PL3107128T3 - Sposób wytwarzania niepolarnej płytki epitaksjalnej niebieskiej led bazującej na podłożu lao - Google Patents

Sposób wytwarzania niepolarnej płytki epitaksjalnej niebieskiej led bazującej na podłożu lao

Info

Publication number
PL3107128T3
PL3107128T3 PL15769396T PL15769396T PL3107128T3 PL 3107128 T3 PL3107128 T3 PL 3107128T3 PL 15769396 T PL15769396 T PL 15769396T PL 15769396 T PL15769396 T PL 15769396T PL 3107128 T3 PL3107128 T3 PL 3107128T3
Authority
PL
Poland
Prior art keywords
preparation
blue led
epitaxial wafer
led epitaxial
wafer based
Prior art date
Application number
PL15769396T
Other languages
English (en)
Inventor
Zhuoran CAI
Hai Gao
Zhi Liu
Xianglin YIN
Zhengwei Liu
Original Assignee
Shanghai Chiptek Semiconductor Technology Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Chiptek Semiconductor Technology Co., Ltd. filed Critical Shanghai Chiptek Semiconductor Technology Co., Ltd.
Publication of PL3107128T3 publication Critical patent/PL3107128T3/pl

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0008Devices characterised by their operation having p-n or hi-lo junctions
    • H01L33/0012Devices characterised by their operation having p-n or hi-lo junctions p-i-n devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/14Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method characterised by the seed, e.g. its crystallographic orientation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/025Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/183Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/186Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02414Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0008Devices characterised by their operation having p-n or hi-lo junctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • H01L33/145Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure with a current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Led Devices (AREA)
  • Chemical Vapour Deposition (AREA)
PL15769396T 2014-03-24 2015-03-23 Sposób wytwarzania niepolarnej płytki epitaksjalnej niebieskiej led bazującej na podłożu lao PL3107128T3 (pl)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201410112151.6A CN104600162B (zh) 2014-03-24 2014-03-24 基于lao衬底的非极性蓝光led外延片的制备方法
EP15769396.1A EP3107128B1 (en) 2014-03-24 2015-03-23 Preparation method of a non-polar blue led epitaxial wafer based on lao substrate
PCT/CN2015/074828 WO2015144023A1 (zh) 2014-03-24 2015-03-23 基于lao衬底的非极性蓝光led外延片及其制备方法

Publications (1)

Publication Number Publication Date
PL3107128T3 true PL3107128T3 (pl) 2018-09-28

Family

ID=53125803

Family Applications (1)

Application Number Title Priority Date Filing Date
PL15769396T PL3107128T3 (pl) 2014-03-24 2015-03-23 Sposób wytwarzania niepolarnej płytki epitaksjalnej niebieskiej led bazującej na podłożu lao

Country Status (9)

Country Link
US (1) US9978908B2 (pl)
EP (1) EP3107128B1 (pl)
JP (1) JP6326154B2 (pl)
KR (1) KR20160130411A (pl)
CN (1) CN104600162B (pl)
CA (1) CA2942999C (pl)
PL (1) PL3107128T3 (pl)
RU (1) RU2643176C1 (pl)
WO (1) WO2015144023A1 (pl)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104600162B (zh) 2014-03-24 2016-01-27 上海卓霖半导体科技有限公司 基于lao衬底的非极性蓝光led外延片的制备方法
CN106299041A (zh) * 2016-08-29 2017-01-04 华南理工大学 生长在r面蓝宝石衬底上的非极性LED外延片的制备方法及应用
CN107170862B (zh) * 2017-06-08 2019-03-22 中国科学院半导体研究所 一种非极性面量子点发光二极管及其制备方法
CN107887301B (zh) * 2017-09-27 2020-07-07 华灿光电(浙江)有限公司 一种发光二极管外延片的制造方法
CN108538972A (zh) * 2018-04-28 2018-09-14 华南理工大学 一种图形化Si衬底上非极性紫外LED及其制备与应用
CN111276583A (zh) * 2020-02-12 2020-06-12 广东省半导体产业技术研究院 一种GaN基LED外延结构及其制备方法、发光二极管
CN113571607B (zh) * 2021-06-01 2022-08-12 华灿光电(浙江)有限公司 高发光效率的发光二极管外延片及其制造方法
CN114875492B (zh) * 2022-04-18 2023-08-22 华南理工大学 生长在LaAlO3衬底上的非极性p型GaN薄膜外延结构及其制备方法
CN116936700B (zh) * 2023-09-15 2023-12-22 江西兆驰半导体有限公司 发光二极管外延片及其制备方法、发光二极管
CN117525232B (zh) * 2024-01-03 2024-03-29 江西兆驰半导体有限公司 发光二极管外延片及其制备方法、发光二极管

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07201745A (ja) * 1993-12-28 1995-08-04 Hitachi Cable Ltd 半導体ウェハ及びその製造方法
JP2002029896A (ja) 2000-07-05 2002-01-29 National Institute Of Advanced Industrial & Technology 窒化物半導体の結晶成長方法
US7112860B2 (en) * 2003-03-03 2006-09-26 Cree, Inc. Integrated nitride-based acoustic wave devices and methods of fabricating integrated nitride-based acoustic wave devices
JP2005223165A (ja) * 2004-02-06 2005-08-18 Sanyo Electric Co Ltd 窒化物系発光素子
US7285799B2 (en) * 2004-04-21 2007-10-23 Philip Lumileds Lighting Company, Llc Semiconductor light emitting devices including in-plane light emitting layers
TWI377602B (en) * 2005-05-31 2012-11-21 Japan Science & Tech Agency Growth of planar non-polar {1-100} m-plane gallium nitride with metalorganic chemical vapor deposition (mocvd)
CN100399590C (zh) * 2005-06-15 2008-07-02 上海蓝光科技有限公司 Mocvd生长氮化物发光二极管结构外延片的方法
CN100344006C (zh) * 2005-10-13 2007-10-17 南京大学 一种m面InGaN/GaN量子阱LED器件结构的生长方法
JP4765751B2 (ja) * 2006-04-26 2011-09-07 三菱化学株式会社 窒化物半導体素子の製造方法
JP4770580B2 (ja) * 2006-05-15 2011-09-14 三菱化学株式会社 窒化物半導体素子の製造方法
TWM314427U (en) * 2006-08-29 2007-06-21 Sfi Electronics Technology Inc LED assembly with having ESD protection capacity
JP2010512661A (ja) * 2006-12-11 2010-04-22 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 高特性無極性iii族窒化物光デバイスの有機金属化学気相成長法(mocvd)による成長
JP4962130B2 (ja) 2007-04-04 2012-06-27 三菱化学株式会社 GaN系半導体発光ダイオードの製造方法
JP2009016467A (ja) * 2007-07-03 2009-01-22 Sony Corp 窒化ガリウム系半導体素子及びこれを用いた光学装置並びにこれを用いた画像表示装置
JP2009283785A (ja) 2008-05-23 2009-12-03 Showa Denko Kk Iii族窒化物半導体積層構造体およびその製造方法
US8435816B2 (en) 2008-08-22 2013-05-07 Lattice Power (Jiangxi) Corporation Method for fabricating InGaAlN light emitting device on a combined substrate
TWI425559B (zh) 2009-09-17 2014-02-01 Univ Nat Chiao Tung 以單晶氧化物作為基板成長纖鋅礦結構半導體非極性m面磊晶層之方法
CN101901761B (zh) * 2010-06-24 2011-10-19 西安电子科技大学 基于γ面LiAlO2衬底上非极性m面GaN的MOCVD生长方法
TWI433231B (zh) * 2010-12-02 2014-04-01 Epistar Corp 一種半導體元件的製作方法
US20120171797A1 (en) * 2010-12-08 2012-07-05 Applied Materials, Inc. Seasoning of deposition chamber for dopant profile control in led film stacks
JP5558454B2 (ja) 2011-11-25 2014-07-23 シャープ株式会社 窒化物半導体発光素子および窒化物半導体発光素子の製造方法
JP5468709B2 (ja) 2012-03-05 2014-04-09 パナソニック株式会社 窒化物半導体発光素子、光源及びその製造方法
TW201337050A (zh) 2012-03-14 2013-09-16 Univ Nat Chiao Tung 纖鋅礦結構材料之非極性晶面
CN203085627U (zh) * 2012-12-11 2013-07-24 华南理工大学 生长在LiGaO2衬底上的非极性蓝光LED外延片
CN103268911B (zh) * 2013-04-22 2016-05-18 浙江大学 p-NiO/n-ZnO异质结发光器件及其制备方法
CN103296159B (zh) 2013-05-31 2015-09-16 华南理工大学 生长在铝酸锶钽镧衬底上的InGaN/GaN多量子阱及制备方法
CN103311100A (zh) * 2013-06-14 2013-09-18 西安电子科技大学 含有非极性m面GaN缓冲层的InN半导体器件的制备方法
CN203850326U (zh) * 2014-03-24 2014-09-24 上海卓霖信息科技有限公司 基于lao衬底的非极性蓝光led外延片
CN104600162B (zh) 2014-03-24 2016-01-27 上海卓霖半导体科技有限公司 基于lao衬底的非极性蓝光led外延片的制备方法
CN203760505U (zh) 2014-03-24 2014-08-06 上海卓霖信息科技有限公司 用于lao衬底的非极性蓝光led外延片的制备装置

Also Published As

Publication number Publication date
EP3107128A4 (en) 2016-12-21
US20170110627A1 (en) 2017-04-20
CN104600162A (zh) 2015-05-06
JP2017513236A (ja) 2017-05-25
CN104600162B (zh) 2016-01-27
EP3107128B1 (en) 2018-04-18
JP6326154B2 (ja) 2018-05-16
RU2643176C1 (ru) 2018-01-31
WO2015144023A1 (zh) 2015-10-01
EP3107128A1 (en) 2016-12-21
CA2942999C (en) 2019-01-15
US9978908B2 (en) 2018-05-22
KR20160130411A (ko) 2016-11-11
CA2942999A1 (en) 2015-10-01

Similar Documents

Publication Publication Date Title
PL3107128T3 (pl) Sposób wytwarzania niepolarnej płytki epitaksjalnej niebieskiej led bazującej na podłożu lao
SG10201608938WA (en) SiC SUBSTRATE SEPARATING METHOD
SG10201610962SA (en) SiC WAFER PRODUCING METHOD
SG10201707176SA (en) SiC WAFER PRODUCING METHOD
SG11201610771SA (en) Method of manufacturing a substrate
GB201700942D0 (en) Epitaxial structure for improving efficiency drop of GaN-BASED LED
SG10201508477VA (en) Methods for singulating semiconductor wafer
HUE051760T2 (hu) Eljárás félvezetõ modul elõállítására
EP3270409A4 (en) Compound semiconductor substrate
EP3217438A4 (en) Semiconductor light-emitting element
PT2974822T (pt) Método de divisão de substratos semicondutores finos
EP3101160A4 (en) Semiconductor substrate manufacturing method
EP3217441A4 (en) Semiconductor light-emitting device
EP3222759A4 (en) Surface treatment method for sic substrate
EP3266907A4 (en) Sic epitaxial wafer and method for manufacturing sic epitaxial wafer
EP3113211A4 (en) Handle substrate of composite substrate for semiconductor
EP3217439A4 (en) Semiconductor light-emitting element
EP3276674A4 (en) Semiconductor light-emitting element
EP3412800A4 (en) EPITAXIAL SUBSTRATE
EP3171392A4 (en) Method for producing epitaxial silicon carbide wafers
SG11201707005RA (en) Substrate pre-alignment method
EP3217440A4 (en) Semiconductor light-emitting element
EP3135679A4 (en) Novel bis (alkoxysilyl-vinylene) group-containing silicon compound and manufacturing method therefor
EP3109909A4 (en) Method for manufacturing semiconductor light emitting device
PL2927017T5 (pl) Sposób pokrywania substratu