CN104600162B - 基于lao衬底的非极性蓝光led外延片的制备方法 - Google Patents

基于lao衬底的非极性蓝光led外延片的制备方法 Download PDF

Info

Publication number
CN104600162B
CN104600162B CN201410112151.6A CN201410112151A CN104600162B CN 104600162 B CN104600162 B CN 104600162B CN 201410112151 A CN201410112151 A CN 201410112151A CN 104600162 B CN104600162 B CN 104600162B
Authority
CN
China
Prior art keywords
nonpolar
lao
substrate
lao substrate
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410112151.6A
Other languages
English (en)
Other versions
CN104600162A (zh
Inventor
蔡卓然
高海
刘智
尹祥麟
刘正伟
张欣瑶
周环宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Xi Xin Semiconductor Technology Co ltd
Original Assignee
Shanghai Chiptek Semiconductor Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN201410112151.6A priority Critical patent/CN104600162B/zh
Application filed by Shanghai Chiptek Semiconductor Technology Co ltd filed Critical Shanghai Chiptek Semiconductor Technology Co ltd
Priority to US15/128,639 priority patent/US9978908B2/en
Priority to RU2016138668A priority patent/RU2643176C1/ru
Priority to JP2016574326A priority patent/JP6326154B2/ja
Priority to PCT/CN2015/074828 priority patent/WO2015144023A1/zh
Priority to CA2942999A priority patent/CA2942999C/en
Priority to KR1020167026454A priority patent/KR20160130411A/ko
Priority to EP15769396.1A priority patent/EP3107128B1/en
Priority to PL15769396T priority patent/PL3107128T3/pl
Publication of CN104600162A publication Critical patent/CN104600162A/zh
Application granted granted Critical
Publication of CN104600162B publication Critical patent/CN104600162B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0008Devices characterised by their operation having p-n or hi-lo junctions
    • H01L33/0012Devices characterised by their operation having p-n or hi-lo junctions p-i-n devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/14Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method characterised by the seed, e.g. its crystallographic orientation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/025Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/183Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/186Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02414Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0008Devices characterised by their operation having p-n or hi-lo junctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • H01L33/145Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure with a current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Led Devices (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明公开了一种基于LAO衬底的非极性蓝光LED外延片及其制备方法,包括如下步骤:a)采用LAO衬底,选取晶体取向,并对LAO衬底进行表面清洁处理;b)对LAO衬底进行退火处理,并在LAO衬底表面形成AlN籽晶层;c)在LAO衬底上采用金属有机化合物化学气相淀积依次形成非极性m面GaN缓冲层、非极性非掺杂u‐GaN层、非极性n型掺杂GaN薄膜、非极性InGaN/GaN量子阱、非极性m面AlGaN电子阻挡层和非极性p型掺杂GaN薄膜。本发明提供的基于LAO衬底的非极性蓝光LED外延片及其制备方法,具有缺陷密度低、结晶质量好,发光性能好的优点,且制备成本低廉。

Description

基于LAO衬底的非极性蓝光LED外延片的制备方法
技术领域
本发明涉及一种LED外延片及其制备方法,尤其涉及一种基于LAO衬底的非极性蓝光LED外延片及其制备方法。
背景技术
目前LED蓝光外延片衬底主要为蓝宝石。基于蓝宝石衬底的LED技术存在两个严峻的问题。首先,蓝宝石与GaN晶格的失配率高达17%,如此高的晶格失配使得蓝宝石上的LED外延片有很高的缺陷密度,大大影响了LED芯片的发光效率。其次,蓝宝石衬底价格十分昂贵,使得氮化物LED生产成本很高。
LED芯片的发光效率不够高的另外一个主要原因是由于目前广泛使用的GaN基LED具有极性。目前制造高效LED器件最为理想的材料是GaN。GaN为密排六方晶体结构,其晶面分为极性面c面[(0001)面]和非极性面a面[(11‐20)面]及m面[(1‐100)面]。目前,GaN基LED大都基于GaN的极性面构建而成。在极性面GaN上,Ga原子集合和N原子集合的质心不重合,从而形成电偶极子,产生自发极化场和压电极化场,进而引起量子束缚斯塔克效应(Quantum‐confinedStarkerEffect,QCSE),使电子和空穴分离,载流子的辐射复合效率降低,最终影响LED的发光效率,并造成LED发光波长的不稳定。
发明内容
本发明所要解决的技术问题是提供一种基于LAO衬底的非极性蓝光LED外延片及其制备方法,具有缺陷密度低、结晶质量好,发光性能好的优点,且制备成本低廉。
本发明为解决上述技术问题而采用的技术方案是提供一种基于LAO衬底的非极性蓝光LED外延片,包括衬底,其中,所述衬底为LAO衬底,所述LAO衬底上依次设置有缓冲层、第一非掺杂层、第一掺杂层、量子阱层、电子阻挡层和第二掺杂层。
上述的基于LAO衬底的非极性蓝光LED外延片,其中,所述缓冲层为非极性m面GaN缓冲层,所述第一非掺杂层为非极性非掺杂u‐GaN层,所述第一掺杂层为非极性n型掺杂GaN薄膜,所述量子阱层为非极性InGaN/GaN量子阱层,所述电子阻挡层为非极性m面AlGaN电子阻挡层,所述第二掺杂层为非极性p型掺杂GaN薄膜。
本发明为解决上述技术问题海提供一种基于LAO衬底的非极性蓝光LED外延片的制备方法,包括如下步骤:a)采用LAO衬底,选取晶体取向,并对LAO衬底进行表面清洁处理;b)对LAO衬底进行退火处理,并在LAO衬底表面形成AlN籽晶层;c)在LAO衬底上采用金属有机化合物化学气相淀积依次形成非极性m面GaN缓冲层、非极性非掺杂u‐GaN层、非极性n型掺杂GaN薄膜、非极性InGaN/GaN量子阱、非极性m面AlGaN电子阻挡层和非极性p型掺杂GaN薄膜。
上述的基于LAO衬底的非极性蓝光LED外延片的制备方法,其中,所述步骤b)包括如下过程:将LAO衬底在900~1200℃下高温烘烤1~4小时后空冷至室温,然后通入N2等离子体保温30~80分钟,在LAO衬底表面采用射频等离子体增强有机金属化学气相淀积形成AlN籽晶层,N等离子体的流量为40~90sccm,产生等离子体氮的射频功率为200~500W。
上述的基于LAO衬底的非极性蓝光LED外延片的制备方法,其中,所述步骤c)中非极性m面GaN缓冲层的形成过程如下:将LAO衬底温度降为400~800℃,通入TMGa与N等离子体,控制反应室压力为400~700torr、N等离子体的流量为40~90sccm,产生等离子体氮的射频功率为200~700W,Ⅴ/Ⅲ比为800~1200。
上述的基于LAO衬底的非极性蓝光LED外延片的制备方法,其中,所述步骤c)中非极性非掺杂u‐GaN层的形成过程如下:控制LAO衬底温度为1000~1500℃,通入TMGa,控制反应室压力为400torr,Ⅴ/Ⅲ比为180。
上述的基于LAO衬底的非极性蓝光LED外延片的制备方法,其中,所述步骤c)中非极性n型掺杂GaN薄膜的形成过程如下:控制LAO衬底温度为1000~1300℃,通入TMGa和SiH4,保持SiH4的流量为60~100sccm,控制反应室压力为240torr,Ⅴ/Ⅲ比为160,掺杂电子浓度为1.0×1017~5.3×1019cm‐3;
上述的基于LAO衬底的非极性蓝光LED外延片的制备方法,其中,所述步骤c)中非极性InGaN/GaN量子阱的形成过程如下:
形成垒层:控制LAO衬底温度为750~950℃,关闭H2,通入TEGa与氨气,控制反应室压力为200torr,Ⅴ/Ⅲ比为986,厚度为10~15nm;
形成阱层,控制LAO衬底温度为750~950℃,关闭H2,通入TEGa、TMIn与氨气,控制反应室压力为200torr,Ⅴ/Ⅲ比为1439,厚度为2~4nm。
上述的基于LAO衬底的非极性蓝光LED外延片的制备方法,其中,所述步骤c)中非极性m面AlGaN电子阻挡层的形成过程如下:将LAO衬底温度升至900~1050℃,通入TMGa与氨气,控制反应室压力为200torr,Ⅴ/Ⅲ比为986。
上述的基于LAO衬底的非极性蓝光LED外延片的制备方法,其中,所述步骤c)中非极性p型掺杂GaN薄膜的形成过程如下:控制LAO衬底温度为900~1100℃,通入TMGa、CP2Mg与氨气,保持CP2Mg的流量为250~450sccm,控制反应室压力为200torr,Ⅴ/Ⅲ比为1000~1250,掺杂空穴浓度1.0×1016~2.2×1018cm‐3。
本发明对比现有技术有如下的有益效果:本发明提供的基于LAO衬底的非极性蓝光LED外延片及其制备方法,通过采用LAO衬底,并在LAO衬底上依次设置缓冲层、第一非掺杂层、第一掺杂层、量子阱层、电子阻挡层和第二掺杂层,具有缺陷密度低、结晶质量好,发光性能好的优点,且制备成本低廉。
附图说明
图1为本发明基于LAO衬底的非极性蓝光LED外延片结构示意图;
图2为本发明的用于LAO衬底的非极性蓝光LED外延片的制备装置结构示意图;
图3为本发明基于LAO衬底的非极性蓝光LED外延片制备流程示意图;
图4为本发明生长在LAO衬底(001)面上的非极性蓝光LED外延片的XRD测试图;
图5为本发明生长在LAO衬底上的非极性m面蓝光LED外延片的在温度为室温下PL谱测试图;
图6为本发明生长在LAO衬底上的非极性m面蓝光LED外延片的在温度为室温下EL谱测试图。
具体实施方式
下面结合附图和实施例对本发明作进一步的描述。
图1为本发明基于LAO衬底的非极性蓝光LED外延片结构示意图。
请参见图1,本发明提供的基于LAO衬底的非极性蓝光LED外延片,包括衬底,其中,所述衬底为LAO衬底,所述LAO衬底上依次设置有缓冲层、第一非掺杂层、第一掺杂层、量子阱层、电子阻挡层和第二掺杂层。本发明的生长在LAO衬底上的非极性蓝光LED外延片,所述LAO衬底又称镧铝氧化物衬底,由La,Al,O元素组成,分子式为LaAlxOy。如图1所示,本发明提供的非极性蓝光LED外延片包括由下至上依次排列的LAO衬底10、非极性m面GaN缓冲层11、非极性非掺杂u‐GaN层12、非极性n型掺杂GaN薄膜13、非极性InGaN/GaN量子阱层14、非极性m面AlGaN电子阻挡层15、非极性p型掺杂GaN薄膜16。
图2为本发明的用于LAO衬底的非极性蓝光LED外延片的制备装置结构示意图。
请继续参见图2,20、21分别为NH3和SiH4,其作用是提供N和Si;22是H2,其作用是作为载气,输送Cp2Mg、TMGa、TMIn;23、24、25分别是Cp2Mg、TMGa、TMIn,其作用是提供LED生长所需的Mg、Ga、In;26是机械手,用于输送衬底和样品;27是射频感应加热器,用来对衬底加热及控温;28是石墨盘,用于承载LAO衬底;29是反应腔,各种反应气体发生化学反应生成LED的腔体;30是喷头,反应气体充分混合后均匀喷射到衬底表面的装置;31是射频等离子源装置,用于提供活性N;32‐40是阀门,用于控制各种管道的气体的输送状态。MFC是流量控制器,用于控制气体的流量,从而满足生长的需求。
图3为本发明基于LAO衬底的非极性蓝光LED外延片制备流程示意图。
请继续参见图3,本发明的生长在LAO衬底上的非极性蓝光LED外延片的制备方法,具体包括以下步骤:
步骤S1:采用LAO衬底,选取晶体取向,并对LAO衬底进行表面清洁处理;
步骤S2:对LAO衬底进行退火处理,并在LAO衬底表面形成AlN籽晶层;
步骤S3:在LAO衬底上采用金属有机化合物化学气相淀积依次形成非极性m面GaN缓冲层、非极性非掺杂u‐GaN层、非极性n型掺杂GaN薄膜、非极性InGaN/GaN量子阱、非极性m面AlGaN电子阻挡层和非极性p型掺杂GaN薄膜。
下面给出一个具体实施例,制作步骤及工艺条件如下:
(1)采用LAO衬底,选取晶体取向;
(2)对衬底进行表面清洁处理;
(3)对衬底进行退火处理:将衬底在900‐1200℃下高温烘烤1~4h后空冷至室温,然后通入N2等离子体保温30~80分钟,在衬底表面形成AlN籽晶层,为GaN薄膜的生长提供模板,N等离子体的流量为40~90sccm,产生等离子体氮的射频功率为200~500W;
(4)采用射频等离子体(RF)增强有机金属化学气相淀积(MOCVD)生长非极性m面GaN缓冲层,工艺条件为:将衬底温度降为400~800℃,通入TMGa与N等离子体,反应室压力为400~700torr、N等离子体的流量为40~90sccm,产生等离子体氮的射频功率为200~700W,Ⅴ/Ⅲ比为800~1200;
(5)采用MOCVD工艺生长非极性非掺杂u‐GaN层,工艺条件为:衬底温度为1000~1500℃,通入TMGa,反应室压力为400torr,Ⅴ/Ⅲ比为180;
(6)采用MOCVD工艺生长非极性n型掺杂GaN薄膜,工艺条件为:衬底温度为1000~1300℃,通入TMGa和SiH4,保持SiH4的流量为60~100sccm,反应室压力为240torr,Ⅴ/Ⅲ比为160;掺杂电子浓度1.0×1017~5.3×1019cm‐3;
(7)采用MOCVD工艺生长非极性InGaN/GaN量子阱,工艺条件为:形成垒层,衬底温度为750~950℃,关闭H2,通入TEGa与氨气,反应室压力为200torr,Ⅴ/Ⅲ比为986,厚度为10~15nm;形成阱层,衬底温度为750~950℃,关闭H2,通入TEGa、TMIn与氨气,反应室压力为200torr,Ⅴ/Ⅲ比为1439,厚度为2~4nm;
(8)采用MOCVD工艺生长非极性m面AlGaN电子阻挡层,工艺条件为:衬底温度升至900~1050℃,通入TMGa与氨气,反应室压力为200torr,Ⅴ/Ⅲ比为986;
(9)采用MOCVD工艺生长非极性p型掺杂GaN薄膜,工艺条件为:衬底温度为900~1100℃,通入TMGa、CP2Mg与氨气,保持CP2Mg的流量为250~450sccm,反应室压力为200torr,Ⅴ/Ⅲ比为1000~1250;掺杂空穴浓度1.0×1016‐2.2×1018cm‐3。
图4为本发明生长在LAO衬底(001)面上的非极性蓝光LED外延片的XRD测试图。
由图4可见,本发明测试得到LED外延片×射线回摆曲线的半峰宽(FWHM)值,其半峰宽(FWHM)值低于0.1°,表明本发明制备的非极性蓝光LED外延片无论是在缺陷密度还是在结晶质量,都具有非常好的性能。
图5为本发明生长在LAO衬底上的非极性m面蓝光LED外延片的在温度为室温下PL谱测试图。
由图5可见,本发明温度为293K下PL谱测试得到发光峰波长为460nm,半峰宽为23nm。这表明本发明制备的非极性GaN薄膜在光学性质上具有非常好的性能。
图6为本发明生长在LAO衬底上的非极性m面蓝光LED外延片的在温度为室温下EL谱测试图。
由图6可见,温度为293K下EL谱测试得到发光峰波长为461nm,半峰宽为22nm,输出功率为7.8mw20mA。表明本发明制备的非极性GaN薄膜在电学性质上具有非常好的性能。
综上所述,本发明提供的基于LAO衬底的非极性蓝光LED外延片及其制备方法,通过采用LAO衬底,并在LAO衬底上依次设置非极性m面GaN缓冲层、非极性非掺杂GaN层、非极性n型掺杂GaN薄膜、非极性InGaN/GaN量子阱层、非极性m面AlGaN电子阻挡层和非极性p型掺杂GaN薄膜。与现有技术相比,本发明具有生长工艺简单,制备成本低廉的优点,且制备的非极性蓝光LED外延片缺陷密度低、结晶质量好,电学、光学性能好。
虽然本发明已以较佳实施例揭示如上,然其并非用以限定本发明,任何本领域技术人员,在不脱离本发明的精神和范围内,当可作些许的修改和完善,因此本发明的保护范围当以权利要求书所界定的为准。

Claims (8)

1.一种基于LAO衬底的非极性蓝光LED外延片的制备方法,所述LED外延片包括衬底,所述衬底为LAO衬底,所述LAO衬底上依次设置有缓冲层、第一非掺杂层、第一掺杂层、量子阱层、电子阻挡层和第二掺杂层,所述缓冲层为非极性m面GaN缓冲层,所述第一非掺杂层为非极性非掺杂u-GaN层,所述第一掺杂层为非极性n型掺杂GaN薄膜,所述量子阱层为非极性InGaN/GaN量子阱层,所述电子阻挡层为非极性m面AlGaN电子阻挡层,所述第二掺杂层为非极性p型掺杂GaN薄膜;其特征在于,所述制备方法包括如下步骤:
a)采用LAO衬底,选取晶体取向,并对LAO衬底进行表面清洁处理;
b)对LAO衬底进行退火处理,并在LAO衬底表面形成AlN籽晶层;
c)在LAO衬底上采用金属有机化合物化学气相淀积依次形成非极性m面GaN缓冲层、非极性非掺杂u-GaN层、非极性n型掺杂GaN薄膜、非极性InGaN/GaN量子阱、非极性m面AlGaN电子阻挡层和非极性p型掺杂GaN薄膜。
2.如权利要求1所述的基于LAO衬底的非极性蓝光LED外延片的制备方法,其特征在于,所述步骤b)包括如下过程:
将LAO衬底在900~1200℃下高温烘烤1~4小时后空冷至室温,然后通入N2等离子体保温30~80分钟,在LAO衬底表面采用射频等离子体增强有机金属化学气相淀积形成AlN籽晶层,N等离子体的流量为40~90sccm,产生等离子体氮的射频功率为200~500W。
3.如权利要求1所述的基于LAO衬底的非极性蓝光LED外延片的制备方法,其特征在于,所述步骤c)中非极性m面GaN缓冲层的形成过程如下:将LAO衬底温度降为400~800℃,通入TMGa与N等离子体,控制反应室压力为400~700torr、N等离子体的流量为40~90sccm,产生等离子体氮的射频功率为200~700W,Ⅴ/Ⅲ比为800~1200。
4.如权利要求1所述的基于LAO衬底的非极性蓝光LED外延片的制备方法,其特征在于,所述步骤c)中非极性非掺杂u-GaN层的形成过程如下:控制LAO衬底温度为1000~1500℃,通入TMGa,控制反应室压力为400torr,Ⅴ/Ⅲ比为180。
5.如权利要求1所述的基于LAO衬底的非极性蓝光LED外延片的制备方法,其特征在于,所述步骤c)中非极性n型掺杂GaN薄膜的形成过程如下:控制LAO衬底温度为1000~1300℃,通入TMGa和SiH4,保持SiH4的流量为60~100sccm,控制反应室压力为240torr,Ⅴ/Ⅲ比为160,掺杂电子浓度为1.0×1017~5.3×1019cm-3。
6.如权利要求1所述的基于LAO衬底的非极性蓝光LED外延片的制备方法,其特征在于,所述步骤c)中非极性InGaN/GaN量子阱的形成过程如下:
形成垒层:控制LAO衬底温度为750~950℃,关闭H2,通入TEGa与氨气,控制反应室压力为200torr,Ⅴ/Ⅲ比为986,厚度为10~15nm;
形成阱层,控制LAO衬底温度为750~950℃,关闭H2,通入TEGa、TMIn与氨气,控制反应室压力为200torr,Ⅴ/Ⅲ比为1439,厚度为2~4nm。
7.如权利要求1所述的基于LAO衬底的非极性蓝光LED外延片的制备方法,其特征在于,所述步骤c)中非极性m面AlGaN电子阻挡层的形成过程如下:将LAO衬底温度升至900~1050℃,通入TMGa与氨气,控制反应室压力为200torr,Ⅴ/Ⅲ比为986。
8.如权利要求1所述的基于LAO衬底的非极性蓝光LED外延片的制备方法,其特征在于,所述步骤c)中非极性p型掺杂GaN薄膜的形成过程如下:控制LAO衬底温度为900~1100℃,通入TMGa、CP2Mg与氨气,保持CP2Mg的流量为250~450sccm,控制反应室压力为200torr,Ⅴ/Ⅲ比为1000~1250,掺杂空穴浓度1.0×1016~2.2×1018cm-3。
CN201410112151.6A 2014-03-24 2014-03-24 基于lao衬底的非极性蓝光led外延片的制备方法 Active CN104600162B (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN201410112151.6A CN104600162B (zh) 2014-03-24 2014-03-24 基于lao衬底的非极性蓝光led外延片的制备方法
RU2016138668A RU2643176C1 (ru) 2014-03-24 2015-03-23 Неполярная светодиодная эпитаксиальная пластина синего свечения на подложке из lao и способ ее получения
JP2016574326A JP6326154B2 (ja) 2014-03-24 2015-03-23 LaAlxOy基板に基づく非極性青色LEDエピタキシャルウェハの製造方法
PCT/CN2015/074828 WO2015144023A1 (zh) 2014-03-24 2015-03-23 基于lao衬底的非极性蓝光led外延片及其制备方法
US15/128,639 US9978908B2 (en) 2014-03-24 2015-03-23 Non-polar blue light LED epitaxial wafer based on LAO substrate and preparation method thereof
CA2942999A CA2942999C (en) 2014-03-24 2015-03-23 Non-polar blue led epitaxial wafer based on lao substrate and preparation method thereof
KR1020167026454A KR20160130411A (ko) 2014-03-24 2015-03-23 Lao 기판에 기반한 무극성 블루 led 에피 웨이퍼 및 그 제조 방법
EP15769396.1A EP3107128B1 (en) 2014-03-24 2015-03-23 Preparation method of a non-polar blue led epitaxial wafer based on lao substrate
PL15769396T PL3107128T3 (pl) 2014-03-24 2015-03-23 Sposób wytwarzania niepolarnej płytki epitaksjalnej niebieskiej led bazującej na podłożu lao

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410112151.6A CN104600162B (zh) 2014-03-24 2014-03-24 基于lao衬底的非极性蓝光led外延片的制备方法

Publications (2)

Publication Number Publication Date
CN104600162A CN104600162A (zh) 2015-05-06
CN104600162B true CN104600162B (zh) 2016-01-27

Family

ID=53125803

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410112151.6A Active CN104600162B (zh) 2014-03-24 2014-03-24 基于lao衬底的非极性蓝光led外延片的制备方法

Country Status (9)

Country Link
US (1) US9978908B2 (zh)
EP (1) EP3107128B1 (zh)
JP (1) JP6326154B2 (zh)
KR (1) KR20160130411A (zh)
CN (1) CN104600162B (zh)
CA (1) CA2942999C (zh)
PL (1) PL3107128T3 (zh)
RU (1) RU2643176C1 (zh)
WO (1) WO2015144023A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104600162B (zh) 2014-03-24 2016-01-27 上海卓霖半导体科技有限公司 基于lao衬底的非极性蓝光led外延片的制备方法
CN106299041A (zh) * 2016-08-29 2017-01-04 华南理工大学 生长在r面蓝宝石衬底上的非极性LED外延片的制备方法及应用
CN107170862B (zh) * 2017-06-08 2019-03-22 中国科学院半导体研究所 一种非极性面量子点发光二极管及其制备方法
CN107887301B (zh) * 2017-09-27 2020-07-07 华灿光电(浙江)有限公司 一种发光二极管外延片的制造方法
CN108538972A (zh) * 2018-04-28 2018-09-14 华南理工大学 一种图形化Si衬底上非极性紫外LED及其制备与应用
CN111276583A (zh) * 2020-02-12 2020-06-12 广东省半导体产业技术研究院 一种GaN基LED外延结构及其制备方法、发光二极管
CN113571607B (zh) * 2021-06-01 2022-08-12 华灿光电(浙江)有限公司 高发光效率的发光二极管外延片及其制造方法
CN114875492B (zh) * 2022-04-18 2023-08-22 华南理工大学 生长在LaAlO3衬底上的非极性p型GaN薄膜外延结构及其制备方法
CN116936700B (zh) * 2023-09-15 2023-12-22 江西兆驰半导体有限公司 发光二极管外延片及其制备方法、发光二极管
CN117525232B (zh) * 2024-01-03 2024-03-29 江西兆驰半导体有限公司 发光二极管外延片及其制备方法、发光二极管

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1757161A (zh) * 2003-03-03 2006-04-05 克里公司 基于氮化物的集成声波器件及其制造方法
TWM314427U (en) * 2006-08-29 2007-06-21 Sfi Electronics Technology Inc LED assembly with having ESD protection capacity
CN203850326U (zh) * 2014-03-24 2014-09-24 上海卓霖信息科技有限公司 基于lao衬底的非极性蓝光led外延片

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07201745A (ja) * 1993-12-28 1995-08-04 Hitachi Cable Ltd 半導体ウェハ及びその製造方法
JP2002029896A (ja) 2000-07-05 2002-01-29 National Institute Of Advanced Industrial & Technology 窒化物半導体の結晶成長方法
JP2005223165A (ja) 2004-02-06 2005-08-18 Sanyo Electric Co Ltd 窒化物系発光素子
US7285799B2 (en) * 2004-04-21 2007-10-23 Philip Lumileds Lighting Company, Llc Semiconductor light emitting devices including in-plane light emitting layers
TWI377602B (en) * 2005-05-31 2012-11-21 Japan Science & Tech Agency Growth of planar non-polar {1-100} m-plane gallium nitride with metalorganic chemical vapor deposition (mocvd)
CN100399590C (zh) 2005-06-15 2008-07-02 上海蓝光科技有限公司 Mocvd生长氮化物发光二极管结构外延片的方法
CN100344006C (zh) 2005-10-13 2007-10-17 南京大学 一种m面InGaN/GaN量子阱LED器件结构的生长方法
JP4765751B2 (ja) * 2006-04-26 2011-09-07 三菱化学株式会社 窒化物半導体素子の製造方法
JP4770580B2 (ja) * 2006-05-15 2011-09-14 三菱化学株式会社 窒化物半導体素子の製造方法
TWI533351B (zh) * 2006-12-11 2016-05-11 美國加利福尼亞大學董事會 高效能非極性第三族氮化物光學裝置之金屬有機化學氣相沈積生長
JP4962130B2 (ja) 2007-04-04 2012-06-27 三菱化学株式会社 GaN系半導体発光ダイオードの製造方法
JP2009016467A (ja) 2007-07-03 2009-01-22 Sony Corp 窒化ガリウム系半導体素子及びこれを用いた光学装置並びにこれを用いた画像表示装置
JP2009283785A (ja) 2008-05-23 2009-12-03 Showa Denko Kk Iii族窒化物半導体積層構造体およびその製造方法
US8435816B2 (en) 2008-08-22 2013-05-07 Lattice Power (Jiangxi) Corporation Method for fabricating InGaAlN light emitting device on a combined substrate
TWI425559B (zh) 2009-09-17 2014-02-01 Univ Nat Chiao Tung 以單晶氧化物作為基板成長纖鋅礦結構半導體非極性m面磊晶層之方法
CN101901761B (zh) 2010-06-24 2011-10-19 西安电子科技大学 基于γ面LiAlO2衬底上非极性m面GaN的MOCVD生长方法
TWI433231B (zh) * 2010-12-02 2014-04-01 Epistar Corp 一種半導體元件的製作方法
US20120171797A1 (en) 2010-12-08 2012-07-05 Applied Materials, Inc. Seasoning of deposition chamber for dopant profile control in led film stacks
JP5558454B2 (ja) 2011-11-25 2014-07-23 シャープ株式会社 窒化物半導体発光素子および窒化物半導体発光素子の製造方法
JP5468709B2 (ja) 2012-03-05 2014-04-09 パナソニック株式会社 窒化物半導体発光素子、光源及びその製造方法
TW201337050A (zh) 2012-03-14 2013-09-16 Univ Nat Chiao Tung 纖鋅礦結構材料之非極性晶面
CN203085627U (zh) * 2012-12-11 2013-07-24 华南理工大学 生长在LiGaO2衬底上的非极性蓝光LED外延片
CN103268911B (zh) 2013-04-22 2016-05-18 浙江大学 p-NiO/n-ZnO异质结发光器件及其制备方法
CN103296159B (zh) 2013-05-31 2015-09-16 华南理工大学 生长在铝酸锶钽镧衬底上的InGaN/GaN多量子阱及制备方法
CN103311100A (zh) 2013-06-14 2013-09-18 西安电子科技大学 含有非极性m面GaN缓冲层的InN半导体器件的制备方法
CN104600162B (zh) 2014-03-24 2016-01-27 上海卓霖半导体科技有限公司 基于lao衬底的非极性蓝光led外延片的制备方法
CN203760505U (zh) 2014-03-24 2014-08-06 上海卓霖信息科技有限公司 用于lao衬底的非极性蓝光led外延片的制备装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1757161A (zh) * 2003-03-03 2006-04-05 克里公司 基于氮化物的集成声波器件及其制造方法
TWM314427U (en) * 2006-08-29 2007-06-21 Sfi Electronics Technology Inc LED assembly with having ESD protection capacity
CN203850326U (zh) * 2014-03-24 2014-09-24 上海卓霖信息科技有限公司 基于lao衬底的非极性蓝光led外延片

Also Published As

Publication number Publication date
EP3107128A4 (en) 2016-12-21
EP3107128A1 (en) 2016-12-21
US9978908B2 (en) 2018-05-22
JP2017513236A (ja) 2017-05-25
RU2643176C1 (ru) 2018-01-31
CN104600162A (zh) 2015-05-06
EP3107128B1 (en) 2018-04-18
US20170110627A1 (en) 2017-04-20
KR20160130411A (ko) 2016-11-11
CA2942999C (en) 2019-01-15
JP6326154B2 (ja) 2018-05-16
PL3107128T3 (pl) 2018-09-28
WO2015144023A1 (zh) 2015-10-01
CA2942999A1 (en) 2015-10-01

Similar Documents

Publication Publication Date Title
CN104600162B (zh) 基于lao衬底的非极性蓝光led外延片的制备方法
US11011676B2 (en) PVD buffer layers for LED fabrication
CN106784210B (zh) 一种发光二极管的外延片及其制作方法
CN100532638C (zh) 生长非极性面GaN薄膜材料的方法及其用途
CN103337573A (zh) 半导体发光二极管的外延片及其制造方法
CN104051586A (zh) 一种GaN基发光二极管外延结构及其制备方法
CN109411573B (zh) 一种led外延结构生长方法
CN103779465B (zh) Led多量子阱结构装置及生长方法
CN103904177A (zh) 发光二极管外延片及其制造方法
CN101901757B (zh) 基于a面6H-SiC衬底上非极性a面GaN的MOCVD生长方法
CN203398149U (zh) 一种新型GaN基发光二极管外延结构
CN106972083B (zh) 一种发光二极管的外延片的制备方法
CN113410353B (zh) 发光二极管外延片及其制备方法
CN203850326U (zh) 基于lao衬底的非极性蓝光led外延片
CN203760505U (zh) 用于lao衬底的非极性蓝光led外延片的制备装置
CN110931605A (zh) 一种led外延接触层的生长方法
CN117577748A (zh) 发光二极管外延片及其制备方法、led
CN101901758A (zh) 基于m面SiC衬底的非极性m面GaN薄膜的MOCVD生长方法
CN115084329B (zh) 一种应用于Si衬底上的LED外延片及其生长方法
CN104966767B (zh) 一种GaN基发光二极管外延片的生长方法
JP2003332234A (ja) 窒化層を有するサファイア基板およびその製造方法
CN112736168A (zh) 非极性GaN基微型发光二极管及制备方法
JP2020136683A (ja) 半導体装置及びその製造方法
CN103022294B (zh) 一种蓝宝石外延片结构及其制造方法
JP2003212695A (ja) 窒化物系化合物半導体ウェハの製造方法、および窒化物系化合物半導体ウェハ、ならびに窒化物系半導体デバイス

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Free format text: FORMER OWNER: JIANGSU ZHUONING PHOTOELECTRON CO., LTD.

Effective date: 20150515

C41 Transfer of patent application or patent right or utility model
C53 Correction of patent of invention or patent application
CB03 Change of inventor or designer information

Inventor after: Cai Zhuoran

Inventor after: Gao Hai

Inventor after: Liu Zhi

Inventor after: Yin Xianglin

Inventor after: Liu Zhengwei

Inventor after: Zhang Xinyao

Inventor after: Zhou Huanyu

Inventor before: Cai Zhuoran

Inventor before: Gao Hai

Inventor before: Liu Zhi

Inventor before: Yin Xianglin

Inventor before: Liu Zhengwei

COR Change of bibliographic data

Free format text: CORRECT: INVENTOR; FROM: CAI ZHUORAN GAO HAI LIU ZHI YIN XIANGLIN LIU ZHENGWEI TO: CAI ZHUORAN GAO HAI LIU ZHI YIN XIANGLIN LIU ZHENGWEI ZHANG XINYAO ZHOU HUANYU

TA01 Transfer of patent application right

Effective date of registration: 20150515

Address after: 200083 No. 196 Ouyang Road, Shanghai, Hongkou District 10-701

Applicant after: SHANGHAI CHIPTEK TECHNOLOGY Co.,Ltd.

Address before: 200083 No. 196 Ouyang Road, Shanghai, Hongkou District 10-701

Applicant before: SHANGHAI CHIPTEK TECHNOLOGY Co.,Ltd.

Applicant before: JIANGSU ZHUONING OPTOELECTRONICS Co.,Ltd.

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20150929

Address after: Qingpu District of Shanghai City Hua Pu Road 201799 No. 500 building 6 A zone, 1 floor room 131

Applicant after: SHANGHAI CHIPTEK SEMICONDUCTOR TECHNOLOGY Co.,Ltd.

Address before: 200083 No. 196 Ouyang Road, Shanghai, Hongkou District 10-701

Applicant before: SHANGHAI CHIPTEK TECHNOLOGY Co.,Ltd.

C14 Grant of patent or utility model
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: Qingpu District of Shanghai City Hua Pu Road 201799 No. 500 building 6 A zone, 1 floor room 131

Patentee after: Shanghai Xi Xin Semiconductor Technology Co.,Ltd.

Address before: Qingpu District of Shanghai City Hua Pu Road 201799 No. 500 building 6 A zone, 1 floor room 131

Patentee before: SHANGHAI CHIPTEK SEMICONDUCTOR TECHNOLOGY Co.,Ltd.

PE01 Entry into force of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: Preparation method of LAO substrate nonpolar blue-light LED epitaxial wafer

Effective date of registration: 20170517

Granted publication date: 20160127

Pledgee: Bank of Shanghai Limited by Share Ltd North Branch

Pledgor: Shanghai Xi Xin Semiconductor Technology Co.,Ltd.

Registration number: 2017310000028

PC01 Cancellation of the registration of the contract for pledge of patent right
PC01 Cancellation of the registration of the contract for pledge of patent right

Date of cancellation: 20220826

Granted publication date: 20160127

Pledgee: Bank of Shanghai Limited by Share Ltd North Branch

Pledgor: Shanghai Xi Xin Semiconductor Technology Co.,Ltd.

Registration number: 2017310000028