因表达分析的细针吸取物样品的表。这些样品通过病理学分析被分类为良性(B)或恶性(M)。良性样品被进一步分类为滤泡性腺瘤(FA)、淋巴细胞性甲状腺炎(LCT)、许特莱氏细胞腺瘤(HA)或结节性增生(NHP)。恶性样品被进一步分类为许特莱氏细胞癌(HC)、滤泡性癌(FC)、乳头状甲状腺癌的滤泡性变型(FVPTC)、乳头状甲状腺癌(PTC)、甲状腺髓样癌(MTC)或未分化甲状腺癌(ATC)。
图9是列举了从图7列举的组织样品的表达分析鉴定的基因的表,如通过使用用于恶性对良性样品分类的LIMMA(微阵列数据的线性模型)和SVM(支持向量机)进行特征选择所确定的,这些基因在恶性和良性样品之间显示出显著的表达差异。经过用于错误发现率(FDR)的Benjamini和Hochberg校正后,分级表示标志物的显著性(分级越低,显著性越高)。基因符号表示基因的名称。TCID表示用于AffymetrixHumanExon10ST阵列中的基因的转录簇ID。RefSeq表示用于该基因的相应参照序列的名称。标记为“新发现的标志物”的栏表示之前未被描述为在恶性相对于良性甲状腺组织中差异表达的基因表达标志物。
图10是列举了从图8列举的组织样品的表达分析中鉴定的基因的表,如通过使用用于MTC相对于其他样品分类的LIMMA(微阵列数据的线性模型)和SVM(支持向量机)进行特征选择所确定的,这些基因在甲状腺髓样癌(MTC)和其他病状之间显示显著的表达差异。经过用于错误发现率(FDR)的Benjamini和Hochberg校正后,分级表示标志物的显著性(分级越低,显著性越高)。基因符号表示基因的名称。TCID表示用于AffymetrixHumanExon10ST阵列中的基因的转录簇ID。P值表示MTC和非MTC样品之间的差异表达的统计学显著性。倍数改变表示MTC和非MTC样品之间的差异表达的程度。标记为“新发现的标志物”的栏表示之前未被描述为在恶性相对于良性甲状腺组织中差异表达的基因表达标志物。
图11是列举了从图7和图8所列举的样品的表达分析鉴定的基因的表,如通过基于重复性的荟萃分析(meta-analysis)分类算法确定的,这些基因在良性和恶性样品之间显示出显著的表达差异。
图12是列举了从图7和图8所列举的样品的表达分析鉴定的基因的表,如通过差异表达基因的贝叶斯分级(Bayesianranking)确定的,这些基因在良性和恶性样品之间显示显著的(后验概率>0.9)表达差异。从之前公开的研究获得I型和II型误差率来确定先验概率,将这些先验概率与从图10中列举的样品的表达分析获得的数据集的输出相结合来估算差异基因表达的后验概率,然后将从图11中列举的样品的表达分析的结果与估算的后验概率相结合来计算差异基因表达的最终后验概率。然后使用这些后验概率对差异表达的基因进行分级。
图13是列举了从图7所列举的样品的表达分析鉴定的基因的表,如通过使用用于分类的LIMMA(微阵列数据的线性模型)和SVM(支持向量机)进行特征选择所确定的,这些基因在被归类为FA、LCT、NHP、HC、FC、FVPTC、PTC、MTC或ATC的样品之间显示出差异表达。
图14是列举了使用AgilentHumanv2miRNA微阵列芯片检验用于微RNA(miRNA)表达分析的细针吸取样品的表。这些样品通过病理学分析被分类为良性(B)或恶性(M)。良性样品被进一步分类为滤泡性腺瘤(FA)或结节性增生(NHP)。恶性样品被进一步分为滤泡性癌(FC)、滤泡型乳头状甲状腺癌的滤泡性变型(FVPTC)、乳头状甲状腺癌(PTC)或甲状腺髓样癌(MTC)。
图15是列举了使用IlluminaHumanv2miRNA微阵列检验用于微RNA(miRNA)表达分析的细针吸取样品的表。这些样品通过病理学分析被分类为良性(B)、非诊断性或恶性(M)。良性样品被进一步分类为良性结节(BN)、滤泡性赘生物(FN)、(LCT)或(NHP)。恶性样品被进一步分为(FVPTC)或(PTC)。
图16是列举了从图14中所列举的样品的分析鉴定的微RNA(miRNA)的表,该微RNA在被分类为良性或恶性的样品之间显示出差异表达。miRNA栏表示miRNA的名称。CHR栏表示miRNA定位于其上的染色体。P栏表示该分析提供的统计学置信度或P值。DE栏表示所列举的miRNA是否在恶性样品中上调(1)或在恶性样品中下调(-1)。专利栏表示描述这些miRNA的任何专利或申请。
图17是列举了从图15中所列举的样品的分析鉴定的微RNA(miRNA)的表,该微RNA在被分类为良性或恶性的样品之间显示出差异表达。miRNA栏表示miRNA的名称。探针ID栏表示illumina阵列中的相应探针ID。CHR栏表示miRNA定位于其上的染色体。P栏表示该分析提供的统计学置信度或P值。DE栏表示所列举的miRNA是否在恶性样品中上调(无符号)或在恶性样品中下调(负号)。Rep栏表示通过杂交数据(hybridizationdata)的“热探针(hotprobe)”型分析所提供的重复性评分。专利栏表示描述这些miRNA的任何专利或申请。
图18是描述分子表达谱(molecularprofiling)可如何用于改进常规细胞学检验的准确性的流程图。图18A和图18B描述了分子表达谱业务的可选实施方式。
图19是由分子表达谱业务提供的试剂盒的示意图。
图20是分子表达谱结果报告的示意图。
图21描述了用于显示、存储、回收或计算分子表达谱的诊断结果、,用于显示、存储、回收或计算来自基因组或核酸表达分析的原始数据或用于显示、存储、回收或计算用在本发明的方法中的任何样品或客户信息的计算机。
图22描述了使用基于SVM的分类算法的误差率相对于基因数目的滴定曲线。当分类算法检验200-250种基因时,该滴定曲线达到平稳。这些数据表明目前算法的总体误差率是4%(5/138)。
具体实施方式
I.介绍
本公开内容提供了用于从生物检测样品诊断异常细胞增殖的新方法、及相关试剂盒和组合物。本发明还提供了用于差异诊断异常细胞增殖的类型的方法和组合物,这些异常细胞增殖类型例如癌包括滤泡性癌(FC)、乳头状甲状腺癌滤泡性变型(FVPTC)、许特莱氏细胞癌(HC)、许特莱氏细胞腺瘤(HA)、乳头状甲状腺癌(PTC)、甲状腺髓样癌(MTC)和未分化癌(ATC);腺瘤包括滤泡性腺瘤(FA)、结节增生(NHP)、胶质结节(CN)、良性结节(BN)、滤泡性赘生物(FN)、淋巴细胞性甲状腺炎(LCT)包括淋巴细胞性自身免疫甲状腺炎、甲状旁腺组织、至甲状腺的肾癌转移、至甲状腺的黑素瘤转移、至甲状腺的B细胞淋巴瘤转移、至甲状腺的乳腺癌、良性(B)肿瘤、恶性(M)肿瘤和正常(N)组织。本发明还提供了用于诊断、表征和治疗细胞增殖的新的标志物(包括微RNA(miRNA)和基因表达产物标志物)和新的基因和标志物的组。此外,本发明提供了用于提供细胞增殖的增强诊断、差异诊断、监控和治疗的商业方法。
癌症在美国是导致死亡的主要原因。癌症的早期和准确的诊断对于有效控制这种疾病是至关重要的。因此,研发那些使得癌症的诊断能够更加准确和更早地进行的检测手段和商业行为是重要的。表达产物谱(也称为分子表达谱)为ww生物样品早期和准确地诊断肿瘤或其他类型的癌症提供了有力的方法。
通常,筛选肿瘤或其他类型的癌症的存在包括分析通过各种方法如,举例来说,活组织检查采取的生物样品。然后本领域技术人员制备和检查该生物样品。制备方法可包括但不限于各种细胞学染色和免疫组织化学方法。遗憾的是,传统的癌症诊断方法具有许多缺陷。这些缺陷包括:1)诊断可能需要主观的评估,因此易于导致不准确和缺乏再现性,2)这些方法可能不能确定导致发病的基础遗传、代谢或信号传导途径,3)这些方法可能不能提供检测结果的定量评估,和4)这些方法可能不能提供对某些样品的明确的诊断。
癌症的一个特征是正常转录调控的失调,从而导致基因或其他转录本如miRNA的异常表达。异常表达的转录本包括参与细胞转化的基因,例如肿瘤抑制基因和致癌基因。当于正常组织相比时,肿瘤中的肿瘤抑制基因和致癌基因可被上调或下调。已知的肿瘤抑制基因和致癌基因包括但不限于brca1、brca2、bcr-abl、bcl-2、HER2、N-myc、C-myc、BRAF、RET、Ras、KIT、Jun、Fos和p53。这种异常表达可通过多种不同的机理发生。在本发明中不是必须了解异常表达的机理或致癌作用发生的机理。但是,发现与正常样品相比其在样品中的表达被上调或下调的标志物或标志物组可以指示癌症。此外,特定的异常表达的标志物或标志物组可以指示特定类型的癌症或甚至于指示推荐的治疗方案。而且,本发明的方法不意图仅局限于常规定义的肿瘤抑制基因或致癌基因。相反,应该理解的是,任何确定为其表达水平或可选择基因剪接方面具有与良性、恶性或正常诊断的统计学显著相关性的标志物、基因或者基因或标志物的组均包括在本发明内。
在一个实施方式中,本发明的方法要求提高目前的癌症诊断方法的准确性。提高的准确性可由多种基因和/或表达标志物的测量、以高诊断力或统计学显著性对基因表达产物如miRNA、rRNA、tRNA和mRNA基因表达产物的鉴别或以高诊断力或统计学显著性对基因和/或表达产物的组的鉴别,或者它们的任意组合来获得。
例如,多种受体酪氨酸激酶的表达增加涉及癌发生。对已知在癌症细胞中差异表达的特定受体酪氨酸激酶的基因表达产物水平的测量可能提供错误的诊断结果,从而导致低准确率。多种受体酪氨酸激酶的测量可以通过要求出现替代表达基因的组合而提高准确性水平。因此,在一些情况中,多种基因的测量可以通过降低样品可能由于随机出现的可能性而显示异常基因表达谱的可能性增加诊断的准确性。
类似地,组内一些基因表达产物如受体酪氨酸激酶,当它们的表达水平高于或低于正常值时,可能指示疾病或状况。测量该同一组内的其他基因产物的表达水平可提供诊断用途。因此,在一个实施方式中,本发明测量一个组内的两种或更多种基因表达产物。例如,在某些实施方式中,一个组内的1、2、3、4、5、6、7、8、9、10、15、20、25、30、35、40、45或50种基因表达产物被测量。本说明书中定义了各种不同的组,例如用于诊断甲状腺癌的亚型的组或落入特定本体论(ontology)组的基因表达产物的组。在另一实施方式中,测量从多个组准确地表明是否存在癌症的基因的组的表达水平是有利的。例如,本发明包括使用1、2、3、4、5、6、7、8、9、10、15、20、25、30、35、40、45或50个基因表达组,每个组测量1、2、3、4、5、6、7、8、9、10、15、20、25、30、35、40、45或50种基因表达产物。
此外,生物样品中其他致癌基因(如,举例来说,Ras)的表达增加也可能指示癌性细胞的存在。在一些情况中,确定几种不同类的致癌基因(如,举例来说,受体酪氨酸激酶、细胞质酪氨酸激酶、GTPase、丝氨酸/苏氨酸激酶、脂质激酶、丝裂原、生长因子和转录因子)的表达水平可能是有利的。在一些情况中,确定参与癌症进程的不同类或组的基因的表达水平和/或外显子使用(exonusage)可增强本发明的诊断能力。
表达标志物的组可包括代谢或信号传导途径中的标志物,或遗传或功能上同源的标志物。例如,一组标志物可包括上皮生长因子信号传导途径中涉及的基因。另一组标志物可包括丝裂原活化的蛋白激酶。本发明还提供了用于检测(即测量)来自多个和/或独立的代谢或信号传导途径的基因表达标志物的方法和组合物。
在一个实施方式中,本发明的表达产物标志物可通过使用多种表达产物标志物和统计学分析来提供更高准确性的癌症诊断。具体而言,本发明提供但不限于与甲状腺癌相关的RNA表达谱。本发明还提供了表征甲状腺组织样品的方法以及用于应用该方法的试剂盒和组合物。本公开内容还包括用于运营分子表达谱业务的方法。
本公开内容提供了用于改进癌症诊断的现有技术状态的方法和组合物。
在某些实施方式中,本发明提供了诊断癌症的方法,包括步骤:获得包含基因表达产物的生物样品;确定该生物样品中一种或多种基因表达产物的表达水平;和当基因表达水平指示该生物样品中存在甲状腺癌时,确认该生物样品为癌性的。这可通过将基因表达水平与生物样品中甲状腺癌的存在相关联来进行。在一个实施方式中,基因表达产物选自图6。在某些实施方式中,该方法还包括将一种或多种基因表达产物的表达水平与对照样品中各基因表达产物的对照表达水平相比较的步骤,其中如果该生物样品和对照样品中的基因表达产物的基因表达水平之间存在差异的话,该生物样品被鉴定为癌性的。
在某些实施方式中,本发明提供了诊断癌症的方法,包括步骤:获得包含可选择地剪接的基因表达产物的生物样品;确定该生物样品中一种或多种基因表达产物的表达水平;和当基因表达水平指示该生物样品中存在甲状腺癌时,确认该生物样品为癌性的。这可通过将基因表达水平与生物样品中的甲状腺癌的存在相关联来进行。在一个实施方式中,可选择地剪接的基因表达产物选自图6,其中比较生物样品和对照样品之间的差异基因表达产物可选择的外显子使用;和如果在规定的置信度水平下生物样品和对照样品之间的基因表达产物可选择外显子的使用存在差异的话,确认该生物样品为癌性的。在某些实施方式中,选自图6的基因还选自图2、图3、图4或图5中所列的基因。
在某些实施方式中,本发明提供了使用本文描述的本发明的方法获得大于70%的特异性或灵敏度的诊断癌症的方法,其中,比较生物样品和对照样品之间的基因表达产物的水平;和如果在规定的置信度水平下生物样品和对照样品之间的基因表达水平存在差异的话,确认该生物样品为癌性的。在某些实施方式中,本发明方法的特异性和/或灵敏度为至少70%、75%、80%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高。
在某些实施方式中,名义特异性(nominalspecificity)大于或等于70%。名义阴性预测值(NPV)大于或等于95%。在某些实施方式中,NPV为至少95%、95.5%、96%、96.5%、97%、97.5%、98%、98.5%、99%、99.5%或更大。
灵敏度通常是指TP/(TP+FN),其中TP是真阳性,FN是假阴性。将持续不确定结果的数目除以基于判定的组织病理学诊断的恶性结果的总数。特异性通常是指TN/(TN+FP),其中TN是真阴性,FP是指假阳性。将良性结果的数目除以基于判定的组织病理学诊断的良性结果的总数。阳性预测值(PPV):TP/(TP+FP);阴性预测值(NPV):TN/(TN+FN)。
标志物小组被选择以适应良性表达谱与非良性表达谱的充分分离。该多维分类器(即算法)的训练是在超过500个甲状腺样品(包括>300个FNA)上进行的。许多训练/测试集用于开发初步的算法。示例性的数据集示于图22中。首先,总体算法误差率显示为良性对非良性样品的基因数目的函数。使用支持向量机模型获得所有的结果,该模型以交叉验证(cross-validated)模式(30倍)在样品上进行训练和测试。
在某些实施方式中,基因表达水平的差异为至少10%、15%、20%、25%、30%、35%、40%、45%或50%或者更大。在某些实施方式中,基因表达水平中差异为至少2、3、4、5、6、7、8、9、10倍或更多。在某些实施方式中,生物样品以大于75%、80%、85%、90%、95%、99%或更高的准确性被鉴定为癌性的。在某些实施方式中,生物样品以大于95%的灵敏度被鉴定为癌性的。在某些实施方式中,生物样品以大于95%的特异性被鉴定为癌性的。在某些实施方式中,生物样品以大于95%的灵敏度和大于95%的特异性被鉴定为癌性的。在某些实施方式中,使用训练的算法计算准确性。
在某些实施方式中,本发明提供了对应于选自表3、表4和/或表5的基因的基因表达产物。
在某些实施方式中,本发明提供了诊断癌症的方法,包括使用来自一个或多个以下信号传导途径的基因表达产物。基因可以从其中选择的信号传导途径包括但不限于:急性骨髓性白血病信号传导、生长激素抑制素2信号传导、cAMP介导的信号传导、细胞周期和DNA损伤检验点信号传导、G蛋白偶联受体信号传导、整联蛋白信号传导、黑素瘤细胞信号传导、松弛肽信号传导和甲状腺癌信号传导。在某些实施方式中,多于一种基因选自单个信号传导途径以确定和比较生物样品与对照样品之间的差异基因表达产物水平。其他信号传导途径包括但不限于adherens、ECM、甲状腺癌、粘着斑(focaladhesion)、细胞凋亡、p53、紧密连接、TGFbeta、ErbB、Wnt、癌症概览(canceroverview)中的途径、细胞周期、VEGF、Jak/STAT、MAPK、PPAR、mTOR或自身免疫性甲状腺途径。在其他实施方式中,至少两种基因选自至少两个不同的信号传导途径以确定和比较生物样品和对照样品之间的差异基因表达产物水平。本发明的方法和组合物可以以任何组合具有选自1、2、3、4、5、6、7、8、9、10、15、20、25、30、35、40、45、50或更多个信号传导途径的基因和可具有来自各信号传导途径的1、2、3、4、5、6、7、8、9、10、15、20、25、30、35、40、45、50或更多种基因表达产物。在某些实施方式中,组合的基因的组提供大于70%、75%、80%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或99.5%的特异性或灵敏度,或至少95%、95.5%、96%、96.5%、97%、97.5%、98%、98.5%、99%、99.5%或更高的阳性预测值或阴性预测值。
在某些实施方式中,本发明提供了诊断癌症的方法,包括选自至少两个不同的本体论组的基因。在某些实施方式中,基因可以从其中选择的本体论组包括但不限于:细胞老化、细胞皮层、细胞周期、细胞死亡/细胞凋亡、细胞分化、细胞分裂、细胞连接、细胞迁移、细胞形态发生、细胞运动、细胞投射(cellprojection)、细胞增殖、细胞识别、细胞本体、细胞表面、细胞表面连接受体的信号转导、细胞粘附、转录、免疫应答或炎症。在某些实施方式中,多于一种基因选自单个本体论组以确定和比较生物样品和对照样品之间的差异基因表达产物水平。在其他实施方式中,至少两种基因选自至少两个不同的本体论组以确定和比较生物样品和对照样品之间的差异基因表达产物水平。本发明的方法和组合物可以以任何组合具有选自1、2、3、4、5、6、7、8、9、10、15、20、25、30、35、40、45、50或更多个基因本体论组的基因和可具有来自各基因本体论组的1、2、3、4、5、6、7、8、9、10、15、20、25、30、35、40、45、50或更多种基因表达产物。在某些实施方式中,组合的基因的组提供大于70%、75%、80%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或99.5%的特异性或灵敏度,或至少95%、95.5%、96%、96.5%、97%、97.5%、98%、98.5%、99%、99.5%或更高的阳性预测值或阴性预测值。
在某些实施方式中,本发明提供了对癌症分类的方法,包括步骤:获得包含基因表达产物的生物样品;确定该生物样品的一种或多种基因表达产物的表达水平,该基因表达产物在不同亚型的癌症中差异表达;和当基因表达水平指示癌症的亚型时,确认该生物样品为癌性的。在某些实施方式中,该方法还包括将一种或多种基因表达产物的表达水平与对照样品中各基因表达产物的对照表达水平相比较的步骤,其中,如果生物样品和对照样品中的基因表达产物的基因表达水平存在差异的话,该生物样品被鉴定为癌性的。在某些实施方式中,本方法区分滤泡性癌和髓样癌。在某些实施方式中,本发明区分良性甲状腺疾病和恶性甲状腺肿瘤/癌。
在某些实施方式中,本方法的基因表达产物是蛋白质,并比较蛋白质的量。蛋白质的量可通过以下一种或多种方法测定:ELISA、质谱分析、印迹或免疫组织化学。RNA可通过以下一种或多种方法测量:微阵列、SAGE、印迹、RT-PCR或定量PCR。
在某些实施方式中,可用于诊断癌症的生物样品与对照样品之间的基因表达水平(如mRNA、蛋白质或可选择地剪接的基因产物)的差异为至少1.5、2、2.5、3、3.5、4、4.5、5、5.5、6、6.5、7、7.5、8、8.5、9、9.5、10倍或更多。
在某些实施方式中,生物样品以大于75%、80%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或99.5%的准确性被分类为癌性的或对于癌症亚型为阳性的。本文使用的诊断准确性包括特异性、灵敏度、阳性预测值、阴性预测值和/或错误发现率。
当对用于诊断癌症的生物样品进行分类时,通常由二元分类器得到四种可能的结果。如果预测的结果是p,实际值也是p,则被称为真阳性(TP);但是,如果实际值为n,则被称为假阳性(FP)。相反,当预测结果和实际值均为n时出现真阴性,当预测结果是n而实际值是p时,则是假阴性。在一个实施方式中,考虑试图确定某人是否患有某种疾病的诊断测试。当这个人测试为阳性但事实上并未患有该疾病时,在这种情况下出现假阳性。另一方面,当这个人测试为阴性而表明其是健康的,但他实际上患有该疾病时,出现假阴性。在某些实施方式中,可以通过以相关比例重复采样在可获得样品上获得的误差产生假设现实世界的亚型流行度的ROC曲线。
疾病的阳性预测值(PPV)或精确率或后验概率是具有阳性测试结果的患者被正确诊断的比例。这是诊断方法的最重要的量度,因为它反映了阳性测试反映测试的基础状况的概率。但是,它的值确实依赖于疾病的流行度,并可发生变化。在一个实例中,FP(假阳性);TN(真阴性);TP(真阳性);FN(假阴性)。
假阳性率(α)=FP/(FP+TN)-特异性
假阴性率(β)=FN/(TP+FN)--灵敏度
能力=灵敏度=1-β
阳性似然率=灵敏度/(1-特异性)
阴性似然率=(1-灵敏度)/特异性
阴性预测值是具有阴性测试结果的患者被正确诊断的比例。PPV和NPV量度可使用适当的疾病亚型流行度估计值来获得。汇集的恶性疾病流行度的估计值可从通过手术大致分为B和M的不确定事件的集合计算。对于亚型特异性的估计值,在某些实施方式中,疾病的流行度有时是无法计算的,因为不存在任何可获得的样本。在这些情况下,亚型疾病流行度可由汇集的疾病流行度估计值替代。
在某些实施方式中,表达产物水平或可选择外显子使用指示以下之一:滤泡细胞癌、未分化癌、髓样癌或肉瘤。在某些实施方式中,使用本发明的方法选择的用于诊断癌症的一种或多种基因包含对应于指示癌症的一组代谢或信号传导途径的代表性序列。
在某些实施方式中,本发明方法的表达分析的结果提供了给出的诊断正确的统计学置信水平。在某些实施方式中,该统计学置信水平是大于85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或99.5%。
在另一方面,本发明提供了用于诊断癌症的组合物,包含含有图6中所列的一种或多种基因或它们的互补物的一部分的寡核苷酸,以及该寡核苷酸共价连接于其上的基底。本发明的组合物适用于在特定的置信水平下使用训练的算法来诊断癌症。在一个实施例中,本发明的组合物用于诊断甲状腺癌。
在本公开的一个方面,已经过细胞学公司处理的、进行常规方法和染色的、诊断和分类的样品随后进行分子表达谱分析作为第二诊断筛选。该第二诊断筛选使得能够:1)显著降低假阳性和假阴性,2)确定造成所产生的病理学状态的基础遗传、代谢或信号传导途径,3)能够赋予诊断准确性的统计学概率,4)能够解决含糊的结果,和5)能够区分癌症的亚型。
例如,在甲状腺癌的特定情况中,本发明的分子表达谱还可提供对于甲状腺癌的特定类型(例如乳头状、滤泡性、髓样和未分化的甲状腺癌)的诊断。分子表达谱的结果还可进一步允许本领域的技术人员(如科学或医学专业人员)建议或指定特定的治疗干预。生物样品的分子表达谱还可用于监测初始诊断后特定治疗的效力。还可以理解的是,在某些情况下,分子表达谱可用于取代而不是补充已确立的癌症诊断方法。
在一个方面,本发明提供了可用于诊断和监测遗传障碍的算法和方法。遗传障碍是由基因或染色体的异常引起的疾病。尽管某些疾病(如癌症)部分地由于遗传障碍导致,但它们也可以由环境因素引起。在某些实施方式中,本文公开的算法和方法用于诊断和监测癌症,如甲状腺癌。
遗传疾病通常可分为两类:单基因障碍及多因素和多基因(复杂)的障碍。单基因障碍是单个突变基因的结果。据估计,超过400种人类疾病是由单基因缺陷引起的。单基因障碍可以以几种方式传递到后续世代。遗传单基因障碍有几种类型,包括但不限于:常染色体显性、常染色体隐性、X-连锁显性、X-连锁隐性、Y-连锁和线粒体遗传。对于受常染色体显性障碍的人,仅必需基因的一个突变拷贝。常染色体显性类型的障碍的实例包括但不限于亨廷顿病(Huntington'sdisease)、神经纤维瘤病1、马凡氏综合征(MarfanSyndrome)、遗传性非息肉病性结直肠癌(Hereditarynonpolyposiscolorectalcancer)和遗传性多发性外生骨疣(Hereditarymultipleexostose)。在常染色体隐性障碍中,人受到常染色体显性障碍的影响必需有基因的两个拷贝发生突变。这一类型的障碍的实例包括但不限于囊性纤维化、镰刀细胞病(并且部分镰刀细胞病)、Tay-Sachs病、尼曼-匹克氏病(Niemann-Pickdisease)、脊髓性肌萎缩和干耳垢(dryearwax)。X-连锁显性障碍是由X染色体上的基因的突变引起的。仅有几种障碍具有这种遗传模式,最理想的例子是X连锁低血磷性佝偻病。男性和女性均受这些疾病的影响,男性通常比女性的影响更严重。一些X-连锁显性状况(如雷特氏综合征、2型色素失调症和艾卡尔迪综合征(AicardiSyndrome))通常在出生前或刚出生后的男性中是致命的,且因此主要在女性中观察到。X-连锁隐性疾病也是由X染色体上的基因突变引起的。这一类型的障碍的实例包括但不限于血友病A、杜兴肌营养不良(Duchennemusculardystrophy)、红绿色盲、肌营养不良症和雄激素性脱发。Y连锁障碍是由Y染色体上的突变引起的。实例包括但不限于男性不育症和耳廓多毛症(hypertrichosispinnae)。线粒体遗传,也称为母体遗传,适用于线粒体DNA中的基因。这种类型的障碍的例子是Leber's遗传性视神经病(Leber'sHereditaryOpticNeuropathy)。
遗传障碍也可以是复杂的、多因素或多基因的,这意味着它们很可能与多种基因的效应(其与生活方式和环境因素结合)相关。尽管复杂的疾病通常簇集在家族中,但它们不具有清晰的遗传模式。这使得难以确定人们遗传或传递这些疾病的风险。复杂的疾病也难以研究和治疗,因为导致引起大多数这些疾病的特定因素还未确定。可以使用本发明的算法和方法诊断、表征和/或监测的多因素或多基因疾病包括但不限于心脏病、糖尿病、糖尿病、哮喘、孤独症、自身免疫性疾病如多发性硬化、癌症、纤毛病(ciliopathies)、腭裂、高血压、炎性肠病、智力迟钝和肥胖。
可以使用本发明的算法和方法诊断、表征和/或监测的其他遗传疾病包括但不限于1p36缺失综合征、21-羟化酶缺乏症、22q11.2缺失综合征、47,XYY综合征、48,XXXX、49,XXXXX、无铜蓝蛋白血症、软骨成长不全,II型、软骨发育不全、急性间歇性卟啉症、腺苷酸琥珀酸裂解酶缺乏症、肾上腺脑白质营养不良、ALA不足卟啉病、ALA脱水酶缺乏症、亚历山大病、尿黑酸尿症、α-1抗胰蛋白酶缺乏症、阿耳斯特雷姆综合征(Alstromsyndrome)、阿尔茨海默氏病(1、2、3和4型)、釉质生长不全、肌萎缩性侧索硬化症、2型肌萎缩性脊髓侧索硬化症、4型肌萎缩性脊髓侧索硬化症、4型肌萎缩性侧索硬化症、雄激素不敏感综合征、贫血、Angelman综合征、阿佩尔综合征(Apertsyndrome)、共济失调毛细血管扩张症、比尔-史蒂文生皮肤回旋综合征(Beare-Stevensoncutisgyratasyndrome)、本杰明综合征、β-地中海贫血、生物素酰胺酶缺乏症、Birt-Hogg-Dubé综合征、膀胱癌、布卢姆综合征、骨疾病、乳腺癌、CADASIL、弯肢发育不良(Camptomelicdysplasia)、卡纳万病(Canavandisease)、癌症、乳糜泻、CGD慢性肉芽肿病、夏科-马里-图思病(Charcot-Marie-Toothdisease)、1型夏科-马里-图思病、4型夏科-马里-图思病、夏科-马里-图思病,2型、夏科-马里-图思病,4型、科凯恩综合征、Coffin-Lowry综合征、II和XI型collagenopathy、结肠直肠癌、输精管先天性缺失、输精管先天性双侧缺失、先天性糖尿病、先天性红细胞生成性卟啉病、先天性心脏病、先天性甲状腺功能减退症、结缔组织病、Cowden综合征、猫叫综合征、克罗恩病、fibrostenosing、克鲁宗综合征、Crouzonodermoskeletal综合征、囊性纤维化、德-格罗乌稀综合征(DeGrouchySyndrome)、神经退行性疾病、Dent病、发育性病废(developmentaldisabilityes)、DiGeorge综合征、V型远端脊髓性肌萎缩、唐氏综合症、侏儒症、埃莱尔-当洛综合征(Ehlers-Danlossyndrome)、关节松弛症(arthrochalasia)型埃莱尔-当洛综合征、经典型埃莱尔-当洛综合征、皮肤松弛症(dermatosparaxis)型埃莱尔-当洛综合征、脊柱后侧凸型埃莱尔-当洛综合征、脉管型、红细胞生成原卟啉症、法布瑞氏症(Fabry'sdisease)、面部受伤和疾病、因子V莱顿血栓形成倾向、家族性腺瘤性息肉病、家族性自主神经异常、范可尼贫血、FG综合征、脆性X综合征、弗里德里希共济失调、弗里德里希氏共济失调、G6PD缺乏症、半乳糖血症、戈谢病(1、2和3型)、遗传性脑失调、甘氨酸脑病(Glycineencephalopathy)、2型血色病、4型血色病、丑角鱼鳞病(HarlequinIchthyosis)、头和脑畸形、听力障碍和耳聋、儿童听力问题、血色素沉积症(新生儿、2型和3型)、血友病、肝红细胞生成性卟啉症、遗传性粪卟啉症、遗传性多发性外生骨疣、具有压力麻痹的倾向的遗传性神经病、遗传性非息肉病性结直肠癌、高胱氨酸尿症、亨廷顿舞蹈病、早年衰老综合症(HutchinsonGilfordProgeriaSyndrome)、高草酸尿症、原发性高苯丙氨酸血症、软骨生成低下、软骨形成不足症(hypochondrogenesis)、idic15、色素失调症、婴儿戈谢病、婴儿发作的上行性遗传性痉挛性瘫痪、不孕、Jackson-Weiss综合征、Joubert综合征、少年原发性侧索硬化症、肯尼迪病、克兰费尔特综合征、Kniest发育不良、克拉伯病、学习不能、Lesch-Nyhan综合症、脑白质营养不良、李-法美尼综合征(Li-Fraumenisyndrome)、家族性脂蛋白脂肪酶缺乏症、男性性器失调、马方综合征、McCune-Albright综合征、McLeod综合征、家族性地中海热、MEDNIK、门克斯病、门克斯综合征、代谢紊乱、高铁血红蛋白血症β-球蛋白型、高铁血红蛋白血症先天性正铁血红蛋白血症、甲基丙二酸血症、微综合征(Microsyndrome)、小头畸形、运动障碍、Mowat-Wilson综合征、粘多糖贮积病(MPSI)、Muenke综合症、肌营养不良、Duchenne和Becker型肌营养不良、Duchenne和Becker型肌肉营养不良、强直性肌营养不良症、1型和2型强直性肌营养不良、新生儿血色素沉着病、神经纤维瘤病、神经纤维瘤病1、神经纤维瘤病2、I型神经纤维瘤病、II型神经纤维瘤病、神经病、神经肌肉障碍、尼曼-匹克病、非酮性高甘氨酸血症、非综合征性耳聋、常染色体隐性非综合征性耳聋、努南综合征、成骨不全症(I型和III型)、耳脊椎骨骺发育不良(otospondylomegaepiphysealdysplasia)、泛酸盐激酶相关神经退化、帕套综合症(Patausyndrome)(三体13)、彭德莱综合征(Pendredsyndrome)、波伊茨-耶格综合征(Peutz-Jegherssyndrome)、Pfeiffer综合征、苯丙酮尿症、卟啉症、迟发性皮肤卟啉症、普拉德-威利综合征(Prader-Willisyndrome)、原发性肺动脉高血压、朊病毒病、早衰症、丙酸血症、蛋白C缺乏症、蛋白S缺乏、伪戈谢病、弹性假黄瘤、视网膜障碍、眼癌、眼癌FA-弗里德共济失调、雷特氏综合症(Rettsyndrome)、鲁宾斯坦-泰比综合征(Rubinstein-Taybisyndrome)、SADDAN、桑德霍夫病(Sandhoffdisease)、Ⅲ型感觉和自主神经病、镰状细胞贫血、骨骼肌再生、皮肤色素沉着症、SmithLemliOpitz综合征、语言及沟通障碍、脊髓性肌萎缩、脊髓延髓肌萎缩症、脊髓小脑共济失调、Strudwick型脊椎骨骺发育不良(spondyloepimetaphysealdysplasia)、先天性脊椎骨骺发育不良(spondyloepiphysealdysplasia)、斯蒂克勒综合征(Sticklersyndrome)、斯蒂克勒综合征COL2A1、泰萨二氏病(Tay-Sachsdisease)、四氢生物蝶呤缺乏症、致死性骨发育不良(thanatophoricdysplasia)、伴有糖尿病糖尿病和感觉神经性耳聋的硫胺反应性巨幼细胞性贫血、甲状腺病、图雷特综合症(Tourettesyndrome)、特-柯二氏综合征(TreacherCollinssyndrome)、三X染色体综合征、结节性硬化症、特纳综合征、Usher综合征、混合性卟啉症(variegateporphyria)、希-林二氏病(vonHippel-Lindaudisease)、Waardenburg综合征、Weissenbacher-Zweymüller综合征、威尔森氏症(Wilsondisease)、Wolf-Hirschhorn综合征、着色性干皮病、X-连锁严重联合免疫缺陷、X连锁铁粒幼细胞性贫血,以及X-连锁脊髓延髓肌肉萎缩。
在一个实施方式中,本发明的方法和算法用于诊断、表征和监测甲状腺癌。可使用本发明的算法和方法诊断、表征和/或监测的其他类型的癌症包括但不限于肾上腺皮质癌、肛门癌、再生障碍性贫血、胆管癌、膀胱癌、骨癌、骨转移、中枢神经系统(CNS)癌、外周神经系统(PNS)癌、乳腺癌、Castleman病、子宫颈癌、儿童非霍奇金氏淋巴瘤、结肠和直肠癌、子宫内膜癌、食道癌、尤文氏肿瘤家族(如尤文氏肉瘤)、眼癌、胆囊癌、胃肠道类癌瘤、胃肠道间质瘤、妊娠滋养细胞病、毛细胞性白血病、霍奇金氏病、卡波济氏肉瘤、肾癌、喉咽癌、急性淋巴细胞性白血病、急性骨髓性白血病、儿童白血病、慢性淋巴细胞性白血病、慢性粒细胞性白血病、肝癌、肺癌、肺类癌瘤、非霍奇金氏淋巴瘤、男性乳腺癌、恶性间皮瘤、多发性骨髓瘤、骨髓发育异常综合征、骨髓增殖性障碍、鼻腔和鼻侧癌、鼻咽癌、成神经细胞瘤、口腔和口咽癌、骨肉瘤、卵巢癌、胰癌、阴茎癌、垂体瘤、前列腺癌、成视网膜细胞瘤、横纹肌肉瘤、唾液管癌(salivaryglandcancer)、肉瘤(成人软组织癌)、黑素瘤皮肤癌、非黑素瘤皮肤癌、胃癌、睾丸癌、胸腺癌、子宫癌(如子宫肉瘤)、阴道癌、阴户癌和Waldenstrom巨球蛋白症。
在某些实施方式中,本发明的基因表达产物标志物可以通过使用低数量和质量的多种基因表达产物标志物和利用本发明算法的统计学分析,提供更高的遗传疾病或癌症诊断的准确性。特别是,本发明提供但不限于诊断、表征和分类与甲状腺癌有关的基因表达谱的方法。本发明还提供了用于表征和分类甲状腺组织样品的算法、及用于应用所述方法的试剂盒和组合物。本公开还包括用于运营分子表达谱业务的方法。
在本发明的一个实施方式中,标志物和基因可被鉴定为与甲状腺良性样品相比在甲状腺癌样品中具有差异表达。具有良性病理学的示例性的例子包括滤泡性腺瘤、许特莱氏细胞腺瘤、淋巴细胞性甲状腺炎和结节性增生。具有恶性病理学的示例性的例子包括滤泡性癌、乳头状甲状腺癌的滤泡性变型、髓样癌和乳头状甲状腺癌。
可以处理生物样品来提取核酸如DNA或RNA。核酸可在允许杂交的条件下与本发明的探针阵列接触。杂交度可使用本领域已知的多种方法以定量方式进行分析。在某些情况下,探针位置处的杂交度可以与分析所提供的信号强度相关,因而其与样品中存在的互补核酸序列的量相关。可以使用软件在人类基因组或转录物组(包括表达的基因、外显子、内含子和miRNA)上提取、标准化、总结和分析来自探针的阵列强度数据。在某些实施方式中,良性或恶性样品中特定探针的强度可相对于对照组进行比较,以确定样品中是否出现差异表达。在对应表达的序列的阵列上标志物位置处的相对强度的增加或降低分别指示相应表达序列的表达的增加或降低。或者,相对强度的降低可以指示表达序列的突变。
各样品的获得强度值可使用如下特征选择技术进行分析,包括通过考察数据的内在性质来评估特征的关联性的过滤器技术、在特征亚集搜索内嵌入模型假设的包装器方法和将特征的优化集的检索内建在分类器算法中的嵌入技术。
用在本发明的方法中的过滤器技术包括:(1)参数方法,如使用两个样品t检验、ANOVA分析、Bayesian框架和Gamma分布模型,(2)无模型方法,如使用Wilcoxon秩和检验(Wilcoxonranksumtest)、类间-内平方和检验(between-withinclasssumofsquarestest)、秩积方法(rankproductsmethod)、随机排列方法或TNoM(其包括设置两个数据集之间的表达倍数改变差异的阈值点和然后检测使错分类的数目最小化的各基因的阈值点),和(3)多变量方法,如二变量方法,基于相关性的特征选择方法(CFS)、最小冗余最大相关性方法(MRMR)、Markov覆盖过滤器方法(Markovblanketfiltermethod)和不相关的收缩质心方法(uncorrelatedshrunkencentroidmethod)。用在本发明中的包装器方法包括序列检索方法、遗传算法和分布算法的估算。用在本发明中的嵌入方法包括随机森林算法、支持向量机算法的权重向量和逻辑回归算法的权重。Bioinformatics.2007Oct1;23(19):2507-17提供了上述用于强度数据分析的过滤器技术的相对优点的概述。
然后可使用分类器算法将选择的特征进行分类。示例性的算法包括但不限于减少变量数目的方法,如主要成分分析算法、部分最小平方法和独立分量分析算法。示例性的算法还包括但不限于直接操作大量变量的方法,如统计学方法和基于机器学习技术的方法。统计方法包括惩罚logistic回归、微阵列的预测分析(PAM)、基于收缩质心的方法、支持向量机分析和正则化线性判别分析。机器学习技术包括bagging方法、boosting方法、随机森林算法和它们的组合。CancerInform.2008;6:77–97提供了上述用于微阵列强度数据分析的分类技术的概述。
本发明的标志物和基因可用于表征细胞或组织的癌性或非癌性状态。本发明包括诊断区分良性组织或细胞和恶性组织和细胞的方法,包括确定受试者的甲状腺样品中标志物或基因的差异表达,其中所述标志物或基因是图2-6、9-13、16或17中列举的标志物或基因。本发明还包括用于诊断甲状腺髓样癌的方法,包括确定受试者的甲状腺样品中标志物或基因的差异表达,其中所述标志物或基因是图10中列举的标志物或基因。本发明还包括用于诊断甲状腺病理亚型的方法,包括确定受试者的甲状腺样品中标志物或基因的差异表达,其中所述标志物或基因是图13中列举的标志物或基因。本发明还包括诊断区分恶性组织或细胞和良性组织或细胞的方法,包括确定受试者的甲状腺样品中miRNA的差异表达,其中所述miRNA是图16或17中列举的miRNA。
根据以上内容,本文公开的基因、多种基因、标志物、miRNA或它们的组合的差异表达可使用northern印迹和采用如本文中确定的序列开发用于该目的探针而测定。这类探针可由DNA或RNA或合成核苷酸或以上的组合组成,且可有利地由与图2-6、9-13、16或17中确定的序列匹配或互补的连续核苷酸残基延伸(stretch)组成。这类探针最有利地包含源自图2-6、9-13、16或17中确定的一个或多个序列的至少15-200个或更多个残基的连续延伸,包括15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、80、85、90、95、100、110、120、130、140、150、160、175或200个或更多个残基。因此,当单个探针多次结合癌性或怀疑为癌性或倾向成为癌性的细胞样品的转录物组,而相同的探针与类似量的源自相同器官或组织的另外非癌性细胞的基因组的转录物组结合产生显著较多或较少的结合时,这表示包含或对应于图2-6、9-13、16或17中确定的序列(其中测序的探针由其获得)的基因、多种基因、标志物或miRNA的差异表达。
在一个这样的实施方式中,与相同器官的正常细胞和/或组织相比,表达升高通过测量RNA的相对转录率来确定,如通过产生相应的cDNA,然后使用由图2-6、9-13、16或17中确定的基因序列开发的探针来分析所得到的DNA。因此,通过使用怀疑为癌性的细胞全RNA互补序列利用逆转录酶产生的cDNA的水平产生了相应量的cDNA,其然后可使用聚合酶链反应或一些其他方法(如线性扩增、等温扩增、NASB或滚环扩增)扩增以确定所得到的cDNA的相对水平,从而确定基因表达的相对水平。
表达的增加还可以使用选择性结合而因此检测本文公开的基因的表达产物的存在的试剂来确定。例如,可以产生针对包含图2-6和9-13中确定的序列的一种多肽的抗体(可能是适当标记的抗体,如抗体与荧光或放射性标记结合的情况),且该抗体然后与对应于本文公开的序列的一种基因编码的多肽反应(选择性或特异性地结合)。然后,结合的这种抗体(特别是,与其它非癌性细胞和组织相反,从怀疑癌性的细胞和组织获得的样品中这种结合的相对程度)可用作本文中确定的癌症相关基因的表达(或过表达)程度的量度。因此,本文确定为在癌性细胞和组织中过表达的基因可以由于增加的拷贝数或由于过量转录(例如当过表达是由于激活基因和导致RNA聚合酶的反复结合的转录因子的过量产生布导致的情况下)而过表达,因而产生多于正常量的RNA转录本,其随后被翻译成多肽,如包含图2-6和9-13中确定的氨基酸序列的多肽。这种分析提供了查明本发明确定的基因的表达并因而确定来自待测试患者的样品中癌性状态的存在、所述患者在随后时间内发生癌症的倾向的另外的手段。
在应用本发明的方法时,应该注意的是,指示癌性状态的基因或标志物的表达并不需要每一细胞的特征被发现是癌性的。因此,本文公开的方法用于检测组织内癌性状况的存在,其中不是所有的细胞显示完整的过表达模式。例如,使用适当的探针(DNA或RNA)可以发现包含与图2-6、9-13、16或17中确定的至少一种序列在严格条件下同源或至少90%、优选95%相同的序列的一组选择的基因或标志物存在于源自肿瘤或恶性组织样品的少至60%的细胞中,而在来自对应的非癌性(或另外的正常)组织的多至60%的细胞中不存在(而因此在多至40%的这种正常组织细胞中存在)。在一个实施方式中,这种表达模式发现存在于由癌性组织获取的至少70%的细胞中,而在对应的正常(非癌性)组织样品的至少70%细胞中不存在。在另一实施方式中,这种表达模式发现在由癌性组织获取的至少80%的细胞中存在,而在相应的正常(非癌性)组织样品的至少80%细胞中不存在。在另一实施方式中,这种表达模式可在由癌性组织获取的至少90%的细胞中存在,而在相应的正常(非癌性)组织样品的至少90%细胞中不存在。在另一实施方式中,这种表达模式发现在由癌性组织获取的至少100%的细胞中存在,而在相应的正常(非癌性)组织样品的至少100%细胞中不存在,尽管后一实施方式可能罕有出现。
在某些实施方式中,分子表达谱包括核酸(DNA或RNA)、蛋白质或它们的组合的检测、分析或定量。通过本发明的方法诊断的疾病或状况包括例如受试者的一种或多种组织中的异常生长状况,该组织包括但不限于皮肤、心脏、肺、肾、乳房、胰脏、肝、肌肉、平滑肌、膀胱、胆囊、结肠、肠、脑、食道或前列腺。在某些实施方式中,通过本发明的方法分析的组织包括甲状腺组织。
在某些实施方式中,通过本发明的方法诊断的疾病或状况包括良性和恶性过度增殖性疾病,包括但不限于癌症、增生或瘤形成。在某些情况下,通过本发明的方法诊断的过度增殖性疾病包括但不限于乳腺癌,如乳腺中导管组织的导管癌、髓样癌、粘液癌、管状癌和炎性乳腺癌;卵巢癌,包括上皮卵巢肿瘤如卵巢中的腺癌和从卵巢迁移到腹腔中的腺癌;子宫癌;子宫颈癌如子宫颈上皮中的腺癌,包括鳞状细胞癌和腺癌;前列腺癌,如选自以下的前列腺癌:腺癌或迁移至骨的腺癌;胰癌如胰管组织中的上皮样癌和胰管中的腺癌;膀胱癌如膀胱中的移行细胞癌、尿路上皮癌(移行细胞癌)、内衬膀胱的尿路细胞中的肿瘤、鳞状细胞癌、腺癌和小细胞癌;白血病如急性骨髓性白血病(AML)、急性淋巴细胞性白血病、慢性淋巴细胞性白血病、慢性粒细胞性白血病、毛细胞白血病、脊髓发育不良、骨髓增殖性疾病、急性髓性白血病(AML)、慢性骨髓性白血病(CML)、肥大细胞病、慢性淋巴细胞性白血病(CLL)、多发性骨髓瘤(MM)和骨髓发育异常综合症(MDS);骨癌;肺癌如非小细胞肺癌(NSCLC),其分为鳞状细胞癌、腺癌和大细胞未分化癌,及小细胞肺癌;皮肤癌如基底细胞癌、黑素瘤、鳞状细胞癌和光化性角化病(其是有时候发展成为鳞状细胞癌的皮肤状况);眼视网膜母细胞瘤;皮肤或眼内(眼)黑素瘤;原发性肝癌(始于肝脏中的癌症);肾癌;AIDS相关淋巴瘤如弥漫型大B细胞淋巴瘤、B细胞免疫母细胞淋巴瘤和小无裂细胞淋巴瘤;卡波济氏肉瘤;病毒诱导的癌症,包括乙型肝炎病毒(HBV)诱导的癌症、丙型肝炎病毒(HCV)诱导的癌症和肝细胞癌;人类嗜淋巴细胞病毒1型(HTLV-1)和成人T细胞白血病/淋巴瘤;和人类乳头状瘤病毒(HPV)和子宫颈癌;中枢神经系统癌症(CNS)如原发性脑肿瘤,其包括神经胶质瘤(星形细胞瘤、间变型星形细胞瘤或多形性成胶质细胞瘤)、少突神经胶质瘤、室管膜瘤、脑膜瘤、淋巴瘤、神经鞘瘤和成神经管细胞瘤;外周神经系统(PNS)癌如听神经瘤和恶性外周神经鞘肿瘤(MPNST),包括神经纤维瘤和神经鞘瘤、恶性纤维细胞瘤、恶性细胞组织细胞瘤、恶性脑膜瘤、恶性间皮瘤和恶性混合Müllerian瘤;口腔和口咽癌如下咽癌、喉癌、鼻咽癌和口咽癌;胃癌如淋巴瘤、胃基质瘤和类癌瘤;睾丸癌如生殖细胞瘤(GCT)(其包括精原细胞瘤和非精原细胞瘤)和性腺基质肿瘤(其包括莱迪希细胞瘤和睾丸支持细胞瘤);胸腺癌如胸腺瘤、胸腺癌、霍奇金氏病、非霍奇金氏淋巴瘤类癌或类癌瘤;直肠癌;和结肠癌。在某些情况下,通过本发明的方法诊断的疾病和状况包括但不限于甲状腺疾病,如,举例来说,良性甲状腺障碍,包括但不限于滤泡性腺瘤、许特莱氏细胞腺瘤、淋巴细胞性甲状腺炎和甲状腺增生。在某些情况下,通过本发明的方法诊断的疾病或状况包括但不限于恶性甲状腺疾病,如,举例来说,滤泡性癌、乳头状甲状腺癌的滤泡性变型、髓样癌和乳头状癌。在某些情况下,本发明的方法提供了用于判定组织为患病或正常的诊断。在其他情况下,本发明的方法提供了正常、良性或恶性的诊断。在某些情况下,本发明的方法提供了用于良性/正常或恶性的诊断。在某些情况下,本发明的方法提供了用于本文规定的一种或多种特定疾病或状况的诊断。
II.获得生物样品
在某些实施方式中,本发明的方法用于从受试者获得样品。如本文所使用的,术语受试者是指任何动物(如哺乳动物),包括但不限于人类、非人类灵长动物、啮齿类、狗、猪等。本文提供的获得方法包括活组织检查方法,包括细针吸取、芯针活组织检查、真空辅助活组织检查、切开式活组织检查、切除活组织检查、钻取活组织检查、刮取活组织检查或皮肤活组织检查。样品可获自本文规定的任何组织,包括但不限于皮肤、心脏、肺、肾、乳腺、胰、肝、肌肉、平滑肌、膀胱、胆囊、结肠、肠、脑、前列腺、食道或甲状腺。或者,样品可获自任何其他来源,包括但不限于血液、汗液、毛囊、口腔组织、眼泪、经血、粪便或唾液。在本发明的某些实施方式中,医疗专业人员可获得用于测试的生物样品。在某些情况下,医疗专业人员可向受试者推荐提交生物样品的检测中心或实验室。在其他情况下,受试者可提供样品。在某些情况下,本发明的分子表达谱商业机构可获得样品。
样品可通过本领域已知的方法获得,例如本文提供的活组织检查方法、擦、刮、放血术或本领域已知的任何其他方法。在某些情况下,样品可使用本发明的试剂盒的组件获得、储存或转运。在某些情况下,可获得多个样品(如多个甲状腺样品)以通过本发明的方法诊断。在某些情况下,可获得多个样品(如来自一种组织类型(如甲状腺)的一个或多个样品和来自另一组织(如口腔)的一个或多个样品)以通过本发明的方法进行诊断。在某些情况下,可在相同或不同的时间获得多个样品(如来自一种组织类型(如甲状腺)的一个或多个样品和来自另一组织(如口腔)的一个或多个样品)。在某些情况下,在不同时间获得的样品通过不同的方法储存和/或分析。例如,样品可获得和通过细胞学分析方法(常规染色)分析。在某些情况下,进一步的样品也可基于细胞学分析的结果从受试者获得。癌症的诊断可包括由医生、护士或其他医疗专业人员对受试者的检查。检查可以是常规检查的一部分,或检查可以是由于特定的疾患,包括但不限于以下之一:疼痛、病状、病状预期、可疑肿块或胞块的存在、疾病或状况。受试者可以意识到或未意识到该疾病或状况。医疗专业人员可获得用于测试的生物样品。在某些情况下,医疗专业人员可向受试者推荐提交生物样品的检测中心或实验室。
在某些情况下,可将受试者推荐专家(如肿瘤学家、外科医生或内分泌学家)以进行进一步的诊断。专家也可同样地获得用于测试的样品或向受试者推荐提交生物样品的检测中心或实验室。在任何情况下,生物样品可由医生、护士或其他医疗专业人员(例如医学专家、内分泌学家、细胞学家、抽血者、放射学家或肺脏学家(pulmonologist))获得。医疗专业人员可指定在样品上所进行的适当的测试或分析,或本公开的分子表达谱商业机构可商讨哪些分析或测试是最适当地指明。分子表达谱商业机构可向个人或者其医疗或保险供应商收取咨询工作的费用、样品获取和/或储存的费用、材料的费用或用于所提供的所有产品和服务的费用。
在本发明的某些实施方式中,医疗专业人员不需要参与初始诊断或样品获取。可选择地个人可通过使用非处方(overthecounter)试剂盒获取样品。所述试剂盒可包括用于获得本文所述的样品的工具、用于储存所述样品以用于检查的工具和正确使用该试剂盒的说明书。在某些情况下,分子表达谱服务包括在购买试剂盒的费用中。在其他情况下,分子表达谱服务单独收费。
适于分子表达谱商业机构使用的样品可为任何包含待测试个体的组织、细胞、核酸、基因、基因片段、表达产物、基因表达产物或基因表达产物片段的材料。提供了用于确定样品适用性和/或充分性的方法。样品可以包括但不限于个体的组织、细胞或来自细胞或源自细胞的生物材料。样品可为异源或同源的细胞或组织群体。生物样品可使用本领域已知的任意方法获得,这些方法可提供适于本文所述的分析方法的样品。
样品可通过非侵入性方法获得,包括但不限于:皮肤或子宫颈的刮擦、颊擦拭、唾液收集、尿液收集、粪便收集、经血收集、眼泪或精液的收集。在其他情况下,样品是通过侵入性过程获得,包括但不限于:活组织检查、肺泡或肺灌洗、针式吸取或放血术。活组织检查的方法可进一步包括切开式活组织检查、切除活组织检查、钻取活组织检查、刮取活组织检查或皮肤活组织检查。针式吸取方法可进一步包括细针吸取、芯针活组织检查、真空辅助活组织检查或大芯活组织检查。在某些实施方式中,可通过本文的方法获得多个样品以确保足够量的生物材料。获得合适的甲状腺样品的方法是本领域已知的,且还描述在ATAGuidelinesforthryoidnodulemanagement(Cooper等人ThyroidVol.16No.22006)中,其全部通过引用方式结合在本文中。用于获得生物样品的通用方法也是本领域已知的,且还描述在例如Ramzy,IbrahimClinicalCytopathologyandAspirationBiopsy2001中,其全部通过引用方式结合在本文中。在一个实施方式中,样品是甲状腺结节或怀疑的甲状腺肿瘤的细针吸取物。在某些情况下,细针吸取物取样过程可通过使用超声、X射线或其他成像设备指导。
在本发明的某些实施方式中,分子表达谱商业机构可直接从受试者、从医疗专业人员、从第三方或从分子表达谱商业机构或第三方提供的试剂盒获得生物样品。在某些情况下,生物样品可以在受试者、医疗专业人员或第三方获取和向分子表达谱商业机构发送生物样品后由分子表达谱商业机构获得。在某些情况下,分子表达谱商业机构可提供合适的容器和用于储存和运输生物样品至分子表达谱商业机构的赋形剂。
III.储存样品
在某些实施方式中,本发明的方法用于在获得样品后和在通过本发明的一种或多种方法分析样品之前储存样品一段时间,例如几秒、几分钟、几小时、几天、几周、几月、几年或更长时间。在某些情况下,在储存或进一步分析的步骤之前,从受试者获得的样品被细分,从而样品的不同部分进行不同的下游方法或过程,包括但不限于:储存、细胞学分析、充分性测试、核酸提取、分子表达谱或它们的组合。
在某些情况下,样品的一部分可被储存,而所述样品的另一部分可被进一步操作。这类操作可包括但不限于分子表达谱;细胞学染色;核酸(RNA或DNA)提取、检测或定量;基因表达产物(RNA或蛋白质)提取、检测或定量;固定;和检查。样品可在储存之前或储存过程中使用本领域已知的任何方法(如使用戊二醛、甲醛或甲醇)固定。在其他情况下,样品被获得和储存,并在储存步骤后细分以用于进一步分析,从而样品的不同部分进行不同的下游方法或过程,包括但不限于储存、细胞学分析、充分性测试、核酸提取、分子表达谱或它们的组合。在某些情况下,获得样品,并通过例如细胞学分析方法进行分析,得到的样品材料进一步通过本发明的一种或多种分子表达谱方法分析。在这些情况下,样品可在细胞学分析步骤和分子表达谱步骤之间储存。样品可在获取时储存以利于运输或等待其他分析的结果。在另一实施方式中,可以储存样品而同时等待医生或其他医疗专业人员的指令。
获得的样品可置于合适的介质、赋形剂、溶液或容器中以进行短期或长期储存。所述储存可能需要将样品保持在冰冻或冷冻的环境中。在冷冻环境中储存之前,样品可经过快速冷冻。冷冻的样品可与合适的深低温保存介质或化合物接触,该深低温保存介质或化合物包括但不限于:甘油、乙二醇、蔗糖或葡萄糖。合适的介质、赋形剂或溶液可包括但不限于:hanks盐溶液、盐水、细胞生长培养基、铵盐溶液如硫酸铵或磷酸铵,或水。合适的铵盐浓度包括约0.1g/ml、0.2g/ml、0.3g/ml、0.4g/ml、0.5g/ml、0.6g/ml、0.7g/ml、0.8g/ml、0.9g/ml、1.0g/ml、1.1g/ml、1.2g/ml、1.3g/ml、1.4g/ml、1.5g/ml、1.6g/ml、1.7g/ml、1.8g/ml、1.9g/ml、2.0g/ml、2.2g/ml、2.3g/ml、2.5g/ml或更高。介质、赋形剂或溶液可以是或不是无菌的。
样品可以储存在室温或降低的温度下,如冷的温度(例如约20℃-约0℃之间),或冷冻温度下包括例如0℃、-1℃、-2℃、-3℃、-4℃、-5℃、-6℃、-7℃、-8℃、-9℃、-10℃、-12℃、-14℃、-15℃、-16℃、-20℃、-22℃、-25℃、-28℃、-30℃、-35℃、-40℃、-45℃、-50℃、-60℃、-70℃、-80℃、-100℃、-120℃、-140℃、-180℃、-190℃或约-200℃。在某些情况下,样品可以储存在冰箱中、冰或冷冻凝胶袋上、冷冻机中、低温冷冻机中、干冰上、液氮中或用液氮平衡的汽相中。
介质、赋形剂或溶液可包含防腐剂,以维持样品处于对于后续诊断或操作的适当状态中或防止凝结。所述防腐剂可包括柠檬酸盐、乙二胺四乙酸、叠氮化钠或thimersol。培养基、赋形剂或溶液可包含合适的缓冲剂或盐如Tris缓冲液或磷酸盐缓冲液、钠盐(如NaCl)、钙盐、镁盐等。在某些情况下,样品可以储存在适于储存用于后续细胞学分析的细胞的商业制剂中,例如但不限于CytycThinPrep、SurePath或Monoprep。
样品容器可为任何适于储存和/或运输生物样品的容器,包括但不限于杯子、带盖杯子、管、无菌管、真空管、注射器、瓶、载玻片或任何其他合适的容器。容器可以是或不是无菌的。
IV.样品的运输
本发明的方法用于样品的运输。在某些情况下,样品从诊所、医院、医生办公室或其他场所运输到样品可在此被储存和/或通过例如细胞学分析或分子表达谱进行分析的第二场所。在某些情况下,样品可被运输到分子表达谱公司以进行本文所述的分析。在其他情况下,样品可以运输到实验室,例如经授权或以其它方式能够进行本发明的方法的实验室,如ClinicalLaboratoryImprovementAmendments(CLIA)实验室。样品可由样品所来源的个体运输。所述的个体运输可包括出现在分子表达谱商业机构或指定样品接受点并提供样品的个体。所述提供样品可包括本文所述的样品获取的任何技术,或样品可能已被获取并储存在本文所述的合适容器中。在其他情况下,可使用信使服务、邮政服务、货运服务或能够以合适的方式运输样品的任何方法将样品运输到分子表达谱商业机构。在某些情况下,样品可通过第三方测试实验室(例如细胞学实验室)提供给分子表达谱商业机构。在其他情况下,样品可通过受试者的主治医生、内分泌学家或其他医疗专业人员提供给分子表达谱商业机构。运输费用可向该个体、医疗供应商或保险供应商收取。分子表达谱商业机构可在收到样品后立即开始样品的分析,或可以以本文描述的任意方式储存样品。储存方法可以与在分子表达谱商业机构接受样品之前所选择的储存方法相同或不同。
样品可以在任何介质或赋形剂中运输,包括本文提供的适于储存样品的任何介质或赋形剂,如深低温保存介质或基于液体的细胞学制剂。在某些情况下,样品可以冷冻或冷藏运输,如在本文提供的任何合适的样品储存温度下。
在分子表达谱商业机构、其代表或被许可人、医疗专业人员、研究人员或第三方实验室或测试中心(例如细胞学实验室)接受到样品后,可以使用本领域已知的多种常规分析来分析样品,如细胞学分析和基因组分析。这类测试可以指示癌症、癌症类型、任何其他疾病或状况、疾病标志物的存在、或者癌症、疾病、状况或疾病标志物的不存在。测试可采取细胞学检查的形式,包括如下所述的显微镜检查。测试可包括使用一种或多种细胞学染色。生物材料可在进行测试之前通过本领域已知用于生物样品制备的任何合适的方法操作或制备以用于测试。进行的特定分析可由分子表达谱公司、订购测试的医生或第三方(如咨询医疗专业人员、细胞学实验室、样品来源的受试者或保险供应商)确定。可以基于获得确定诊断的可能性、分析的成本、分析的速度或该分析对提供的材料类型的适用性来选择特定的分析。
V.充分性测试
在样品获取后或期间(包括储存样品的步骤之前或之后),生物材料可被收集和用于充分性的评估,例如评估样品用于本发明的方法和组合物中的适用性。该评估可由获得样品的个体、分子表达谱商业机构、使用试剂盒的个体或第三方如细胞学实验室、病理学家、内分泌学家或研究令人人员进行。样品可由于多种因素而确定为对于进一步分析是充分的或不充分的,该因素包括但不限于:不充足的细胞、不充足的遗传材料、不充足的蛋白质、DNA或RNA、对于指定测测不适当的细胞、或对于指定测试不适当的材料、样品的存在时间、获取样品的方式或者储存或运输样品的方式。可以使用本领域已知的多种方法如细胞染色方法、细胞数或组织量的测量、总蛋白质的测量、核酸的测量、视觉检查、显微镜检查或者温度或pH确定来确定充分性。在一个实施方式中,样品的充分性将从进行基因表达产物水平分析实验的结果确定。在另一实施方式中,样品的充分性将通过测量样品充分性的标志物含量来确定。该标志物包括元素如碘、钙、镁、磷、碳、氮、硫、铁等;蛋白质(例如但不限于甲状腺球蛋白);细胞胞块和细胞组分如蛋白质、核酸、脂质或碳水化合物。
在某些情况下,碘可通过化学方法测量,如美国专利No.3645691中描述的方法,其全部内容通过引用方式结合在本文中,或本领域已知用于测量碘含量的其他化学方法。用于碘测量的化学方法包括但不限于基于Sandell和Kolthoff反应的方法。所述反应根据以下方程式进行:
2Ce4++As3+→2Ce3++As5+I。
碘对于反应的进程中具有催化效应,即待分析的制剂中存在的碘越多,反应进行得越快。反应速度与碘的浓度成比例。在某些情况下,这一分析方法可以以下方式进行:
将预先确定量的三氧化二砷As2O3的浓硫酸或硝酸溶液加入生物样品中,并将混合物的温度调节至反应温度,即通常是20℃-60℃之间的温度。将预先确定量的硫酸铈(IV)的硫酸或硝酸溶液加入其中。此时,使得混合物在预定的温度下反应确定的一段时间。根据待测定的碘量的数量级和各自选择的反应温度来选择所述反应时间。反应时间通常为约1分钟-约40分钟。随后,以光度法测定测试溶液的铈(IV)离子含量。光度法确定的铈(IV)离子浓度越低,反应的速度越高,且因此催化剂(即碘)的量越大。在这种方式中,样品的碘可直接和定量地测定。
在其它情况下,甲状腺组织样品的碘含量可通过检测碘的特定同位素来测量,例如,举例来说,123I、124I、125I和131I。在再其他情况下,标志物可以是另一放射性同位素,如碳、氮、硫、氧、铁、磷或氢的同位素。在某些情况下,可在样品收集之前施用放射性同位素。适于充分性测试的放射性同位素施用方法是本领域公知的,且包括注射到静脉或动脉中,或通过消化。施用同位素和获取甲状腺结节样品之间采取时间间隔从而实现一部分同位素吸收进入甲状腺组织的合适时间段可包括约1分钟-几天或约1周之间的任意时间段,包括约1分钟、2分钟、5分钟、10分钟、15分钟、1/2小时、1小时、8小时、12小时、24小时、48小时、72小时或约1周、1.5周或2周,并可容易地由本领域普通技术人员确定。或者,可以测量样品的同位素天然水平,如碘、钙、镁、碳、氮、硫、氧、铁、磷或氢的放射性同位素。
(i)细胞和/或组织含量的充分性测试
用于确定组织的量的方法包括但不限于称重样品或测量样品的体积。用于确定细胞的量的方法包括但不限于记数细胞,例如,这在某些情况下可在用例如酶(如胰蛋白酶或胶原酶)或通过物理方法(如使用组织均化器)的解聚后进行。用于确定回收的细胞的量的可选方法包括但不限于定量与细胞物质结合的染料或测量离心后获得的细胞沉淀的体积。用于确定存在充足数量的特定类型细胞的方法包括PCR、Q-PCR、RT-PCR、免疫组织化学分析、细胞学分析、显微镜检和/或目视分析。
(ii)核酸含量的充分性检测
样品可在从生物样品提取(使用本领域已知的多种方法)后通过确定核酸含量进行分析。在某些情况下,核酸如RNA或mRNA在核酸含量分析之前从其他核酸中提取出来。核酸含量可被提取、纯化和使用分光光度计通过紫外吸收测量(包括但不限于在260纳米处的吸收)。在其他情况下,核酸含量或充分性可在使样品与染料接触后通过荧光计测量。在再其他的情况下,核酸含量或充分性可在电泳后或例如使用仪器(如Agilent生物分析仪)测量。应该理解,本发明的方法不限于测量核酸含量和/或完整性的特定方法。
在某些实施方式中,在纯化后立即使用NanoDrop分光光度计在纳克至微克的范围内测量给定样品的RNA量或产率。在某些实施方式中,使用Agilent2100生物分析仪仪器测量RNA的量,并通过计算的RNA完整性指数(RNAIntegrityNumber)(RIN,1-10)进行表征。NanoDrop是没有比色杯的分光光度计。它使用1微升来测量5ng/μl-3,000ng/μl的样品。NanoDrop的关键特征包括样品的小体积和无比色杯、大的动态范围5ng/μl-3,000ng/μl和它允许定量DNA、RNA和蛋白质。NanoDropTM2000c允许分析0.5μl-2.0μl的样品,不需要比色杯或毛细管。
RNA的量可通过计算的RNA完整性指数(RIN)测量。RNA完整性指数(RIN)是用于向RNA测量赋予完整性值的算法。RNA的完整性是基因表达研究的主要考虑因素,且通常使用28S与18S的rRNA比例进行评价,该方法证明是不一致的。RIN算法应用于电泳RNA测量中,并基于提供有关RNA完整性的信息的不同特征的组合,以提供更稳定的通用测量方法。在某些实施方式中,使用Agilent2100生物分析仪仪器测量RNA的量。用于测量RNA的量的方案是已知的,并可商购得到,例如在Agilent网站上。简而言之,第一步,研究人员将总RNA样品沉积在RNANanoLabChip中。第二步,将LabChip插入Agilent生物分析仪中并运行分析,从而产生数字电泳图谱(electropherogram)。第三步,然后新的RIN算法分析RNA样品的整个电泳痕迹,包括降解产物的存在或不存在,以确定样品的完整性。然后,该算法赋予1-10的RIN评分,其中10级的RNA是完全完整的。由于电泳图谱的解释是自动的,而不进行个体的解释,因而能够获得普遍的和无偏倚的样品比较,且实验的可重复性也得到改善。使用神经网络和适应性学习与真核细胞总RNA样品的大型数据库结合开发了该RIN算法,该真核细胞总RNA样品主要是从人类、大鼠和小鼠组织中获得的。RIN的优势包括获得RNA完整性的数值评估;直接比较RNA样品,例如归档之前和之后,在不同实验室之间比较同一组织的完整性;和确保实验的可重复性,例如如果RIN显示特定的值并适于微阵列实验,则相同值的RIN总是可用于类似的实验,只要使用相同的生物体/组织/提取方法(SchroederA,等人BMCMolecularBiology2006,7:3(2006))。
在某些实施方式中,以1-10的RIN评分计量RNA的质量,10代表最高的质量。一方面,本发明提供了分析来自具有等于或小于6.0的RNARIN值的样品的基因表达的方法。在某些实施方式中,使用本发明的所述方法和算法来分析包含具有1.0、2.0、3.0、4.0、5.0或6.0的RIN数的RNA的样品的微阵列基因表达。在某些实施方式中,样品是甲状腺组织的细针吸取物。样品可以降解为具有低至2.0的RIN。
给定样品中基因表达的测定是复杂的、动态的和昂贵的过程。具有RIN≤5.0的RNA样品通常不用在多基因微阵列分析中,而是相反可仅用于单基因的RT-PCR和/或TaqMan分析中。因此,根据质量的RNA有用性中的这一两分性大大限制了样品的有用性并阻碍了研究的努力。本发明提供了低质量的RNA可用于从含有低浓度RNA的样品(如甲状腺FNA样品)获得有意义的多基因表达结果的方法。
此外,可以使用本发明的所述方法和算法测量和分析具有通常认为对于多基因表达谱而言不足够的低的和/或不可通过NanoDrop测量的RNA浓度的样品。目前在实验室中用于测量核酸产率的最灵敏的和“现有技术状态”的装置是NanoDrop分光光度计。正如许多这一类的定量仪器一样,NanoDrop测量的准确性在非常低的RNA浓度下显著降低。用于输入微阵列实验中所必需的RNA的最低量也限制了给定样品的有用性。在本发明中,通过使用NanoDrop和Bioanalyzer两种仪器的测量的组合,可以评估包含非常低的核酸量的样品,从而优化了用于多基因表达试验和分析的样品。
(iii)蛋白质含量的充分性检测
在某些情况下,可以使用本领域已知的多种方法来测量生物样品中的蛋白质含量,这些方法包括但不限于:在280纳米处的紫外吸收、本文所述的细胞染色或使用如考马斯蓝或二辛可宁酸(bichichonicacid)的蛋白质染色。在某些情况下,在测量样品之前从生物样品中提取蛋白质。在某些情况下,多种样品的充分性测试可以平行进行,或一次进行一种。在某些情况下,样品可被分为等分试样以用于在评估充分性之前、期间或之后进行多种诊断测试。在某些情况下,在小量样品上进行充分性测试,该样品可能适合或不适合进一步的诊断检测。在其他情况下,整个样品用于充分性评估。在任何情况下,充分性的测试可向受试者、医疗供应商、保险供应商或政府单位收费。
在本发明的某些实施方式中,样品可以在收集之后不久或立即进行充分性测试。在某些情况下,当样品充分性测试没有显示具有足够量的样品或具有足够质量的样品时,可以采集另外的样品。
VI.样品的分析
一方面,本发明提供了用于以低数量和质量的多核苷酸(如DNA或RNA)进行微阵列基因表达分析的方法。在某些实施方式中,本公开描述了通过以低数量和质量的RNA分析基因表达来诊断、表征和/或监测癌症的方法。在一个实施方式中,癌症是甲状腺癌。甲状腺RNA可从细针吸取物(FNA)获得。在某些实施方式中,基因表达谱可从具有9.0、8.0、7.0、6.0、5.0、4.0、3.0、2.0、1.0或更低的RNARIN值的降解样品获得。在具体实施方式中,基因表达谱可从具有等于或小于6(即6.0、5.0、4.0、3.0、2.0、1.0或更低)的RIN的样品获得。本发明提供了低质量的RNA可用于从含有低浓度核酸的样品(如甲状腺FNA样品)中获得有意义的基因表达结果的方法。
样品有用性的另一估计是RNA的产率,通常以纳克-微克的量测量而用于基因表达分析。目的在实验室中用于测量核酸产率的最灵敏的和“现有技术状态”的装置是NanoDrop分光光度计。正如许多这一类的定量仪器一样,NanoDrop测量的准确性在非常低的RNA浓度下显著降低。用于输入微阵列实验中必需的RNA的最低量也限制了给定样品的有用性。在一些方面中,本发明通过使用NanoDrop和Bioanalyzer两种仪器的测量的组合解决了低RNA浓度的问题。由于从基因表达研究获得的数据的质量依赖于RNA量,有意义的基因表达数据可从具有如通过NanoDrop测量的低或不可测量的RNA浓度的样品产生。
本发明的方法和算法能够:1)进行包含低量和/或低质量的核酸的样品的基因表达分析;2)显著降低假阳性和假阴性;3)确定导致最终病理的基础遗传、代谢或信号传导途径;4)能够赋予有关遗传疾病诊断的准确性的统计学概率;5)能够解决含糊的结果;和6)能够区分癌症的亚型。
细胞学分析
可以通过细胞染色与生物样品中细胞的显微镜检测结合来分析样品。细胞染色或细胞学检查可通过本领域已知的多种方法和合适的试剂进行,包括但不限于:EA染色、苏木精染色、细胞染色(cytostain)、papanicolaou染色、曙红、nissl染色、甲苯胺蓝、银染、偶氮胭脂红染色、中性红或杰纳斯绿。在某些情况下,在染色过程之前或期间使用例如甲醇、乙醇、戊二醛或甲醛固定和/或渗透细胞。在某些情况下,不固定细胞。在某些情况下,组合使用多于一种的染色。在其他情况下,根本不使用染色。在某些情况下,使用染色过程,例如使用溴化乙锭、苏木精、nissl染色和本领域已知的任何核酸染色进行核酸含量的测量。
在本发明的某些实施方式中,可通过本领域公知的用于细胞学检查的标准方法将细胞涂片在载玻片上。在其他情况下,可以使用基于液体的细胞学(LBC)方法。在某些情况下,LBC方法提供了制备细胞学载玻片的改进的方式、更均质的样品、增加的灵敏度和特异性及更高的样品处理的有效性。在基于液体的细胞学方法中,将生物样品从受试者转移到包含液体细胞学制备溶液的容器或小瓶中,该液体细胞学制备溶液例如为如CytycThinPrep、SurePath或Monoprep或任何其他本领域已知的基于液体的细胞学制备溶液。此外,样品可以使用液体细胞学制备溶液从收集装置冲洗到容器或小瓶中,以确保样品的基本上定量转移。然后在基于液体的细胞学制备溶液中包含生物样品的溶液可被储存,和/或被机器或本领域技术人员处理以在载玻片上产生细胞层。样品可以以与常规细胞学制备相同的方式进一步染色和在显微镜下检查。
在本发明的某些实施方式中,可以通过免疫组织化学染色分析样品。免疫组织化学染色通过在生物样品(如细胞或组织)中使用抗体提供了特定分子或抗原的存在、位置和分布的分析。抗原可以是小分子、蛋白质、肽、核酸或能够被抗体特异性识别的任何其他分子。样品可以在使用或不使用预先固定和/或渗透步骤的情况下通过免疫组织化学方法进行分析。在某些情况下,目标抗原可通过使样品与抗原特异性的抗体接触而被检测到,然后可通过一次或多次洗涤除去非特异性的结合。然后可以通过抗体检测试剂(例如如标记的二级抗体或标记的抗生物素蛋白/抗生蛋白链菌素)检测特异性结合的抗体。在某些情况下,抗原特异性的抗体可以替代地直接被标记。适用于免疫组织化学的标记包括但不限于荧光团如荧光素(fluorescein)和若丹明,酶如碱性磷酸酶和辣根过氧化物酶,和反射性核素如32P和125I。可通过免疫组织化学染色检测的基因产物标志物包括但不限于Her2/Neu、Ras、Rho、EGFR、VEGFR、UbcH10、RET/PTC1、细胞角蛋白20、降血钙素、GAL-3、甲状腺过氧化物酶和甲状腺球蛋白。
VII.分析结果
常规细胞学或其他分析的结果可表明样品是阴性的(无癌症、疾病或状况)、模糊或可疑的(暗示存在癌症、疾病或状况)、诊断性的(对于癌症、疾病或状况的阳性诊断)或非诊断性的(对于癌症、疾病或状况的存在或不存在不能提供充分的信息)。还可将诊断结果分为恶性或良性的。诊断结果还可提供表明例如癌症的严重性或等级、准确诊断的可能性(如通过p值、校正的p值或统计学置信度指示(confidenceindicator))的评分。在某些情况下,诊断结果可指示特定类型的癌症、疾病或状况,例如如滤泡性腺瘤、许特莱氏细胞腺瘤、淋巴细胞性甲状腺炎、增生、滤泡性癌、乳头状甲状腺癌的滤泡性变型、乳头状癌或本文提供的任何疾病或状况。在某些情况下,诊断结果可指示癌症、疾病或状况的特定阶段。诊断结果还可给出用于所诊断的特定癌症疾病或状况的类型或阶段的特定治疗或治疗干预的信息。在某些实施方式中,可将所进行的分析的结果输入数据库中。分子表达谱公司可向个人、保险供应商、医疗供应商或政府单位收取以下一项或多项的费用:进行的分析、咨询服务、结果报告、数据库使用或数据分析。在某些情况下,除了分子表达谱外的所有或某些步骤通过细胞学实验室或医疗专业人员进行。
VIII.分子表达谱
细胞学分析标志着目前用于多种类型的可疑癌症(包括例如甲状腺肿瘤或结节)的诊断标准。在本发明的一些实施方式中,经分析是阴性、不确定、诊断性或非诊断性的样品可经过后续分析以获得更多的信息。在本发明中,这些后续分析包括基因组DNA、RNA、mRNA表达产物水平、miRNA水平、基因表达产物水平或基因表达产物可选择性剪接的分子表达谱的步骤。在本发明的某些实施方式中,分子表达谱是指确定生物样品中基因组DNA的数目(例如拷贝数)和/或类型。在某些情况下,还可将数目和/或类型与对照样品或被认为是正常的样品相比较。在某些实施方式中,可以分析基因组DNA的拷贝数变异,如拷贝数增加(扩增)或减少,或变异体(如插入、缺失、截短等)。分子表达谱可使用本文描述的任意方法在同一样品、同一样品的一部分或新样品上进行。分子表达谱公司可通过直接联系个人或通过中间人(如医生、第三方检测中心或实验室或者医疗专业人员)要求另外的样品。在某些情况下,使用分子表达谱商业机构的方法和组合物与一些或所有的细胞学染色或其他诊断方法结合来分析样品。在其他情况下,使用分子表达谱商业机构的方法和组合物来直接分析样品而不预先使用常规细胞学染色或其他诊断方法。在某些情况下,分子表达谱单独的或与细胞学或其他分析结合的分子表达谱结果可使本领域普通技术人员能够诊断或建议用于受试者的治疗。在某些情况下,分子表达谱可以单独或与细胞学方法结合用于监控肿瘤或疑似的肿瘤随时间的恶性改变。
本发明的分子表达谱方法用于从一种或多种来自受试者的生物样品提取和分析蛋白质或核酸(RNA或DNA)。在某些情况下,从获得的整个样品中提取核酸。在其他情况下,从获得的样品的一部分提取核酸。在某些情况下,未进行核酸提取的样品的部分可通过细胞学检查或免疫组织化学进行分析。从生物样品提取RNA或DNA的方法是本领域公知的,包括例如使用商用试剂盒,例如QiagenDNeasyBloodandTissue试剂盒或QiagenEZ1RNAUniversalTissue试剂盒。
(i)组织类型的指纹识别
在许多情况下,生物样品(如本发明的方法提供的那些样品)可能包含几种细胞类型或组织,包括但不限于甲状腺滤泡细胞、甲状腺髓细胞、血细胞(RBC、WBC、血小板)、平滑肌细胞、导管、导管细胞、基底膜、内腔、小叶、脂肪组织、皮肤细胞、上皮细胞和浸润性巨噬细胞和淋巴细胞。在甲状腺样品的情况中,生物样品的诊断分类可主要地包括例如滤泡细胞(对于源自滤泡细胞的癌症如乳头状癌、滤泡状癌和未分化甲状腺癌)和髓细胞(对于髓样癌)。在某些情况下,对于来自甲状腺活组织检查的不确定生物样品的诊断关注滤泡性腺瘤与滤泡状癌的区分。因此,例如滤泡细胞的分子表达谱信号可因此被稀释,并可能被样品中存在的其他细胞类型混淆。类似地,来自其他组织或器官的生物样品的诊断通常包括在可能出现在样品中的许多细胞类型中诊断一种或多种细胞类型。
在某些实施方式中,本发明的方法提供了确定特定生物样品的细胞构成的先期方法,从而得到的分子表达谱特征可针对由于存在其他细胞和/或组织类型导致的稀释效应进行校准。一方面,该先期方法是使用已知细胞和/或组织特异性的基因表达模式的组合作为样品各成分的先期微分类器的算法。该算法使用这一分子指纹来根据它们的组成进行样品的预分类,然后再应用校正/标准化因子。在某些情况下,随后可将这一数据输入最终的分类算法中,其引入该信息来辅助最终的诊断。
(ii)基因组分析
在某些实施方式中,可在样品上进行基因组序列分析或基因型分型。该基因型分型可采用突变分析的形式,例如单核苷酸多态性(SNP)分析、插入缺失多态性(InDel)分析、数目可变串联重复(VNTR)分析、拷贝数变异(CNV)分析或者部分或全基因组测序。用于进行基因组分析的方法是本领域已知的,并可包括高通量测序,例如包括但不限于美国专利No.7,335,762;7,323,305;7,264,929;7,244,559;7,211,390;7,361,488;7,300,788和7,280,922中描述的那些方法。用于进行基因组分析的方法还可包括本文后面所描述的微阵列方法。在某些情况下,基因组分析可与本文的任意其他方法组合进行。例如,可以获得样品,测试充分性和将其分为等分试样。然后,一个或多个等分试样可用于本发明的细胞学分析,一个或多个可用于本发明的RNA表达谱方法,和一个或多个可用于基因组分析。还可以理解,本发明预期,本领域普通技术人员可能希望在生物样品上进行未明确记载在本文中的其他分析。
(iii)表达产物谱
基因表达谱是数千种基因的活性(表达)的一次性测量,以产生细胞功能的整体概况。这些表达谱可以例如区分活跃分裂的细胞或显示这些细胞如何对特定治疗发生反应。这一类的许多实验同时测量整个基因组,也就是说,特定细胞中存在的每一种基因。微阵列技术测量之前确定的靶基因的相对活性。基于序列的技术如基因表达的系列分析(SAGE、SuperSAGE)也用于基因表达谱。SuperSAGE是特别准确的,并可测量任意活性基因,而不仅仅是预先确定的组。在RNA、mRNA或基因表达谱微阵列中,同时监测数千种基因的表达水平,以研究某些治疗、疾病和发育阶段对基因表达水平的影响。例如,基于微阵列的基因表达谱可用于表征本文公开的遗传疾病的基因标签或不同的癌症类型、癌症亚型和/或癌症阶段。
表达谱实验通常包括测量在两个或更多个实验条件下表达的基因表达产物(如mRNA)的相对量。这是因为基因表达产物的特定序列的水平改变表明对于该基因表达产物所编码的蛋白质的需要的改变,可能表明稳态响应或病理状况。例如,如果乳腺癌细胞表达比正常细胞更高水平的与特定跨膜受体相关的mRNA,则有可能该受体在乳腺癌中发挥作用。本发明的一方面包括作为遗传疾病和癌症(特别是甲状腺癌)的重要诊断测试的一部分的基因表达谱。
在某些实施方式中,具有RIN≤5.0的RNA样品通常不用于多基因微阵列分析,而是相反可仅用于单基因RT-PCR和/或TaqMan分析。微阵列、RT-PCR和TaqMan分析是相关领域公知的标准分子技术。基于TaqMan探针的分析广泛用于实时PCR中,包括基因表达分析、DNA定量和SNP基因型分型。
在一个实施方式中,涉及本领域已知癌症的基因表达产物被表征。该基因表达产物已被描述,且包括但不限于美国专利No.7,358,061;7,319,011;5,965,360;6,436,642和美国专利申请2003/0186248,2005/0042222、2003/0190602、2005/0048533、2005/0266443、2006/0035244、2006/083744、2006/0088851、2006/0105360、2006/0127907、2007/0020657、2007/0037186、2007/0065833、2007/0161004、2007/0238119和2008/0044824中详细描述的基因表达产物。
还可以预期,与癌症相关的其他基因表达产物可能会变得已知,且本文所述的方法和组合物可包括这些新发现的基因表达产物。
在本发明的一些实施方式中,替代地或另外地分析基因表达产物的除表达水平以外的特征。例如,可以分析基因产物的可选择剪接。可选择剪接(也叫做可选择外显子使用)是其中原始基因转录本(前体mRNA)的外显子被分离和重新连接(即剪接)以产生同一基因的替代mRNA分子的RNA剪接变异机制。在某些情况下,这些线性组合骑兵经过翻译过程,其中特定的和独特的氨基酸序列被来自相同基因的各个替代mRNA分子规定,从而产生蛋白质异形体。可选择剪接可包括引入不同的外显子或不同的外显子组、保留特定内含子或使用交替剪接供体和受体位点。
在某些情况下,标志物或标志物组可被确认为显示可选择剪接,该可选择剪接对于良性、恶性或正常样品是诊断性的。另外,可选择剪接标志物还可提供用于特定类型的甲状腺癌(例如乳头状、滤泡状、髓样和未分化甲状腺癌)的诊断。对于本领域已知的恶性肿瘤诊断性的可选择剪接标志物包括美国专利No.6,436,642中列举的那些。
在某些情况下,可通过本发明的方法分析不编码蛋白质的RNA表达产物(如miRNA和siRNA)的表达。这些RNA表达产物的差异表达可以指示良性、恶性或正常样品。这些RNA表达产物的差异表达还可指示良性样品(例如FA、NHP、LCT、BN、CN、HA)或恶性样品(例如FC、PTC、FVPTC、ATC、MTC)的亚型。在某些情况下,可通过本发明的方法分析miRNA、siRNA、可选择剪接RNA异形体、mRNA或它们的任意组合的差异表达。
在某些实施方式中,本发明提供了16组生物标志物,各组为表征、排除和诊断甲状腺内的病理所需要的。这16组为:
1正常甲状腺(NML)
2淋巴细胞性、自身免疫性甲状腺炎(LCT)
3结节性增生(NHP)
4滤泡性甲状腺腺瘤(FA)
5许特莱氏细胞甲状腺腺瘤(HC)
6甲状旁腺(非甲状腺组织)
7未分化甲状腺癌(ATC)
8滤泡状甲状腺癌(FC)
9许特莱氏细胞甲状腺癌(HC)
10乳头状甲状腺癌(PTC)
11乳头状癌的滤泡性变型(FVPTC)
12甲状腺髓样癌(MTC)
13至甲状腺的肾癌转移
14至甲状腺的黑素瘤转移
15至甲状腺的B细胞淋巴瘤转移
16至甲状腺的乳腺癌转移
各组包括一系列表征、排除和诊断甲状腺内的特定病理所需的生物标志物。组1-6描述良性病理。组7-16描述恶性病理。
甲状腺和其内发现的各种病理的生物特性表明一个组内的多种生物标志物与另一组内的多种生物标志物之间存在冗余性。在反映各病理学亚型时,各个诊断组与另一组中的生物标志物是异质的和半冗余性的。异质性和冗余性反映了在给定FNA中采样的组织的生物学以及表征各种病理学亚型的基因表达彼此之间的差异。
一方面,本发明的诊断值在于比较:i)一个组中的一种或多种标志物,与ii)其他各组中的一种或多种标志物。本发明的用途在于:在FNA中的诊断准确性比当前可能的其他任何方式都高。
在某些实施方式中,各组内的生物标志物是可互换的(模块的)。所有组内的多种生物标志的可被取代、增加、减少或改进,以适应新的病理学亚型的定义(如从其他器官转移到甲状腺的转移新病例报告)。本发明描述了多种对甲状腺中发现的16种异质的、半冗余的和明显不同的病理中的各种进行定义的标志物。所有的16组均为达到精确的诊断所需要的,且任意给定的组单独不具有足够的能力来做出真正的诊断决定。在某些实施方式中,各组中的生物标志物与适当的生物标志物组合互换,从而各组中的多种生物标志物在检查定义所有其他病理学亚型的多种生物标志物的情况中仍定义给定的病理学亚型。
本发明的方法和组合物可以任意的组合具有选自1、2、3、4、5、6、7、8、9、10、11、12、13、14、15或16或者更多个生物标志物组的基因,并可具有来自各个生物标志物组的1、2、3、4、5、6、7、8、9、10、15、20、25、30、35、40、45、50或更多种基因表达产物。在某些实施方式中,组合的基因的组给出大于70%、75%、80%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或99.5%的特异性或灵敏度,或至少95%、95.5%、96%、96.5%、97%、97.5%、98%、98.5%、99%、99.5%或更高的阳性预测值或阴性预测值。
(1)确定表达产物水平的体外方法
测定基因表达产物水平的一般方法是本领域已知的,并可包括但不限于一种或多种以下方法:另外的细胞学分析、用于特定蛋白质或酶的活性的分析、用于特定表达产物包括蛋白质或RNA或特定的RNA剪接变异体的分析、原位杂交、完全或部分基因组表达分析、微阵列杂交分析、SAGE、酶联免疫吸收分析、质谱法、免疫组织化学或印迹。基因表达产物水平可相对于内标标准化,如总mRNA或特定基因(包括但不限于甘油醛-3-磷酸脱氢酶或微管蛋白)的表达水平。
在本发明的某些实施方式中,基因表达产物标志物和可选择剪接标志物可通过微阵列分析确定,例如使用Affymetrix阵列、cDNA微阵列、寡核苷酸微阵列、点样微阵列或来自Biorad、Agilent或Eppendorf的其他微阵列产品。微阵列提供特别的优势,因为它们可包括可在单个试验中分析的大量基因或可选择剪接变异体。在某些情况下,微阵列装置可包括整个人基因组或转录物组或它们的大部分,从而允许全面评价基因表达模式、基因组序列或可选择剪接。可使用如SambrookMolecularCloningaLaboratoryManual2001及Baldi,P.和Hatfield,W.G.,DNAMicroarraysandGeneExpression2002中描述的标准分子生物学和微阵列分析技术来发现标志物。
微阵列分析开始于使用本领域已知的方法从生物样品(如活组织检查或细针吸取物)提取和纯化核酸。对于表达和可选择剪接分析,从DNA提取和/或纯化RNA可能是有利的。从其他形式的RNA如tRNA和rRNA提取和/或纯化mRNA可能是更有利的。
还可而用荧光、放射性核素或化学标记(如生物素或地高辛)通过例如逆转录、PCR、接合、化学反应或其他技术来标记纯化的核酸。标记可以是直接或间接的,其可能进一步需要偶联阶段。偶联阶段可发生在杂交前,例如使用氨基烯丙基-UTP和NHS氨基反应性染料(如氰蓝染料),或在杂交后,例如使用生物素和标记的抗生蛋白链菌素。修饰的核苷酸以与常规核苷酸相比较低的比率(如以1aaUTP:4TTP的比例)酶促加入,通常得到每60个碱基1个的结果(用分光光度计测量)。然后可用例如柱或透析过滤装置纯化aaDNA。氨基烯丙基基团是连接到核苷碱基的长连接体上的氨基,其与反应性标记(如荧光染料)反应。
然后可将标记的样品与杂交溶液混合,该杂交溶液可包含SDS、SSC、硫酸右旋糖酐、封闭剂(如COT1DNA、鲑鱼精子DNA、小牛胸腺(thymum)DNA、聚A或聚T)、Denhardt溶液、甲醛胺或它们的组合。
杂交探针是不同长度的DNA或RNA的片段,其用于检测DNA或RNA样品中与探针序列互补的核苷酸序列(DNA靶)的存在。因此,探针与其碱基序列允许由于探针与靶之间的互补性而使得探针-靶碱基配对的单链核苷酸(DNA或RNA)杂交。首先,标记的探针变性(通过加热或在碱性条件下)成为单DNA链,然后再与靶DNA进行杂交。
为了检测探针与其靶序列的杂交,探针用分子标志加标签(或标记);通常使用的标志是32P或洋地黄毒苷,其是非放射性的基于抗体的标志。与探针具有中等至高的序列相似性的DNA序列或RNA转录本然后通过经由放射自显影或其他成像技术使杂交的探针可视化来进行检测。具有中等或高相似性的序列的检测取决于采用何种严格性的杂交条件-高严格性(如高杂交温度和杂交缓冲液中的低盐)仅允许高度相似的核酸序列之间的杂交,而低严格性(如较低温度和高盐)允许序列在具有较低相似性的情况下杂交。用于DNA微阵列中的杂交探针是指共价连接到惰性表面(如涂覆的载玻片或基因芯片)上的DNA,且可移动的cDNA靶与其杂交。
然后可以通过加热或化学方式使该混合物变性,并将其添加到微阵列的端口。然后可以密封孔,且微阵列在例如杂交炉中进行杂交,其中微阵列通过旋转或在混合器中进行混合。经过杂交过夜后,非特异性的结合可被洗掉(例如使用SDS和SSC)。然后可以干燥微阵列,并在特别的仪器中进行扫描,其中激光激发染料,和检测器测量其发射。图像可与模板格栅重叠,且特征(几个像素构成一个特征)的强度可被量化。
各种试剂盒可用于扩增核酸和产生本发明的探针。可用于本发明中的试剂盒的例子包括但不限于NugenWT-OvationFFPE试剂盒、带有NugenExon模块和Frag/Label模块的cDNA扩增试剂盒。NuGENWT-OvationTMFFPESystemV2是全转录物组扩增系统,其能够在源自FFPE样品的小的和降解的RNA的大量资料档上进行全面的基因表达分析。该系统由扩增少至50ng的总FFPERNA所需的试剂和方案构成。该方案可用于qPCR、样品归档、片段化和标记。对于3’表达阵列分析,使用NuGEN’sFL-OvationTMcDNABiotinModuleV2,扩增的cDNA可在不到2小时内被片段化和标记。对于使用AffymetrixExonandGeneST阵列的分析而言,扩增的cDNA可与WT-OvationExonModule一起使用,然后使用FL-OvationTMcDNABiotinModuleV2进行片段化和标记。对于Agilent阵列上的分析,扩增的cDNA可使用NuGEN’sFL-OvationTMcDNAFluorescentModule进行片段化和标记。有关NugenWT-OvationFFPE试剂盒的更多信息可从http://www.nugeninc.com/nugen/index.cfm/products/amplification-systems/wt-ovation-ffpe/获得。
在某些实施方式中,可以使用AmbionWT表达试剂盒。AmbionWT表达试剂盒允许直接扩增总RNA,而无需单独的核糖体RNA(rRNA)耗竭步骤。使用WT表达试剂盒,少至50ng总RNA的样品可在人类、小鼠和大鼠外显子和基因1.0ST阵列上进行分析。除了降低输入RNA需求和方法与实时PCR数据之间的高一致性外,WT表达试剂盒提供了灵敏度的显著提高。例如,在背景之上检测到的较大量探针组由于信噪比的提高可在外显子水平上通过使用WT表达试剂盒获得。AmbionWT表达试剂盒可与另外的Affymetrix标记试剂盒组合使用。
在某些实施方式中,AmpTecTrinucleotideNanomRNA扩增试剂盒(6299-A15)可用于所述方法中。TRinucleotidemRNA扩增Nano试剂盒适于较大范围,从1ng到700ng的输入总RNA。根据输入总RNA的量和所需的aRNA的产率,其可用于1个轮回(输入>300ng总RNA)或2个轮回(最小输入量1ng总RNA),aRNA产率为>10μg的范围。AmpTec所有的TRinucleotide原发技术(primingtechnology)导致了mRNA的优先扩增(与通用的真核3'-聚(A)序列无关),与对rRNA的选择组合。有关AmpTecTrinucleotideNanomRNA扩增试剂盒的更多信息可在http://www.amp-tec.com/products.htm获得。该试剂盒可与cDNA转化试剂盒和Affymetrix标记试剂盒组合使用。
然后可通过例如减去背景强度和然后分割强度从而产生各相等通道上特征的总强度或参照基因的强度对原始数据归一化,然后可计算所有强度的t值。更加复杂的方法包括z比例、loess和lowess回归和用于Affymetrix芯片的RMA(稳定多芯片分析)。
(2)确定基因表达产物水平的体内方法
还可以预期,本发明的方法和组合物可用于确定个体中的基因表达产物水平而无需首先获得样品。例如,基因表达产物水平可在体内确定,即在个体中确定。用于体内确定基因表达产物水平的方法是本领域已知的,且包括成像技术(如CAT、MRI、NMR、PET)和光学、荧光或使用抗体或分子信标来进行蛋白质或RNA水平的生物光子成像。这类方法描述在US2008/0044824、US2008/0131892中,通过引用方式结合在本文中。用于体内分子表达谱的另外方法也包括在本发明的范围之内。
在本发明的一些实施方式中,分子表达谱包括将样品或样品的一部分结合到本发明的一种或多种探针上的方法。合适的探针结合待测量的样品组分,即基因产物,且包括但不限于抗体或抗体片段、适体、核酸和寡核苷酸。样品与本发明的探针的结合代表将物质从样品向结合一种或多种探针的样品的转化。基于分子表达谱的癌症诊断方法还包括检测样品的基因表达产物(即mRNA或蛋白质)和水平,将其与正常对照样品中的量比较以确定样品和对照之间的差异基因表达产物水平和通过将一种或多种差异基因表达产物水平输入本发明的训练算法来分类测试样品,使用本发明的选择和分类算法来验证样品的分类和识别样品为对于遗传疾病或癌症类型为阳性的步骤。
(i)样品与正常的比较
可将在个体提供的样品(测度样品)上进行的分子表达谱的结果与已知或怀疑为正常的生物样品相比较。正常样品是没有或预期没有任何癌症、疾病或状况的样品或在分子表达谱分析中对于任何癌症疾病或状况测试为隐性的样品。正常样品可来自与被测试个体不同的个体或来自相同个体。在某些情况下,正常样品是从个体(如被测试的个体)的口腔拭子获得的样品。正常样品可与测试样品在同一时间或不同时间进行分析。
可将测试样品的分析结果与在正常样品上进行的相同分析的结果相比较。在某些情况下,在正常样品上的分析结果来自于数据库或基准。在某些情况下,在正常个样品上的分析结果是已知的或通常被本领域普通技术人员所接受的值。在某些情况下,比较是定性的。在其他情况下,比较是定量的。在一些情况下,定性或定量比较可包括但不限于以下一种或多种:比较荧光值、点强度、吸光度值、化学发光信号、柱状图、关键阈值、统计学显著性值、基因产物表达水平、基因产物表达水平的改变、可选择外显子使用、可选择外显子使用的改变、蛋白质水平、DNA多态性、拷贝(coy)数变异、一种或多种DNA标志物或区域存在或不存在的指示或核酸序列。
(ii)结果评估
在某些实施方式中,使用本领域已知的方法评估分子表达谱结果以将基因产物表达水平或可选择外显子使用与特定表型如恶性、恶性类型(如滤泡状癌)、良性或正常性(如不具有疾病或状况)相关联。在某些情况下,可以确定指定的统计学置信度水平以提供诊断置信水平。例如,可以确定,大于90%的置信度水平可以是恶性、恶性类型或良性的可用预测值。在其他实施方式中,可以选择更高或更低严格性的置信度水平。例如,可以选择大约70%、75%、80%、85%、90%、95%、97.5%、99%、99.5%或99.9%的置信度水平作为有用的表型预测值。在某些情况下,所提供的置信度水平可与样品的质量、数据的质量、分析的质量、所使用的特定方法和所分析的基因表达产物的数量相关。用于提供诊断的指定置信度水平可基于预期的假阳性或假阴性的数目和/或费用进行选择。选择用于实现指定的置信度水平或用于识别具有诊断能力的标志物的参数的方法包括但不限于:受试者工作特征曲线分析(ReceiverOperatorCurveanalysis,ROC)、副法线ROC、主成分分析、部分最小平方分析、奇异值分解、最小绝对收缩和选择操作器(leastabsoluteshrinkageandselectionoperator)分析、最小角回归和阈值梯度导向规则化(thresholdgradientdirectedregularization)方法。
(iii)数据分析
在某些情况下,原始基因表达水平和可选择剪接数据可通过应用设计用于归一化和/或提高数据的可信度的算法来改进。在本发明的某些实施方式中,由于处理的单个数据点的巨大数量,数据分析要求计算机或其他装置、机器或设备来应用本文所述的各种不同算法。“机器学习算法”是指用于表征基因表达谱的基于计算机的预测方法,本领域普通技术人员也称其为“分类器”。对应于特定表达水平的信号(其通过例如基于微阵列杂交分析获得)通常经过算法处理以分类表达谱。监管的学习通常包括“训练”分类器以识别类之间的区别,然后“测试”分类器在独立测试集上的准确性。对于新的未知样品,可使用分类器来预测该样品所属的类。
在某些情况下,稳定多阵列平均(RMA)方法可用于归一化原始数据。RMA方法通过计算许多微阵列上各匹配细胞的背景校正强度开始。背景校正的值限于阳性值,如Irizarry等人Biostatistics2003April4(2):249-64所述。在背景校正后,随后获得各个背景校正的匹配细胞强度的基础-2算法。然后使用分位数归一化方法使各微阵列上背景校正的、对数转化的、匹配的强度归一化,其中对于各输入阵列和各探针表达值,阵列百分位探针值被所有阵列百分位点的平均值取代,该方法在Bolstad等人Bioinformatics2003中有更完整的描述。分位数归一化后,随后可将归一化的数据拟合到线性模型中,以获得各个微阵列上各个探针的表达测量值。然后可使用Tukey中位数平滑算法(Tukey,J.W.,ExploratoryDataAnalysis.1977)来确定归一化的探针组数据的对数标度表达水平。
还可进一步过滤数据以除去可以被认为可疑的数据。在某些实施方式中,从具有小于约4、5、6、7或8个鸟苷+胞嘧啶核苷酸的微阵列探针获得的数据可被认为是不可靠的,因为它们的异常杂交倾向或二级结构问题。类似地,从具有大于约12、13、14、15、16、17、18、19、20、21或22个鸟苷+胞嘧啶核苷酸的微阵列探针获得的数据可以被认为是不可靠的,因为它们的异常杂交倾向或二级结构问题。
在某些情况下,可以通过针对一系列参照数据集对探针组的可靠性分级选择不可靠的探针组以从数据分析中排除。例如,RefSeq或Ensembl(EMBL)被认为是非常高质量的参照数据集。在某些情况下,匹配RefSeq或Ensembl序列的探针组的数据由于它们预期的高可靠性可特别地包括在微阵列分析实验中。类似地,来自匹配较低可靠性的参照数据集的探针组的数据可从进一步分析中排除,或在各案基础上考虑包括在内。在某些情况下,Ensembl高通量cDNA(HTC)和/或mRNA参照数据集可单独地或一起用于确定探针组的可靠性。在其他情况下,探针组的可靠性可被分级。例如,完全匹配所有参照数据集(如RefSeq、HTC和mRNA)的探针和/或探针组可被分级为最可靠的(1)。此外,匹配三个参比数据集中的两个的探针和/或探针组可被分级为次最可靠的(2),匹配三个参照数据集中的一个的探针和/或探针组可被分级为下一级(3),而不匹配参照数据集的探针和/或探针组可被分级为最低级(4)。然后探针和/或探针组可基于它们的分级被包括在分析中或从分析中排除。例如,人们可以选择包括来自1、2、3和4类的探针组;来自1、2和3类的探针组;1和2类的探针组或1类的探针组的数据用于进一步分析。在另一实施例中,探针组可通过与参照数据集项错配的碱基对的数目进行分级。可以理解,存在现有技术中理解为用于评估分子表达谱的给定探针和/或探针组的可靠性的许多方法,且本发明的方法包括任何这些方法和它们的组合。
在本发明的一些实施方式中,如果它们不表达或以不可检测的水平(不高于背景)表达,则来自探针组的数据可从分析中排除。如果对于任何组存在以下情况,则探针组被判定为在高于背景表达:
标准正常分布的从T0至无穷大的积分<显著性(0.01)
其中:
T0=Sqr(GroupSize)(T-P)/Sqr(Pvar),
GroupSize=组中CEL文件的数目,
T=探针组中探针评分的平均值,
P=GC含量的背景探针平均值的平均,和
Pvar=背景探针差异的和/(探针组中探针的数目)^2,
这允许包括其中组中探针组的平均值大于具有类似GC含量的背景探针的平均表达的探针组作为探针组的背景中心的探针组探针,并使得人们能够从背景探针组差异中获得探针组分散(probe-setdispersion)。
在本发明的某种实施方式中,表现出没有或具有低差异的探针组可从进一步的分析中排除。通过Chi-方检验从分析中排除低差异的探针组。如果转化的差异在具有(N-1)自由度的Chi-方分布的99%置信区间的左侧,则探针组被认为是低差异的。
(N-1)*探针组差异/(基因探针组差异)~Chi-Sq(N-1)
其中N是输入CEL文件的数目,(N-1)是Chi-方分布的自由度,且“基因的探针组差异”是整个基因的探针组差异的平均。
在本发明的一些实施方式中,如果给定基因或转录本簇的探针组包含少于通过前述用于GC含量、可靠性、差异等的过滤器步骤的最低数目的探针,则可以从进一步分析中排除它们。例如,在某些实施方式中,如果给定基因或转录本簇的探针组包含少于约1、2、3、4、5、6、7、8、9、10、11、12、13、14、15或小于约20个探针,则从进一步分析中排除它们。
基因表达水平或可选择剪接的数据分析方法还可包括使用如本文提供的特征选择算法。在本发明的某些实施方式中,特征选择通过使用LIMMA软件包(Smyth,G.K.(2005))提供。Limma:linearmodelsformicroarraydata.In:BioinformaticsandComputationalBiologySolutionsusingRandBioconductor,R.Gentleman,V.Carey,S.Dudoit,R.Irizarry,W.Huber(eds.),Springer,NewYork,397-420页).
基因表达水平和/或可选择剪接的数据分析的方法还可包括使用预分类器算法。例如,算法可使用细胞特异性的分子指纹来根据它们的组成预先分类样品,然后再应用校正/归一化因子。然后可以将该数据/信息输入到最终分类算法中,其将整合该信息来辅助最终的诊断。
基因表达水平和/或可选择剪接的数据分析的方法还可包括使用本文提供的分类器算法。在本发明的某些实施方式中,提供了支持向量机(SVM)算法、随机森林算法或它们的组合用于分类微阵列数据。在某些实施方式中,基于统计学显著性选择区分样品(如良性与恶性、正常与恶性)或区分亚型(如PTC与FVPTC)的鉴定标志物。在某些情况下,在应用错误发现率(FDR)的BenjaminiHochberg校正后进行统计学显著性选择。
在某些情况下,分类器算法可以荟萃分析方法补充,如Fishel和Kaufman等人2007Bioinformatics23(13):1599-606中描述的方法。在某些情况下,分类器算法可以荟萃分析方法补充,如可重复性分析。在某些情况下,可重复性分析选择出现在最少一个预测表达产物标志物组中的标志物。
在某些情况下,可使用Bayesian事后分析方法分级特征选择和分类的结果。例如,可使用本领域已知的方法如本文提供的方法提取、归一化和总结微阵列数据。然后数据可经过特征选择步骤,如本领域已知的任何特征选择方法,如本文提供的方法,包括但不限于LIMMA中提供的特征选择方法。然后数据可经过分类步骤如本领域已知的任何分类方法,如使用本文提供的任何算法或方法,包括但不限于使用SVM或随机森林算法。然后可通过后验概率函数分级分类器算法的结果。例如,后验概率函数可从检验已知分子表达谱结果(如公开的结果)获得,以从将标志分配到类(如良性、恶性、正常、ATC、PTC、MTC、FC、FN、FA、FVPTCCN、HA、HC、LCT、NHP等)的I型和II型误差率获得先验概率。可以基于各个研究报告的样品大小使用估计的倍数改变值(如1.1、1.2.、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2、2.2、2.4、2.5、3、4、5、6、7、8、9、10或更大)计算这些误差率。然后这些先验概率可与本发明的分子表达谱数据集结合来估算差异基因表达的后验概率。最后,后验概率估算值可与本发明的第二数据集结合,以阐明差异表达的最终后验概率。导出后验概率以及将后验概率应用到微阵列数据分析的其它方法是本领域已知的,并已描述在例如Smyth,G.K.2004Stat.Appl.Genet.Mol.Biol.3:Article3中。在某些情况下,后验概率可用于分级由分类器算法提供的标志物。在某些情况下,标志物可根据它们的后验概率分级,且通过所选阈值的那些标志物可被选作其差异表达指示或诊断例如为良性、恶性、正常、ATC、PTC、MTC、FC、FN、FA、FVPTCCN、HA、HC、LCT或NHP的样品的标志物。示例性的阈值包括0.7、0.75、0.8、0.85、0.9、0.925、0.95、0.975、0.98、0.985、0.99、0.995或更高的先验概率。
对分子表达谱结果的统计学评估可提供表示以下的一种或多种的一个或多个定量值:诊断准确的可能性、癌症、疾病或状况的可能性、特定癌症、疾病或状况的可能性、特定治疗干预成功的可能性。因此,不太可能经过遗传学或分子生物学训练的医生不需要理解原始数据。相反,数据可以其最有用的形式直接呈现给医生来指导患者的护理。分子表达谱的结果可使用本领域已知的多种方法进行统计学评估,包括但不限于:studentsT检验、双侧T检验、pearson秩和分析、隐马尔可夫模型分析(hiddenmarkovmodelanalysis)、q-q作图分析、主成分分析、一元ANOVA、二元ANOVA、LIMMA等。
在本发明的一些实施方式中,单独或与细胞学分析组合使用分子表达谱可提供约85%准确的至约99%或约100%准确的的诊断。在某些情况下,分子表达谱商业机构可通过使用分子表达谱和/或细胞学方法提供恶性、良性或正常的诊断,其为约85%、86%、87%、88%、90%、91%、92%、93%、94%、95%、96%、97%、97.5%、98%、98.5%、99%、99.5%、99.75%、99.8%、99.85%或99.9%准确的。
在某些情况下,可通过随时间追踪受试者以确定原始诊断的准确性而确定准确性。在其他情况下,准确性可以以确定性的方式或使用统计学方法确定。例如,受试者工作特征(ROC)分析可用于确定最佳分析参数,以获得特定水平的准确性、特异性、阳性预测值、阴性预测值和/或错误发现率。在癌症诊断中使用ROC分析的方法是本领域已知的,并描述于例如美国专利申请No.2006/019615中,其全部通过引用方式结合在本文中。
在本发明的一些实施方式中,可选择被确定为在良性和正常、良性和恶性或恶性和正常之间表现出最大的表达水平差异或最大的可选择剪接差异的基因表达产物和编码该产物的核苷酸组合物用作本发明的分子表达谱试剂。该基因表达产物可通过提供比本领域已知的或所使用的其他方法更宽的动态范围、更大的信噪比、更高的诊断能力、更低的假阳性或假阴性可能性或者更大的统计学置信度水平而是特别有用的。
在本发明的其他实施方式中,当与使用本领域已知的标准细胞学技术相比时,单独或与细胞学分析组合使用分子表达谱可降低评为非诊断性的样品的数目约100%、99%、95%、90%、80%、75%、70%、65%或约60%。在某些情况下,当与本领域中使用的标准细胞学方法相比,本发明的方法可降低评为中间或疑似的样品的数目约100%、99%、98%、97%、95%、90%、85%、80%、75%、70%、65%或约60%。
在某些情况下,将分子表达谱分析的结果输入分子表达谱商业机构的代表或代理、个人或医疗供应商或保险供应商可访问的数据库中。在某些情况下,分析结果包括商业机构的代表、代理或咨询人员(如医疗专业人员)的解释或诊断。在其他情况下,自动提供数据的计算机或算法分析。在某些情况下,分子表达谱商业机构可以向个人、保险供应商、医疗供应商、研究者或政府单位针对一种或多种如下内容收费:进行的分子表达谱分析、咨询服务、数据分析、报告结果或数据库使用。
在本发明的某些实施方式中,分子表达谱的结果作为计算机屏幕上的报告或纸件记录呈现。在某些情况下,报告可包括但不限于如作为一种或多种以下内容的信息:差异表达的基因的数目、原始样品的适用性、显示差异可选择剪接的基因的数目、诊断、用于诊断的统计学置信度、癌症或恶性的可能性和指定的治疗。
(iv)基于分子表达谱结果的样品分类
分子表达谱的结果可分类到以下的一种中:良性(没有癌症、疾病或状况)、恶性(对于癌症、疾病或状况的阳性诊断)或非诊断性的(提供有关癌症、疾病或状况的存在或不存在的不充分的信息)。在某些情况下,诊断结果还可分类癌症、疾病或状况的类型。在其他情况下,诊断结果可表明在癌症、疾病或状况中涉及的特定分子途径或者特定癌症、疾病或状况的特定等级或阶段。在再其他情况下,诊断结果可告知适当的治疗干预,如特定的药物方案如激酶抑制剂(如格列卫)或本领域已知的任何药物,或手术干预如甲状腺切除术或偏侧甲状腺切除术。
在本发明的一些实施方式中,使用训练的算法将结果分类。本发明的训练的算法包括使用已知的恶性、良性和正常样品(包括但不限于图1中列举的样品)的参照集开发的算法。适于分类样品的算法包括但不限于k最近邻近算法、概念矢量算法(conceptvectoralgorithm)、朴素贝叶斯算法、神经网络算法、隐马尔可夫模型分析、遗传算法和互信息特征选择算法或它们的任意组合。在某些情况下,本发明的训练的算法可整合除了基因表达或可选择剪接数据以外的数据,例如,但不限于,DNA多态性数据、测序数据、本发明的细胞学家或病理学家的评分或诊断、本发明的预先分类器算法所提供的信息或有关本发明的受试者的医疗史的信息。
(v)通过分子表达谱监控受试者或治疗干预
在某些实施方式中,可使用本发明的方法和组合物监控受试者。例如,受试者可诊断为患有癌症或遗传疾病。这一初始诊断可包括或不包括使用分子表达谱。受试者可开具治疗干预的处方,如对疑似患甲状腺癌的受试者进行甲状腺切除术。治疗干预的结果可通过分子表达谱进行性地进行监控,以检测治疗干预的有效性。在另一实施例中,受试者可诊断为患有良性肿瘤或癌前病变损伤或结节,且肿瘤、结节或损伤可进行性地通过分子表达谱进行监控,以检测肿瘤或病变状态中的任何改变。
分子表达谱还可在特定治疗干预施用于受试者之前用于确定该特定治疗干预的潜在有效性。例如,受试者可被诊断为患有癌症。分子表达谱可表明已知参与癌症恶性的基因表达产物的上调,如,举例来说,RAS致癌基因。可使用本领域已知的方法体外获得和培养肿瘤样品。然后可针对肿瘤细胞系的生长抑制测试异常活跃或失调的途径的各种抑制剂或已知抑制该途径活性的药物的应用。分子表达谱还可用于监控这些抑制剂在例如所指途径的下游靶点的作用。
(vi)作为实验工具的分子表达谱
在某些实施方式中,分子表达谱可用作研究工具来鉴定用于诊断疑似肿瘤的新的标志物,用于监控药物或候选药物对生物样品如肿瘤细胞、细胞系、组织或生物体的影响或用于揭示肿瘤发生和/或肿瘤抑制的新途径。
(vii)基于分子表达谱的生物标志物分组
根据以下组描述甲状腺基因:1)良性与恶性,2)可选择基因剪接,3)KEGG途径,4)正常甲状腺,5)甲状腺病理学亚型,6)基因本体论和7)从非甲状腺器官到甲状腺的转移的生物标志物。本发明的方法和组合物可以以任意组合方式具有选自上述列举的一个或多个组和/或选自上述列举的任意组的1、2、3、4、5、6、7、8、9、10、15、20、25、30、35、40、45、50或更多个亚组(如一个或多个不同的KEGG途径)的基因,并可具有来自各组的1、2、3、4、5、6、7、8、9、10、15、20、25、30、35、40、45、50或更多种基因表达产物。在某些实施方式中,组合的基因的组给出大于70%、75%、80%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或99.5%的灵敏度,或至少95%、95.5%、96%、96.5%、97%、97.5%、98%、98.5%、99%、99.5%或更高的阳性预测值或阴性预测值。
在某些实施方式中,细胞外基质、adherens、粘着斑和紧密连接基因被用作甲状腺癌的生物标志物。在某些实施方式中,信号传导途径选自以下三种途径中的一种:adherens途径、粘着斑途径和紧密连接途径。在某些实施方式中,至少一种基因选自这三种途径中的一种。在某些实施方式中,至少一种基因选自这三种途径中的两种。在某些实施方式中,选择参与所有三种途径的至少一种基因。在一个实施例中,参与adherens途径、粘着斑途径和紧密连接途径的基因的组被选择作为诊断癌症(如甲状腺癌)的标志物。
内衬甲状腺滤泡的滤泡细胞是高度极化和结构组织化的,因而需要在它们的内腔和顶端细胞膜具有独特的作用。在某些实施方式中,细胞骨架、质膜和细胞外间隙基因被用作甲状腺癌的生物标志物。在某些实施方式中,覆盖所有四种途径即(ECM、粘着斑,adherens和紧密连接途径)的基因被用作甲状腺癌的生物标志物。在一个实施例中,本发明提供了良性与恶性组(n=948)作为甲状腺分类基因的列表。该列表根据可选择剪接、KEGG途径和基因本体论进行了分组。KEGG途径还进一步描述在表1中。
在某些实施方式中,本发明提供了诊断癌症的方法,包括来自一种或多种信号传导途径的基因表达产物,所述信号传导途径包括但不限于以下:急性骨髓性白血病信号传导、生长激素抑制素受体2信号传导、cAMP介导的信号传导、细胞周期和DNA损伤检验点信号传导、G蛋白偶联受体信号传导、整联蛋白信号传导、黑素瘤细胞信号传导、松弛肽信号传导和甲状腺癌信号传导。本发明的方法和组合物可以以任意组合方式具有选自1、2、3、4、5、6、7、8、9、10、15、20、25、30、35、40、45、50或更多个信号传导途径的基因并可具有来自各信号传导途径的1、2、3、4、5、6、7、8、9、10、15、20、25、30、35、40、45、50或更多种基因表达产物。在某些实施方式中,组合的基因的组给出大于70%、75%、80%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或99.5%的特异性或灵敏度,或至少95%、95.5%、96%、96.5%、97%、97.5%、98%、98.5%、99%、99.5%或更高的阳性预测值或阴性预测值。
在某些实施方式中,本发明提供了诊断癌症的方法,包括来自一个或多个本体论组的基因表达产物,所述本体论组包括但不限于细胞衰老、细胞皮层、细胞周期、细胞死亡/细胞凋亡、细胞分化、细胞分裂、细胞连接、细胞迁移、细胞形态发生、细胞运动、细胞投射、细胞增殖、细胞识别、细胞本体、细胞表面、细胞表面连接受体的信号转导、细胞粘附、转录、免疫应答或炎症。本发明的方法和组合物可以任意组合方式具有选自1、2、3、4、5、6、7、8、9、10、15、20、25、30、35、40、45、50或更多个本体论组的基因并可具有来自各本体论组的1、2、3、4、5、6、7、8、9、10、15、20、25、30、35、40、45、50或更多种基因表达产物。在某些实施方式中,组合的基因的组给出大于70%、75%、80%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或99.5%的特异性或灵敏度,或至少95%、95.5%、96%、96.5%、97%、97.5%、98%、98.5%、99%、99.5%或更高的阳性预测值或阴性预测值。
表1.KEGG途径中涉及的基因
良性与恶性甲状腺的主要生物标志物,n=948,列于下面列表1中:
列表1
TCID-2406391、TCID-3153400、TCID-3749600、ABCC3、ABCD2、ABTB2、ACBD7、ACSL1、ACTA2、ADAMTS5、ADAMTS9、ADK、ADORA1、AEBP1、AFAP1、AGR2、AHNAK2、AHR、AIDA、AIM2、AK1、AKR1C3、ALAS2、ALDH1A3、ALDH1B1、ALDH6A1、ALOX5、AMIGO2、AMOT、ANGPTL1、ANK2、ANKS6、ANO5、ANXA1、ANXA2、ANXA2P1、ANXA3、ANXA6、AOAH、AP3S1、APOBEC3F、APOBEC3G、APOL1、APOO、AQP4、AQP9、ARHGAP19、ARHGAP24、ARL13B、ARL4A、ARMCX3、ARMCX6、ARNTL、ARSG、ASAP2、ATIC、ATM、ATP13A4、ATP6V0D2、ATP8A1、AUTS2、AVPR1A、B3GNT3、BAG3、BCL2、BCL2A1、BCL9、BHLHE40、BHLHE41、BIRC5、BLNK、BMP1、BMP8A、BTBD11、BTG3、C10orf131、C10orf72、C11orf72、C11orf74、C11orf80、C12orf35、C12orf49、C14orf45、C16orf45、C17orf87、C19orf33、C1orf115、C1orf116、C2、C22orf9、C2orf40、C3、C4A、C4B、C4orf34、C4orf7、C5orf28、C6orf168、C6orf174、C7orf62、C8orf16、C8orf39、C8orf4、C8orf79、C9orf68、CA11、CADM1、CALCA、CAMK2N1、CAMK4、CAND1、CARD16、CARD17、CARD8、CASC5、CASP1、CAV1、CAV2、CCDC109B、CCDC121、CCDC146、CCDC148、CCDC152、CCDC80、CCL13、CCL19、CCND1、CCND2、CD151、CD180、CD2、CD200、CD36、CD3D、CD48、CD52、CD69、CD79A、CD96、CDCP1、CDH11、CDH3、CDH6、CDK2、CDKL2、CDO1、CDON、CDR1、CEP110、CEP55、CERKL、CFB、CFH、CFHR1、CFI、CHAF1B、CHD4、CHGB、CHI3L1、CITED1、CKB、CKS2、CLC、CLDN1、CLDN10、CLDN16、CLDN4、CLDN7、CLEC2B、CLEC4E、CLIP3、CLU、CMAH、CNN2、CNN3、COL12A1、COL1A1、COPZ2、CP、CPE、CPNE3、CR2、CRABP1、CRABP2、CSF3R、CSGALNACT1、CST6、CTNNAL1、CTNNB1、CTSC、CTSH、CTTN、CWH43、CXCL1、CXCL11、CXCL13、CXCL14、CXCL17、CXCL2、CXCL3、CXCL9、CXorf18、CXorf27、CYP1B1、CYP24A1、CYP27A1、CYP4B1、CYSLTR1、CYSLTR2、CYTH1、DAPK2、DCAF17、DCBLD2、DCUN1D3、DDAH1、DDB2、DDX52、DENND4A、DGKH、DGKI、DHRS1、DHRS3、DIO1、DIRAS3、DLC1、DLG2、DLG4、DLGAP5、DNAJB14、DNASE1L3、DOCK8、DOCK9、DOK4、DPH3B、DPP4、DPYD、DPYSL3、DSG2、DSP、DST、DUOX1、DUOX2、DUOXA1、DUOXA2、DUSP4、DUSP5、DUSP6、DYNC1I2、DYNLT1、DZIP1、ECE1、EDNRB、EFEMP1、EGF、EGFR、EHBP1、EHD2、EHF、EIF2B2、EIF4H、ELK3、ELMO1、EMP2、EMR3、ENAH、ENDOD1、ENTPD1、EPB41、EPDR1、EPHA4、EPHX4、EPR1、EPS8、ERBB2、ERBB3、ERI2、ERO1LB、ERP27、ESRRG、ETNK2、ETS1、ETV1、ETV4、ETV5、F2RL2、F8、FAAH2、FABP4、FAM111A、FAM111B、FAM164A、FAM176A、FAM20A、FAM55C、FAM82B、FAM84B、FAT4、FBLN5、FBXO2、FBXO21、FCN1、FCN2、FGF2、FGFR1OP2、FIBIN、FLJ20184、FLJ26056、FLJ32810、FLJ42258、FLRT3、FN1、FPR1、FPR2、FREM2、FRMD3、FXYD6、FYB、FZD4、FZD6、FZD7、G0S2、GABBR2、GABRB2、GADD45A、GALE、GALNT12、GALNT3、GALNT7、GBE1、GBP1、GBP3、GBP5、GGCT、GIMAP2、GIMAP5、GIMAP7、GJA4、GLA、GLDC、GLDN、GLIS3、GNG12、GOLT1A、GPAM、GPR110、GPR125、GPR155、GPR174、GPR98、GPRC5B、GRAMD3、GSN、GTF3A、GULP1、GYPB、GYPC、GYPE、GZMA、GZMK、HEMGN、HEY2、HIGD1A、HIPK2、HIST1H1A、HIST1H3B、HIST1H4L、HK1、HLA-DPB1、HLA-DQB2、HLF、HMGA2、HMMR、HNRNPM、HPN、HPS3、HRASLS、HSD17B6、HSPH1、ICAM1、ID3、IFI16、IFITM1、IFNAR2、IGF2BP2、IGFBP5、IGFBP6、IGFBP7、IGJ、IGK、IGKC、IGKV1-5、IGKV3-15、IGKV3-20、IGKV3D-11、IGKV3D-15、IGSF1、IKZF2、IKZF3、IKZF4、IL1RAP、IL1RL1、IL2RA、IL7R、IL8、IL8RA、IL8RB、IL8RBP、IMPDH2、INPP5F、IPCEF1、IQGAP2、ISYNA1、ITGA2、ITGA3、ITGA4、ITGA9、ITGB1、ITGB4、ITGB6、ITGB8、ITM2A、ITPR1、IYD、JAK2、JUB、KAL1、KATNAL2、KBTBD8、KCNA3、KCNAB1、KCNK5、KCNQ3、KCTD14、KDELC1、KDELR3、KHDRBS2、KIAA0284、KIAA0408、KIAA1217、KIAA1305、KIF11、KIT、KLF8、KLHDC8A、KLHL6、KLK10、KLK7、KLRB1、KLRC4、KLRG1、KLRK1、KRT18、KRT19、KYNU、LAMB1、LAMB3、LAMC1、LAMC2、LCA5、LCMT1、LCN2、LCP1、LDOC1、LEMD1、LGALS2、LGALS3、LIFR、LILRA1、LILRB1、LIMA1、LINGO2、LIPH、LMO3、LMO4、LOC100124692、LOC100127974、LOC100129112、LOC100129115、LOC100129171、LOC100129961、LOC100130100、LOC100130248、LOC100131102、LOC100131490、LOC100131869、LOC100131938、LOC100131993、LOC100132338、LOC100132764、LOC26080、LOC283508、LOC284861、LOC439911、LOC440434、LOC440871、LOC554202、LOC643454、LOC646358、LOC648149、LOC650405、LOC652493、LOC652694、LOC653264、LOC653354、LOC653498、LOC728212、LOC729461、LOC730031、LONRF2、LOX、LPAR1、LPAR5、LPCAT2、LPL、LRP1B、LRP2、LRRC69、LRRN1、LRRN3、LTBP2、LTBP3、LUM、LYPLA1、LYRM1、LYZ、MACC1、MAFG、MAGOH2、MAMLD1、MAP2、MAPK4、MAPK6、MATN2、MBOAT2、MCM4、MCM7、MDK、ME1、MED13、MED13L、MELK、MET、METTL7B、MEX3C、MFGE8、MGAM、MGAT1、MGAT4C、MGC2889、MGST1、MIS12、MKI67、MLLT3、MLLT4、MMP16、MNDA、MORC4、MPPED2、MPZL2、MRC2、MRPL14、MT1F、MT1G、MT1H、MT1M、MT1P2、MT1P3、MTHFD1L、MTIF3、MUC1、MUC15、MVP、MXRA5、MYEF2、MYH10、MYO1B、MYO1D、MYO5A、MYO6、NAB2、NAE1、NAG20、NAV2、NCAM1、NCKAP1、ND1、NDC80、NDFIP2、NEB、NEDD4L、NELL2、NEXN、NFATC3、NFE2、NFIB、NFKBIZ、NIPAL3、NIPSNAP3A、NIPSNAP3B、NOD1、NPAS3、NPAT、NPC2、NPEPPS、NPL、NPY1R、NRCAM、NRIP1、NRP2、NT5E、NTAN1、NUCB2、NUDT6、NUPR1、NUSAP1、OCIAD2、OCR1、ODZ1、ORAOV1、OSBPL1A、OSGEP、OSMR、P2RY13、P4HA2、PAM、PAPSS2、PARD6B、PARP14、PARP4、PARVA、PBX1、PCDH1、PCMTD1、PCNXL2、PDE5A、PDE9A、PDGFRL、PDK4、PDLIM1、PDLIM4、PDZRN4、PEG10、PERP、PGCP、PHEX、PHF16、PHLDB2、PHYHIP、PIAS3、PIGN、PKHD1L1、PKP2、PKP4、PLA2G16、PLA2G7、PLA2R1、PLAG1、PLAU、PLCD3、PLCL1、PLEK、PLEKHA4、PLEKHA5、PLEKHF2、PLK2、PLP2、PLS3、PLSCR4、PLXNC1、PMEPA1、POLR2J4、PON2、POR、POU2F3、PPAP2C、PPARGC1A、PPBP、PPL、PPP1R14C、PRCP、PRICKLE1、PRINS、PRMT6、PROK2、PROS1、PRR15、PRRG1、PRSS23、PSAT1、PSD3、PTK7、PTPN14、PTPN22、PTPRC、PTPRE、PTPRF、PTPRG、PTPRK、PTPRU、PTRF、PXDNL、PYGL、PYHIN1、QTRT1、RAB25、RAB27A、RAB32、RAB34、RAD23B、RAG2、RAI2、RAPGEF5、RARG、RASA1、RASD2、RBBP7、RBBP8、RBMS2、RCBTB2、RCE1、RDH5、RG9MTD2、RGS13、RGS18、RGS2、RHOBTB3、RHOH、RHOU、RICH2、RIMS2、RNASE1、RNASET2、RND3、ROS1、RPL39L、RPL9P11、RPRD1A、RPS6KA6、RRAS、RRAS2、RRBP1、RRM2、RUNX1、RUNX2、RXRG、RYR2、S100A12、S100A14、S100A16、S100A8、S100A9、SALL1、SAV1、SC4MOL、SCARA3、SCARNA11、SCEL、SCG3、SCG5、SCNN1A、SCP2、SCRN1、SDC4、SDK1、SEH1L、SEL1L3、SELL、SEMA3C、SEMA3D、SEMA4C、SEPP1、SEPT11、SERGEF、SERINC2、SERPINA1、SERPINA2、SERPINE2、SERPING1、SFN、SFTPB、SGCB、SGCE、SGEF、SGMS2、SGPP2、SH2D4A、SH3BGR、SH3PXD2A、SIPA1L2、SIRPA、SIRPB1、SLA、SLC12A2、SLC16A4、SLC16A6、SLC17A5、SLC24A5、SLC25A33、SLC26A4、SLC26A7、SLC27A2、SLC27A6、SLC34A2、SLC35D2、SLC35F2、SLC39A6、SLC4A4、SLC5A8、SLC7A11、SLC7A2、SLIT1、SLIT2、SLPI、SMAD9、SMOC2、SMURF2、SNCA、SNX1、SNX22、SNX7、SOAT1、SORBS2、SP140、SP140L、SPATS2、SPATS2L、SPC25、SPINT1、SPOCK1、SPP1、SPRED2、SPRY1、SPRY2、SQLE、SRL、SSPN、ST20、ST3GAL5、STAT4、STEAP2、STK17B、STK32A、STXBP6、SULF1、SYNE1、SYT14、SYTL5、TACSTD2、TASP1、TBC1D3F、TC2N、TCERG1L、TCF7L2、TCFL5、TDRKH、TEAD1、TFCP2L1、TFF3、TFPI、TGFA、TGFB2、TGFBR1、THSD4、TIAM2、TIMP1、TIMP3、TIPARP、TJP1、TJP2、TLCD1、TLE4、TLR10、TLR8、TM4SF1、TM4SF4、TM7SF4、TMEM100、TMEM117、TMEM133、TMEM156、TMEM163、TMEM171、TMEM215、TMEM220、TMEM90A、TMEM98、TMPRSS4、TMSB10、TMSB15A、TMSB15B、TNC、TNFAIP8、TNFRSF11B、TNFRSF12A、TNFRSF17、TNFSF10、TNFSF15、TOMM34、TOX、TPD52L1、TPO、TPX2、TRIP10、TRPC5、TRPC6、TSC22D1、TSHZ2、TSPAN13、TSPAN6、TSPAN8、TSSC1、TTC39A、TUBB1、TUBB6、TULP3、TUSC3、TXNL1、TXNRD1、TYMS、UCHL5、VAMP1、VNN1、VNN2、VNN3、WDR40A、WDR54、WDR72、WIPI1、WNT5A、XKRX、XPR1、YIF1B、YIPF1、YTHDC2、ZBTB33、ZCCHC12、ZCCHC16、ZEB2、ZFP36L1、ZFPM2、ZMAT3、ZMAT4、ZNF143、ZNF208、ZNF487、ZNF643、ZNF804B、ZYG11A.
可选择剪接基因(n=283)列于下面列表2中:
列表2
ABCC3、ADAMTS5、ADAMTS9、AIDA、AK1、AKR1C3、ALDH1A3、ALDH6A1、AMIGO2、AMOT、ANGPTL1、ANKS6、ANO5、ANXA1、ANXA2、ANXA2P1、ANXA3、AQP4、ARHGAP24、ARL4A、ARMCX3、ARMCX6、ARSG、ATIC、ATP13A4、ATP8A1、AUTS2、BAG3、BCL2、BCL9、BHLHE41、C10orf131、C11orf74、C14orf45、C16orf45、C19orf33、C2orf40、C3、C5orf28、C8orf79、CA11、CALCA、CAV1、CCND1、CCND2、CD36、CD36、CDH3、CDH6、CDON、CFH、CFHR1、CHD4、CITED1、CLDN16、CLU、COPZ2、CP、CRABP1、CSGALNACT1、CTSC、CTSH、CTTN、CWH43、CYSLTR2、DCBLD2、DCUN1D3、DDB2、DGKH、DGKI、DIO1、DLG2、DOCK9、DPH3B、DPP4、DSP、DST、DUSP6、EFEMP1、EIF2B2、ELMO1、EMP2、ENAH、ENTPD1、EPHX4、ERBB3、ERI2、ERO1LB、ETNK2、ETV1、ETV5、F8、FABP4、FAM111B、FAM20A、FAM55C、FAT4、FBLN5、FGFR1OP2、FLJ42258、FLRT3、FN1、FREM2、FXYD6、GABBR2、GABRB2、GALNT7、GBE1、GBP1、GBP3、GGCT、GIMAP7、GPAM、GPR125、GPR155、GRAMD3、GSN、HLF、HMGA2、HSPH1、IMPDH2、IQGAP2、ITGA2、ITGA3、ITGA9、ITGB6、ITGB8、ITM2A、ITPR1、IYD、KATNAL2、KCNA3、KCNQ3、KDELC1、KHDRBS2、KIAA0284、KIAA1217、KIT、KLF8、KLK10、KRT19、LAMB3、LAMC2、LEMD1、LIFR、LINGO2、LMO3、LOC100127974、LOC100129112、LOC100131490、LOC100131869、LOC283508、LOC648149、LOC653354、LONRF2、LPCAT2、LPL、LRP1B、LRP2、LRRC69、LRRN1、LRRN3、LYRM1、MACC1、MAFG、MAP2、MAPK4、MAPK6、MATN2、MED13、MET、METTL7B、MFGE8、MLLT3、MPPED2、MPZL2、MRPL14、MT1F、MT1G、MT1H、MT1P2、MTHFD1L、MUC1、MVP、MYEF2、MYH10、MYO1D、NAG20、NAV2、NEB、NEDD4L、NELL2、NFATC3、NFKBIZ、NPC2、NRCAM、NUCB2、ORAOV1、P4HA2、PAM、PAPSS2、PARVA、PDLIM4、PEG10、PGCP、PIGN、PKHD1L1、PLA2G16、PLA2G7、PLA2R1、PLAU、PLEKHA4、PLP2、PLSCR4、PLXNC1、PMEPA1、PON2、PPARGC1A、PRINS、PROS1、PSD3、PTPRK、PYHIN1、QTRT1、RAB27A、RAB34、RAD23B、RASA1、RHOBTB3、RNASET2、RPS6KA6、RUNX1、SCARNA11、SCG5、SDC4、SERPINA1、SERPINA2、SGEF、SH2D4A、SLA、SLC12A2、SLC24A5、SLC26A4、SLC26A7、SLC27A2、SLC27A6、SLC35F2、SLC4A4、SLC5A8、SLC7A2、SOAT1、SPATS2、SPATS2L、SPINT1、SPP1、SSPN、STK32A、SULF1、SYNE1、TCFL5、TFPI、TGFBR1、TIPARP、TJP1、TLE4、TM7SF4、TMEM171、TMEM90A、TNFAIP8、TNFRSF11B、TOMM34、TPD52L1、TPO、TSC22D1、TUSC3、TYMS、WDR54、WDR72、WIPI1、XPR1、YIF1B、ZFPM2、ZMAT4.
参与KEGG途径的基因列在下面表6中,存在18个途径,总n=109种独特的基因。
表6
将良性和恶性甲状腺(组合的)与正常甲状腺分开的主要基因(n=55)列于面列表3中:
列表3
ANGPTL1、ANXA3、C10orf131、C2orf40、C7orf62、CAV1、CCDC80、CDR1、CFH、CFHR1、CLDN16、CP、CRABP1、EFEMP1、ENTPD1、FABP4、FBLN5、FN1、GBP1、GBP3、GULP1、HSD17B6、IPCEF1、KIT、LRP1B、LRRC69、LUM、MAPK6、MATN2、MPPED2、MT1F、MT1G、MT1H、MT1M、MT1P2、MT1P3、MYEF2、NRCAM、ODZ1、PAPSS2、PKHD1L1、PLA2R1、RYR2、SEMA3D、SLC24A5、SLC26A4、SLC26A7、SLIT2、TFPI、TMEM171、TPO、TSPAN8、YTHDC2、ZFPM2、ZNF804B。
甲状腺外科病理学亚型(n=873)列举如下:
(i)列表4:FA亚型,n=243:
TCID-3124344、AHR、ALOX5、ANGPTL1、ANXA2、ANXA2P1、APOL1、AVPR1A、BMP8A、BTBD11、C2、C3、C8orf39、CCDC109B、CD36、CDON、CFB、CHGB、CHI3L1、CKB、CLDN1、CP、CRABP1、CTSC、CTSH、CXCL1、CXCL2、CXCL3、CXorf27、CYP1B1、DLG2、DNASE1L3、DPP4、DUOX1、DUOX2、DYNLT1、EIF4H、F8、FABP4、FAM20A、FAM55C、FBLN5、FLJ26056、FXYD6、G0S2、GALNT7、GLIS3、GPAM、HIGD1A、HK1、HLF、HSD17B6、ICAM1、IGFBP7、IL1RAP、IPCEF1、IYD、KATNAL2、KCNAB1、KHDRBS2、KLF8、KLHDC8A、LAMB1、LGALS3、LOC100131869、LOC26080、LOC284861、LOC439911、LOC653264、LOC728212、LOC729461、LPCAT2、LRRC69、MAGOH2、MAPK4、MAPK6、MELK、MPPED2、MT1G、NEB、NFKBIZ、NRIP1、PARP14、PKHD1L1、PLA2G7、PLP2、PLXNC1、POR、PRMT6、PROS1、PSMB2、PTPRE、PYGL、RNASE1、RNASET2、RPL9P11、RRAS2、RRBP1、RUNX1、RUNX2、RYR2、SCP2、SEL1L3、SERGEF、SGPP2、SH3BGR、SLC25A33、SLC26A4、SLC26A7、SLC27A6、SLC4A4、SLPI、SORBS2、SQLE、STK32A、SYTL5、TFCP2L1、TIAM2、TIMP3、TMEM220、TMSB10、TRPC6、TSHZ2、TSSC1、VAMP1、ZNF487、ABCC3、C11orf72、C8orf79、CLDN16、CLU、CST6、CYSLTR2、DIO1、DPH3B、ERO1LB、FN1、GABRB2、IGFBP6、IKZF3、KIT、KRT19、LIFR、LIPH、MACC1、MAFG、MPZL2、MT1F、MT1H、MT1P2、NELL2、ODZ1、RAG2、ROS1、SERPINA1、SERPINA2、SLC34A2、TCFL5、TIMP1、TPO、ZMAT4、ADAMTS9、ALDH1B1、ALDH6A1、ANO5、APOO、C10orf72、C11orf74、C14orf45、C2orf40、C4A、C4B、C5orf28、C6orf174、CAMK2N1、CCDC121、CCND1、CDH3、CITED1、COPZ2、CPNE3、CRABP2、CSGALNACT1、DAPK2、DLC1、ECE1、EIF2B2、EMP2、ERBB2、FAM82B、FIBIN、FLJ42258、FRMD3、HEY2、HRASLS、ID3、IGF2BP2、IGSF1、IKZF2、ITGA9、KIAA0408、KIAA1305、LMO3、MATN2、MDK、MET、METTL7B、MFGE8、MGC2889、MIS12、NAV2、NCAM1、NIPSNAP3A、NIPSNAP3B、NOD1、NTAN1、NUCB2、NUPR1、PCMTD1、PIGN、PLAG1、PSAT1、PXDNL、QTRT1、RG9MTD2、RXRG、SDC4、SLC35D2、SLC7A11、SMAD9、SPRY1、STEAP2、TASP1、TCF7L2、TMEM171、TNFRSF11B、TNFRSF12A、TRPC5、TXNL1、WDR72、YIPF1、ZCCHC12、ZCCHC16。
(ii)列表5:FC亚型,n=102:
TCID-3124344、ABCC3、ANGPTL1、AVPR1A、C8orf39、CD2、CD36、CD48、CD52、CKB、CLDN1、CLDN16、CRABP1、CXCL9、DIO1、DLG2、DNASE1L3、DPH3B、DYNLT1、EIF4H、ERO1LB、F8、FABP4、FBLN5、FLJ26056、FXYD6、FYB、GLIS3、GULP1、GZMA、GZMK、HK1、HLA-DPB1、IFITM1、IGFBP7、IGJ、IGK、IGKC、IGKV1-5、IGKV3-15、IGKV3-20、IGKV3D-11、IGKV3D-15、IPCEF1、KHDRBS2、KLHDC8A、KLRC4、KLRK1、LAMB1、LCP1、LIFR、LOC100130100、LOC100131869、LOC26080、LOC284861、LOC439911、LOC440871、LOC650405、LOC652493、LOC652694、LOC653264、LOC728212、LOC729461、LYZ、MAGOH2、MAPK4、MT1F、MT1H、MT1P2、NEB、ODZ1、PLA2G7、POR、PRMT6、PSMB2、PTPRC、RAG2、RNASE1、RNASET2、RPL9P11、RRAS2、RRBP1、RYR2、SCP2、SERGEF、SGPP2、SH3BGR、SLC25A33、SLC26A4、SQLE、STK32A、TCFL5、TFCP2L1、TIAM2、TIMP3、TMEM220、TPO、TRPC6、TSSC1、VAMP1、ZFPM2、ZNF487。
(iii)列表6:LCT亚型,n=140:
ADAMTS9、AIM2、APOBEC3F、APOBEC3G、ARHGAP19、ATP13A4、BAG3、BCL2A1、BIRC5、BLNK、C10orf72、C11orf72、C12orf35、C4orf7、C6orf168、CALCA、CARD17、CARD8、CASP1、CCL19、CCND1、CD180、CD2、CD3D、CD48、CD52、CD79A、CD96、CEP110、CHGB、CLDN16、CLEC2B、CNN2、COL12A1、CR2、CXCL13、CXCL9、CYTH1、DENND4A、DNAJB14、DOCK8、DPYD、DUOX1、DUOX2、DUOXA1、DUOXA2、DUSP6、DYNC1I2、EGF、EPDR1、EPR1、EPS8、ETS1、FLJ42258、FYB、GABBR2、GABRB2、GALNT7、GBP5、GIMAP2、GIMAP5、GIMAP7、GPR155、GPR174、GTF3A、GZMA、GZMK、HIST1H3B、HIST1H4L、HLA-DPB1、HNRNPM、IFI16、IFITM1、IFNAR2、IGF2BP2、IGJ、IGK、IGKC、IGKV1-5、IGKV3-15、IGKV3-20、IGKV3D-11、IGKV3D-15、IKZF3、IL7R、ITM2A、JAK2、KBTBD8、KLHL6、KLRC4、KLRG1、KLRK1、KYNU、LCP1、LIPH、LOC100130100、LOC100131490、LOC440871、LOC646358、LOC650405、LOC652493、LOC652694、LONRF2、LYZ、MED13L、METTL7B、MPZL2、MTIF3、NAV2、ND1、NFATC3、ODZ1、PAPSS2、PROS1、PSD3、PTPRC、PYGL、PYHIN1、RAD23B、RGS13、RIMS2、RRM2、SCG3、SLIT1、SP140、SP140L、SPC25、ST20、ST3GAL5、STAT4、STK32A、TC2N、TLE4、TNFAIP8、TNFRSF17、TNFSF10、TOX、UCHL5、ZEB2、ZNF143。
(iv)列表7:FVPTC亚型,n=182:
ABCC3、ADAMTS9、AIDA、ALDH1B1、ALDH6A1、ANK2、ANO5、APOL1、APOO、AQP4、ATP13A4、BMP8A、C10orf72、C11orf72、C11orf74、C12orf35、C14orf45、C2orf40、C4A、C4B、C5orf28、C6orf174、C8orf79、CAMK2N1、CCDC121、CCND1、CCND2、CD36、CDH3、CITED1、CLDN1、CLDN16、CLDN4、CLEC2B、CLU、COPZ2、CPNE3、CRABP2、CSGALNACT1、CST6、CWH43、CYSLTR2、DAPK2、DCAF17、DIO1、DIRAS3、DLC1、DOCK9、DPH3B、DUOX1、DUOX2、DUOXA1、DUOXA2、DUSP6、ECE1、EIF2B2、EMP2、ERBB2、ERO1LB、ESRRG、FABP4、FAM82B、FAT4、FIBIN、FLJ42258、FN1、FRMD3、GABBR2、GABRB2、GIMAP2、GIMAP7、GPR155、GPR98、GTF3A、GZMA、GZMK、HEY2、HRASLS、ID3、IGF2BP2、IGFBP6、IGSF1、IKZF2、IKZF3、ITGA9、JAK2、KIAA0284、KIAA0408、KIAA1217、KIAA1305、KIT、KLRC4、KLRK1、KRT19、LGALS3、LIFR、LIPH、LMO3、LOC100131490、LOC100131993、LRP1B、LRP2、MACC1、MAFG、MAPK6、MATN2、MDK、MET、METTL7B、MFGE8、MGC2889、MIS12、MPPED2、MPZL2、MT1F、MT1G、MT1H、MT1P2、MTIF3、NAV2、NCAM1、NELL2、NFATC3、NIPSNAP3A、NIPSNAP3B、NOD1、NRCAM、NTAN1、NUCB2、NUPR1、ODZ1、PCMTD1、PDE5A、PIGN、PKHD1L1、PLA2R1、PLAG1、PLSCR4、PRINS、PSAT1、PXDNL、QTRT1、RAG2、RCBTB2、RG9MTD2、ROS1、RPS6KA6、RXRG、SALL1、SCG5、SDC4、SERPINA1、SERPINA2、SLC26A4、SLC34A2、SLC35D2、SLC7A11、SMAD9、SPRY1、ST3GAL5、STEAP2、STK32A、TASP1、TCF7L2、TCFL5、TIMP1、TMEM171、TMEM215、TNFAIP8、TNFRSF11B、TNFRSF12A、TNFSF10、TPO、TRPC5、TXNL1、UCHL5、WDR72、YIPF1、ZCCHC12、ZCCHC16、ZMAT4、ZYG11A。
(v)列表8:PTC亚型,n=604:
TCID-3153400、TCID-3749600、ABCC3、ABTB2、ACBD7、ACSL1、ACTA2、ADAMTS5、ADAMTS9、ADK、AGR2、AHNAK2、AHR、AIDA、AK1、ALAS2、ALDH1A3、ALOX5、AMIGO2、AMOT、ANK2、ANXA1、ANXA2、ANXA2P1、ANXA3、AOAH、AP3S1、APOL1、AQP9、ARHGAP24、ARL13B、ARL4A、ARMCX3、ARMCX6、ARNTL、ASAP2、ATIC、ATP13A4、ATP13A4、B3GNT3、BCL9、BHLHE40、BHLHE41、BMP8A、BTBD11、BTG3、C11orf72、C11orf80、C12orf49、C16orf45、C19orf33、C1orf115、C1orf116、C2、C2orf40、C3、C4A、C4B、C4orf34、C6orf168、C6orf174、C7orf62、C8orf4、C8orf79、CA11、CADM1、CAMK2N1、CAND1、CAV1、CAV2、CCDC109B、CCDC121、CCDC148、CCDC80、CCL13、CCND1、CCND2、CD151、CD200、CD36、CDCP1、CDH11、CDH3、CDH6、CDK2、CDKL2、CDO1、CDON、CDR1、CFB、CFH、CFHR1、CFI、CHAF1B、CHD4、CHI3L1、CITED1、CKS2、CLC、CLDN1、CLDN10、CLDN16、CLDN4、CLDN7、CLEC4E、CLU、CNN3、COL1A1、CP、CRABP1、CRABP2、CSF3R、CST6、CTNNAL1、CTNNB1、CTSC、CTSH、CTTN、CXCL1、CXCL14、CXCL17、CXCL2、CXCL3、CXorf18、CXorf27、CYP1B1、CYSLTR2、DAPK2、DCBLD2、DCUN1D3、DDAH1、DDB2、DDX52、DGKH、DGKI、DHRS1、DHRS3、DIO1、DIRAS3、DLC1、DOCK9、DPP4、DPYSL3、DSG2、DSP、DST、DUSP4、DUSP5、DUSP6、DZIP1、ECE1、EDNRB、EGFR、EHBP1、EHD2、EHF、ELK3、ELMO1、EMP2、EMR3、ENAH、ENDOD1、EPB41、EPHA4、EPHX4、EPS8、ERBB3、ERI2、ERP27、ESRRG、ETNK2、ETV1、ETV5、F2RL2、FAAH2、FABP4、FAM111A、FAM111B、FAM164A、FAM176A、FAM20A、FAM55C、FAM84B、FBXO2、FBXO21、FCN1、FCN2、FGF2、FGFR1OP2、FLJ20184、FLJ32810、FLJ42258、FLRT3、FN1、FPR1、FPR2、FRMD3、FZD4、FZD6、FZD7、G0S2、GABBR2、GABRB2、GADD45A、GALE、GALNT12、GALNT3、GALNT7、GBP1、GBP3、GGCT、GLDN、GNG12、GOLT1A、GPAM、GPR110、GPR110、GPR125、GPR98、GPRC5B、GRAMD3、GSN、GYPB、GYPC、GYPE、HEMGN、HEY2、HIGD1A、HIST1H1A、HLA-DQB2、HLF、HMGA2、HPN、HSPH1、ICAM1、IGF2BP2、IGFBP5、IGFBP6、IGSF1、IKZF3、IL1RAP、IL1RL1、IL8RA、IL8RB、IL8RB、IL8RBP、IL8RBP、IMPDH2、INPP5F、IPCEF1、IQGAP2、ITGA2、ITGA3、ITGA9、ITGB1、ITGB6、ITGB8、ITPR1、JUB、KAL1、KATNAL2、KCNK5、KCNQ3、KCTD14、KDELC1、KDELR3、KHDRBS2、KIAA0284、KIAA0408、KIAA1217、KIT、KLF8、KLK10、KLK7、KRT18、KRT19、LAMB3、LAMC1、LAMC2、LCA5、LCMT1、LCN2、LDOC1、LEMD1、LGALS3、LILRA1、LILRB1、LIMA1、LINGO2、LIPH、LMO3、LMO4、LOC100124692、LOC100127974、LOC100129112、LOC100129115、LOC100129171、LOC100129961、LOC100130248、LOC100131102、LOC100131490、LOC100131938、LOC100132338、LOC100132764、LOC283508、LOC440434、LOC554202、LOC643454、LOC648149、LOC653354、LOC653498、LOC730031、LONRF2、LOX、LPAR5、LPL、LRP1B、LRP2、LRRC69、LRRN1、LUM、LYRM1、MACC1、MAFG、MAMLD1、MAP2、MAPK6、MATN2、MBOAT2、MCM4、MCM7、MDK、MED13、MET、METTL7B、MEX3C、MFGE8、MGAM、MGAT4C、MGST1、MLLT4、MMP16、MMP16、MNDA、MORC4、MPPED2、MPZL2、MRPL14、MT1F、MT1G、MT1H、MT1M、MT1P2、MT1P3、MTHFD1L、MUC1、MUC15、MVP、MXRA5、MYEF2、MYH10、MYO1B、MYO1D、MYO6、NAB2、NAE1、NAG20、NCKAP1、NDFIP2、NEDD4L、NELL2、NEXN、NFE2、NFIB、NFKBIZ、NIPAL3、NOD1、NPC2、NPEPPS、NPY1R、NRCAM、NRIP1、NRP2、NT5E、NUDT6、OCIAD2、OCR1、ODZ1、OSGEP、OSMR、P2RY13、P4HA2、PAM、PARP14、PARP4、PARVA、PBX1、PDE5A、PDE9A、PDGFRL、PDLIM1、PDLIM4、PDZRN4、PEG10、PERP、PHEX、PHF16、PHLDB2、PHYHIP、PKHD1L1、PKP4、PLA2G16、PLA2R1、PLAG1、PLAU、PLCD3、PLEKHA4、PLEKHA5、PLK2、PLP2、PLS3、PLXNC1、PMEPA1、PON2、PPARGC1A、PPBP、PPL、PPP1R14C、PRICKLE1、PRINS、PROK2、PROS1、PRR15、PRRG1、PRSS23、PSD3、PTPN14、PTPRE、PTPRF、PTPRG、PTPRK、PTRF、QTRT1、RAB25、RAB27A、RAB34、RAD23B、RAG2、RAI2、RAPGEF5、RARG、RASA1、RASD2、RBBP7、RBBP8、RBMS2、RCE1、RDH5、RGS18、RGS2、RHOU、RND3、ROS1、RPL39L、RPRD1A、RPS6KA6、RRAS、RUNX1、RUNX2、RXRG、S100A12、S100A14、S100A16、S100A8、S100A9、SALL1、SAV1、SC4MOL、SCARA3、SCARNA11、SCEL、SCG5、SCNN1A、SCRN1、SDC4、SEH1L、SEL1L3、SELL、SEMA3D、SEPT11、SERINC2、SERPINA1、SERPINA2、SERPINE2、SERPING1、SFN、SFTPB、SGCB、SGCE、SGEF、SGMS2、SH2D4A、SH3PXD2A、SIRPA、SIRPB1、SLA、SLC12A2、SLC16A4、SLC17A5、SLC24A5、SLC26A4、SLC26A7、SLC27A2、SLC27A6、SLC34A2、SLC35F2、SLC39A6、SLC4A4、SLC5A8、SLC7A2、SLIT2、SLPI、SMOC2、SMURF2、SNCA、SNX1、SNX22、SNX7、SORBS2、SPATS2、SPATS2L、SPINT1、SPRED2、SPRY1、SPRY2、SRL、SSPN、ST3GAL5、STK32A、SULF1、SYNE1、SYT14、SYTL5、TACSTD2、TBC1D3F、TDRKH、TEAD1、TEAD1、TFCP2L1、TFF3、TGFA、TGFB2、TGFBR1、TIMP1、TIPARP、TJP1、TJP2、TLCD1、TLR8、TM4SF1、TM4SF4、TM7SF4、TMEM100、TMEM117、TMEM133、TMEM163、TMEM215、TMEM90A、TMEM98、TMPRSS4、TMSB10、TNC、TNFRSF12A、TNFSF15、TOMM34、TPD52L1、TPO、TRIP10、TRPC5、TSC22D1、TSPAN13、TSPAN6、TUBB1、TUBB6、TULP3、TUSC3、TYMS、VNN2、VNN3、WDR40A、WDR54、WNT5A、XKRX、XPR1、YIF1B、YTHDC2、ZBTB33、ZCCHC12、ZCCHC16、ZFP36L1、ZMAT3、ZMAT4、ZNF643、ZNF804B。
(vi)列表9:NHP亚型,n=653:
TCID-3153400、TCID-3749600、ABTB2、ACBD7、ACSL1、ACTA2、ADAMTS5、ADAMTS9、ADK、AGR2、AHNAK2、AHR、AIDA、AK1、AKR1C3、ALAS2、ALDH1A3、AMIGO2、AMOT、ANK2、ANO5、ANXA1、ANXA3、ANXA6、AOAH、AP3S1、APOO、AQP4、AQP9、ARHGAP24、ARL13B、ARL4A、ARMCX3、ARMCX6、ARNTL、ARSG、ASAP2、ATIC、ATP13A4、ATP6V0D2、B3GNT3、BCL9、BHLHE40、BHLHE41、BMP8A、BTBD11、BTG3、C10orf72、C11orf72、C11orf74、C11orf80、C12orf49、C16orf45、C19orf33、C1orf115、C1orf116、C2、C22orf9、C2orf40、C3、C4A、C4B、C4orf34、C5orf28、C6orf168、C6orf174、C7orf62、C8orf4、C8orf79、C9orf68、CA11、CADM1、CALCA、CAMK2N1、CAND1、CASC5、CAV1、CAV2、CCDC121、CCDC148、CCDC80、CCL13、CCND1、CCND1、CCND2、CD151、CD200、CD36、CDCP1、CDH11、CDH3、CDH6、CDK2、CDKL2、CDO1、CDON、CDR1、CEP55、CFB、CFH、CFHR1、CFI、CHAF1B、CHD4、CITED1、CKS2、CLC、CLDN1、CLDN10、CLDN16、CLDN4、CLDN7、CLEC4E、CLU、CNN3、COL1A1、COPZ2、CP、CPE、CRABP1、CRABP2、CSF3R、CST6、CTNNAL1、CTNNB1、CTSH、CTTN、CWH43、CXCL1、CXCL14、CXCL17、CXCL2、CXCL3、CXorf18、CXorf27、CYP24A1、CYP27A1、CYSLTR2、DAPK2、DCAF17、DCBLD2、DCUN1D3、DDAH1、DDB2、DDX52、DGKH、DGKI、DHRS1、DHRS3、DIO1、DIRAS3、DLC1、DLGAP5、DOCK9、DPP4、DPYSL3、DSG2、DSP、DST、DUOX1、DUOX2、DUOXA1、DUOXA2、DUSP4、DUSP5、DUSP6、DZIP1、ECE1、EDNRB、EGFR、EHBP1、EHD2、EHF、ELK3、ELMO1、EMP2、EMR3、ENAH、ENDOD1、EPB41、EPHA4、EPHX4、EPS8、ERBB3、ERI2、ERP27、ESRRG、ETNK2、ETV1、ETV5、F2RL2、FAAH2、FABP4、FAM111A、FAM111B、FAM164A、FAM176A、FAM20A、FAM84B、FAT4、FBXO2、FBXO21、FCN1、FCN2、FGF2、FGFR1OP2、FLJ20184、FLJ32810、FLJ42258、FLJ42258、FLRT3、FN1、FPR1、FPR2、FREM2、FRMD3、FXYD6、FZD4、FZD6、FZD7、G0S2、GABBR2、GABRB2、GADD45A、GALE、GALNT12、GALNT3、GALNT7、GBE1、GBP1、GBP3、GGCT、GLA、GLDN、GNG12、GOLT1A、GPR110、GPR110、GPR125、GPR98、GPRC5B、GRAMD3、GSN、GYPB、GYPC、GYPE、HEMGN、HEY2、HIST1H1A、HLA-DQB2、HMGA2、HMMR、HPN、HSD17B6、HSPH1、ICAM1、IGFBP5、IGFBP6、IGSF1、IKZF2、IL1RL1、IL2RA、IL8、IL8RA、IL8RB、IL8RB、IL8RBP、IL8RBP、IMPDH2、INPP5F、IPCEF1、IQGAP2、ITGA2、ITGA3、ITGA9、ITGB1、ITGB6、ITGB8、ITPR1、JUB、KAL1、KCNK5、KCNQ3、KCTD14、KDELC1、KDELR3、KHDRBS2、KIAA0284、KIAA0408、KIAA1217、KIF11、KIT、KLF8、KLK10、KLK7、KRT18、KRT19、LAMB3、LAMC1、LAMC2、LCA5、LCMT1、LCN2、LDOC1、LEMD1、LGALS3、LILRA1、LILRB1、LIMA1、LINGO2、LIPH、LMO3、LMO4、LOC100124692、LOC100127974、LOC100129112、LOC100129115、LOC100129171、LOC100129961、LOC100130248、LOC100131102、LOC100131490、LOC100131938、LOC100131993、LOC100132338、LOC100132764、LOC283508、LOC440434、LOC554202、LOC643454、LOC648149、LOC653354、LOC653498、LOC730031、LONRF2、LOX、LPAR1、LPAR5、LPL、LRP1B、LRP2、LRRC69、LRRN1、LUM、LYRM1、MACC1、MAFG、MAMLD1、MAP2、MAPK6、MATN2、MBOAT2、MCM4、MCM7、MDK、ME1、MED13、MELK、MET、METTL7B、MEX3C、MFGE8、MGAM、MGAT1、MGAT4C、MGST1、MKI67、MLLT4、MMP16、MMP16、MNDA、MORC4、MPPED2、MPZL2、MRPL14、MT1F、MT1G、MT1H、MT1M、MT1P2、MT1P3、MTHFD1L、MUC1、MUC15、MVP、MXRA5、MYEF2、MYH10、MYO1B、MYO1D、MYO5A、MYO6、NAB2、NAE1、NAG20、NAV2、NCKAP1、NDC80、NDFIP2、NEDD4L、NELL2、NEXN、NFE2、NFIB、NIPAL3、NOD1、NPC2、NPEPPS、NPL、NPY1R、NRCAM、NRIP1、NRP2、NT5E、NUCB2、NUDT6、NUSAP1、OCIAD2、OCR1、ODZ1、ORAOV1、OSBPL1A、OSGEP、OSMR、P2RY13、P4HA2、PAM、PAPSS2、PARP4、PARVA、PBX1、PDE5A、PDE9A、PDGFRL、PDLIM1、PDLIM4、PDZRN4、PEG10、PERP、PGCP、PHEX、PHF16、PHLDB2、PHYHIP、PKHD1L1、PKP4、PLA2G16、PLA2G7、PLA2R1、PLAG1、PLAU、PLCD3、PLCL1、PLEKHA4、PLEKHA5、PLK2、PLS3、PLSCR4、PMEPA1、PON2、PPARGC1A、PPBP、PPL、PPP1R14C、PRCP、PRICKLE1、PRINS、PROK2、PROS1、PRR15、PRRG1、PRSS23、PSD3、PSD3、PTPN14、PTPRE、PTPRF、PTPRG、PTPRK、PTRF、QTRT1、RAB25、RAB27A、RAB32、RAB34、RAD23B、RAG2、RAI2、RAPGEF5、RARG、RASA1、RASD2、RBBP7、RBBP8、RBMS2、RCBTB2、RCE1、RDH5、RGS18、RGS2、RHOU、RND3、ROS1、RPL39L、RPRD1A、RPS6KA6、RRAS、RXRG、S100A12、S100A14、S100A16、S100A8、S100A9、SALL1、SAV1、SC4MOL、SCARA3、SCARNA11、SCEL、SCG5、SCNN1A、SCRN1、SDC4、SEH1L、SELL、SEMA3C、SEMA3D、SEPT11、SERINC2、SERPINA1、SERPINA2、SERPINE2、SERPING1、SFN、SFTPB、SGCB、SGCE、SGEF、SGMS2、SH2D4A、SH3PXD2A、SIRPA、SIRPB1、SLA、SLC12A2、SLC16A4、SLC16A6、SLC17A5、SLC24A5、SLC26A4、SLC26A7、SLC27A2、SLC27A6、SLC34A2、SLC35F2、SLC39A6、SLC4A4、SLC5A8、SLC7A11、SLC7A2、SLIT2、SLPI、SMOC2、SMURF2、SNCA、SNX1、SNX22、SNX7、SOAT1、SORBS2、SPATS2、SPATS2L、SPINT1、SPRED2、SPRY1、SPRY2、SRL、SSPN、ST3GAL5、STK32A、STXBP6、SULF1、SYNE1、SYT14、SYTL5、TACSTD2、TBC1D3F、TDRKH、TEAD1、TEAD1、TFCP2L1、TFF3、TFPI、TGFA、TGFB2、TGFBR1、TIMP1、TIPARP、TJP1、TJP2、TLCD1、TLR8、TM4SF1、TM4SF4、TM7SF4、TMEM100、TMEM117、TMEM133、TMEM163、TMEM171、TMEM215、TMEM90A、TMEM98、TMPRSS4、TNC、TNFRSF12A、TNFSF15、TOMM34、TPD52L1、TPO、TPX2、TRIP10、TRPC5、TSC22D1、TSPAN13、TSPAN6、TUBB1、TUBB6、TULP3、TUSC3、TXNRD1、TYMS、UCHL5、VNN1、VNN2、VNN3、WDR40A、WDR54、WIPI1、WNT5A、XKRX、XPR1、YIF1B、YTHDC2、ZBTB33、ZCCHC12、ZCCHC16、ZFP36L1、ZMAT3、ZMAT4、ZNF643、ZNF804B、ZYG11A。
(vii)列表10:MTC亚型,n=48:
ANXA3、ATP13A4、BLNK、C10orf131、C6orf174、C8orf79、CALCA、CHGB、CP、CPE、DSG2、FREM2、GPR98、IGJ、IYD、KIAA0408、LOC100129171、LPCAT2、LRRC69、MACC1、MAPK6、MGAT4C、MGST1、MMP16、MT1G、MT1H、MT1M、MT1P2、MT1P3、MUC15、MYEF2、NT5E、PKHD1L1、PLS3、RBMS2、RIMS2、SCG3、SEMA3D、SLA、SLC24A5、SMOC2、SULF1、TOX、TSHZ2、TSPAN6、WDR72、ZFP36L1、ZNF208。
(viii)列表11:HC亚型,n=65:
AIM2、APOBEC3F、APOBEC3G、ARHGAP19、BAG3、BCL2A1、BMP8A、C9orf68、CARD17、CARD8、CASP1、CD3D、CD96、CEP110、CLEC2B、CNN2、CPE、CYTH1、DENND4A、DNAJB14、DOCK8、DPYD、DUOX1、DUOX2、DYNC1I2、EGF、EPDR1、ETS1、GBP5、GIMAP2、GIMAP5、GIMAP7、GPR174、GZMK、HNRNPM、HSD17B6、IFI16、IFNAR2、IKZF3、IL7R、ITM2A、JAK2、KCNAB1、KHDRBS2、KLRC4、KLRG1、KLRK1、KYNU、LOC646358、MED13L、ND1、NFATC3、PAPSS2、PGCP、PTPRC、PYHIN1、SLIT1、SP140、SP140L、ST20、STAT4、TC2N、TLE4、ZEB2、ZNF143。
(ix)列表12:HA亚型,n=24:
BCL2、CADM1、CAV1、CRABP1、CTNNB1、CYTH1、DIRAS3、IFITM1、IGFBP5、IGFBP6、LOX、MAP2、MATN2、MET、MKI67、MYO1B、ND1、NUCB2、SCG5、SCNN1A、SEL1L3、SGCE、TNFSF10、TRPC6。
(x)列表13:ATC亚型,n=12:
CASC5、CEP55、COL12A1、DLGAP5、HMMR、KIF11、MELK、MKI67、NDC80、NUSAP1、PYGL、TPX2。
前948种甲状腺生物标志物的显性基因本体论列举如下:
列表14:血管生成,n=23
ACTA2、ANXA2、ARHGAP24、CALCA、CAV1、CITED1、COL1A1、CXCL17、EGF、ELK3、IL8、LOX、PLCD3、PROK2、RASA1、SEMA3C、TCF7L2、TGFA、TGFB2、TIPARP、TNFRSF12A、ZFP36L1、ZFPM2。
列表15:细胞凋亡,n=43
AHR、ANXA1、BAG3、BCL2、BCL2A1、BIRC5、C8orf4、CADM1、CD2、CLU、CTNNB1、DAPK2、DLC1、DNASE1L3、ECE1、ELMO1、FAM176A、FGF2、GADD45A、GULP1、GZMA、HIPK2、IL2RA、IL8RB、JAK2、NCKAP1、NOD1、NUPR1、PEG10、PERP、PROK2、RYR2、SLC5A8、STK17B、SULF1、TCF7L2、TGFB2、TNFAIP8、TNFRSF11B、TNFRSF12A、TNFSF10、VNN1、ZMAT3。
列表16:细胞周期、转录因子,n=184
AEBP1、AHR、AK1、ANXA1、APOBEC3F、APOBEC3G、ARHGAP24、ARNTL、ATM、BCL2、BHLHE40、BHLHE41、BIRC5、BMP1、BMP8A、CADM1、CAND1、CARD8、CASP1、CCND1、CCND2、CDK2、CEP110、CEP55、CHAF1B、CHD4、CITED1、CKS2、CLU、CRABP2、CSGALNACT1、CTNNB1、CXCL1、CXCL17、DENND4A、DLGAP5、DST、DZIP1、EGF、EHF、EIF2B2、EIF4H、ELK3、EMP2、EPS8、ERBB2、ERBB3、ESRRG、ETS1、ETV1、ETV4、ETV5、FABP4、FGF2、G0S2、GADD45A、GLDN、GLIS3、GTF3A、HEMGN、HEY2、HIPK2、HLF、HMGA2、HPN、ID3、IFI16、IFNAR2、IGSF1、IKZF2、IKZF3、IKZF4、IL2RA、IL8、ITPR1、JAK2、JUB、KHDRBS2、KIF11、KLF8、KLK10、KRT18、LGALS3、LIFR、LMO3、LMO4、LRP2、LTBP2、LTBP3、MACC1、MAFG、MAMLD1、MAPK4、MAPK6、MCM4、MCM7、MDK、MED13、MED13L、MIS12、MKI67、MLLT3、MNDA、MTIF3、MYH10、NAB2、NAE1、NDC80、NFATC3、NFE2、NFIB、NFKBIZ、NOD1、NPAS3、NPAT、NRIP1、NRP2、NUDT6、NUPR1、NUSAP1、OSMR、PARD6B、PARP14、PARP4、PBX1、PDLIM1、PEG10、PIAS3、PLAG1、POU2F3、PPARGC1A、PPBP、PRMT6、PROK2、PTRF、PYHIN1、RARG、RBBP7、RBBP8、RGS2、RHOH、RRM2、RUNX1、RUNX2、RXRG、SALL1、SEMA3D、SERPINE2、SLIT1、SLIT2、SMAD9、SMURF2、SP140、SPC25、SPOCK1、STAT4、SYNE1、TACSTD2、TCF7L2、TCFL5、TEAD1、TFCP2L1、TGFA、TGFB2、TGFBR1、TLE4、TNFAIP8、TNFRSF12A、TNFRSF17、TPX2、TSC22D1、TSHZ2、TULP3、TYMS、WNT5A、ZBTB33、ZCCHC12、ZEB2、ZFP36L1、ZFPM2、ZNF143、ZNF208、ZNF487、ZNF643。
列表17:细胞膜,n=410
ABCC3、ABCD2、ACSL1、ADAMTS5、ADAMTS9、ADORA1、AFAP1、AK1、ALOX5、AMIGO2、ANK2、ANO5、AP3S1、APOL1、APOO、AQP4、AQP9、ARMCX3、ARMCX6、ASAP2、ATP13A4、ATP6V0D2、ATP8A1、AVPR1A、B3GNT3、BCL2、BLNK、BTBD11、C10orf72、C17orf87、C1orf115、C4orf34、C5orf28、C6orf174、CADM1、CAMK2N1、CAV1、CAV2、CCDC109B、CD151、CD180、CD2、CD200、CD36、CD3D、CD48、CD48、CD52、CD69、CD79A、CD96、CDCP1、CDH11、CDH3、CDH6、CDON、CFB、CFI、CHI3L1、CLDN1、CLDN10、CLDN16、CLDN4、CLDN7、CLEC2B、CLEC4E、COL12A1、COL1A1、COPZ2、CP、CPE、CR2、CSF3R、CSGALNACT1、CTNNAL1、CTNNB1、CWH43、CYP1B1、CYP27A1、CYP4B1、CYSLTR1、CYSLTR2、CYTH1、DCAF17、DCBLD2、DHRS3、DIO1、DIRAS3、DLG2、DLG4、DNAJB14、DOCK9、DPP4、DPYSL3、DSG2、DUOX1、DUOX2、DUOXA1、DUOXA2、ECE1、EDNRB、EFEMP1、EGF、EGFR、EHBP1、EHD2、ELMO1、EMP2、EMR3、ENTPD1、EPB41、EPHA4、EPHX4、ERBB2、ERBB3、ERO1LB、F2RL2、F8、FAAH2、FAM176A、FAM84B、FAT4、FBLN5、FLRT3、FN1、FPR1、FPR2、FREM2、FRMD3、FXYD6、FZD4、FZD6、FZD7、GABBR2、GABRB2、GALNT12、GALNT3、GALNT7、GBP1、GBP3、GBP5、GIMAP2、GIMAP5、GJA4、GLDN、GNG12、GOLT1A、GPAM、GPR110、GPR125、GPR155、GPR174、GPR98、GPRC5B、GYPB、GYPC、GYPE、HIGD1A、HK1、HLA-DPB1、HNRNPM、HPN、HSD17B6、ICAM1、IFITM1、IFNAR2、IGSF1、IL1RAP、IL1RL1、IL2RA、IL7R、IL8RA、IL8RB、IPCEF1、ITGA2、ITGA3、ITGA4、ITGA9、ITGB1、ITGB4、ITGB6、ITGB8、ITM2A、ITPR1、IYD、JAK2、JUB、KAL1、KCNA3、KCNAB1、KCNK5、KCNQ3、KCTD14、KDELR3、KIAA1305、KIT、KLRB1、KLRC4、KLRG1、KLRK1、LAMB1、LAMC1、LEMD1、LGALS3、LIFR、LILRA1、LILRB1、LINGO2、LIPH、LPAR1、LPAR5、LPCAT2、LPL、LRP1B、LRP2、LRRN1、LRRN3、LUM、MATN2、MBOAT2、MET、MFGE8、MGAM、MGAT1、MGAT4C、MGST1、MMP16、MPZL2、MRC2、MUC1、MUC15、MYH10、MYO6、NAE1、NCAM1、NCKAP1、ND1、NDFIP2、NIPAL3、NPY1R、NRCAM、NRP2、NT5E、NUCB2、ODZ1、OSMR、P2RY13、PAM、PARD6B、PARP14、PARVA、PCDH1、PCNXL2、PERP、PHEX、PHLDB2、PIGN、PKHD1L1、PKP2、PLA2G16、PLA2R1、PLAU、PLCD3、PLEK、PLEKHA4、PLP2、PLSCR4、PLXNC1、PMEPA1、PON2、POR、PPAP2C、PPL、PPP1R14C、PRICKLE1、PRRG1、PSD3、PTK7、PTPRC、PTPRE、PTPRF、PTPRG、PTPRK、PTPRU、PTRF、RAB25、RAB27A、RARG、RASA1、RASD2、RCE1、RDH5、RGS13、RHOH、RHOU、RIMS2、RND3、ROS1、RRAS、RRAS2、RRBP1、RYR2、S100A12、SC4MOL、SCARA3、SCEL、SCNN1A、SDC4、SDK1、SEL1L3、SELL、SEMA3C、SEMA3D、SEMA4C、SERINC2、SERPINA1、SGCB、SGCE、SGMS2、SGPP2、SIRPA、SIRPB1、SLC12A2、SLC16A4、SLC16A6、SLC17A5、SLC24A5、SLC25A33、SLC26A4、SLC26A7、SLC27A2、SLC27A6、SLC34A2、SLC35D2、SLC35F2、SLC39A6、SLC4A4、SLC5A8、SLC7A11、SLC7A2、SMURF2、SNCA、SNX1、SOAT1、SPINT1、SPOCK1、SPRED2、SPRY1、SPRY2、SQLE、SSPN、ST3GAL5、STEAP2、STXBP6、SYNE1、SYT14、SYTL5、TACSTD2、TFCP2L1、TFF3、TFPI、TGFA、TGFB2、TGFBR1、TIMP1、TJP1、TJP2、TLCD1、TLR10、TLR8、TM4SF1、TM4SF4、TM7SF4、TMEM100、TMEM117、TMEM133、TMEM156、TMEM163、TMEM171、TMEM215、TMEM220、TMEM90A、TMEM98、TMPRSS4、TNC、TNFRSF11B、TNFRSF12A、TNFRSF17、TNFSF10、TNFSF15、TOMM34、TPO、TRIP10、TRPC5、TRPC6、TSPAN13、TSPAN6、TSPAN8、TULP3、TUSC3、VAMP1、VNN1、VNN2、VNN3、WNT5A、XKRX、XPR1、YIF1B、YIPF1、ZBTB33。
列表18:罕见膜成分,n=55
AMOT、ANXA1、ANXA2、CALCA、CAMK2N1、CAV1、CAV2、CCDC80、CLU、CST6、CTNNB1、CTTN、DLC1、DPP4、DSG2、DSP、DST、ENAH、GJA4、HIPK2、ITGB1、ITGB4、JAK2、JUB、KRT19、LCP1、LRP2、MYH10、MYO5A、MYO6、NEB、PARVA、PCDH1、PERP、PKP2、PKP4、PLEK、PPL、PTRF、RAB34、RASA1、RYR2、SCEL、SGCB、SGCE、SLC27A6、SLIT1、SPRY1、SRL、SSPN、SYNE1、TGFB2、TIAM2、TJP1、TNFRSF12A。
列表19:细胞-细胞粘附,n=85
AEBP1、AFAP1、AMIGO2、ARHGAP24、BCL2、CADM1、CALCA、CD151、CD2、CD36、CD96、CDH3、CDH6、CDON、CLDN1、CLDN10、COL12A1、CSF3R、CTNNAL1、CTNNB1、DCBLD2、DLC1、DSG2、DST、EGFR、ENAH、ENTPD1、EPDR1、F8、FAT4、FBLN5、FLRT3、FN1、FPR2、FREM2、GPR98、ICAM1、IGFBP7、IL1RL1、ITGA2、ITGA3、ITGA4、ITGA9、ITGB1、ITGB4、ITGB6、ITGB8、JUB、KAL1、LAMB1、LAMB3、LAMC1、LAMC2、LIMA1、MFGE8、MLLT4、MPZL2、NCAM1、NELL2、NRCAM、NRP2、PARVA、PCDH1、PERP、PKP2、PKP4、PLXNC1、PTK7、PTPRC、PTPRF、PTPRK、PTPRU、RHOU、RND3、SDK1、SELL、SGCE、SIRPA、SPOCK1、SPP1、SSPN、TJP1、TNC、TNFRSF12A、VNN1。
列表20:顶端细胞膜,n=15
ANK2、ATP6V0D2、CTNNB1、CTNNB1、DPP4、DUOX1、ERBB2、ERBB3、F2RL2、FZD6、LRP2、SCNN1A、SLC26A4、SLC34A2、TFF3。
列表21:基侧、侧细胞膜,n=28
ANK2、ANXA1、ANXA2、CADM1、CCDC80、CTNNB1、CTTN、DSP、DST、EGFR、EPB41、ERBB2、ERBB3、FREM2、LAMB1、LAMB3、LAMC1、LAMC2、MET、MYH10、MYO6、PTPRK、SLC26A7、SMOC2、SNCA、TIMP3、TJP1、TRIP10。
列表22:整联蛋白,n=14
ADAMTS5、DST、FBLN5、ICAM1、ITGA2、ITGA3、ITGA4、ITGA9、ITGB1、ITGB4、ITGB6、ITGB8、MFGE8、PLEK。
列表23:细胞连接,n=40
AMOT、ARHGAP24、ARHGAP24、CADM1、CAMK2N1、CLDN1、CLDN10、CLDN16、CLDN4、CLDN7、CNN2、DLG2、DLG4、DPYSL3、DSP、ENAH、GABBR2、GABRB2、GJA4、JUB、LIMA1、MLLT4、NCKAP1、NEXN、PARD6B、PARVA、PCDH1、PERP、PPL、PSD3、PTPRK、PTPRU、RHOU、RIMS2、SH3PXD2A、SSPN、TGFB2、TJP1、TJP2、VAMP1。
列表24:细胞表面,n=17
CD36、DCBLD2、DPP4、GPR98、HMMR、IL1RL1、IL8RB、ITGA4、ITGB1、KAL1、MMP16、PTPRK、SDC4、SULF1、TGFA、TM7SF4、TNFRSF12A。
列表25:细胞外间隙,n=156
ADAMTS5、ADAMTS9、AEBP1、AGR2、ANGPTL1、ANXA2、APOL1、APOO、BMP1、BMP8A、C12orf49、C2、C2orf40、C3、C4A、C4B、C4orf7、CA11、CALCA、CCDC80、CCL13、CCL19、CDCP1、CFB、CFH、CFHR1、CFI、CHGB、CHI3L1、CLU、COL12A1、COL1A1、CP、CPE、CSF3R、CST6、CXCL1、CXCL11、CXCL13、CXCL14、CXCL17、CXCL2、CXCL3、CXCL9、DPP4、EFEMP1、EGF、EGFR、EMR3、ENDOD1、EPDR1、ERBB3、F8、FAM20A、FAM55C、FBLN5、FCN1、FCN2、FGF2、FIBIN、FN1、FXYD6、GLA、GSN、GZMA、GZMK、ICAM1、IFNAR2、IGFBP5、IGFBP6、IGFBP7、IGJ、IGKC、IGKV1-5、IGKV3-20、IGKV3D-11、IGSF1、IL1RAP、IL1RL1、IL7R、IL8、KAL1、KIT、KLK10、KLK7、LAMB1、LAMB3、LAMC1、LAMC2、LCN2、LIFR、LIPH、LOC652694、LOX、LPL、LTBP2、LTBP3、LUM、LYZ、MATN2、MDK、MFGE8、MMP16、MUC1、MUC15、MXRA5、NCAM1、NELL2、NPC2、NUCB2、ODZ1、PAM、PDGFRL、PGCP、PLA2G7、PLA2R1、PLAU、PON2、PPBP、PROK2、PROS1、PRRG1、PRSS23、PXDNL、RNASE1、RNASET2、SCG3、SCG5、SEMA3C、SEMA3D、SEPP1、SERPINA1、SERPINE2、SERPING1、SFN、SFTPB、SLIT1、SLIT2、SLPI、SMOC2、SPINT1、SPOCK1、SPP1、SULF1、TFF3、TFPI、TGFA、TGFB2、THSD4、TIMP1、TIMP3、TNC、TNFRSF11B、TNFSF10、TNFSF15、WNT5A。
列表26:细胞骨架,n=94
ACTA2、ADORA1、AFAP1、AMOT、ANK2、ANXA2、AP3S1、ARHGAP24、ATM、ATP8A1、BCL2、BIRC5、C2orf40、CASC5、CLU、CNN2、CNN3、COL12A1、COL1A1、COPZ2、CTNNAL1、CTNNB1、CTTN、CXCL1、DLG4、DLGAP5、DPYSL3、DST、DYNC1I2、DYNLT1、EGFR、ELMO1、ENAH、EPB41、EPS8、FAM82B、FRMD3、GPRC5B、GSN、GYPC、IGF2BP2、IQGAP2、JAK2、JUB、KATNAL2、KIAA0284、KIF11、KRT18、LCA5、LCP1、LIMA1、LOX、LUM、MAP2、MPZL2、MYH10、MYO1B、MYO1D、MYO5A、MYO6、NEB、NEXN、NFE2、NUSAP1、PARVA、PDLIM1、PKP2、PLEK、PLS3、PPL、PTPN14、RHOU、RND3、S100A9、SCNN1A、SDC4、SGCB、SGCE、SNCA、SORBS2、SPRED2、SPRY2、STK17B、SYNE1、TGFB2、TGFBR1、TMSB10、TMSB15A、TPX2、TRIP10、TUBB1、TUBB6、VAMP1、WIPI1。
在某些实施方式中,本发明提供了分类癌症的方法,包括以下步骤:获得包含基因表达产物的生物样品;确定生物样品的一种或多种基因表达产物的表达水平和当基因表达水平指示生物样品中存在甲状腺癌时确认生物样品为癌性的。这可通过将基因表达水平与生物样品中甲状腺癌的存在相关联来进行。在一个实施方式中,基因表达产物选自表2中列举的一种或多种基因。在某些实施方式中,该方法还包括如果生物样品和对照样品之间在指定的置信度水平下存在基因表达水平的差异,则确认该生物样品对于已经从非甲状腺器官转移到甲状腺的癌症为阳性的。
提供了涉及从非甲状腺器官到甲状腺的转移的生物标志物。转移到甲状腺并可使用本发明的所述方法诊断的这类转移性癌症包括但不限于:转移性甲状旁腺癌、转移性黑素瘤、转移性肾癌、转移性乳腺癌和转移性B细胞淋巴瘤。可通过所述方法用于诊断至甲状腺的转移的示例性生物标志物列在表2中。
表2.涉及向甲状腺的转移的生物标志物
(viii)分类误差率
在某些实施方式中,将主要的甲状腺生物标志(948种基因)细分为组元(bin)(每个组元50个TCID),以表明获得小于4%的总分类误差率所需的最小基因数(图1)。用于分类的原始TCID对应于AffymetrixHumanExon1.0ST微阵列芯片,且每个可映射多于一种基因或完全不映射基因(Affymetrix注释文件:HuEx-1_0-st-v2.na29.hg18.transcript.csv)。当没有基因映射于TCID时,生物标志物被表示为TCID-######。
列表27:误差率组元1(TCID1-50(n=50),基因符号,n=58)
AMIGO2、C11orf72、C11orf80、C6orf174、CAMK2N1、CDH3、CITED1、CLDN1、CLDN16、CST6、CXorf27、DLC1、EMP2、ERBB3、FZD4、GABRB2、GOLT1A、HEY2、HMGA2、IGFBP6、ITGA2、KCNQ3、KIAA0408、KRT19、LIPH、LOC100129115、MACC1、MDK、MET、METTL7B、MFGE8、MPZL2、NAB2、NOD1、NRCAM、PDE5A、PDLIM4、PHYHIP、PLAG1、PLCD3、PRICKLE1、PROS1、PRR15、PRSS23、PTPRF、QTRT1、RCE1、RDH5、ROS1、RXRG、SDC4、SLC27A6、SLC34A2、SYTL5、TNFRSF12A、TRPC5、TUSC3、ZCCHC12。
列表28:误差率组元2(TCID51-100(n=50),基因符号,n=59)
AHNAK2、AIDA、AMOT、ARMCX3、BCL9、C1orf115、C1orf116、C4A、C4B、C6orf168、CCDC121、CCND1、CDH6、CFI、CLDN10、CLU、CRABP2、CXCL14、DOCK9、DZIP1、EDNRB、EHD2、ENDOD1、EPHA4、EPS8、ETNK2、FAM176A、FLJ42258、HPN、ITGA3、ITGB8、KCNK5、KLK10、LAMB3、LEMD1、LOC100129112、LOC100132338、LOC554202、MAFG、MAMLD1、MED13、MYH10、NELL2、PCNXL2、PDE9A、PLEKHA4、RAB34、RARG、SCG5、SFTPB、SLC35F2、SLIT2、TACSTD2、TGFA、TIMP1、TMEM100、TMPRSS4、TNC、ZCCHC16。
列表29:误差率组元3(TCID101-150(n=50),基因符号,n=52)
ABTB2、ADAMTS9、ADORA1、B3GNT3、BMP1、C19orf33、C3、CDH11、CLIP3、COL1A1、CXCL17、CYSLTR2、DAPK2、DHRS3、DIRAS3、DPYSL3、DUSP4、ECE1、FBXO2、FGF2、FN1、GALE、GPRC5B、GSN、IKZF4、IQGAP2、ITGB4、KIAA0284、KLF8、KLK7、LONRF2、LPAR5、MPPED2、MUC1、NRIP1、NUDT6、ODZ1、PAM、POU2F3、PPL、PTRF、RAPGEF5、RASD2、SCARA3、SCEL、SEMA4C、SNX22、SPRY1、SSPN、TM4SF4、XPR1、YIF1B。
列表30:误差率组元4(TCID151-200(n=50),基因符号,n=58)
AFAP1、ARMCX6、ARNTL、ASAP2、C2、C8orf4、CCDC148、CFB、CHAF1B、CLDN4、DLG4、DUSP6、ELMO1、FAAH2、FAM20A、FLRT3、FRMD3、GALNT12、GALNT7、IGFBP5、IKZF2、ISYNA1、LOC100131490、LOC648149、LOC653354、LRP1B、MAP2、MRC2、MT1F、MT1G、MT1H、MT1P2、MYEF2、NPAS3、PARD6B、PCDH1、PMEPA1、PPAP2C、PSD3、PTPRK、PTPRU、RAI2、RRAS、SDK1、SERPINA1、SERPINA2、SGMS2、SLC24A5、SMURF2、SPATS2L、SPINT1、TDRKH、TIPARP、TM4SF1、TMEM98、WNT5A、XKRX、ZMAT4。
列表31:误差率组元5(TCID201-250(n=50),基因符号,n=53)
ABCC3、AEBP1、C16orf45、C19orf33、CA11、CCND2、CDO1、CYP4B1、DOK4、DUSP5、ETV4、FAM111A、FN1、GABBR2、GGCT、GJA4、GPR110、HIPK2、ITGA9、JUB、KDELR3、KIAA1217、LAMC2、LCA5、LTBP2、LTBP3、MAPK6、NAV2、NIPAL3、OSMR、PDZRN4、PHLDB2、PIAS3、PKHD1L1、PKP2、PKP4、PRINS、PTK7、PTPRG、RAB27A、RAD23B、RASA1、RICH2、SCRN1、SFN、ST3GAL5、STK32A、TCERG1L、THSD4、TJP2、TM7SF4、TPO、YIF1B。
IX.组合物
(i)本发明的基因表达产物和剪接变异体
分子表达谱还可以包括但不限于本公开的分析,包括对于以下一种或多种的分析:图2-6、9-13、16或17中提供的基因的蛋白质、蛋白质表达产物、DNA、DNA多态性、RNA、RNA表达产物、RNA表达产物水平或RNA表达产物剪接变异体。在某些情况下,本发明的方法通过约1、2、3、4、5、6、7、8、9、10、15、20、25、30、35、40、45、50、60、70、80、90、100、120、140、160、180、200、240、280、300、350、400、450、500、600、700、800、1000、1500、2000、2500、3000、3500、4000、5000或更多种DNA多态性、表达产物标志物和/或可选择剪接变异体标志物的分子表达谱提供改进的癌症诊断。
在一个实施方式中,分子表达谱包括微阵列杂交,进行该微阵列杂交以确定选自图2-6、9-13、16或17中的一种或多种基因的基因表达产物水平。在某些情况下,来自一个组的一种或多种基因的基因表达产物水平与另一组或多组的一种或多种基因的基因表达产物水平相比较。仅作为一个例子而不限制本发明,基因TPO的表达水平可以与基因GAPDH的表达水平相比较。在另一实施方式中,确定涉及以下一个或多个代谢或信号传导途径的一种或多种基因的基因表达水平:甲状腺激素产生和/或释放、蛋白激酶信号传导途径、脂质激酶信号传导途径和细胞周期蛋白。在某些情况下,本发明的方法提供了1、2、3、4、5、6、7、9、10、11、12、13、14或15或更多个不同代谢或信号传导途径的至少一种基因的基因表达产物树皮和/或可选择外显子使用的分析。
(ii)本发明的组合物
还提供了本发明的组合物,该组合物包含以下的一种或多种:对应于图2-6、9-13、16或17中提供的基因或基因的一部分的核苷酸(如,DNA或RNA)及对应于图2-6、9-13、16或17中提供的基因的互补物或基因的互补物的一部分的核苷酸(例如DNA或RNA)。本发明的核苷酸可以为至少约10、15、20、25、30、35、40、45、50、55、60、65、70、75、100、150、200、250、300、350或约400或500个核苷酸长度。在本发明的某些实施方式中,核苷酸可为天然的或为核糖核酸或脱氧核糖核酸的人造衍生物,包括但不限于肽核酸、pyranosylRNA、核苷、甲基化核酸、PEG化核酸、环状核苷酸和化学修饰的核苷酸。在本发明的某些组合物中,本发明的核苷酸已经过化学修饰以包括可检测的标记。在本发明的某些实施方式中,生物样品已经过化学修饰以包括标记。
本发明的进一步组合物包含用于检测(即测量)图2-6、9-13、16或17中提供的基因和它们的互补物的表达产物的寡核苷酸。本发明的进一步组合物包含用于检测(即测量)图2-6、9-13、16或17中提供的基因和它们的互补物的多态性等位基因的表达产物的寡核苷酸。该多态性等位基因包括但不限于剪接位点变异体、单核苷酸多态性、可变数目重复多态性、插入、缺失和同源物。在某些情况下,变异体等位基因与图6中所列的基因约99.9%至约70%相同,包括但不限于约99.75%、99.5%、99.25%、99%、97.5%、95%、92.5%、90%、85%、80%、75%和约70%相同。在某些情况下,变异体等位基因与图2-6、9-13、16或17中提供的基因差别为约1个核苷酸-约500个核苷酸,包括约1、2、3、5、7、10、15、20、25、30、35、50、75、100、150、200、250、300和约400个核苷酸。
在某些实施方式中,本发明的组合物可特别地选自良性与恶性样品之间主要差异表达的基因产物,或良性与恶性样品之间主要差异剪接的基因产物,或正常与良性或恶性样品之间主要差异表达的基因产物,或正常与良性或恶性样品之间主要差异剪接的基因产物。在某些情况下,主要差异表达的基因产物可选自图2和/图4。在某些情况下,主要差异剪接的基因产物可选自图3和/或图5。
X.商业方法
如本文所述,属于客户或潜在客户是指可使用分子表达谱商业机构的方法或服务的个人或机构。本文所述的分子表达谱方法和服务的潜在客户包括例如患者、受试者、医生、细胞学实验室、医疗保健供应商、研究人员、保险公司、政府单位如Medicaid、雇主或有兴趣获得用于诊断、监测和治疗癌症的更经济或更有效的系统的任何其他实体。
这些有关方可使用分子表达谱的结果,例如,以选择性地向最有可能从药物或治疗干预获益的患者指明昂贵的药物或治疗干预,或确定将不会受益或可能被不必要的药物使用或其他治疗干预伤害的个体。
(i)营销方法
本发明的分子表达谱商业机构的服务可向关注其健康的个体、医生或其他医疗专业人员(例如作为改善诊断和护理的方法);细胞学实验室(例如作为向客户提供更好的诊断的服务);健康保健供应商、保险公司和政府单位(例如作为通过消除未保险的治疗干预来减低费用的方法)进行销售。向潜在客户营销的方法还包括销售希望发现基因表达产物和疾病或状况之间的新的相关性的研究人员和医生可访问的数据库。
营销方法可包括使用面向潜在客户的基于出版物、收音机、电势或互联网的广告。潜在客户可通过特定媒介进行营销,例如可通过将广告置于商业杂志或医学期刊中对内分泌学家进行营销,包括但不限于:TheJournaloftheAmericanMedicalAssociation、PhysiciansPractice、AmericanMedicalNews、Consultant、MedicalEconomics、Physician’sMoneyDigest、AmericanFamilyPhysician、MonthlyPrescribingReference、Physicians’TravelandMeetingGuide、PatientCare、CortlandtForum、InternalMedicineNews、HospitalPhysician、FamilyPracticeManagement、InternalMedicineWorldReport、Women’sHealthinPrimaryCare、FamilyPracticeNews、Physician’sWeekly、HealthMonitor、TheEndocrinologist、JournalofEndocrinology、TheOpenEndocrinologyJournal和TheJournalofMolecularEndocrinology。营销还可以采取与医疗专业机构合作的方式,以使用本发明的方法和服务进行实验和,在某些情况下,公布结果或寻求进一步研究的资金。在某些情况下,营销方法可包括使用医生或医学专业数据库(例如如AmericanMedicalAssociation(AMA)数据库)来确定联系信息。
在一个实施方式中,营销方法包括与细胞学检测实验室合作,以向其样品使用常规方法不能明确地诊断的客户提供分子表达谱服务。
(ii)利用计算机的商业方法
分子表达谱商业机构可在本发明方法中使用一个或多个计算机,如图22所示的计算机800。计算机800可用于管理客户和样品信息,例如样品或客户追踪、数据库管理、分析分子表达谱数据、分析细胞学数据、储存数据、收费、营销、报告结果或储存结果。计算机可包括监视器807或其他用于显示数据、结果、收费信息、营销信息(例如人口统计学)、客户信息或样品信息的图形界面。计算机还可包括用于数据或信息输入的装置816,815。计算机可以包括处理单元801和固定的803或可移动的811介质或它们的组合。物理接近计算机的使用者可例如通过键盘和/或鼠标访问计算机,或者不一定接触实体计算机的使用者822通过通讯媒介805(如调制解调器、互联网连接、电话连接或有限或无线的通讯信号载波)访问计算机。在某些情况下,计算机可连接到服务器809或其他从使用者到计算机或计算机到使用者中继信息的通讯装置。在某些情况下,使用者可储存通过通讯媒介805从计算机获得的数据或信息到介质上,如可移动介质812。可以想到,有关本发明的数据可在这种网络或连接上传输以供某方接收和/或察看。接收方可以是但不限于个人、医疗保健供应商或医疗保健管理者。在一个实施方式中,计算机可读介质包括适于传输生物样品的分析结果(例如外来体生物标签(bio-signature))的介质。该介质可包括有关受试者的外来体生物标签的结果,其中该结果使用本文描述的方法获得。
分子表达谱商业机构可将样品信息输入数据库以用于以下一种或多种目的:库存追踪、分析结果追踪、订单追踪、客户管理、客户服务、收费和销售。样品信息可包括但不限于:客户名称、唯一的客户识别、客户相关的医疗专业人员、指示的一种或多种分析、分析结果、充分性状态、指示的充分性测试、个体的医疗史、初步诊断、疑似的诊断、样品史、保险提供者、医疗提供者、第三方检测中心或适于储存在数据库中的任何信息。样品史可包括但不限于:样品的存在时间、样品的类型、获取方法、储存方法或运输方法。
数据库可被客户、医疗专业人员、保险供应商、第三方或分子表达谱商业机构许可使用的任何个体或单位访问。数据库的访问可采取电子通讯的形式,例如计算机或电话。数据库可通过中间人如客户服务代表、商业代表、咨询人员、独立检测中心或医疗专业人员访问。数据库访问或样品信息(如分析结果)的可获得性或程度可在支付提出或被提出的产品或服务的费用后改变。数据库访问或样品信息的程度可限制于符合通常接受的或法律的对患者或客户的保密性的要求。分子表达谱公司可向个人、保险供应商、医疗供应商或政府单位收取以下一种或多种费用:样品接受、样品储存、样品制备、细胞学测试、分子表达谱、样品信息向数据库的输入和更新或数据库的访问。
(iii)商业流程
图18a是说明样品可由分子表达谱商业机构处理的一种方式的流程图。甲状腺细胞的样品可例如通过内分泌学家获得,也许通过细针吸取100。样品经过常规细胞学染色过程125。所述常规细胞学染色提供四种可能的不同初步诊断:非诊断性105、良性110、含糊的或疑似的115,或恶性的120。然后分子表达谱商业机构可如本文所述分析基因表达产物水平130。所述基因表达产物水平(分子表达谱)的分析可导致恶性140或良性135的确定诊断。在某些情况下,通过分子表达谱仅分析样品的亚组,例如在常规细胞学检查过程中提供含糊的和非诊断性结果的样品亚组。样品通过本发明的方法处理的替代实施方式提供在图18b和21中。
在某些情况下,分子表达谱的结果确认常规细胞学检查的结果。在其他情况下,分子表达谱的结果不同。在这种情况下,样品可进一步进行测试,数据可以重新检查,或分子表达谱的结果或细胞学分析的结果可作为正确的诊断。良性诊断还可包括可指示进一步监控或治疗的疾病或状况(尽管不是恶性癌症)。类似地,恶性诊断还可包括特定类型的癌症或涉及疾病或状况中的特定代谢或信号传导途径的诊断。所述诊断可指示治疗或治疗干预(如放射活性碘消融、手术、甲状腺切除术)或进一步的监测。
XI.试剂盒
分子表达谱商业机构可提供用于获得合适的样品的试剂盒。如图19中所示的所述试剂盒203可包括容器202、用于获得样品的工具200、用于储存样品的试剂205和使用所述试剂盒的说明书。在另一实施方式中,试剂盒还包括用于进行分子表达谱分析的试剂和材料。在某些情况下,试剂和材料包括用于分析由分子表达谱方法所产生的数据的计算机程序。在再其他情况下,试剂盒包括生物样品借以储存和运输到检测机构(如分子表达谱商业机构或第三方检测中心)的工具。
分子表达谱商业机构还可以提供用于进行分子表达谱的试剂盒。所述试剂盒可包括用于提取蛋白质或核酸的工具,包括所有必需的缓冲剂和试剂;和用于分析蛋白质或核酸(包括对照)的水平的工具及试剂。试剂盒还可以包括软件或许可以获得和使用用于分析本发明的方法和组合物提供的数据的软件。
实施例
实施例1:甲状腺样品的基因表达产物分析
使用AffymetrixHumanExon10ST阵列,根据厂商的说明书检查了75个甲状腺样品以用于基因表达分析,从而确定在恶性、良性和正常样品之间显示显著差异表达和/或可选择剪接的基因。比较了三个组,并根据组织的病理学外科诊断进行分类:良性(n=29)、恶性(n=37)和正常(n=9)。样品从外科甲状腺组织制备,速冻,然后通过标准方法制备RNA。75个样品的名称和病理学分类描述在图1中。
使用XRAY版本2.69(BiotiqueSystemsInc.)进行微阵列分析。输入文件使用完全分位数归一化(Irizarry等人Biostatistics2003April4(2):249-64)进行归一化。对于各个输入阵列和各个探针表达值,使用所有阵列的第i百分位点的平均代替阵列第i百分位探针值。在分析中操纵总共6,553,590种探针。GC计数小于6和大于17的探针从分析中排除。通过将中位数光滑(外显子RMA)应用到所有输入杂交的探针评分中获得各个探针组的表达评分,且具有少于3种探针的探针组(通过所有上述的测试)从进一步的分析中排除。仅分析“核心”探针组,对应于匹配高质量数据组RefSeq和Ensembl中的项的探针组。非表达的探针和不变化的探针也从用于基因水平和探针组水平分析的分析中排除。一元ANOVA分析用于检查恶性组和良性组之间在探针组水平的基因表达。
通过基因水平分析的前100种差异表达基因(即显示最大差异表达的那些基因)是从其中良性、恶性和正常甲状腺样品进行比较的数据集中获得。在错误发现率(FDR)的Benjamini和Hochberg校正之后,基于统计学显著性选择标志物。使用p<0.01的FDR过滤器值,然后用如下对每个标志物计算的绝对倍数改变(>1.9)进行分级:任意组(良性、恶性或正常)中的最大差异基因表达值除以剩余两组中最低的差异表达。该分析的结果显示于图2中。该表列举了任意给定标志物的三组计算的倍数改变,以允许进行组间的比较。恶性/良性、恶性/正常和良性/正常的倍数改变均通过将一组的表达除以另一组的表达来计算。
前100种可选择剪接基因是从其中良性、恶性和正常甲状腺样品进行比较的数据集中获得。在错误发现率(FDR)的Benjamini和Hochberg校正之后,基于统计学显著性选择标志物。使用p<0.01的FDR过滤器值,然后从最低的p值开始对标志物分级。利用所使用的软件列举数值的阈值是p<1.0E-301,具有更小p值的任何值均自动赋予0.00E+00的值。该分析的结果示于图3中。所有显示的标志物对于可选择外显子剪接是非常重要的。
通过探针组水平分析来自图1的甲状腺样品中的前100种差异表达基因是从其中良性和恶性进行分析的数据集中获得的。在错误发现率(FDR)的Benjamini和Hochberg校正之后,基于统计学显著性选择标志物。标志物基于错误发现率(FDR)的Benjamini和Hochberg校正后的显著性进行选择。使用p<0.01的FDR过滤器值,然后用对于每个标志物通过恶性表达除以良性表达计算的绝对倍数改变(>2.0)进行分级。该分析的结果示于图4中。
通过如图1所示的甲状腺样品的基因水平分析确定的前100种统计学显著的的诊断标志物还进行了汇编。使用来自良性、恶性和正常之间的比较和来自良性和恶性数据集之间的比较的数据。在错误发现率(FDR)的Benjamini和Hochberg校正之后,基于显著性选择标志物。使用p<0.01的FDR过滤器值,然后用对于每个标志如下计算的绝对倍数改变(>1.6)进行分级:任意组(良性、恶性或正常)中的最大差异表达值除以剩余两组中的最低差异表达。恶性/良性、恶性/正常和良性/正常的倍数改变均以类似的方式通过将一个组的表达除以另一组的表达来计算。该分析的结果示于图5中。
还汇编了在探针组水平或基因水平上在良性与恶性、良性与正常或恶性与正常样品之间被确定为统计学显著地差异表达的、差异剪接的或这两者的4918种基因的完整列表。在错误发现率(FDR)的Benjamini和Hochberg校正之后,基于统计学显著性选择标志物,并使用p<0.01的FDR过滤器值。结果描述在图6中。
实施例2:甲状腺组织样品的基因表达产物分析
使用AffymetrixHumanExon10ST阵列芯片检验总共205个甲状腺组织样品(图7),以鉴定在良性和恶性样品之间RNA表达水平显著不同的基因。根据术后甲状腺病理学分类样品:显示滤泡性腺瘤(FA)、淋巴细胞性甲状腺炎(LCT)或结节性增生(NHP)的样品被分类为良性;显示许特莱氏细胞癌(HC)、滤泡状癌(FC)、乳头状甲状腺癌滤泡性变型(FVPTC)、乳头状甲状腺癌(PTC)、甲状腺髓样癌(MTC)或未分化癌(ATC)的样品被分类为恶性。
使用Affymetrix软件提取、归一化和总结来自大约650万个探针的强度数据。大约280,000种核心探针组随后用于特征选择和分类。使用的模型是用于特征选择的LIMMA及用于分类的随机森林和支持向量机(SVM)。使用数据的随机亚组进行重复轮的训练、分类和交叉验证分析。使用上述分类引擎在两个独立的分析(恶性与良性及MTC与其余(rest))中鉴定主要特征。
在错误数据发现率(FDR)的Benjamini和Hochberg校正之后,基于显著性选择标志物。使用p<0.05的FDR过滤器。
甲状腺组织样品的恶性与良性比较发现了对于甲状腺疾病或状况为诊断性的413种标志物。前100种标志物列举在图9中。
甲状腺组织样品的MTC与其余(即非MTC)比较发现了对于甲状腺疾病或状况为诊断性的671种标志物。前100种标志物列举在图10中。
实施例3:来自甲状腺样品的基因表达产物数据的荟萃分析
外科甲状腺组织样品(图7)和通过细针吸取获得的甲状腺样品(图8)通过病理学检查被确定为良性或恶性的并随后通过与AffymetrixHumanExon10ST阵列杂交进行检查。采用允许鉴定具有在各个分类中的可重复特征的基因的荟萃分析方法。使用Affymetrix软件来提取、归一化和总结来自大约650万个探针的强度数据。大约280,000种核心探针组用于特征选择和分类。LIMMA用于特征选择。使用随机森林和SVM方法进行分类。重复出现在外科和细针吸取物样品的训练、分类和交叉验证的多个重复轮中的标志物被鉴定和分级。使用在外科和细针吸取物数据中均出现的主要的分级特征创建核心特征的结合组(jointset)。具有非零重复性评分的标志物被选择作为显著的。总共102种标志物被发现为显著的,并列举在图11中。
图4:来自甲状腺样品的基因表达产物数据的贝叶斯分析
比较两组良好表征的样品,以确认将人类甲状腺中的恶性结节与良性结节区分开的基因。从外科甲状腺组织(组织;n=205,图7)或细针吸取物(FNA;n=74,图8)获得样品,并通过与HumanExon10ST微阵列杂交进行检查。对于各个明显不同的甲状腺亚型的病理学标记被标记为良性(B)或恶性(M)。总共499种在良性与恶性样品之间显示出明显差异表达的标志物被鉴定。
使用Affymetrix软件来提取、归一化和总结来自大约650万种探针的强度数据。大约280,000种核心探针组随后用于~22,000种基因的特征选择和分类。使用的模型分别是LIMMA(用于特征选择)和SVM(用于分类)。
然后,检验我们之前公布的分子谱研究以获得将基因分配到“良性”或“恶性”类别中的I型和II型误差率。基于在各个特定的公布研究中报道的样品大小以估计的倍数改变值2来计算误差率。最后,这些先验概率与“组织”数据集的输出相结合以估算差异基因表达的后验概率,然后与FNA数据集相结合以阐明差异表达的最终后验概率(Smyth2004)。这些后验概率被用于分级基因,那些超过0.9的后验概率阈值的基因被选择。总共499种标志物被鉴定为显著的,且前100种列举在图12中。
实施例5:来自甲状腺样品的基因表达产物的亚型分析
检验良好表征的样品以将人类甲状腺中良性结节与那些具有明显病理的结节区分开。检查了与HumanExon10ST微阵列的205个杂交。使用对于各个明显不同的甲状腺亚型的病理学标记来系统地比较一组与另一组。总共250种将甲状腺分为广泛的病理学亚型的mRNA标志物被鉴定。
使用AffymetrixHumanExon10ST阵列芯片检验了总共205个甲状腺组织样品,以鉴定在明显不同的甲状腺病理亚型之间mRNA表达显著不同的基因(图7)。根据术后甲状腺病理学被分类为滤泡性腺瘤(FA,n=22)、淋巴细胞性甲状腺炎(LCT,n=39)、结节性增生(NHP,n=24)的样品被共同分类为良性的(n=85)。相反,被分类为许特莱氏细胞癌(HC,n=27)、滤泡状癌(FC,n=19)、乳头状甲状腺癌的滤泡性变型(FVPTC,n=21)、乳头状甲状腺癌(PTC,n=26)、甲状腺髓样癌(MTC,n=22)和未分化癌(ATC,n=5)的样品被共同分类为恶性的(n=120)。
使用Affymetrix软件来提取、归一化和总结来自大约650万种探针的强度数据。大约280,000种核心探针组随后用于特征选择和分类。给定的良性亚型(如NHP)组与所有其他恶性亚型(如NHP与M)的集合相比较,然后该良性亚组再与各恶性亚型(NHP与FC,NHP与PTC等)组相比较。用于分类引擎中的模型是LIMMA(用于特征选择),且随机森林和SVM用于分类。使用随机的数据亚组进行重复轮的训练、分类和交叉验证。创建了区分明显不同的甲状腺亚型的基因的联合核心组。
基于配对分类后优化分类器的基因的组选择标志物。映射到250种不同基因的总共251种标志物允许分离1-3种明显不同的甲状腺亚型(图13)。
实施例6:通过Agilent对微RNA阵列鉴定的差异表达的miRNA
甲状腺样品与AgilentHumanv2微RNA(miRNA)阵列杂交。该阵列包含针对723种人类和76种病毒miRNA的探针,且它们是使用约~15,000个探针组靶向的。进行良性(B)和恶性(M)甲状腺样品之间的比较,以鉴定显著差异表达的miRNA。所有的样品均来自临床细针吸取物(n=89,图14)。
提取、归一化和总结阵列强度数据,然后使用分类引擎建模。简而言之,使用的模型是LIMMA(用于特征选择),且随机森林和支持向量机(SVM)用于分类。使用随机的数据亚组进行重复轮的训练、分类和交叉验证。尽管几种miRNA与良性样品相比在恶性样品中差异表达,但使用这一方法没有鉴定独立的(stand-alone)分类器。
实施例7.对于甲状腺疾病诊断性的差异表达miRNA
甲状腺结节样品与IlluminaHumanv2miRNA阵列杂交。该阵列包含针对1146种人类miRNA的探针。进行良性和恶性甲状腺样品之间的比较,以鉴定显著差异表达的miRNA。所有的样品均来自临床FNA(n=24,图15)。
提取、归一化和总结阵列强度数据,然后使用分类引擎建模。简而言之,使用的模型是LIMMA(用于特征选择)及随机森林和支持向量机(SVM)(用于分类)。将另外的“热探针(hotprobe)”方法添加到分类引擎中,其部分地将荟萃分析方法整合到该算法中。使用随机的数据亚组进行重复轮的训练、分类和交叉验证。“热探针”方法鉴定在交叉验证的每一个循环中出现的探针,从而产生一组稳定的可重复的特征。基于恶性与良性样品之间对比的p值(P)选择标志物。总共鉴定145种miRNA,它们的差异表达被鉴定为对于良性或恶性甲状腺状况是诊断性的(图17)。
实施例8:用于分子表达谱的示例性装置
本发明的分子表达谱商业机构汇编了图6的4918种基因的列表,它们在良性与恶性、良性与正常或恶性与正常样品之间在探针组或基因水平上是差异表达的、差异剪接的或这两者的。选择这4918种基因的亚组用于通过分子表达谱商业机构诊断生物样品。由分子表达谱商业机构选择使用的与4918种基因的亚组互补的短(即12-25个核苷酸长)的寡核苷酸的组合物是通过本领域已知的标准方法合成的,并按照固相支持上的已知位置固定在固相载体上,如硝基纤维素、玻璃、聚合物或芯片。
实施例9:生物样品的分子表达谱
通过细针吸取获得生物样品,并以两个等分试样储存,一个用于分子表达谱,另一个用于细胞学分析。将用于分子表达谱的生物样品的等分试样添加到裂解缓冲液中,磨碎,这造成生物样品的细胞溶解。裂解缓冲液如下制备:对于1ml的cDNA裂解缓冲液,以下物质在冰上混合在一起:0.2ml莫洛尼鼠白血病病毒(MMLV)逆转录酶、5X(Gibco-BRL)、0.76mlH20(RNAse、不含DNAse,特制培养基)、5μlNonidetP40(USB)、10μlPrimeRNase抑制剂(3'5'Incorporated)、10μlRNAguard(Pharmacia)和20μl新制备的原液引物混合物的1/24稀释液。等份地维持在-20℃的原液引物混合物包括10μ1的各100mMdATP、dCTP、dGTP、dTTP溶液(最终12.5mM)(Boehringer);10μ1的50OD/mlpd(T)19-24(Pharmacia)和30μlH20。
然后用寡dT引物引发细胞RNA。然后在有限的时间和试剂条件下用逆转录酶进行逆转录,以促进不完全延伸和制备约500bp-约1000bp之间的短cDNA。然后cDNA在5’末端使用聚A(dATP)和末端转移酶以多dATP进行加尾。
然后cDNA使用在3’末端具有24(dT)的60mer引物以PCR试剂进行扩增。在进行94℃下1分钟,然后在42℃下2分钟和然后在72℃下6分钟的PCR循环,每个循环具有10秒的延伸时间。进行10个循环。然后加入另外的Taq聚合酶,并进行另外的25个循环。
在苯酚-氯仿中提取cDNA,用乙醇沉淀,然后一半样品冷冻在-80℃作为原液,以避免在对其进行分析时解冻和冷冻全部量的cDNA。
5μg的PCR产物与15.5μ1EFsln(在Qiagen试剂盒PCR纯化中的Tris)、来自Promega的4μ1的loxOne-Phor-All缓冲液和0.5单位的DNaseI混合。然后全部体积在37℃下保持14分钟,然后保持在99℃下15分钟,然后置于冰上5分钟以将PCR产物碎裂为约50bp-约100bp长度的片段。然后通过将全部体积与1μl的生物素-N6-ddATP("NEN")和1.5μl的TdT(末端转移酶)(15单位/μl)混合进行末端标记。然后总体积保持在37℃下1小时、然后保持在99℃下15分钟,然后置于冰上5分钟。
标记的和碎裂的cDNA与本发明的探针组在200微升的杂交溶液中杂交,该杂交溶液包含溶于1XMES缓冲液(0.1MMES,1.0MNaC1,0.01%TritonX-100,pH6.7)中的5-10微克标记的靶和0.1mg/ml鲱鱼精子DNA。使用的阵列是AffymetrixHumanExon10ST阵列。将阵列置于烤箱(rotisserie)内,以60rpm在45℃下旋转16小时。杂交后,22℃下在射流站(fluidicsstation)(Affymetrix)上用6XSSPE-T(0.9MNaCl,60mMNaH2PO4,6mMEDTA,0.005%TritonX-100,pH7.6)洗涤阵列10x2循环,然后阵列用0.1MES在45℃下洗涤30分钟。然后用抗生蛋白链菌素-藻红蛋白偶联物(MolecularProbes))染色,接着在射流站上再用6XSSPE-T洗涤10x2循环。为了增强信号,阵列进一步用抗-抗生蛋白链菌素抗体染色30分钟,然后再用抗生蛋白链菌素-藻红蛋白偶联物染色15分钟。在射流站上用6XSSPE-T洗涤10x2循环之后,使用改良的共焦扫描仪以3微米的分辨率扫描阵列,以确定阵列中各个位置处的原始荧光强度,对应于该阵列位置处的序列的基因表达水平。
将原始荧光强度值转化为基因表达产物水平、通过RMA方法归一化、过滤以除去可被认为疑似的数据并输入到预分类器算法中,该算法相对于生物样品的细胞类型组成校正基因表达产物水平。校正的基因表达水平被输入训练的算法中以将生物样品分类为良性、恶性或正常。训练的算法提供其输出的记录,包括诊断和置信度水平。
实施例10:甲状腺结节的分子表达谱
个人注意到其甲状腺上的肿块。该个人咨询他的家庭医生。该家庭医生决定从该肿块中获取样品,并对其进行分子表达谱分析。所述医生使用来自分子表达谱商业机构的试剂盒以通过细针吸取获得样品,进行充分性测试,储存样品在基于液体的细胞学溶液中,并将其送至分子表达谱商业机构。分子表达谱商业机构将样品分割以一部分用于细胞学分析和剩余的样品用于从样品提取mRNA、分析提取的mRNA样品的质量和适合性,并分析图5中列举的基因的亚组的表达水平和可选择外显子使用。在这种情况下,通过样品类型、通过医生的初步诊断和通过分子表达谱公司确定用于成谱的特定基因表达产物。
分子表达谱商业机构分析数据,并向该个人的医生提供如图20所示的最终诊断。该结果提供1)成谱的基因表达产物的列表,2)表达谱分析的结果(例如相对于内标(例如总mRNA或良好表征的基因产物如微管蛋白的表达)归一化的表达水平),3)匹配类型的正常组织所预期的基因产物表达水平,和4)基于基因产物表达水平的诊断和对于Bob的推荐治疗。分子表达谱商业机构向个人的保险供应商收取提供的产品和服务的费用。
实施例11:分子表达谱作为细胞学检查的辅助
个人注意到她的甲状腺上的疑似肿块。该个人咨询她的主治医生,该主治医生检查该个人并将她推荐给内分泌学家。内分泌学家通过细针吸取获得样品,并将样品送至细胞学检查实验室。细胞学检查实验室对细针吸取物的一部分进行常规的细胞学测试,其结果是含糊的(即不确定的)。细胞学检测实验室向内分泌学家建议,剩余样品可适用于分子表达谱,且内分泌学家同意该建议。
使用本文的方法和组合物分析剩余的样品。分子表达谱分析的结果表明具有早期滤泡细胞癌的很高可能性。结果还表明,分子表达谱分析和患者数据(包括患者年龄和肿块或结节大小)指示进行甲状腺切除术,然后进行放射性碘消融术。内分泌学家审阅结果,并开具推荐的治疗的处方。
细胞学检测实验室向内分泌学家收取常规的细胞学检测和分子表达谱的费用。内分泌学家向细胞学检测实验室付费并向个人的保险供应商收取提供的所有产品和服务的费用。细胞学检测实验室将分子表达谱的费用交给分子表达谱商业机构并扣除小的差额。
实施例12:第三方进行的分子表达谱
个人向她的医生报告有关她脖子上的疑似肿块。医生检查该个人、开具分子表达谱检测和跟随该结果的后续检查的处方。个人来到临床检测实验室(也被成为CLIA实验室)。CLIA实验室被许可进行本发明的分子表达谱分析。个人在CLIA实验室通过细针吸取提供样品,并使用本文的分子表达谱方法和组合物分析样品。分子表达谱的结果电子传送到个人的医生,个人联系后续检查的安排。医生向个体呈送分子表达谱的结果和开具治疗的处方。
实施例13:使用不同分析方法的重叠基因
通过检查外科甲状腺结节组织样品和比较恶性与良性中的基因表达(“恶性与良性”数据集)获得实施例2中描述的结果。该分析鉴定差异表达(FDRp<0.05)的412种基因。在实施例1中描述的前述研究中,使用i)不同群组的样品和ii)不同的分析方法,我们描述了4918种可区分恶性和良性甲状腺结节的基因(“4918”)。“恶性与良性”组织发现数据集与“4918”发现数据集共有231/412种基因,而181/412种基因是新发现的。
使用组织群体的甲状腺髓样癌(MTC)和甲状腺亚型的“其余(Rest)”之间的类似比较指出了在这两组之间差异表达的668种显著基因(图10)。当针对我们之前的“4918”基因列表交叉检验时,我们发现305/668种基因之前已被描述过,而363/668种基因是新发现的。
我们接下来将外科组织数据集与细针吸取物(FNA)数据集相结合,并再一次使用i)“热探针”和ii)“贝叶斯”方法来比较恶性与良性。各个分析分别鉴定102种和498种显著基因(表11和12)。
直到此时,总共鉴定到1343种显著基因。但是,还进行了意图鉴定彼此区分明显不同的病理学亚型的那些基因的后续亚组分析。该分析使用外科组织群组,并得到250种显著基因(图13)。
总而言之,本文描述的五种比较产生了1437种显著基因。它们中的636/1437种基因是第一次描述为区分恶性与良性甲状腺病理。至今为止,568/636种还未在公开的科技文献中或专利申请中描述为甲状腺癌的诊断标志物。
实施例14:临床甲状腺FNA
方法
使用AffymetrixHumanExon1.0ST微阵列检查预期的临床甲状腺FNA样品,以鉴定在良性和恶性样品之间mRNA表达显著不同的基因。
使用Affymetrix软件来提取、归一化和总结来自大约650万种探针的强度数据。大约280,000种核心探针组随后用于特征选择和分类。使用的模型是LIMMA(用于特征选择),随机森林和SVM用于分类(Smyth2004;Diaz-Uriarte和AlvarezdeAndres2006)。使用随机的数据亚组进行重复轮的训练、分类和交叉验证。使用上述的分类引擎在三个独立的分析中鉴定了主要特征。
尽管基因对转录簇识别符(TCID)的注释和映射经常地在演化,但构成TCID的探针组中的核苷酸序列不发生改变。此外,许多显著TCID不映射任何已知的基因,但在甲状腺恶性分类中存在同样重要的生物标志物。使用TCID和目前映射到各TCID的基因来描述结果(Affymetrix注释文件:HuEx-1_0-st-v2.na29.hg18.transcript.csv)。
结果
预期收集的临床甲状腺FNA中差异基因表达的研究需要多种统计亚分析。这些亚分析单独导致发现在未知病理的甲状腺结节的分类中有价值的基因。但是,数据集的结合导致甲状腺基因的组的新的表征,这可以比现有细胞病理学和分子表达谱方法更高的准确性正确地分类甲状腺FNA。
表3主要的良性对恶性分析
该分析得到175种独特的TCID,目前映射到198种基因。
表4.主要亚型分析
该分析获得599种独特的TCID,目前映射到681种基因。
表5三叉(Trident)分析
这一良性对恶性的分析获得了201个独特的TCID,目前映射到237种基因。这些基因代表了使用单一数据集的三种统计学显著的子分析(可重复、贝叶斯和组织)的结合。
虽然本文已显示和描述了本发明的优选实施方式,对于本领域的技术人员显而易见的是,这些实施方式只是以举例的方式提供。在不背离本发明的情况下,本领域的技术人员可以想到许多变型、改变和替换。应该理解,在实践本发明时,可以采用本文所述的本发明的实施方式的各种替代方式。意图的是下列权利要求限定本发明的范围,且这些权利要求范围内的方法和结构及其等效形式也包括在本发明内。

Claims (10)

1.一种诊断受试者中的甲状腺癌的方法,包括以下步骤:
(a)从所述受试者获得包含基因表达产物的生物样品;
(b)确定所述生物样品中的一种或多种基因表达产物的表达水平,其中,所述一种或多种基因表达产物对应于选自图6的基因;和
(c)通过在所述生物样品中将基因表达水平与甲状腺癌的存在相关联来鉴定生物样品为癌性的。
2.如权利要求1所述的方法,其中所述生物样品包含甲状腺细胞。
3.如权利要求1所述的方法,其中所述生物样品包含组织样品。
4.如权利要求1所述的方法,其中所述样品通过针式吸取、细针吸取、芯针活组织检查、真空辅助活组织检查、大芯活组织检查、切开式活组织检查、切除活组织检查、钻取活组织检查、刮取活组织检查或皮肤活组织检查获得。
5.如权利要求1所述的方法,其中所述基因表达产物是RNA。
6.如权利要求5所述的方法,其中所述基因表达产物是mRNA、rRNA、tRNA或miRNA。
7.如权利要求5所述的方法,其中所述RNA的表达水平通过微阵列、SAGE、印迹、RT-PCR或定量PCR测量。
8.如权利要求1所述的方法,其中所述基因表达产物是蛋白质。
9.如权利要求8所述的方法,其中所述蛋白质的基因表达水平通过ELISA、质谱分析、印迹、蛋白质组学技术或免疫组织化学方法确定。
10.如权利要求1所述的方法,还包括将所述一种或多种基因表达产物的表达水平与对照样品中各基因产物的对照表达水平相比较的步骤,其中如果所述生物样品和所述对照样品之间的基因表达产物的基因表达水平存在差异的话,该生物样品被鉴定为癌性的。
CN201510355884.7A 2008-11-17 2009-11-17 用于疾病诊断的分子表达谱的方法和组合物 Pending CN105039523A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US19958508P 2008-11-17 2008-11-17
US61/199,585 2008-11-17
US27081209P 2009-07-13 2009-07-13
US61/270,812 2009-07-13
CN200980153735.5A CN102272325B (zh) 2008-11-17 2009-11-17 用于疾病诊断的分子表达谱的方法和组合物

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN200980153735.5A Division CN102272325B (zh) 2008-11-17 2009-11-17 用于疾病诊断的分子表达谱的方法和组合物

Publications (1)

Publication Number Publication Date
CN105039523A true CN105039523A (zh) 2015-11-11

Family

ID=42170607

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201510355884.7A Pending CN105039523A (zh) 2008-11-17 2009-11-17 用于疾病诊断的分子表达谱的方法和组合物
CN200980153735.5A Active CN102272325B (zh) 2008-11-17 2009-11-17 用于疾病诊断的分子表达谱的方法和组合物

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN200980153735.5A Active CN102272325B (zh) 2008-11-17 2009-11-17 用于疾病诊断的分子表达谱的方法和组合物

Country Status (9)

Country Link
US (8) US8541170B2 (zh)
EP (4) EP2356258A4 (zh)
JP (4) JP6257125B2 (zh)
CN (2) CN105039523A (zh)
AU (1) AU2009314502B2 (zh)
CA (2) CA3153682A1 (zh)
GB (3) GB2477705B (zh)
HK (2) HK1197597A1 (zh)
WO (1) WO2010056374A2 (zh)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106702015A (zh) * 2017-03-08 2017-05-24 北京泱深生物信息技术有限公司 Ipcef1在诊治骨肉瘤中的应用
CN108410976A (zh) * 2018-03-19 2018-08-17 上海交通大学医学院附属第九人民医院 针对先天性甲减的靶向二代测序的基因芯片
CN108508208A (zh) * 2018-02-05 2018-09-07 上海长海医院 抗Kaiso蛋白抗体在制备早期强直性脊柱炎诊断试剂盒中的应用
CN109161590A (zh) * 2017-08-23 2019-01-08 中南大学 整合素β4基因DNA甲基化位点在制备哮喘和或COPD早期诊断的生物标志物的应用
WO2019053521A1 (en) * 2017-09-18 2019-03-21 Wang Chih Yuan BIOMARKER FOR THE PROGNOSIS OF THYROID CANCER
CN109946129A (zh) * 2019-03-12 2019-06-28 江苏中济万泰生物医药有限公司 五分类血细胞分析仪用质控品制备方法
CN111197087A (zh) * 2020-01-14 2020-05-26 中山大学附属第一医院 甲状腺癌鉴别标志物
CN111292801A (zh) * 2020-01-21 2020-06-16 西湖大学 蛋白质质谱结合深度学习评估甲状腺结节的方法
CN111455055A (zh) * 2020-04-28 2020-07-28 重庆浦洛通基因医学研究院有限公司 一种人类tyms基因表达量检测标准对照品
CN112512440A (zh) * 2018-05-09 2021-03-16 德玛泰克公司 新型基因分类器及其在自身免疫性疾病中的用途
CN113189344A (zh) * 2018-07-09 2021-07-30 清紫生物科技(深圳)有限公司 Pdlim4用作胃癌标志物的应用
CN113755586A (zh) * 2021-07-08 2021-12-07 西北工业大学 一组胃肠癌预后相关生物标志物
CN113797219A (zh) * 2021-09-13 2021-12-17 温州医科大学附属第一医院 Xpr1抑制剂在制备抑制甲状腺癌细胞迁移和/或增殖的产品的应用
CN114292920A (zh) * 2021-12-10 2022-04-08 中国人民解放军军事科学院军事医学研究院 一组胃癌前病变及胃癌早期诊断血浆rna标志物组合及应用
CN115058515A (zh) * 2022-04-20 2022-09-16 中国医学科学院血液病医院(中国医学科学院血液学研究所) Rarg-hnrnpm融合基因检测及临床应用试剂盒
CN115266962A (zh) * 2017-03-31 2022-11-01 北京谷海天目生物医学科技有限公司 蛋白标志物在制备弥漫型胃癌分子分型的产品中的应用及弥漫型胃癌分子分型的分类器
CN115418400A (zh) * 2022-11-03 2022-12-02 北京大学第一医院 Ahnak2的snp标志物在抗血栓药物治疗血栓疗效预测中的应用
CN116064806A (zh) * 2022-10-19 2023-05-05 常州国药医学检验实验室有限公司 一种评估早期胃癌淋巴结转移风险的组合物及其用途
WO2024066941A1 (zh) * 2022-09-30 2024-04-04 圣湘生物科技股份有限公司 一种用于检测膀胱癌的组合物,试剂盒及其用途
CN115266962B (zh) * 2017-03-31 2024-05-31 北京谷海天目生物医学科技有限公司 蛋白标志物在制备弥漫型胃癌分子分型的产品中的应用及弥漫型胃癌分子分型的分类器

Families Citing this family (142)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA010055B1 (ru) 2003-03-19 2008-06-30 Байоджен Айдек Ма Инк. ВЫДЕЛЕННАЯ НУКЛЕИНОВАЯ КИСЛОТА, КОДИРУЮЩАЯ ПОЛИПЕПТИД Sp35, ПОЛИПЕПТИД Sp35 И СПОСОБЫ ПРИМЕНЕНИЯ НУКЛЕИНОВОЙ КИСЛОТЫ И ПОЛИПЕПТИДА
KR101239542B1 (ko) 2004-06-24 2013-03-07 바이오겐 아이덱 엠에이 인코포레이티드 탈수초화를 수반하는 병의 치료
WO2007008547A2 (en) 2005-07-08 2007-01-18 Biogen Idec Ma Inc. Sp35 antibodies and uses thereof
US8338109B2 (en) 2006-11-02 2012-12-25 Mayo Foundation For Medical Education And Research Predicting cancer outcome
US20100297121A1 (en) * 2007-10-11 2010-11-25 Biogen Idec Ma Inc. Methods for Treating Pressure Induced Optic Neuropathy, Preventing Neuronal Degeneration and Promoting Neuronal Cell Survival Via Administration of LINGO-1 Antagonists and TrkB Agonists
US20110123553A1 (en) * 2007-11-08 2011-05-26 Biogen Idec Ma Inc. Use of LINGO-4 Antagonists in the Treatment of Conditions Involving Demyelination
CN102089444A (zh) 2008-05-14 2011-06-08 德玛泰克国际公司 利用核酸分析方法来诊断黑素瘤和太阳能雀斑
EP2806054A1 (en) 2008-05-28 2014-11-26 Genomedx Biosciences Inc. Systems and methods for expression-based discrimination of distinct clinical disease states in prostate cancer
US10407731B2 (en) 2008-05-30 2019-09-10 Mayo Foundation For Medical Education And Research Biomarker panels for predicting prostate cancer outcomes
NZ590605A (en) 2008-07-09 2012-11-30 Biogen Idec Inc Compositions comprising antibodies to lingo or fragments thereof
US20110251091A1 (en) * 2008-09-12 2011-10-13 Cornell University Thyroid tumors identified
US9495515B1 (en) 2009-12-09 2016-11-15 Veracyte, Inc. Algorithms for disease diagnostics
US10236078B2 (en) 2008-11-17 2019-03-19 Veracyte, Inc. Methods for processing or analyzing a sample of thyroid tissue
GB2477705B (en) 2008-11-17 2014-04-23 Veracyte Inc Methods and compositions of molecular profiling for disease diagnostics
US9074258B2 (en) 2009-03-04 2015-07-07 Genomedx Biosciences Inc. Compositions and methods for classifying thyroid nodule disease
CA2753916C (en) * 2009-04-29 2020-08-25 Genomedx Biosciences Inc. Systems and methods for expression-based classification of thyroid tissue
EP2427575B1 (en) * 2009-05-07 2018-01-24 Veracyte, Inc. Methods for diagnosis of thyroid conditions
AU2010288810A1 (en) * 2009-08-31 2012-03-01 University Of Bremen MicroRNA-based methods and compositions for the diagnosis, prognosis and treatment of tumor involving chromosomal rearrangements
KR101142131B1 (ko) 2009-11-05 2012-05-11 (주)지노믹트리 장암 진단을 위한 장암 특이적 메틸화 마커 유전자의 메틸화 검출방법
US10428388B2 (en) 2009-11-05 2019-10-01 Genomictree, Inc. Method for detecting the methylation of colorectal-cancer-specific methylation marker genes for colorectal cancer diagnosis
US10446272B2 (en) 2009-12-09 2019-10-15 Veracyte, Inc. Methods and compositions for classification of samples
US20130231258A1 (en) * 2011-12-09 2013-09-05 Veracyte, Inc. Methods and Compositions for Classification of Samples
EP2519651A2 (en) * 2009-12-30 2012-11-07 Rigshospitalet Classication of thyroid follicular neoplasia based on mrna expression
AU2015202116B2 (en) * 2010-01-11 2017-06-08 Genomic Health, Inc. Method to use gene expression to determine likelihood of clinical outcome of renal cancer
WO2011085263A2 (en) 2010-01-11 2011-07-14 Genomic Health, Inc. Method to use gene expression to determine likelihood of clinical outcome of renal cancer
US20190100809A1 (en) * 2010-05-11 2019-04-04 Veracyte, Inc. Algorithms for disease diagnostics
CN103038635B (zh) * 2010-05-11 2016-12-28 威拉赛特公司 用于诊断病状的方法和组合物
US9422598B2 (en) 2010-06-04 2016-08-23 Biomerieux Method and kit for the prognosis of colorectal cancer
AU2011274422B2 (en) 2010-07-09 2016-02-11 Somalogic Operating Co., Inc. Lung cancer biomarkers and uses thereof
KR101808658B1 (ko) * 2010-07-22 2017-12-13 한국생명공학연구원 암 진단 키트 및 암 예방 또는 치료용 약제학적 조성물
WO2012021795A2 (en) 2010-08-13 2012-02-16 Somalogic, Inc. Pancreatic cancer biomarkers and uses thereof
US7932042B1 (en) 2010-10-13 2011-04-26 Suregene, Llc Methods and compositions for the treatment of psychotic disorders through the identification of the olanzapine poor response predictor genetic signature
WO2012096988A2 (en) * 2011-01-10 2012-07-19 Rutgers, The State University Of New Jersey Method and apparatus for shape based deformable segmentation of multiple overlapping objects
US8945829B2 (en) 2011-03-22 2015-02-03 Cornell University Distinguishing benign and malignant indeterminate thyroid lesions
WO2012129758A1 (en) 2011-03-25 2012-10-04 Biomerieux Method and kit for determining in vitro probability for individual to suffer from colorectal cancer
JP6181638B2 (ja) * 2011-04-28 2017-08-16 ニューヨーク・ユニバーシティ 前立腺癌における転移のゲノム・シグネチャー
AU2012301664A1 (en) * 2011-08-31 2014-02-27 Oncocyte Corporation Methods and compositions for the treatment and diagnosis of cancer
US20140236621A1 (en) * 2011-09-26 2014-08-21 Universite Pierre Et Marie Curie (Paris 6) Method for determining a predictive function for discriminating patients according to their disease activity status
KR101921945B1 (ko) 2011-10-24 2018-11-26 소마로직, 인크. 폐암 바이오마커 및 그것의 용도
US10131953B2 (en) * 2011-11-03 2018-11-20 Wisconsin Alumni Research Foundation Unbiased DNA methylation markers define an extensive field defect in histologically normal prostate tissues associated with prostate cancer: new biomarkers for men with prostate cancer
AU2012340393B2 (en) * 2011-11-15 2018-06-14 Oncocyte Corporation Methods and compositions for the treatment and diagnosis of bladder cancer
GB2513732B (en) * 2011-12-10 2020-12-02 Veracyte Inc Methods and compositions for sample identification
US10513737B2 (en) 2011-12-13 2019-12-24 Decipher Biosciences, Inc. Cancer diagnostics using non-coding transcripts
CN108048521B (zh) * 2012-04-02 2022-05-27 博格有限责任公司 基于细胞的探询式分析及其应用
MX2014013950A (es) * 2012-05-14 2015-02-17 Biogen Idec Inc Antagonistas de proteina que interactua con el receptor nogo 2 que contiene repeticion rica en leucina y dominio de inmunoglobulina (lingo-2) para el tratamiento de afecciones que involucran neuronas motoras.
KR101495275B1 (ko) * 2012-06-07 2015-02-24 한양대학교 산학협력단 폐암 진단 및 치료를 위한 표적 단백질
CA2881627A1 (en) 2012-08-16 2014-02-20 Genomedx Biosciences Inc. Cancer diagnostics using biomarkers
EP2898125A4 (en) 2012-09-20 2016-05-25 Genomedx Biosciences Inc DIAGNOSIS OF THYROID CANCER
WO2014059336A1 (en) 2012-10-12 2014-04-17 University Of Notre Dame Du Lac Exosomes and diagnostic biomarkers
WO2014071218A2 (en) * 2012-11-02 2014-05-08 University Of Utah Research Foundation Biomarkers for breast cancer and methods of using same
EP2925886B1 (en) 2012-11-27 2019-04-24 Pontificia Universidad Católica de Chile Compositions and methods for diagnosing thyroid tumors
JP6200281B2 (ja) * 2012-11-29 2017-09-20 シスメックス株式会社 甲状腺腫瘍の性状の判別を補助する方法およびその方法に用いるマーカーセット
JO3519B1 (ar) 2013-01-25 2020-07-05 Amgen Inc تركيبات أجسام مضادة لأجل cdh19 و cd3
EP2968988A4 (en) 2013-03-14 2016-11-16 Allegro Diagnostics Corp METHOD FOR EVALUATING A COPD STATUS
CN105247075B (zh) * 2013-03-15 2019-02-15 威拉赛特公司 用于诊断肺病的生物标记物及其使用方法
US11976329B2 (en) 2013-03-15 2024-05-07 Veracyte, Inc. Methods and systems for detecting usual interstitial pneumonia
CN105378104A (zh) * 2013-03-15 2016-03-02 威拉赛特公司 用于样品分类的方法和组合物
MX369911B (es) 2013-05-30 2019-11-26 Genomic Health Inc Método basado en expresión génica para clasificar pacientes con cãncer de riñón de acuerdo al riesgo de recurrencia.
WO2015013233A2 (en) * 2013-07-23 2015-01-29 Oncocyte Corp Methods and compositions for the treatment and diagnosis of bladder cancer
PL3456339T3 (pl) 2013-08-05 2022-03-21 Immatics Biotechnologies Gmbh Nowa immunoterapia przeciwko szeregu nowotworom, takim jak rak płuc, w tym nsclc
WO2015042446A2 (en) * 2013-09-20 2015-03-26 The Regents Of The University Of Michigan Compositions and methods for the analysis of radiosensitivity
GB201322800D0 (en) * 2013-12-20 2014-02-05 Univ Dublin Prostate cancer biomarkers
US20150310336A1 (en) * 2014-04-29 2015-10-29 Wise Athena Inc. Predicting customer churn in a telecommunications network environment
JP6462437B2 (ja) * 2014-05-08 2019-01-30 花王株式会社 皮膚の乾燥状態の評価方法
CN104101715A (zh) * 2014-07-15 2014-10-15 重庆医科大学附属儿童医院 检测dock8蛋白的试剂盒及非诊断目的检测dock8蛋白的方法
WO2016020551A1 (en) * 2014-08-08 2016-02-11 Ait Austrian Institute Of Technology Gmbh Thyroid cancer diagnosis by dna methylation analysis
AU2015314956A1 (en) 2014-09-11 2017-04-06 Berg Llc Bayesian causal relationship network models for healthcare diagnosis and treatment based on patient data
WO2016057629A1 (en) * 2014-10-07 2016-04-14 Duke University Methods and therapeutics relating to human r-spondin protein and leucine-rich repeat-containing g protein-coupled receptor protein
US11640845B2 (en) 2014-10-24 2023-05-02 Koninklijke Philips N.V. Bioinformatics process for identifying at risk subject populations
AU2015334840B2 (en) 2014-10-24 2021-10-21 Innosign B.V. Assessment of TGF-beta cellular signaling pathway activity using mathematical modelling of target gene expression
EP3210144B1 (en) 2014-10-24 2020-10-21 Koninklijke Philips N.V. Medical prognosis and prediction of treatment response using multiple cellular signaling pathway activities
EP3215170A4 (en) 2014-11-05 2018-04-25 Veracyte, Inc. Systems and methods of diagnosing idiopathic pulmonary fibrosis on transbronchial biopsies using machine learning and high dimensional transcriptional data
US10600027B2 (en) * 2014-12-15 2020-03-24 Ojer, Llc Method to assess and enhance value characteristics of published empirical literature
EP3242893A1 (en) 2015-01-08 2017-11-15 Biogen MA Inc. Lingo-1 antagonists and uses for treatment of demyelinating disorders
CN104740649B (zh) * 2015-02-13 2018-03-16 北京泱深生物信息技术有限公司 Plekha5在制备肿瘤诊断试剂中的应用
US10941450B2 (en) 2015-03-17 2021-03-09 The Johns Hopkins University Urothelial cancer and methods of detection and targeted therapy
US10358676B2 (en) * 2015-04-03 2019-07-23 Kaohsiung Chang Gung Memorial Hospital Methods and kits for detecting Kawasaki disease
KR101795689B1 (ko) * 2015-04-30 2017-11-30 경희대학교 산학협력단 혈관 협착 질환 진단용 마커 및 이의 용도
CN105288659B (zh) * 2015-06-01 2019-07-26 北京泱深生物信息技术有限公司 Tenm1基因及其表达产物在诊治乳头状腺癌的应用
EP3315594B1 (en) * 2015-06-24 2020-02-26 Hitachi, Ltd. Inspection system
US10064594B2 (en) * 2015-08-06 2018-09-04 Case Western Reserve University Characterizing disease and treatment response with quantitative vessel tortuosity radiomics
BR112018002848A2 (pt) 2015-08-14 2018-11-06 Koninklijke Philips Nv método, aparelho, mídia de armazenamento não transitório, programa de computador, kit para medir níveis de expressão de seis ou mais genes-alvo da via de sinalização celular
CA3001710A1 (en) * 2015-10-23 2017-04-27 The Regents Of The University Of Colorado, A Body Corporate Prognosis and treatment of squamous cell carcinomas
FR3047013A1 (fr) * 2016-01-22 2017-07-28 Univ Montpellier Procede de classification d'un echantillon biologique.
EP3202913B1 (en) * 2016-02-08 2019-01-30 King Faisal Specialist Hospital And Research Centre A set of genes for use in a method of predicting the likelihood of a breast cancer patient's survival
EP3504348B1 (en) 2016-08-24 2022-12-14 Decipher Biosciences, Inc. Use of genomic signatures to predict responsiveness of patients with prostate cancer to post-operative radiation therapy
BR112019004920A2 (pt) * 2016-09-14 2019-06-04 Philip Morris Products Sa sistemas, métodos e assinaturas de genes para prever um status biológico de um indivíduo
WO2018080522A1 (en) 2016-10-28 2018-05-03 Hewlett-Packard Development Company, L.P. Target class feature model
US11208697B2 (en) 2017-01-20 2021-12-28 Decipher Biosciences, Inc. Molecular subtyping, prognosis, and treatment of bladder cancer
US11693007B2 (en) 2017-02-24 2023-07-04 Board Of Regents, The University Of Texas System Assay for detection of early stage pancreatic cancer
US10492723B2 (en) 2017-02-27 2019-12-03 Case Western Reserve University Predicting immunotherapy response in non-small cell lung cancer patients with quantitative vessel tortuosity
WO2018165600A1 (en) 2017-03-09 2018-09-13 Genomedx Biosciences, Inc. Subtyping prostate cancer to predict response to hormone therapy
CN106872704A (zh) * 2017-03-17 2017-06-20 中国科学院上海高等研究院 八种蛋白质用作鉴定浆膜层浸润深度胃癌的分子标记的应用
CN107025387B (zh) * 2017-03-29 2020-09-18 电子科技大学 一种用于癌症生物标志物识别的方法
US11078542B2 (en) 2017-05-12 2021-08-03 Decipher Biosciences, Inc. Genetic signatures to predict prostate cancer metastasis and identify tumor aggressiveness
CN107937551A (zh) * 2017-06-21 2018-04-20 中国科学院大连化学物理研究所 一种环境化学品对大鼠甲状腺系统影响的测定方法
CN107312835B (zh) * 2017-06-22 2021-04-09 复旦大学附属华山医院 一种抗乙型肝炎病毒的靶点及其应用
US11217329B1 (en) 2017-06-23 2022-01-04 Veracyte, Inc. Methods and systems for determining biological sample integrity
CN107301323B (zh) * 2017-08-14 2020-11-03 安徽医科大学第一附属医院 一种与银屑病相关的分类模型的构建方法
JP6863169B2 (ja) * 2017-08-15 2021-04-21 Agc株式会社 反射型マスクブランク、および反射型マスク
EP3461915A1 (en) 2017-10-02 2019-04-03 Koninklijke Philips N.V. Assessment of jak-stat1/2 cellular signaling pathway activity using mathematical modelling of target gene expression
WO2019079792A1 (en) * 2017-10-20 2019-04-25 H. Lee Moffitt Cancer Center And Research Institute, Inc. METHOD FOR DISTINCTION BETWEEN UROTHELIAL CARCINOMA AND CARCINOMA WITH BRONCHOPULMONARY SQUAMOUS CELLS AND HEAD AND NECK
CN107895148B (zh) * 2017-11-08 2021-02-05 深圳市科迈爱康科技有限公司 肢体动作识别方法、装置及计算机可读存储介质
US10748040B2 (en) * 2017-11-20 2020-08-18 Kavya Venkata Kota Sai KOPPARAPU System and method for automatic assessment of cancer
EP3502279A1 (en) 2017-12-20 2019-06-26 Koninklijke Philips N.V. Assessment of mapk-ap 1 cellular signaling pathway activity using mathematical modelling of target gene expression
EP3752645A4 (en) 2018-02-14 2022-04-13 Dermtech, Inc. NEW GENE CLASSIFIERS AND THEIR USES IN NON-MELANOMA SKIN CANCERS
US11028425B2 (en) 2018-06-08 2021-06-08 Glympse Bio, Inc. Diagnosis and monitoring of liver disease
WO2019236992A1 (en) * 2018-06-08 2019-12-12 Glympse Bio, Inc. Activity sensor design
US11732009B2 (en) 2018-06-08 2023-08-22 Glympse Bio, Inc. Activity sensor with tunable analyte
US20210233640A1 (en) * 2018-06-29 2021-07-29 The Jackson Laboratory Methods and apparatus for identifying alternative splicing events
SG11202100006QA (en) * 2018-07-16 2021-01-28 Agency Science Tech & Res Method for isolating a cardiomyocyte population
CN109652552B (zh) * 2018-07-27 2022-07-05 四川大学华西医院 一种人类map2k5第961位碱基突变基因的arms-pcr检测试剂盒
CN109097465B (zh) * 2018-09-19 2021-06-08 蒲佐 Clip3基因的snp位点的应用
CN109266734A (zh) * 2018-09-25 2019-01-25 深圳市人民医院 自身免疫性疾病诊断试剂盒和应用
WO2020092615A1 (en) * 2018-11-01 2020-05-07 Oregon Health & Science University Treatments for venetoclax-resistant and venetoclax-sensitive acute myeloid leukemia
CN109652540A (zh) * 2018-12-21 2019-04-19 思泰得精准(北京)医学检验实验室有限公司 一种甲状腺癌早期检测分子标志物及其应用
CN109762904A (zh) * 2019-03-05 2019-05-17 中国医学科学院北京协和医院 与胰腺神经内分泌肿瘤相关的分子标记物及其应用
CA3134936A1 (en) 2019-03-26 2020-10-01 Dermtech, Inc. Novel gene classifiers and uses thereof in skin cancers
CN109971847B (zh) * 2019-05-05 2022-08-02 张佳荣 Calponin-h2作为诊断异位妊娠的标记物的应用
RU2712080C1 (ru) * 2019-05-14 2020-01-24 Федеральное государственное автономное образовательное учреждение высшего образования "Дальневосточный федеральный университет" (ДВФУ) Способ проведения цитологического исследования при дифференциальной диагностике узловых образований щитовидной железы
CN110197722B (zh) * 2019-05-31 2022-06-07 贵州精准健康数据有限公司 Ai-cpu系统平台
CN110172507A (zh) * 2019-06-11 2019-08-27 中国人民解放军第四军医大学 一种前庭导水管扩大/Pendred综合征致病基因SLC26A4突变检测用试剂盒
CN110564853A (zh) * 2019-08-21 2019-12-13 上海交通大学医学院附属新华医院 调查肺癌临床病理与基因表达之间关系的方法
CN110607370B (zh) * 2019-10-10 2021-03-26 浙江大学 一种用于人体肿瘤分子分型的基因组合及其应用
KR102399033B1 (ko) * 2019-10-30 2022-05-17 재단법인 아산사회복지재단 갑상선 여포 종양의 감별진단용 조성물 및 이를 이용한 감별진단 방법
CN111613271B (zh) * 2020-04-26 2023-02-14 西南大学 一种预测畜禽数量性状显性遗传效应的方法及应用
CN111474293B (zh) * 2020-04-27 2023-05-05 广东博创佳禾科技有限公司 一种青枯病菌溶液测定方法及测定系统
EP4176076A4 (en) * 2020-07-02 2024-05-01 Univ Johns Hopkins METHYLATED MARKERS FOR THE ACCURATE DETECTION OF PRIMARY CENTRAL NERVOUS SYSTEM AND SYSTEMIC DIFFUSE LARGE B-CELL LYMPHOMA
CN112062827B (zh) * 2020-09-16 2022-10-21 中国人民解放军军事科学院军事医学研究院 Cep55蛋白在调控纤毛去组装和制备纤毛相关疾病模型中的应用
EP4023770A1 (en) * 2021-01-05 2022-07-06 Narodowy Instytut Onkologii im. Marii Sklodowskiej-Curie Panstwowy Instytut Oddzial w Gliwicach A method of examining genes for the diagnosis of thyroid tumors, a set for the diagnosis of thyroid tumors and application
CN112708670A (zh) * 2021-02-03 2021-04-27 山东第一医科大学附属省立医院(山东省立医院) 一种检测诊断先天性甲状腺疾病致病基因的dna文库及其应用
USD966300S1 (en) 2021-02-16 2022-10-11 Dermtech, Inc. Computer display panel with a graphical user interface for a dermatology report
USD966299S1 (en) 2021-02-16 2022-10-11 Dermtech, Inc. Computer display panel with a graphical user interface for a dermatology report
USD988399S1 (en) 2021-02-16 2023-06-06 Dermtech, Inc. Dermatology report document
USD989861S1 (en) 2021-02-16 2023-06-20 Dermtech, Inc. Dermatology report document
EP4314323A1 (en) * 2021-03-29 2024-02-07 Veracyte, Inc. Methods and systems to identify a lung disorder
KR20230162795A (ko) * 2021-03-30 2023-11-28 각꼬호우징 닛뽄 이까다이가꾸 갑상선 여포암 특이적 마커
CN114317732B (zh) * 2021-04-08 2023-08-18 博尔诚(北京)科技有限公司 用于肺癌筛查的组合物及其应用
WO2022225000A1 (ja) * 2021-04-21 2022-10-27 伊藤 公一 甲状腺疾患の診断に関する参考情報を提供する情報処理装置
CN114134229A (zh) * 2021-10-28 2022-03-04 贵州百镜生物科技有限公司 结直肠癌和/或肠息肉诊断标志物、试剂盒、方法及应用
CN114717338B (zh) * 2022-05-26 2023-07-14 甘肃润牧生物工程有限责任公司 一种湖羊slc27a6基因snp的检测方法及其在肉质性状早期筛选中的应用
CN115588467B (zh) * 2022-09-16 2023-05-09 皖南医学院 一种基于多层感知机的颅内动脉瘤破裂关键基因筛选方法

Family Cites Families (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT277936B (de) 1968-02-27 1970-01-12 Guenter Dipl Ing Knapp Verfahren zur quantitativen Bestimmung von Jod und von Schilddrüsenhormonen sowie Vorrichtung zur Durchführung des Verfahrens
US5798257A (en) 1990-07-09 1998-08-25 Research Corporation Technologies, Inc. Nucleic acid encoding human MTS-1 protein
EP1460132A1 (en) 1998-06-08 2004-09-22 Fuso Pharmaceutical Industries Ltd. Antibodies with specific immunoreactivity to thyroid carcinoma cells
US6468476B1 (en) 1998-10-27 2002-10-22 Rosetta Inpharmatics, Inc. Methods for using-co-regulated genesets to enhance detection and classification of gene expression patterns
US6436642B1 (en) 1999-04-20 2002-08-20 Curagen Corporation Method of classifying a thyroid carcinoma using differential gene expression
US7244559B2 (en) 1999-09-16 2007-07-17 454 Life Sciences Corporation Method of sequencing a nucleic acid
US7211390B2 (en) 1999-09-16 2007-05-01 454 Life Sciences Corporation Method of sequencing a nucleic acid
US7361488B2 (en) 2000-02-07 2008-04-22 Illumina, Inc. Nucleic acid detection methods using universal priming
US6988040B2 (en) 2001-01-11 2006-01-17 Affymetrix, Inc. System, method, and computer software for genotyping analysis and identification of allelic imbalance
WO2002064781A2 (en) 2001-02-09 2002-08-22 Active Pass Pharmaceuticals, Inc. Regulation of amyloid precursor protein expression by modification of abc transporter expression or activity
CN1554025A (zh) * 2001-03-12 2004-12-08 Īŵ���ɷ����޹�˾ 患病状态的细胞为基础的检测和鉴别
US20030190602A1 (en) 2001-03-12 2003-10-09 Monogen, Inc. Cell-based detection and differentiation of disease states
EP1440311B1 (en) 2001-08-31 2009-01-07 Gen-Probe Incorporated Affinity-shifted probes for quantifying analyte polynucleotides
US20030186248A1 (en) 2002-03-29 2003-10-02 Erlander Mark G. Interpreting cytological specimens via molecular histological signatures
US7300788B2 (en) 2002-10-08 2007-11-27 Affymetrix, Inc. Method for genotyping polymorphisms in humans
US20050266443A1 (en) 2002-10-11 2005-12-01 Thomas Jefferson University Novel tumor suppressor gene and compositions and methods for making and using the same
JP4425142B2 (ja) 2002-11-07 2010-03-03 洋一 松原 遺伝子変異検出法
EP2159285B1 (en) 2003-01-29 2012-09-26 454 Life Sciences Corporation Methods of amplifying and sequencing nucleic acids
US7378233B2 (en) 2003-04-12 2008-05-27 The Johns Hopkins University BRAF mutation T1796A in thyroid cancers
AU2004251256B2 (en) 2003-05-30 2009-05-28 The Board Of Trustees Of The University Of Illinois Gene expression profiles that identify genetically elite ungulate mammals
CA2528669A1 (en) 2003-06-09 2005-01-20 The Regents Of The University Of Michigan Compositions and methods for treating and diagnosing cancer
WO2005007830A2 (en) 2003-07-14 2005-01-27 Mayo Foundation For Medical Education And Research Methods and compositions for diagnosis, staging and prognosis of prostate cancer
JP2005168432A (ja) * 2003-12-12 2005-06-30 Nara Institute Of Science & Technology 甲状腺濾胞癌と甲状腺濾胞腺腫を判別するためのデータを収集するための方法及び該方法のためのキット
US20050130177A1 (en) 2003-12-12 2005-06-16 3M Innovative Properties Company Variable valve apparatus and methods
WO2005062770A2 (en) 2003-12-19 2005-07-14 Novakoff James L Method for conducting pharmacogenomics-based studies
US20090020433A1 (en) * 2003-12-31 2009-01-22 Microfabrica Inc. Electrochemical Fabrication Methods for Producing Multilayer Structures Including the use of Diamond Machining in the Planarization of Deposits of Material
CA2554818A1 (en) 2004-02-09 2005-08-25 Thomas Jefferson University Diagnosis and treatment of cancers with microrna located in or near cancer-associated chromosomal features
US7319011B2 (en) 2004-04-08 2008-01-15 Duke University Method for distinguishing follicular thyroid adenoma (FTA) from follicular thyroid carcinoma (FTC)
US7901881B2 (en) * 2004-04-09 2011-03-08 The United States Of America As Represented By The Department Of Health And Human Services Diagnostic tool for diagnosing benign versus malignant thyroid lesions
US20050240357A1 (en) 2004-04-26 2005-10-27 Minor James M Methods and systems for differential clustering
WO2005118806A2 (en) 2004-05-28 2005-12-15 Ambion, Inc. METHODS AND COMPOSITIONS INVOLVING MicroRNA
CN101040056A (zh) 2004-06-04 2007-09-19 阿威亚拉德克斯股份有限公司 Hoxb13基因对癌症的重要性
US20060019615A1 (en) 2004-07-24 2006-01-26 Ditmer Larry R Wireless keying for a continuous wave (CW) amateur radio transmitter
WO2006020837A2 (en) 2004-08-11 2006-02-23 The Cleveland Clinic Foundation Method of detecting thyroid cancer
US7892540B2 (en) 2004-10-06 2011-02-22 Mayo Foundation For Medical Education And Research B7-H1 and methods of diagnosis, prognosis, and treatment of cancer
US7485468B2 (en) 2004-10-15 2009-02-03 Galapagos Bv Molecular targets and compounds, and methods to identify the same, useful in the treatment of joint degenerative and inflammatory diseases
JP5629894B2 (ja) * 2004-12-07 2014-11-26 国立大学法人大阪大学 甲状腺乳頭癌を診断するための新規のマーカー
US20070037186A1 (en) 2005-05-20 2007-02-15 Yuqiu Jiang Thyroid fine needle aspiration molecular assay
US20070020657A1 (en) 2005-05-20 2007-01-25 Grebe Stefan K Methods for detecting circulating tumor cells
EP1907858A4 (en) 2005-06-13 2009-04-08 Univ Michigan COMPOSITIONS AND METHODS OF TREATMENT AND DIAGNOSIS OF CANCER
US20070099209A1 (en) 2005-06-13 2007-05-03 The Regents Of The University Of Michigan Compositions and methods for treating and diagnosing cancer
WO2007021423A2 (en) 2005-08-15 2007-02-22 Genentech, Inc. Gene disruptions, compositions and methods relating thereto
CN101313306B (zh) 2005-09-22 2011-11-16 中国合成橡胶股份有限公司 用于鉴别鼻咽癌中的预后型亚类的基因表达谱
US20070172844A1 (en) 2005-09-28 2007-07-26 University Of South Florida Individualized cancer treatments
US7598052B2 (en) * 2005-10-11 2009-10-06 The Regents Of The University Of Michigan Expression profile of thyroid cancer
US20070220621A1 (en) 2005-10-31 2007-09-20 Clarke Michael F Genetic characterization and prognostic significance of cancer stem cells in cancer
US7670775B2 (en) * 2006-02-15 2010-03-02 The Ohio State University Research Foundation Method for differentiating malignant from benign thyroid tissue
JP4867018B2 (ja) 2006-03-22 2012-02-01 富士フイルム株式会社 癌の検出方法および抑制方法
US20080028302A1 (en) * 2006-07-31 2008-01-31 Steffen Meschkat Method and apparatus for incrementally updating a web page
EP2472264B1 (en) 2007-02-27 2015-11-25 SentoClone International AB Multiplex detection of tumour cells using a panel of agents binding to extracellular markers
WO2010073248A2 (en) 2008-12-24 2010-07-01 Rosetta Genomics Ltd. Gene expression signature for classification of tissue of origin of tumor samples
CA2678919A1 (en) 2007-03-27 2008-10-02 Ranit Aharonov Gene expression signature for classification of cancers
EP1975245A1 (de) 2007-03-28 2008-10-01 Greenpeace e.V. Gen-Profiling zur Auswahl von politischen Kandidaten, kommerzielle Nutzung von Politikern
EP1975252A1 (en) 2007-03-29 2008-10-01 INSERM (Institut National de la Santé et de la Recherche Medicale) Methods for the prognosis or for the diagnosis of a thyroid disease
US7901888B2 (en) * 2007-05-09 2011-03-08 The Regents Of The University Of California Multigene diagnostic assay for malignant thyroid neoplasm
US8465918B2 (en) 2007-08-03 2013-06-18 The Ohio State University Research Foundation Ultraconserved regions encoding ncRNAs
US9234244B2 (en) * 2007-08-27 2016-01-12 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Diagnostic tool for diagnosing benign versus malignant thyroid lesions
AT505726A2 (de) * 2007-08-30 2009-03-15 Arc Austrian Res Centers Gmbh Set von tumor-markern
WO2009037337A1 (en) 2007-09-20 2009-03-26 Novartis Ag Robust and tissue independent gender-specific transcript markers for molecular gender determination
WO2009042728A1 (en) 2007-09-24 2009-04-02 Allelogic Biosciences Corporation Detection and /or quantification of nucleic acids
US20090191535A1 (en) 2007-12-22 2009-07-30 Mark Carle Connelly Method of assessing metastatic carcinomas from circulating endothelial cells and disseminated tumor cells
WO2009126271A1 (en) 2008-04-11 2009-10-15 China Synthetic Rubber Corporation Methods, agents and kits for the detection of cancer
WO2009140542A1 (en) 2008-05-14 2009-11-19 Dnar, Inc. Biomarkers for the identification, monitoring, and treatment of head and neck cancer
WO2010056351A2 (en) 2008-11-14 2010-05-20 Stc.Unm Gene expression classifiers for relapse free survival and minimal residual disease improve risk classification and out come prediction in pedeatric b-precursor acute lymphoblastic leukemia
GB2477705B (en) 2008-11-17 2014-04-23 Veracyte Inc Methods and compositions of molecular profiling for disease diagnostics
US9074258B2 (en) 2009-03-04 2015-07-07 Genomedx Biosciences Inc. Compositions and methods for classifying thyroid nodule disease
CA2753916C (en) 2009-04-29 2020-08-25 Genomedx Biosciences Inc. Systems and methods for expression-based classification of thyroid tissue
EP2427575B1 (en) * 2009-05-07 2018-01-24 Veracyte, Inc. Methods for diagnosis of thyroid conditions
US8975019B2 (en) 2009-10-19 2015-03-10 University Of Massachusetts Deducing exon connectivity by RNA-templated DNA ligation/sequencing
EP2366800A1 (en) 2010-03-01 2011-09-21 Centrum Onkologii-Instytut im M. Sklodowskiej-Curie Oddzial w Gliwicach Kit, method and use for the diagnosis of papillary thyroid cancer using a gene expression profile

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
A.-L. BOULESTEIX ET AL: "Evaluating Microarray-based Classifi ers: An Overview", 《CANCER INFORMATICS》 *
BARDEN ET AL: "Classification of follicular thyroid tumors by molecular signature:results of gene profiling", 《CLINICAL CANCER RESEARCH》 *
LUBITZ ET AL: "Microarry analysis of thyroid nodule fine-needle aspirates accurately classifies benign and malignant lesions", 《THE JOURNAL OF MOLECULAR DIAGNOSTICS》 *
NIKOLOVA ET AL: "Genome-wide gene expression profiles of thyroid carcinoma:identification of molecular targets for treatment of thyroid carcinoma", 《ONCOLOGY REPORTS》 *

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106702015A (zh) * 2017-03-08 2017-05-24 北京泱深生物信息技术有限公司 Ipcef1在诊治骨肉瘤中的应用
CN115266962B (zh) * 2017-03-31 2024-05-31 北京谷海天目生物医学科技有限公司 蛋白标志物在制备弥漫型胃癌分子分型的产品中的应用及弥漫型胃癌分子分型的分类器
CN115266962A (zh) * 2017-03-31 2022-11-01 北京谷海天目生物医学科技有限公司 蛋白标志物在制备弥漫型胃癌分子分型的产品中的应用及弥漫型胃癌分子分型的分类器
CN109161590A (zh) * 2017-08-23 2019-01-08 中南大学 整合素β4基因DNA甲基化位点在制备哮喘和或COPD早期诊断的生物标志物的应用
WO2019053521A1 (en) * 2017-09-18 2019-03-21 Wang Chih Yuan BIOMARKER FOR THE PROGNOSIS OF THYROID CANCER
TWI682176B (zh) * 2017-09-18 2020-01-11 國立臺灣大學 用於甲狀腺癌預後之生物標記
CN108508208B (zh) * 2018-02-05 2020-10-09 上海长海医院 抗Kaiso蛋白抗体在制备早期强直性脊柱炎诊断试剂盒中的应用
CN108508208A (zh) * 2018-02-05 2018-09-07 上海长海医院 抗Kaiso蛋白抗体在制备早期强直性脊柱炎诊断试剂盒中的应用
CN108410976A (zh) * 2018-03-19 2018-08-17 上海交通大学医学院附属第九人民医院 针对先天性甲减的靶向二代测序的基因芯片
CN112512440A (zh) * 2018-05-09 2021-03-16 德玛泰克公司 新型基因分类器及其在自身免疫性疾病中的用途
US12007394B2 (en) 2018-05-15 2024-06-11 National Taiwan University Biomarker for prognosis of thyroid cancer
CN113189344A (zh) * 2018-07-09 2021-07-30 清紫生物科技(深圳)有限公司 Pdlim4用作胃癌标志物的应用
CN113189344B (zh) * 2018-07-09 2022-08-19 南京艾蓝生物科技有限公司 Pdlim4用作胃癌标志物的应用
CN109946129A (zh) * 2019-03-12 2019-06-28 江苏中济万泰生物医药有限公司 五分类血细胞分析仪用质控品制备方法
CN111197087B (zh) * 2020-01-14 2020-11-10 中山大学附属第一医院 甲状腺癌鉴别标志物
CN111197087A (zh) * 2020-01-14 2020-05-26 中山大学附属第一医院 甲状腺癌鉴别标志物
CN111292801A (zh) * 2020-01-21 2020-06-16 西湖大学 蛋白质质谱结合深度学习评估甲状腺结节的方法
CN111455055A (zh) * 2020-04-28 2020-07-28 重庆浦洛通基因医学研究院有限公司 一种人类tyms基因表达量检测标准对照品
CN113755586A (zh) * 2021-07-08 2021-12-07 西北工业大学 一组胃肠癌预后相关生物标志物
CN113797219A (zh) * 2021-09-13 2021-12-17 温州医科大学附属第一医院 Xpr1抑制剂在制备抑制甲状腺癌细胞迁移和/或增殖的产品的应用
CN114292920A (zh) * 2021-12-10 2022-04-08 中国人民解放军军事科学院军事医学研究院 一组胃癌前病变及胃癌早期诊断血浆rna标志物组合及应用
CN115058515A (zh) * 2022-04-20 2022-09-16 中国医学科学院血液病医院(中国医学科学院血液学研究所) Rarg-hnrnpm融合基因检测及临床应用试剂盒
WO2024066941A1 (zh) * 2022-09-30 2024-04-04 圣湘生物科技股份有限公司 一种用于检测膀胱癌的组合物,试剂盒及其用途
CN116064806A (zh) * 2022-10-19 2023-05-05 常州国药医学检验实验室有限公司 一种评估早期胃癌淋巴结转移风险的组合物及其用途
CN116064806B (zh) * 2022-10-19 2023-09-22 常州国药医学检验实验室有限公司 一种评估早期胃癌淋巴结转移风险的组合物及其用途
CN115418400B (zh) * 2022-11-03 2023-02-03 北京大学第一医院 Ahnak2的snp标志物在抗血栓药物治疗血栓疗效预测中的应用
CN115418400A (zh) * 2022-11-03 2022-12-02 北京大学第一医院 Ahnak2的snp标志物在抗血栓药物治疗血栓疗效预测中的应用

Also Published As

Publication number Publication date
EP2356258A4 (en) 2012-12-26
EP3831954A2 (en) 2021-06-09
GB201315760D0 (en) 2013-10-16
US20170145513A1 (en) 2017-05-25
US20100131432A1 (en) 2010-05-27
AU2009314502A1 (en) 2010-05-20
EP3467123A2 (en) 2019-04-10
CN102272325B (zh) 2015-07-22
GB2507680A (en) 2014-05-07
CA3153682A1 (en) 2010-05-20
EP3029158A1 (en) 2016-06-08
US20160312307A1 (en) 2016-10-27
JP2015144606A (ja) 2015-08-13
JP2017209113A (ja) 2017-11-30
HK1197597A1 (zh) 2015-01-30
GB2512153A (en) 2014-09-24
JP2012509061A (ja) 2012-04-19
GB2507680B (en) 2014-06-18
AU2009314502B2 (en) 2015-01-22
CA2743473C (en) 2022-06-14
GB2477705B (en) 2014-04-23
EP2356258A2 (en) 2011-08-17
GB2512153B (en) 2014-11-12
WO2010056374A2 (en) 2010-05-20
CN102272325A (zh) 2011-12-07
CA2743473A1 (en) 2010-05-20
EP3467123A3 (en) 2019-07-31
US20130225662A1 (en) 2013-08-29
US20140349864A1 (en) 2014-11-27
US8541170B2 (en) 2013-09-24
JP2020062027A (ja) 2020-04-23
AU2009314502A2 (en) 2011-12-08
GB201110195D0 (en) 2011-08-03
GB201401364D0 (en) 2014-03-12
JP6257125B2 (ja) 2018-01-10
JP6590878B2 (ja) 2019-10-16
EP3831954A3 (en) 2021-10-13
US20160312305A1 (en) 2016-10-27
WO2010056374A3 (en) 2010-09-23
US20160312308A1 (en) 2016-10-27
GB2477705A (en) 2011-08-10
US20160312306A1 (en) 2016-10-27
HK1202312A1 (zh) 2015-09-25

Similar Documents

Publication Publication Date Title
CN102272325B (zh) 用于疾病诊断的分子表达谱的方法和组合物
US10672504B2 (en) Algorithms for disease diagnostics
US20210238686A1 (en) Methods and compositions for diagnosis of thyroid conditions
CN103038635B (zh) 用于诊断病状的方法和组合物
AU2017268578B2 (en) Methods and compositions of molecular profiling for disease diagnostics
CN105378104A (zh) 用于样品分类的方法和组合物

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination