TW201337050A - 纖鋅礦結構材料之非極性晶面 - Google Patents

纖鋅礦結構材料之非極性晶面 Download PDF

Info

Publication number
TW201337050A
TW201337050A TW101108690A TW101108690A TW201337050A TW 201337050 A TW201337050 A TW 201337050A TW 101108690 A TW101108690 A TW 101108690A TW 101108690 A TW101108690 A TW 101108690A TW 201337050 A TW201337050 A TW 201337050A
Authority
TW
Taiwan
Prior art keywords
epitaxial layer
polar
plane
substrate
vapor deposition
Prior art date
Application number
TW101108690A
Other languages
English (en)
Inventor
Li Chang
Yen-Teng Ho
Original Assignee
Univ Nat Chiao Tung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Chiao Tung filed Critical Univ Nat Chiao Tung
Priority to TW101108690A priority Critical patent/TW201337050A/zh
Priority to US13/798,882 priority patent/US8921851B2/en
Publication of TW201337050A publication Critical patent/TW201337050A/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/025Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/06Heating of the deposition chamber, the substrate or the materials to be evaporated
    • C30B23/066Heating of the material to be evaporated
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/08Epitaxial-layer growth by condensing ionised vapours
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/06Epitaxial-layer growth by reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/186Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02609Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本發明係有關於一種成長纖鋅礦結構之新穎非極性(□)面磊晶層之方法,其包括:提供一具有鈣鈦礦(Perovskite)之單晶氧化物;選擇該單晶氧化物的一平面作為一基板;在該基板上以氣相沉積法生長一具有纖鋅礦結構半導體之非極性(□)面磊晶層。本發明亦提供一種以前述方法成長之非極性(□)晶面之磊晶層。

Description

纖鋅礦結構材料之非極性晶面
本發明係關於一種單晶氧化物作為基板成長纖鋅礦結構半導體之非極性面磊晶層之方法,尤指一種成長具有寬能帶、低晶格不匹配度、及高熱穩定性之氧化鋅或III族氮化物之非極性(130)面磊晶層的方法。本發明亦提供一種具有非極性(130)面之磊晶層。
近來,由於氮化鎵(GaN)以及相關氮化物已成功地應用在藍光到紫外光之固態發光元件及雷射二極體等而備受矚目。該些氮化物屬六方晶系中纖鋅礦(wurtzite)晶體結構,其主要的成長方向係為沿著c軸[0001]生長,根據過去研究發現,沿著c軸生長的氮化鎵(GaN)會因鎵(Ga)及氮(N)原子呈面狀排列方式,產生極化效應(polarization effect)而衍生出內建電場,進而導致價電帶與導電帶之偏移(offset),使得發光量子效率降低。
因此,成長非極性晶面(non-polar plane),如m面(m-plane)及a面(a-plane)之GaN,以消除極化效應來提升固態發光元件之量子效率,現在成為產業界重要之發展方向。利用非極性晶面消除GaN量子井發光元件之自發極性以提昇元件之發光效率,目前已經具有許多優異的成果。
另一方面,氧化鋅(ZnO)因有較高之激子(exciton)結合能(60meV),因此在雷射應用上與氮化鎵或其類似III族氮化物同樣具有極大潛力。然而,ZnO與GaN材料之結構相同,均為纖鋅礦結構(wurtzite structure),亦需開發具有非極性面之晶面氧化鋅材料,以克服低發光量子效率之瓶頸。
過去文獻中,已發表了許多異質成長非極性晶面的GaN及ZnO研究。歸納得知,a面GaN及ZnO單晶可成功於r面藍寶石基板成長,而m面GaN及ZnO單晶則可於m面碳化矽基板、m面藍寶石、及γ-LiAlO2(100)基板上磊晶生長。然而,要成長非極性晶面之GaN及ZnO其可適用之基板選擇有限,並且所成長非極性晶面之GaN及ZnO品質受基板影響相當大。此外,過去文獻所發表之非極性晶面,除a面及m面之外,尚未發現可成長出其它的非極性晶面。
有鑑於此,若能成長出一種新的非極性晶面,且其結晶品質及材料特性更優於現有非極性a面及m面,對固態發光元件應用領域之發展,將有莫大助益。
本發明之主要目的係在提供一種成長纖鋅礦結構之新穎非極性(130)面磊晶層之方法,藉由單晶氧化物作為基板,並以基板上之一特定切面成長得到此非極性(130)晶面,可獲得具有較佳之光學性質之非極性(130)晶面,俾能降低基板與磊晶層間晶格不匹配度,且該基板在高溫時仍能維持熱穩定性,並適用於成長氧化鋅或III族氮化物磊晶層。
本發明之另一目的係在提供一種具有非極性(130)晶面之磊晶層,藉以避免因磊晶層中原子排列產生極化效應導致價電帶與導電帶之偏移而使發光量子效率降低之情形發生,且此非極性(130)晶面之光學特性更優於現有之a面及m面氧化鋅單晶或III族氮化物。
為達成上述目的,本發明係提供一種以單晶氧化物作為基板成長非極性(130)面磊晶層之方法,其包括:提供一具有鈣鈦礦(Perovskite)之單晶氧化物;選擇該單晶氧化物的一平面作為一基板;在該基板上以氣相沉積法生長一具有纖鋅礦結構半導體之非極性(130)面磊晶層。
本發明亦提供一種具有非極性(130)面之磊晶層,其係以下列方法而得,包括:提供一具有鈣鈦礦結構之單晶氧化物;選擇該單晶氧化物之一平面作為一基板;以及在該基板上以氣相沉積法生長一具有纖鋅礦結構半導體之非極性(130)面磊晶層。
本發明中,該平面係為該單晶氧化物之晶面或截切面,其中,該平面係密勒指數為{114}之平面或其它切面能成長出纖鋅礦結構半導體非極性(130)面磊晶層者。相較於過去研究指出在鈣鈦礦結構單晶氧化物之(001)平面上,由於表面晶格對稱的原子構形(symmetric atomic configuration),使得成長出非極性a面氧化鋅具有雙相的結構,然而,由於相邊界(domain boundary)效應會引起許多缺陷,使其光學特性劣化。因此,本發明根據偏切基板的觀念,透過偏切方式造成單晶氧化物晶體表面呈現不對稱的原子構型(asymmetric atomic configuration),進而在該單晶氧化物之特定切面上,磊晶成長單相(single domain)的非極性晶面之纖鋅礦結構半導體,即如本發明中,以單晶氧化物之(114)晶面上成長出非極性(130)面之氧化鋅或III族氮化物磊晶層。
再者,本發明中之具有鈣鈦礦結構之單晶氧化物之種類並未受到限制。其中,單晶氧化物較佳可為鋁酸鑭(LaAlO3)、鎳酸鑭(LaNiO3)、鎵酸鑭(LaGaO3)、鈦酸鍶(SrTiO3)、鑭鍶鋁鉭氧((LaSr)(AlTa)O3)、鋁酸鐠(PrAlO3)、或鋁酸釹(NdAlO3)之含有鈣鈦礦結構之氧化物。最佳可為鋁酸鑭(LaAlO3),由於鋁酸鑭單晶氧化物之熔點高達2450K,除兼具熱穩定度佳及可抑制其界面層生成之優點外,鋁酸鑭單晶氧化物或氧化物層可使用2吋或以上之其他晶面或截切面作為基板來成長非極性(130)面磊晶層,其價格成本亦較傳統使用之基板便宜,增加其應用性。
在本發明中,形成非極性(130)面磊晶層可為氧化鋅、或III族氮化物。其中,該氧化鋅可更包括摻雜有鎂、鈣、鍶、鋇、鎘、鋁、鎵、銦、或其組合之合金,較佳可為氧化鋅(ZnO)、氧化鎂鋅(ZnMgO)、或氧化鎘鋅(ZnCdO)合金,最佳可為氧化鋅(ZnO)。另外,該III族氮化物可為氮化鎵、氮化銦、氮化鋁、氮化銦鎵、氮化鋁鎵、氮化鋁銦、或氮化鋁銦鎵。
此外,本發明中,本發明之在基板上生長該具有非極性(130)面磊晶層之方法並未受到限制,可使用物理氣相沉積法或化學氣相沉積法,較佳可為脈衝雷射鍍膜法、濺射法、電子束(熱)蒸鍍法、分子束磊晶法、或有機金屬化學氣相沉積法,最佳可為脈衝雷射鍍膜法。
根據本發明之方法,在基板上以氣相沉積法生長該非極性(130)面磊晶層之前,可更包括有一清潔該基板之步驟,較佳可使用熱丙酮(hot acetone)及異丙醇(isopryl alcohol)。
此外,本發明更提供一種光電元件,其特徵在於使用以上述方法成長出的具有非極性(130)面之磊晶層作為半導體材料。其中,該光電元件可為發光元件、偵檢元件、或光伏元件。尤其,固態照明產業之根基在於磊晶,本發明提供一種非極性晶面之磊晶技術,是未來開發高效能之固態照明元件之重要發展方向。因此,本發明所提出的新穎之非極性(130)面之磊晶層,藉由消除極化性以提高元件發光效率,並且有別於現有的非極性a面及m面磊晶層,而具有較佳的光學特性,將其應用在發光元件方面實具潛力。
本發明主要提出一種成長氧化鋅或III族氮化物之新穎非極性晶面,其係於一高熱穩定性之單晶氧化物之特定之晶面上,具體而言,在本發明之一態樣中,以鋁酸鑭(LaAlO3)之(114)晶面作為基板,成長並展示出新穎之非極性晶面(130)氧化鋅或三族氮化物的磊晶層。本發明之新穎非極性(130)晶面氧化鋅之提出,使得可應用之非極性晶面不限於過去文獻所發表之a面及m面,並且其應用領域不特別受到限制,可進一步應用於非極性晶面的ZnO或GaN固態發光元件。
以下係藉由特定的具體實施例說明本發明之實施方式,熟習此技藝之人士可由本說明書所揭示之內容輕易地了解本發明之其他優點與功效。本發明亦可藉由其他不同的具體實施例加以施行或應用,本說明書中的各項細節亦可針對不同觀點與應用,在不悖離本創作之精神下進行各種修飾與變更。
以下,將詳述本發明以單晶氧化物作為基板成長非極性(130)面磊晶層之方法。
實施例1 非極性(13 0)晶面氧化鋅之成長
首先,提供一具有鈣鈦礦結構之單晶氧化物,係使用一2吋之鋁酸鑭(LaAlO3)(簡稱LAO)單晶氧化物,其厚度約為0.5 nm。
接著,如圖1及圖2所示,圖1係為鋁酸鑭晶體之(114)切面示意圖,其中,偏切角θ約為19.47±1°;圖2係為鋁酸鑭晶體之(114)切面的表面氧原子排列關係示意圖。本實施例中,提供一特殊切面之鋁酸鑭(114)晶面,此偏切面由(001)面的對稱之晶格常數調整變成不對稱的(114)面後,其單元長度為5.364 x 11.367(如圖2所示),用其(114)晶面作為基板,先以熱丙酮及異丙醇清潔後,置入真空腔中(置入基板前,保持真空度為1x10-8 torr)。
再提供一靶材,其中該靶材係為一經熱壓之氧化鋅塊狀材料,若有需要,可於該氧化鋅塊狀材料摻雜鎂、鈣、鍶、鋇、鎘、鋁、鎵、銦、或其組合之合金於其中。在本實施例中,係使用純度99.99%之氧化鋅塊為靶材。
而後,使用雷射鍍膜法(DCA PLD-500脈衝雷射鍍膜系統,波長248 nm及3-5 Hz頻率之KrF準分子雷射),控制其背景氣壓維持於20 mtorr範圍以下之氧分壓環境中,持溫750℃並進行沉積30分鐘,以形成非極性(130)面氧化鋅磊晶層。具體而言,請參照圖3,係為本發明之氧化鋅之非極性(130)面示意圖。其中,可知垂直鋁酸鑭(114)面的軸係為[130]軸,且與a軸約夾16°,在本實施例中僅有單相(single domain)的(130)面氧化鋅磊晶在鋁酸鑭(114)平面之基板上成長。最後,經截面式電子顯微鏡繞射分析,證實經上述方法成長所得之晶面係為獨特的(130)面。並且,請參照圖4(a)及(b),圖4(a)係為氧化鋅(ZnO)成長於(114)鋁酸鑭(LaAlO3)之TEM截面影像圖;以及圖4(b)係為圖4(a)之擇區繞射圖(SAED)。其中,結果確認此非極性晶面為(130)面且其氧化鋅c軸方向平行於(114)LAO晶面上,即[0001]ZnO//[10]LAO
因此,此(130)晶面方向可以圖5(a)及5(b)所示加以說明,其中,圖5(a)係為纖鋅礦結構各平面之示意圖;圖5(b)係為纖鋅礦結構以c軸投影表示m軸、[130]軸、及a軸之方向。由此可知,(130)面係與a面(120)約夾16°。
實施例2 非極性(13 0)晶面III族氮化物之成長
在本實施例中除靶材為III族氮化物如氮化鎵外,其餘與實施例1相同。在本例中,係沉積III族氮化物如氮化鎵磊晶層。根據本實施例所成長之非極性m面III族氮化物如氮化鎵磊晶層亦可達成如實施例1之目的及功效。
此外,在本實施例中雖僅舉例III族氮化物如氮化鎵,然而可依所需,亦可依實施例1之方法選擇使用其他靶材之III族氮化物,如氮化銦、氮化鋁、氮化銦鎵、氮化鋁鎵、氮化鋁銦、或氮化鋁銦鎵等,亦可達成如實施例1之目的及功效。
試驗例1 非極性(13 0)晶面氧化鋅之光學特性
請參照圖6,係為具有非極性(130)晶面之氧化鋅之室溫光致螢光分析圖。由此可知氧化鋅非極性(130)晶面之光學特性,藉由室溫之光致螢光(PL)分析測得非極性(130)晶面之近能隙躍遷(near band edge emission)值,其係為3.29 eV,且半高寬在成長條件未優化下可達87.5 meV。此結果與一般之非極性a面或m面氧化鋅相較,具有更佳之光學特性表現。
因此,本實驗例中,為了同時磊晶層的均勻性,同時以一2吋樣品進行驗證,在中心、中間及邊緣三個點進行測試,其三個PL圖譜皆相近,結果顯示其均勻度佳,因此,在產業上的實際應用極具潛力。
如上述實施例及試驗結果所示,本發明主要在提供一種成長纖鋅礦結構之新穎非極性(130)面磊晶層之方法,藉由單晶氧化物作為基板,並以基板上之一特定切面成長得到此非極性(130)晶面,其可具有更優於現有之a面及m面之光學特性。此外,藉由該具有非極性(130)晶面之磊晶層,以避免因磊晶層中原子排列產生極化效應導致價電帶與導電帶之偏移而使發光量子效率降低之情形發生,也就是說,可藉消除極化效應來提升量子效率而大幅增加其發光量子效率,進一步應用於如發光元件中。
上述實施例僅係為了方便說明而舉例而已,本發明所主張之權利範圍自應以申請專利範圍所述為準,而非僅限於上述實施例。
圖1係為鋁酸鑭晶體之(114)切面示意圖。
圖2係為鋁酸鑭晶體之(114)切面的表面氧原子排列關係示意圖。
圖3係為本發明之氧化鋅之非極性(130)面示意圖。
圖4(a)係為具有非極性(130)晶面之氧化鋅成長於(114)鋁酸鑭(LaAlO3)之TEM截面影像圖。
圖4(b)係為圖4(a)之擇區繞射圖(SAED)。
圖5(a)係為纖鋅礦結構各平面之示意圖。
圖5(b)係為纖鋅礦結構以c軸投影表示m軸、[130]軸、及a軸之方向。
圖6係為具有非極性(130)晶面之氧化鋅之室溫光致螢光分析圖。

Claims (20)

  1. 一種以單晶氧化物作為基板成長非極性(130)面磊晶層之方法,其包括:提供一具有鈣鈦礦(Perovskite)之單晶氧化物;選擇該單晶氧化物的一平面作為一基板;在該基板上以氣相沉積法生長一具有纖鋅礦結構半導體之非極性(130)面磊晶層。
  2. 如申請專利範圍第1項所述之方法,其中,該單晶氧化物係為鋁酸鑭(LaAlO3)、鎳酸鑭(LaNiO3)、鎵酸鑭(LaGaO3)、鈦酸鍶(SrTiO3)、鑭鍶鋁鉭氧((LaSr)(AlTa)O3)、鋁酸鐠(PrAlO3)、或鋁酸釹(NdAlO3)之含有鈣鈦礦結構之氧化物。
  3. 如申請專利範圍第1項所述之方法,其中,該非極性(130)面磊晶層係為氧化鋅、或III族氮化物。
  4. 如申請專利範圍第3項所述之方法,其中,該氧化鋅更包括摻雜有鎂、鈣、鍶、鋇、鎘、鋁、鎵、銦、或其組合之複合物。
  5. 如申請專利範圍第3項所述之方法,其中,該III族氮化物係為氮化鎵、氮化銦、氮化鋁、氮化銦鎵、氮化鋁鎵、氮化鋁銦、或氮化鋁銦鎵複合物。
  6. 如申請專利範圍第1項所述之方法,其中,該平面係為該單晶氧化物之一晶面或一截切面。
  7. 如申請專利範圍第1項所述之方法,其中,該平面係密勒指數為{114}之平面或其它切面能成長出纖鋅礦結構半導體非極性(130)面磊晶層者。
  8. 如申請專利範圍第1項所述之方法,其中,該氣相沉積法係為物理氣相沉積法或化學氣相沉積法,包括脈衝雷射鍍膜法、濺射法、電子束(熱)蒸鍍法、分子束磊晶法、或有機金屬化學氣相沉積法。
  9. 如申請專利範圍第1項所述之方法,其中,在該基板上以氣相沉積法生長該非極性(130)面磊晶層之前,更包括有一使用熱丙酮及異丙醇清潔該基板之步驟。
  10. 一種具有非極性(130)面之磊晶層,其係以下列方法而得,包括:提供一具有鈣鈦礦結構之單晶氧化物;選擇該單晶氧化物之一平面作為一基板;以及在該基板上以氣相沉積法生長一具有纖鋅礦結構半導體之非極性(130)面磊晶層。
  11. 如申請專利範圍第10項所述具有非極性(130)面之磊晶層,其中,該單晶氧化物基板係為鋁酸鑭(LaAlO3)、鎳酸鑭(LaNiO3)、鎵酸鑭(LaGaO3)、鈦酸鍶(SrTiO3)、鑭鍶鋁鉭氧((LaSr)(AlTa)O3)、鋁酸鐠(PrAlO3)、或鋁酸釹(NdAlO3)之含有鈣鈦礦結構之氧化物。
  12. 如申請專利範圍第10項所述具有非極性(130)面之磊晶層,其中,該非極性(130)面磊晶層係為氧化鋅、或III族氮化物。
  13. 如申請專利範圍第12項所述具有非極性(130)面之磊晶層,其中,該氧化鋅更包括摻雜有鎂、鈣、鍶、鋇、鎘、鋁、鎵、銦、或其組合之合金。
  14. 如申請專利範圍第12項所述具有非極性(130)面之磊晶層,其中,該III族氮化物係為氮化鎵、氮化銦、氮化鋁、氮化銦鎵、氮化鋁鎵、氮化鋁銦、或氮化鋁銦鎵。
  15. 如申請專利範圍第10項所述具有非極性(130)面之磊晶層,其中,該平面係為該單晶氧化物基板之一晶面或一截切面。
  16. 如申請專利範圍第10項所述具有非極性(130)面之磊晶層,其中,該平面係密勒指數為{114}之平面或其它切面能成長出纖鋅礦結構半導體非極性(130)面磊晶層者。
  17. 如申請專利範圍第10項所述具有非極性(130)面之磊晶層,其中,該氣相沉積法係為物理氣相沉積法或化學氣相沉積法,包括脈衝雷射鍍膜法、濺射法、電子束(熱)蒸鍍法、分子束磊晶法、或有機金屬化學氣相沉積法。
  18. 如申請專利範圍第10項所述具有非極性(130)面之磊晶層,其中,在該基板上以氣相沉積法生長一具有非極性(130)面之磊晶層之前,更包括有一使用熱丙酮及異丙醇清潔該基板之步驟。
  19. 一種光電元件,其特徵在於使用申請專利範圍第10至19項中任一項之具有非極性(130)面之纖鋅礦結構磊晶層作為半導體材料。
  20. 如申請專利範圍第19項所述之光電元件,其中,該光電元件係為發光元件、偵檢元件、或光伏元件。
TW101108690A 2012-03-14 2012-03-14 纖鋅礦結構材料之非極性晶面 TW201337050A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW101108690A TW201337050A (zh) 2012-03-14 2012-03-14 纖鋅礦結構材料之非極性晶面
US13/798,882 US8921851B2 (en) 2012-03-14 2013-03-13 Non-polar plane of wurtzite structure material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101108690A TW201337050A (zh) 2012-03-14 2012-03-14 纖鋅礦結構材料之非極性晶面

Publications (1)

Publication Number Publication Date
TW201337050A true TW201337050A (zh) 2013-09-16

Family

ID=49156829

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101108690A TW201337050A (zh) 2012-03-14 2012-03-14 纖鋅礦結構材料之非極性晶面

Country Status (2)

Country Link
US (1) US8921851B2 (zh)
TW (1) TW201337050A (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101998339B1 (ko) * 2012-11-16 2019-07-09 삼성전자주식회사 금속 산화물 반도체의 성장 결정면 제어방법 및 제어된 성장 결정면을 가지는 금속 산화물 반도체 구조물
CN104600162B (zh) 2014-03-24 2016-01-27 上海卓霖半导体科技有限公司 基于lao衬底的非极性蓝光led外延片的制备方法
CN114599965A (zh) * 2019-11-01 2022-06-07 三菱电机株式会社 化合物半导体的晶体缺陷观察方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100163931A1 (en) * 2006-03-20 2010-07-01 Kanagawa Academy Of Science And Technology Group iii-v nitride layer and method for producing the same
TW201006014A (en) * 2008-05-21 2010-02-01 Lumenz Inc Semiconductor device having rough sidewall
TWI425559B (zh) * 2009-09-17 2014-02-01 Univ Nat Chiao Tung 以單晶氧化物作為基板成長纖鋅礦結構半導體非極性m面磊晶層之方法

Also Published As

Publication number Publication date
US20130240876A1 (en) 2013-09-19
US8921851B2 (en) 2014-12-30

Similar Documents

Publication Publication Date Title
US8278656B2 (en) Substrate for the epitaxial growth of gallium nitride
JP4740903B2 (ja) シリコン基板上の窒化物単結晶成長方法、これを用いた窒化物半導体発光素子及びその製造方法
US20100163931A1 (en) Group iii-v nitride layer and method for producing the same
JP7352271B2 (ja) 窒化物半導体基板の製造方法
TWI425559B (zh) 以單晶氧化物作為基板成長纖鋅礦結構半導體非極性m面磊晶層之方法
JP2004111883A (ja) 薄膜素子およびその製造方法
JP5096844B2 (ja) ZnO系化合物半導体層の製造方法
TW201337050A (zh) 纖鋅礦結構材料之非極性晶面
Maejima et al. Growth of ZnO Nanorods on A-Plane (1120) Sapphire by Metal-Organic Vapor Phase Epitaxy
JP2010053002A (ja) 半導体積層構造
Simanullang et al. Non-polar GaN thin films deposition on glass substrate at low temperatures by conventional RF sputtering
JP6736005B2 (ja) 薄膜基板および半導体装置およびGaNテンプレート
Zou et al. Structural Characterization and Photoluminescent Properties of Zn 1-x Mg x O Films on Silicon
Zhu et al. Structural and optical properties of polar and non-polar ZnO films grown by MOVPE
JP2010056435A (ja) 化合物エピタキシャル層の製造方法および半導体積層構造
JP5212968B2 (ja) 素子基板とその製造法
WO2010024411A1 (ja) 化合物エピタキシャル層の製造方法、化合物エピタキシャル層、半導体積層構造および半導体発光デバイス
US9728404B2 (en) Method of growing nitride semiconductor layer, nitride semiconductor device, and method of fabricating the same
US20150004435A1 (en) Method for growing non-polar m-plane epitaxial layer of wurtzite semiconductors on single crystal oxide substrates
JP4189842B2 (ja) 薄膜素子の製造方法
JP2004146483A (ja) 窒化ガリウム系固溶体薄膜の製造方法
Liu et al. Deposition and characterizations of ZnO thin films on Al2O3 (0001) substrates with III-Arsenide intermediating layers
JP2020031175A (ja) 積層体及び積層体の製造方法
TW201644008A (zh) 半導體元件的製備方法
Wen et al. Experimental Optimization of growth Parameters of High Quality Green GaN Multiple Quantum Well by Metal-Organic Chemical Vapor Deposition