CN103857677A - 杀线虫磺酰胺的固体形式 - Google Patents

杀线虫磺酰胺的固体形式 Download PDF

Info

Publication number
CN103857677A
CN103857677A CN201280050028.5A CN201280050028A CN103857677A CN 103857677 A CN103857677 A CN 103857677A CN 201280050028 A CN201280050028 A CN 201280050028A CN 103857677 A CN103857677 A CN 103857677A
Authority
CN
China
Prior art keywords
chloro
compound
polymorphs body
imidazo
trifluoromethyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201280050028.5A
Other languages
English (en)
Inventor
R.A.伯格
C.霍夫曼恩
W.J.马沙尔
R.沙皮罗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Priority to CN201510616468.8A priority Critical patent/CN105175413A/zh
Publication of CN103857677A publication Critical patent/CN103857677A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/90Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having two or more relevant hetero rings, condensed among themselves or with a common carbocyclic ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • A61P33/10Anthelmintics
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Abstract

本发明公开了8-氯-N-[(2-氯-5-甲氧基苯基)磺酰基]-6-(三氟甲基)-咪唑并[1,2-α]吡啶-2-甲酰胺(化合物1)的固体形式。本发明公开了制备化合物1的固体形式的方法以及将化合物1的一种固体形式转化为另一种的方法。本发明公开了杀线虫组合物,所述杀线虫组合物包含杀线虫有效量的化合物1的固体形式和至少一种额外组分,所述额外组分选自表面活性剂、固体稀释剂和液体载体。本发明还公开了组合物,所述组合物包含化合物1的固体形式与至少一种其它杀线虫剂、杀昆虫剂和/或杀真菌剂的混合物。本发明还公开了保护植物免受线虫侵害的方法,所述方法包括向植物或其部分或种子或者向所述植物的生长介质施用杀线虫有效量的包含多晶型体形式A的化合物1。

Description

杀线虫磺酰胺的固体形式
技术领域
本发明涉及8-氯-N-[(2-氯-5-甲氧基苯基)磺酰基]-6-(三氟甲基)-咪唑并[1,2-a]吡啶-2-甲酰胺的固体形式、它们的制备、组合物以及用作杀线虫剂的方法。
背景技术
化合物的固态可为非晶形(即原子位置无长程有序性)或晶形(即原子以有序的重复图案排列)。术语“多晶型体”是指化合物的特定结晶形式(即晶格的结构),其可以固态以多于一种晶形存在。多晶型体可能在如晶体形状、密度、硬度、颜色、化学稳定性、熔点、吸湿性、可悬浮性、溶解度和溶解速率的化学和物理(即生理化学)特性以及如生物利用度、生物学功效和毒性的生物学特性上不同。
仍不可能预测其中化合物的固态可存在的结晶形式的生理化学特性,如熔点或溶解度。此外,甚至仍不可能预测化合物固态是否存在多于一种结晶形式。
PCT专利公布WO2010/129500公开了杀线虫磺酰胺8-氯-N-[(2-氯-5-甲氧基苯基)磺酰基]-6-(三氟甲基)-咪唑并[1,2-a]-吡啶-2-甲酰胺及其制备方法,以及该化合物作为杀线虫剂的实用性。现已发现该化合物的新固体形式、它们的组合物以及它们的制备方法和用途。
发明内容
本发明涉及8-氯-N-[(2-氯-5-甲氧基苯基)磺酰基]-6-(三氟甲基)-咪唑并[1,2-a]吡啶-2-甲酰胺(化合物1)的固体形式。更具体地,本发明涉及化合物1的多晶型体,将其指定为形式A,其特征在于粉末X衍射图案具有至少2θ反射位置30.367、29.131、27.995、27.611、26.49、25.973、25.604、24.285、23.582和19.789度。
本发明还涉及用于直接制备化合物1的各种固体形式的方法(即非始自化合物1的其它固体形式)。更具体地,本发明涉及制备所期望化合物1的多晶型体的方法,所述方法包括:通过在第一溶剂的存在下使2-氯-5-甲氧基苯磺酰胺与8-氯-6-三氟甲基-咪唑并[1,2-a]吡啶-2-碳酰氯与形成反应混合物接触,形成化合物1的固体形式,然后使化合物1的固体形式与第二溶剂混合,以将所述固体形式转化为多晶型体形式A。本发明还涉及将化合物1的一种固体形式转化为另一种的方法。更具体地,本发明涉及制备被指定为形式A的化合物1的多晶型体的方法,所述方法包括:用选自形式B、C、D、溶剂化物、非晶形形式、以及它们与形式A混合物的化合物1的一种或多种固体形式与溶剂形成浆液,以及在化合物1的固体形式转化为多晶型体形式A的同时保持所述浆液。
本发明还涉及在制备化合物1(即2-氯-5-甲氧基苯磺酰胺和8-氯-6-三氟甲基-咪唑并[1,2-a]吡啶-2-碳酰氯)的方法中所用的化合物。
本发明还涉及杀线虫组合物,所述杀线虫组合物包含(a)化合物1的多晶型体形式A;和(b)至少一种额外组分,所述额外组分选自表面活性剂、固体稀释剂和液体载体。
本发明还涉及杀线虫组合物,所述杀线虫组合物包含(a)化合物1的多晶型体形式A;和(b)至少一种其它杀线虫剂、杀昆虫剂和/或杀真菌剂。
本发明还涉及保护植物免受线虫侵害的方法,所述方法包括向植物或其部分或种子或者向植物的生长介质施用杀线虫有效量的包括多晶型体形式A的化合物1。
附图说明
图1示出化合物1的多晶型体形式A、B、C、D和TS的Cu(Kα1)粉末X射线衍射图案,其示出相对于以度计的2θ反射位置的以图式计数计的绝对X射线强度。
具体实施方式
如本文所用,术语“包含”、“包括”、“含有”、“具有”或“含”或其任何其它变型旨在涵盖非排他性的包括。例如,包含一系列元素的组合物、工艺、方法、制品或设备不必仅限于那些元素,而是可包括其它未明确列出的元素,或此类组合物、工艺、方法、制品或设备的固有元素。此外,除非相反地明确说明,“或”是指包含性的“或”,而不是指排他性的“或”。例如,以下中任一者均满足条件A或B:A是真的(或存在的)且B是假的(或不存在的)、A是假的(或不存在的)且B是真的(或存在的)、以及A和B两者是真的(或存在的)。
同样,关于元素或组分的例证(即出现)数字的本发明的前述元素或组分的不定冠词“一个”或“一种”旨在是非限制性的。因此,应将“一个”或“一种”理解为包括一个或至少一个,并且元素或组分的单数词语形式也包括复数,除非数字明显为单数。
单词“nematocide”在本领域中有时以替代的拼写“nematicide”给出。杀线虫剂为用于防治(包括预防、减少或消除)寄生性线虫的化合物。
如本公开和权利要求中所用,术语“线虫”是指线虫纲的活生物体。如一般所定义,“寄生虫”在另一个描述为“宿主”的活生物体(如植物)内生活或生长或以其为食。如本公开和权利要求中所述,“寄生性线虫”尤其指伤害或损伤植物的组织或引起其它形式疾病的线虫。
“侵染”是指线虫以对植物具有危害的数目存在。所述存在可为在环境中,例如在农作物或其它类型植物上。
如本公开和权利要求中所述,术语“杀寄生虫的”和“杀寄生虫地”是指寄生性线虫上的可观察的效果,以提供植物免受线虫侵害的保护。杀寄生虫功效通常涉及减少目标寄生性线虫的出现或活性。对线虫的此类功效包括坏死、死亡、生长迟缓、移动性减低或留在寄生植物上或寄生植物中的能力降低、摄食减少以及繁殖抑制。对寄生性线虫的这些功效提供对植物寄生性侵染的防治(包括预防、减少或消除)。因此,寄生性线虫的“防治”是指对线虫实现杀寄生虫功效。在施用化合物以防治寄生性线虫情况下,表达“杀寄生虫有效量”和“生物学有效量”是指足以防治寄生性线虫的化合物量。
术语“农业的”是指大田作物的生产,如食物和纤维,并且包括大豆和其它豆类、谷类食物(例如小麦、燕麦、大麦、裸麦、稻米、玉米/谷物)、叶菜(例如莴苣、卷心菜以及其它菜荚作物)、果菜(例如番茄、辣椒、茄子、十字花科植物和葫芦科植物)、马铃薯、甘薯、葡萄、棉花、木本果(例如梨果、硬质种子和柑橘)、小果(浆果、樱桃)以及其它特殊作物(例如低芥酸菜籽、向日葵、橄榄)的生长。
术语“非农业”是指不是大田作物,如园艺作物(如非生长于大田中的温室、苗圃或观赏植物)、草坪(如草皮农场、牧草地、高尔夫球场、草地、运动场等)、农林和植被管理。
如本公开和权利要求中所述,“植物”包括所有生命阶段的植物界成员,尤其是种子植物(裸子植物),所述生命阶段包括植物秧苗阶段(例如发芽的种子发育成幼苗)和成熟繁殖阶段(例如开花和结种的植物)。植物的部分包括通常生长在生长介质表面下的向地性成员如根部、块茎、鳞茎和球茎,以及在生长介质上方生长的成员如叶(包括叶茎和叶片)、花、果实和种子。生长介质包括土壤、液体营养素介质、凝胶营养素介质或具有泥炭、树皮、锯屑、砂、浮石、珍珠岩、蛭石以及其它类似产物的土壤混合物。如本文所述,单独或以词语的组合使用的术语“幼苗”是指由种子的胚胎发育的植物秧苗。
在“水可混溶的溶剂”语境中,术语“水可混溶的”是指在包含水可混溶的溶剂的(如反应)介质温度下,液体溶剂(包括溶剂化合物的混合物)可以所有比例完全溶于水中(并且水可溶于所述溶剂中)。甲醇、乙醇、丙酮和乙腈为水可混溶的溶剂的例子。
相反地,在为“水不混溶的有机化合物”、“水不混溶的液体组分”或“水不混溶的液体载体”物质的语境中,术语“水不混溶的”表示所述物质在相关温度下(对于所配制组合物而言约在室温)以所有比例不溶于水中(并且水可溶于所述物质中)。通常,在配制的组合物中用作液体载体或其它液体组分的水不混溶的物质几乎不具有水溶解度,并且水在水不混溶的物质中几乎不具有溶解度。通常,用于制剂中的水不混溶的物质在约20℃下以小于约1重量%,或小于约0.1重量%,或甚至小于约0.01重量%的程度溶于水中。
在液体配制的组合物语境中,表达“连续液相”是指由液体载体形成的液相。连续液相提供大量液体介质,其它配制组分溶解、分散(作为固体颗粒)或乳化(作为液滴)于其中。当所述液体载体含水时(任选地包含溶解的水溶性化合物的水),乳化于所述含水液体载体中的液体由水不混溶的液体组分形成。
如本公开中所用,术语“室温”是指介于约18℃和约26℃之间的温度。
术语“多晶型体”是指化合物的特定结晶形式(即晶格结构),其可以固态以多于一种晶体形式存在。
本发明的实施例包括:
实施例1:8-氯-N-[(2-氯-5-甲氧基苯基)磺酰基]-6-(三氟甲基)-咪唑并[1,2-a]吡啶-2-甲酰胺(化合物1)的多晶型体,其在发明内容中被指定为形式A,并且其特征在于具有至少以下2θ反射位置的室温粉末Cu(Kα1)X-射线衍射图案
30.367 25.973
29.131 25.604
27.995 24.285
27.611 23.582
26.49 19.789
实施例2:8-氯-N-[(2-氯-5-甲氧基苯基)磺酰基]-6-(三氟甲基)-咪唑并[1,2-a]吡啶-2-甲酰胺(化合物1)的多晶型体,其在发明内容中被指定为形式B,并且其特征在于具有至少以下2θ反射位置的-100℃模拟的Cu(Kα1)X-射线衍射图案
28.242 20.999
25.978 18.981
25.06 18.12
24.583 17.219
23.082 7.998
实施例3:8-氯-N-[(2-氯-5-甲氧基苯基)磺酰基]-6-(三氟甲基)-咪唑并[1,2-a]吡啶-2-甲酰胺(化合物1)的多晶型体,其在发明内容中被指定为形式D,并且其特征在于具有至少以下2θ反射位置的-100℃模拟的Cu(Kα1)X-射线衍射图案
27.323 18.398
25.581 17.821
23.958 14.558
22.459 12.182
20.68 5.943
实施例4:8-氯-N-[(2-氯-5-甲氧基苯基)磺酰基]-6-(三氟甲基)-咪唑并[1,2-a]吡啶-2-甲酰胺(化合物1)的多晶型体,其在发明内容中被指定为形式TS,并且其特征在于具有至少以下2θ反射位置的室温粉末Cu(Kα1)X-射线衍射图案
28.913 22.429
26.942 20.325
25.672 19.053
24.451 18.603
23.316 12.871
实施例5:发明内容中所述用于制备实施例1的多晶型体形式A的方法,所述方法包括用选自形式B、C、D、溶剂化物、非晶形形式、以及它们与形式A的混合物的化合物1的一种或多种固体形式与溶剂形成浆液,以及在化合物1的固体形式转化为多晶型体形式A的同时保持所述浆液。
实施例6:实施例5的方法,其中化合物1的固体形式包括多晶型体形式B。
实施例7:实施例5的方法,其中化合物1的固体形式包括多晶型体形式C。
实施例8:实施例5的方法,其中化合物1的固体形式包括多晶型体形式D。
实施例9:实施例5的方法,其中化合物1的固体形式包括多晶型体形式TS。
实施例10:实施例5的方法,其中化合物1的固体形式包含多晶型体形式A和形式B的混合物。
实施例11:实施例5至10中任一项的方法,其中将所述浆液加热至介于30℃和溶剂沸点之间的温度,并且搅拌。
实施例11a:实施例5至11中任一项的方法,其中将所述浆液加热至介于55℃和100℃之间的温度,并且搅拌。
实施例11b:实施例5至11a中任一项的方法,其中将所述浆液加热至介于65℃和95℃之间的温度,并且搅拌。
实施例12:实施例5至10中任一项的方法,其中搅拌所述浆液。
实施例13:实施例5至12中任一项的方法,其中所述溶剂包括水、C5-C8烷烃、C1-C4烷醇或C3-C4酮。
实施例14:实施例13的方法,其中所述溶剂包括水、正庚烷、甲醇或丙酮。
实施例15:实施例14的方法,其中所述溶剂包括水、甲醇或丙酮。
实施例16:实施例15的方法,其中所述溶剂包括水或甲醇。
实施例17:实施例16的方法,其中所述溶剂包括水。
实施例18:发明内容中所述用于制备化合物1的多晶型体形式A的方法,所述方法包括(A)在第一溶剂的存在下使8-氯-6-三氟甲基-咪唑并[1,2-a]吡啶-2-碳酰氯或其盐与2-氯-5-甲氧基苯磺酰胺接触以形成反应混合物,所述反应混合物包含化合物1的中间固体形式,(B)分离化合物1的中间固体形式,以及(C)使化合物1的中间固体形式与第二溶剂接触,所述第二溶剂被任选地加热至介于30℃和所述第二溶剂沸点之间的温度,以将所述中间固体形式转化为化合物1的多晶型体形式A。
实施例19:实施例18的方法,其中通过使8-氯-6-(三氟甲基)咪唑并[1,2-a]吡啶-2-羧酸与氯化剂接触,制备8-氯-6-三氟甲基-咪唑并[1,2-a]吡啶-2-碳酰氯。
实施例20:实施例19的方法,其中所述氯化剂为亚硫酰氯、草酰氯或光气。
实施例21:实施例20的方法,其中所述氯化剂为亚硫酰氯。
实施例21a:实施例19至21中任一项的方法,其中所述氯化剂与8-氯-6-三氟甲基-咪唑并[1,2-a]吡啶-2-羧酸的摩尔比在约1.2∶1至约1.5∶1的范围内。
实施例22:实施例19至21a中任一项的方法,其中通过在氯化溶剂中氯化8-氯-6-三氟甲基-咪唑并[1,2-a]吡啶-2-羧酸,制备8-氯-6-三氟甲基-咪唑并[1,2-a]吡啶-2-碳酰氯。
实施例23:实施例22的方法,其中所述氯化溶剂为甲苯、二甲苯、氯苯、苯甲醚、三甲苯或四氢化萘。
实施例24:实施例23的方法,其中所述氯化溶剂为甲苯、二甲苯、或苯甲醚。
实施例25:实施例24的方法,其中所述氯化溶剂为甲苯。
实施例26:实施例19至25中任一项的方法,其中在N,N-二甲基甲酰胺或N-甲酰基哌啶的存在下使8-氯-6-(三氟甲基)咪唑并[1,2-a]吡啶-2-羧酸与氯化剂接触。
实施例27:实施例26的方法,其中在N-甲酰基哌啶的存在下使8-氯-6-(三氟甲基)咪唑并[1,2-a]吡啶-2-羧酸与氯化剂接触。
实施例27a:实施例26的方法,其中在N,N-二甲基甲酰胺的存在下使8-氯-6-(三氟甲基)咪唑并[1,2-a]吡啶-2-羧酸与氯化剂接触。
实施例28:实施例19至27a中任一项的方法,其中在0至85℃的温度范围内使8-氯-6-(三氟甲基)咪唑并[1,2-a]吡啶-2-羧酸与氯化剂接触。
实施例29:实施例28的方法,其中在75至85℃的温度范围内使8-氯-6-(三氟甲基)咪唑并[1,2-a]吡啶-2-羧酸与氯化剂接触。
实施例30:实施例19至29中任一项的方法,其中在与2-氯-5-甲氧基苯磺酰胺接触前,从所述8-氯-6-三氟甲基-咪唑并[1,2-a]吡啶-2-碳酰氯中移除过量的氯化剂。
实施例31:实施例18至30中任一项的方法,其中在步骤(A)中,所述8-氯-6-三氟甲基-咪唑并[1,2-a]吡啶-2-碳酰氯为HCl盐的形式。
实施例32:实施例22至31中任一项的方法,其中在步骤(A)中,所述8-氯-6-三氟甲基-咪唑并[1,2-a]吡啶-2-碳酰氯在所述氯化溶剂中为浆液形式。
实施例33:实施例18至32中任一项的方法,其中在步骤(A)中,所述8-氯-6-三氟甲基-咪唑并[1,2-a]吡啶-2-羧酸与2-氯-5-甲氧基苯磺酰胺的摩尔比在1∶1.1至1∶1的范围内。
实施例34:实施例18至33中任一项的方法,其中在步骤(A)中,所述8-氯-6-三氟甲基-咪唑并[1,2-a]吡啶-2-碳酰氯与所述2-氯-5-甲氧基苯磺酰胺在碱的存在下接触。
实施例35:实施例34的方法,其中所述碱为叔胺。
实施例36:实施例35的方法,其中所述碱为三丁胺、三乙胺或二异丙基乙胺。
实施例37:实施例36的方法,其中所述碱为三丁胺。
实施例38:实施例34至37中任一项的方法,其中在步骤(A)中,碱与2-氯-5-甲氧基苯磺酰胺的摩尔比在2.8∶1至3.5∶1的范围内。
实施例39:实施例22至38中任一项的方法,其中所述第一溶剂包括所述氯化溶剂与至少一种溶剂的混合物,
所述溶剂选自乙酸乙酯、四氢呋喃、二氯甲烷和二氯乙烷与所述氯化溶剂。
实施例40:实施例39的方法,其中所述第一溶剂包括所述氯化溶剂与乙酸乙酯的混合物。
实施例40a:实施例40的方法,其中所述第一溶剂包括甲苯与乙酸乙酯的混合物。
实施例41:实施例18至40a中任一项的方法,其中在步骤(A)中,所述8-氯-6-三氟甲基-咪唑并[1,2-a]吡啶-2-碳酰氯和所述2-氯-5-甲氧基苯磺酰胺在0至25℃的温度范围内接触。
实施例42:实施例41的方法,其中在步骤(A)中,所述8-氯-6-三氟甲基-咪唑并[1,2-a]吡啶-2-碳酰氯和所述2-氯-5-甲氧基苯磺酰胺在15至25℃的温度范围内接触。
实施例43:实施例39至42中任一项的方法,其中当步骤(A)中的反应完成时,每当量的所述碱加入最多1当量的含水酸,以中和所述反应混合物。
实施例44:实施例43的方法,其中所述含水酸为盐酸。
实施例45:实施例43或44的方法,其中在加入含水酸后,在50至60℃范围内将所述反应混合物加热一至两个小时,以形成化合物1的中间固体形式。
实施例46:实施例43至45中任一项的方法,其中在含水酸的存在下加热所述反应混合物后,将所述反应混合物冷却至5至15℃范围内的温度。
实施例47:实施例18至46中任一项的方法,其中在步骤(B)中,过滤所述反应混合物以分离化合物1的中间固体形式。
实施例48:实施例47的方法,其中化合物1的中间固体形式为溶剂化物。
实施例48a:实施例48的方法,其中化合物1的中间固体形式为甲苯溶剂化物。
实施例48b:实施例47的方法,其中化合物1的中间固体形式为非溶剂化的多晶型体或多晶型体的混合物。
实施例49:实施例18至48b中任一项的方法,其中在步骤(B)中分离的化合物1的中间固体形式在步骤(C)中与第二溶剂接触,以将化合物1的中间固体形式转化为多晶型体形式A。
实施例50:实施例18至49中任一项的方法,其中步骤(C)中的温度介于30℃与所述第二溶剂的沸点之间。
实施例51:实施例50的方法,其中步骤(C)中的温度为至少30℃。
实施例51a:实施例50的方法,其中步骤(C)中的温度为至少55℃。
实施例52:实施例50的方法,其中步骤(C)中的温度最高为所述第二溶剂的沸点。
实施例53:实施例18至52中任一项的方法,其中所述第二溶剂包括水、甲醇、丙酮或正庚烷。
实施例54:实施例53的方法,其中所述第二溶剂包括水或甲醇。
实施例55:实施例54的方法,其中所述第二溶剂包括水。
实施例56:实施例18至55中任一项的方法,其中所述第二溶剂为水,并且步骤(C)的温度在90至100℃的范围内。
实施例57:实施例18至54中任一项的方法,其中所述第二溶剂为甲醇,并且步骤(C)的温度在55至65℃的范围内。
实施例58:实施例18至57中任一项的方法,其中当步骤(C)中的转化完成时,冷却所述第二溶剂,并且通过过滤从所述第二溶剂中分离多晶型体形式A。
可以任何方式组合本发明的实施例,包括上述实施例1-58以及本文所述的任何其它实施例。
化合物1为8-氯-N-[(2-氯-5-甲氧基苯基)磺酰基]-6-(三氟甲基)-咪唑并[1,2-a]吡啶-2-甲酰胺,并且具有以下分子结构:
现已发现,可以多于一种固体形式制备化合物1的固态。这些固体形式包括非晶形固体形式,其中分子位置无长程有序性(如泡沫和玻璃)。这些固体形式还包括结晶形式,其中组分分子在所有三个空间维度上以有序重复的图案排列。术语“多晶型体”是指化合物的特定结晶形式,其可以固态以多于一种晶体结构(如晶格类型)存在。术语“堆积多晶型体”是指具有不同晶体堆积的化合物的特定结晶形式。本发明中化合物1的结晶形式涉及包括单多晶型体(即单结晶形式)的实施例,并且涉及包括多晶型体混合物(即不同结晶形式)的实施例。多晶型体可在化学、物理和生物特性,如结晶形状、密度、硬度、颜色、化学稳定性、熔点、吸湿性、可悬浮性、溶解度、溶解速率和生物利用度方面不同。本领域中技术人员将会知道,相对于化合物1的另一种多晶型体或多晶型体的混合物,化合物1的多晶型体可表现出有益效果(例如适用于制备可用的制剂、稳定性、改善的生物特性)。相对于化学稳定性、过滤性、溶解度、吸湿性、熔点、固体密度和流动性的差值,对制造方法和制剂的开发以及线虫防治的功效可具有显著影响。现已实现化合物1的特定多晶型体的制备和分离。
化合物1的指定为多晶型体形式TS的一种结晶多晶型体形式为1∶1(摩尔比)的甲苯溶剂化物。多晶型体形式TS可通过X射线粉末衍射、单晶X射线结构分析和差示扫描量热法来表征。
图1中示出化合物1的多晶型体形式TS的粉末X射线衍射图案。表征实例5的表8中,列出对应的2θ值。化合物1的多晶型体形式TS可通过室温粉末Cu(Kα1)X射线衍射图案来鉴定,其具有至少以下2θ反射位置(以度计)。
28.913 22.429
26.942 20.325
25.672 19.053
24.451 18.603
23.316 12.871
单晶X射线衍射还可用于表征多晶型体形式TS。表征实例10中提供多晶型体形式TS的单晶X射线衍射的描述。多晶型体形式TS的晶体具有三斜单元晶胞,并且通常表现出针状形态。
化合物1的多晶型体形式TS也可由差示扫描量热法表征。DSC指示多晶型体形式TS的熔点为约217℃。表征实例11中提供DSC实验的详情。
多晶型体形式TS可在化合物1的制备期间,在甲苯溶剂的存在下由其原料直接制备,如制备实例1中所述。多晶型体形式TS还可通过化合物1的甲苯饱和溶液的缓慢蒸发来制备。多晶型体形式TS可转化为其它多晶型体形式或形式的混合物,如制备实例2至4中所述。
化合物1的第二结晶多晶型体形式被指定为多晶型体形式A。该固体形式是未溶剂化的。多晶型体形式A可通过X射线粉末衍射、单晶X射线结构分析和差示扫描量热法(DSC)来表征。
图1中示出化合物1的多晶型体形式A的粉末X射线衍射图案。表征实例1的表4中,列出对应的2θ值。化合物1的多晶型体形式A可通过室温粉末Cu(Kα1)X射线衍射图案来鉴定,其具有至少以下2θ反射位置(以度计)。
30.367 25.973
29.131 25.604
27.995 24.285
27.611 23.582
26.49 19.789
单晶X射线衍射也可用于表征多晶型体形式A。表征实例6中提供多晶型体形式A的单晶X射线衍射的描述。多晶型体形式A的晶体具有三斜单元晶胞,并且通常表现出不规则块状形态。
化合物1的多晶型体形式A也可由差示扫描量热法表征。DSC指示多晶型体形式A的熔点为约219℃。表征实例11中提供DSC实验的详情。多晶型体形式A在其纯固体形式下是物理和化学稳定的(示于表征实例13中)。
可经由在溶剂如水或甲醇中加热,使甲苯溶剂化物(形式TS)去溶剂化,来制备纯多晶型体形式A,如制备实例3和4中所述。还可通过将多晶型体形式A和B的混合物在溶剂沸点或接近溶剂沸点下加热,然后冷却回至室温或更低,来制备化合物1的多晶型体形式A,如制备实例5中所述。甲醇、水、丙酮或正庚烷尤其可用于该方法。
化合物1的另一种结晶多晶型体形式被指定为多晶型体形式B。该固体形式是未溶剂化的。多晶型体形式B可通过X射线粉末衍射、单晶X射线结构分析和差示扫描量热法来表征。
单晶X射线衍射可用于表征多晶型体形式B。表征实例7中提供多晶型体形式B的单晶X射线衍射的描述。多晶型体形式B的晶体具有三斜单元晶胞,并且通常表现出棱柱形态。
通过由化合物1的多晶型体形式B的单晶结构确定的原子坐标和晶胞参数计算模拟粉末图案,并且示于图1中。表征实例2的表5中列出多晶型体形式B的粉末X射线衍射图案的对应2θ值。化合物1的多晶型体形式B可通过-100℃模拟粉末Cu(Kα1)X射线衍射图案来鉴定,其具有至少以下2θ反射位置(以度计)。
28.242 20.999
25.978 18.981
25.06 18.12
24.583 17.219
23.082 7.998
化合物1的多晶型体形式B也可由差示扫描量热法表征。DSC指示多晶型体形式B的熔点为约218℃。表征实例11中提供DSC实验的详情。
多晶型体形式B可通过使甲苯溶剂化物(形式TS)去溶剂化,作为与多晶型体形式A的混合物获得,如制备实例2中所述。可通过在二氯甲烷中加热多晶型体形式A和B的混合物,制备多晶型体形式B,如制备实例5中所述。还可通过在160℃下热梯度升华,制备化合物1的多晶型体形式B。
化合物1的另一种结晶多晶型体形式被指定为多晶型体形式C。该固体形式是未溶剂化的。多晶型体形式C可通过X射线粉末衍射和单晶X射线结构分析来表征。
单晶X射线衍射可用于表征多晶型体形式C。表征实例8中提供-100℃下多晶型体形式C的单晶X射线衍射描述,并且表征实例14中提供23℃下多晶型体形式C的单晶X射线衍射描述。多晶型体形式C的晶体具有三斜单元晶胞,并且通常表现出三角板状形态。
通过由-100℃下化合物1的多晶型体形式C的单晶结构确定的原子坐标和晶胞参数计算模拟粉末图案,并且示于图1中。表征实例3的表6中列出多晶型体形式C的-100℃模拟粉末Cu(Kα1)X射线衍射图案的对应2θ值。表征实例15的表22中列出多晶型体形式C的室温模拟粉末Cu(Kα1)X射线衍射图案的对应2θ值。
可通过在160℃下热梯度升华,制备化合物1的多晶型体形式C。
化合物1的另一种结晶多晶型体形式被指定为多晶型体形式D。该固体形式是未溶剂化的。多晶型体形式D可通过X射线粉末衍射、单晶X射线结构分析和差示扫描量热法来表征。
单晶X射线衍射可用于表征多晶型体形式D。表征实例9中提供多晶型体形式D的单晶X射线衍射的描述。多晶型体形式D的晶体具有三斜单元晶胞,并且通常表现出不规则块状形态。
通过由化合物1的多晶型体形式D的单晶结构确定的原子坐标和晶胞参数计算模拟粉末图案,并且示于图1中。表征实例4的表7中列出多晶型体形式D的粉末X射线衍射图案的对应2θ值。化合物1的多晶型体形式D可通过-100℃模拟粉末Cu(Kα1)X射线衍射图案来鉴定,其具有至少以下2θ反射位置(以度计)。
27.323 18.398
25.581 17.821
23.958 14.558
22.459 12.182
20.68 5.943
化合物1的多晶型体形式D也可由差示扫描量热法表征。DSC指示多晶型体形式D的熔点为约218℃。表征实例11中提供DSC实验的详情。
可通过在乙腈或乙酸中加热多晶型体形式A和B的混合物,制备纯多晶型体形式D,如制备实例5和6中所述。
化合物1还可作为非晶形固体存在。化合物1的非晶形形式的粉末X射线衍射图案(pXRD)显示横跨2θ角度的宽反射图案,其缺乏明显的反射信号,因此易于区别于化合物1的结晶形式的pXRD图案。可通过本领域中已知的标准方法制备非晶形固体形式,如将包含化合物1的溶液蒸发至干燥,通过快速冷却熔融的化合物1,通过喷雾干燥化合物1的溶液,或者通过冷冻干燥包含化合物1的冷冻溶液。
化合物1可通过多种方法制备。一种方法涉及将起始酸8-氯-6-(三氟甲基)咪唑并[1,2-a]吡啶-2-羧酸和2-氯-5-甲氧基苯磺酰胺与任何数目的酰胺键偶合,从而形成偶合试剂。尤其可用的方法利用1-(3-二甲基氨基丙基)-3-乙基-碳二亚胺盐酸盐,并且描述于世界专利公布WO2010/129500中的合成实例1中。另一种方法利用起始羧酸的混合酸酐作为促使与磺酰胺易于形成酰胺键的方法。用于制备起始羧酸的混合酸酐的最可用试剂中的一些为氯甲酸乙酯和氯甲酸异丁酯。另一种制备化合物1的方法涉及形成所述起始酸的酯,并且使其与磺酰胺的钠盐反应。起始酸的可用酯为甲基或乙基酯。磺酰胺的钠盐可通过与氢化钠反应来制备。化合物1还可由所述起始羧酸的酰氯制备,并且与磺酰胺偶合,如制备实例1中所述。
化合物1的多晶型体形式A的制备可通过方法实现,其中化合物1由其原料制备(制备实例1),以初始产生化合物1的中间固体形式。得自初始分离的中间固体形式可为多晶型体形式的混合物、不是形式A的多晶型体形式、或化合物1的溶剂化物。化合物1的中间固体形式可通过多种方法转化为纯多晶型体形式A(制备实例2至5和表征实例19)。
制备化合物1的多晶型体形式A的尤其可用的方法为其中化合物1的中间固体形式为甲苯溶剂化物(多晶型体形式TS)的方法。多晶型体形式TS直接由前体原料制备,如方案1中所示。所述方法涉及在氯化溶剂(甲苯)的存在下,用氯化剂处理式2的化合物(8-氯-6-(三氟甲基)咪唑并[1,2-a]吡啶-2-羧酸),以制成化合物3的酰氯。然后在碱的存在下用式4的化合物(2-氯-5-甲氧基苯磺酰胺)处理酰氯化合物3,以形成化合物1的盐。当反应完成时,用含水酸处理所述混合物,以中和任何过量的碱,并且确保形成中性酰基磺酰胺产物。温热并搅拌含水浆液以溶解盐,并且促使所述产物从溶液中结晶出来。所述产物结晶为化合物1的甲苯溶剂化物(形式TS),并且通过固-液分离(例如过滤)分离,并且干燥以形成纯溶剂化物,或者进一步处理以形成多晶型体形式A。
方案1
对应于方案1第一部分的反应通常使用相对于化合物2为1至2摩尔当量的氯化剂来运行。氯化剂与式2化合物的摩尔比更典型地在约1.2∶1至约1.5∶1的范围内。如果化合物2包含一些残余的水,则需要更大的氯化剂与化合物2的比率。可用于该转化的氯化剂包括亚硫酰氯、草酰氯或光气。亚硫酰氯是尤其可用的。通常通过加入相对于化合物2为1至10重量%范围内的甲酰胺,来催化酰氯的形成。可用于形成酰氯的催化剂包括N,N-二甲基甲酰胺和N-甲酰基哌啶。可用于方案1中的氯化的溶剂(氯化溶剂)为对氯化试剂惰性的任何溶剂。尤其可用的溶剂为甲苯、二甲苯、氯苯、苯甲醚、三甲苯和四氢化萘。甲苯为尤其可用的溶剂。酰氯(化合物3)的形成通常在适合氯化试剂的温度范围内完成,所述温度范围通常在0至85℃或接近氯化试剂沸点的范围内。较低的温度适合草酰氯或光气。75至85℃范围内的温度可用于亚硫酰氯。可通过化合物2的甲酯的形成来监控反应的进展。用甲醇处理所述反应混合物的等分试样,并且由HPLC分析,以确定未反应的化合物2与得自化合物3与甲醇反应的酯的比率。反应时间通常在2至3小时的范围内。最后,为了分离酰氯与氯化剂,将所述反应混合物加热至所述反应混合物的沸点,以移除过量的氯化剂(亚硫酰氯)并且减少溶剂的量。将反应物料浓缩至约二分之一体积,并且将所得浆液(氯化溶剂中的化合物3)冷却至室温。当亚硫酰氯为氯化剂并且甲苯为氯化溶剂时,则所得浆液为化合物3在甲苯中的盐酸盐。
方案1的第二部分涉及式3的化合物与式4的磺酰胺反应以形成酰基磺酰胺化合物1。反应物的摩尔比通常在1至1.1当量的化合物4比1当量的化合物2范围内,其中1.05当量的化合物4与1当量的化合物2的比率是尤其可用的。偶合反应在碱的存在下进行,以中和释出的盐酸当量。所用碱的量相对于磺酰胺通常在2.5至4当量的范围内,其中2.8至3.5的范围是尤其可用的。碱用于中和得自酰氯盐原料的HCl当量(化合物3中的含氮杂环在强酸条件下形成盐酸盐)以及在酰氯和磺酰胺的反应中生成的HCl当量。碱还从所述产物中的酸性酰基磺酰胺官能团移除质子,以形成所述产物的盐。多种叔胺可用作该偶合反应的碱。例子为三丁胺、三乙胺和二异丙基乙胺。可用于方案1的第二部分的溶剂为向磺酰胺和化合物1提供一些溶解度的极性非质子溶剂。可用的溶剂包括乙酸乙酯、四氢呋喃、二氯甲烷和二氯乙烷。乙酸乙酯是尤其可用的。来自部分A的酰氯浆液通常用乙酸乙酯以约1体积甲苯浆液与1至2体积乙酸乙酯的比率稀释。制备化合物1的多晶型体形式A的工艺(步骤(A))的“第一溶剂”为氯化溶剂和针对在偶合反应中的溶解度添加的溶剂(例如乙酸乙酯)的混合物。将所述反应混合物(所述溶剂混合物中的化合物3)冷却至0至15℃范围内的温度,并且用化合物4处理。然后滴加叔胺碱,并且允许所述反应混合物温热至室温。将所述反应搅拌2至18小时范围内的时间。通过用甲醇处理所述反应混合物的等分试样,并且观察化合物2、化合物4和化合物1的甲酯的相对比率,再次监控所述反应。
反应完成后,所述反应混合物通常用水稀释以溶解盐并且减小所述产物的溶解度,从而促进高纯度产物的结晶。然后将含水酸加入反应混合物中以形成早先并非盐酸盐形式的任何过量叔胺的盐。该酸化对于从所述产物中与酸性酰基磺酰胺官能团形成的叔胺盐中释放其中性形式的产物化合物1是必要的。每当量叔胺碱通常加入至少约1摩尔当量的酸,以使所述反应中所用的酰氯的当量数过量。对于所述反应中使用的每当量叔胺碱,可加入大于1当量的酸以确保酸性环境,尽管为了最大程度降低成本和废物处理,通常加入不超过约0.5当量的过量酸。可使用其它水溶性酸替代盐酸。另一种适宜水溶性酸的例子为硫酸。对于多质子酸,必须根据可用的质子数调节酸的摩尔当量。当酸的加入完成时,通常将所述反应混合物在50至60℃范围内加热并且在1至2小时范围内搅拌。此程序促进形成较大尺寸的晶体以有利于过滤。然后将反应浆液冷却至5至15℃范围内的温度,并且过滤。用水将湿固体洗涤几次,以去除痕量的盐和过量的酸。然后用甲苯将湿固体洗涤几次,以从所述固体产物替换任何残余的水和乙酸乙酯。该粗制湿固体为1∶1(摩尔比)的化合物1的溶剂化物和甲苯(多晶型体形式TS)。
所述产物的甲苯溶剂化物(形式TS)由所述程序第一部分中所用的甲苯溶剂形成,所述甲苯溶剂被携带到所述程序第二部分中以制备化合物1。如果用不是甲苯的溶剂进行氯化,则所得化合物1的中间固体形式将不分离为甲苯溶剂化物。如果其形成强溶剂化物,粗产物化合物1可分离为任何溶剂的溶剂化物,所述溶剂为偶合程序中所用“第一溶剂”混合物的一部分。作为另外一种选择,当制备化合物1所用的溶剂不具有形成溶剂化物的趋势时(例如邻二甲苯),则化合物1的中间固体形式产物可分离为非溶剂化的多晶型体或多晶型体的混合物。
溶剂化物、非溶剂化多晶型体或多晶型体的混合物形式的化合物1初始通过过滤与所述反应混合物“分离”,以产生湿固体或湿饼。然后分离的化合物1的固体形式可通过干燥或移除粘附到所述固体外表面的最后痕量溶剂而进一步“分离”。然后所述分离的湿固体或分离的干燥固体可进一步转化为其它多晶型体形式。所述分离的固体还可通过多种分析方法表征。
粗制湿固体多晶型体形式TS可按原样用于进一步转化,如制备实例3中所述。多晶型体形式TS通过在水中形成浆液并且在设备中于约95-96℃进行蒸馏可进行去溶剂化并且转化为多晶型体形式A,所述设备通过共沸蒸馏例如使用Dean-Stark分离器,允许将甲苯移入馏出液中。将所述混合物加热3至5小时,并且在从浆液中移除甲苯的同时,使Dean-Stark分离器中收集的水返回至所述反应以维持恒定的反应体积。将所述反应冷却至环境温度,过滤,并且在55℃下在真空(8-15kPa绝对压力)下干燥一小时。所得产物通过pXRD确定为纯多晶型体形式A。制备实例4中描述了致使多晶型体形式TS同样转化为形式A的该程序的变型。水和甲醇两者以及水和甲醇的混合物可用作通过蒸馏去溶剂化程序的溶剂,例如用Dean-Stark设备。去溶剂化/多晶型体转化反应可在介于约30℃和所述溶剂沸点之间的温度下完成。去溶剂化/多晶型体转化反应在介于约55℃和所述溶剂沸点之间的温度下尤其有效(溶剂的沸点根据所用溶剂或溶剂混合物而不同),如制备实例4的表2中所示。一致的结果为纯多晶型体形式A,表示其在所研究的反应条件范围内为最稳定的多晶型体形式。
多晶型体形式TS的粗制湿固体还可在约90℃下在真空(8-15kPa绝对压力)炉中干燥约4天来去溶剂化,以给出多晶型体形式A和B的混合物,如制备实例2中所述。然后由多晶型体形式TS去溶剂化而得到的多晶型体形式A和B的混合物可进一步转化为其它多晶型体形式,如制备实例5中所述。将原始衍生自形式TS去溶剂化的多晶型体形式A和B的样品悬浮于溶剂中,并且加热和搅拌一段时间,然后冷却并且通过过滤和在真空炉中干燥而分离。多种溶剂可用于该转化程序中,并且所得特定多晶型体形式取决于所用溶剂。结果总结于制备实例5的表3中。多种溶剂给出纯多晶型体形式A。在95-100℃下在水或正庚烷中在搅拌下加热3小时,获得多晶型体形式A。在60℃下在甲醇中在搅拌下加热3小时,也获得多晶型体形式A。起始多晶型体混合物在温热时溶解于一些溶剂中,因此将这些溶剂的溶液冷却至环境温度或低于环境温度以促进结晶。在这些溶剂中的晶体形式转化,获得多种多晶型体形式。丙酮(以及水、甲醇和正庚烷)获得多晶型体形式A,二氯甲烷获得多晶型体形式B,并且乙腈和乙酸两者获得多晶型体形式D。
表征实例12中研究化合物1的纯多晶型体和多晶型体的混合物在加热至95℃的水中或加热至55℃的甲醇中的相对稳定性。在所有情况下,起始多晶型体或多晶型体的混合物转化为形式A。这些实验指示,在所研究的条件下,形式A为最热动力学稳定的多晶型体形式。表征实例12中的数据显示,多晶型体形式B和多晶型体形式D可用作制备多晶型体形式A的中间体。在制备实例3和4中还表明,多晶型体形式TS也为制备多晶型体形式A的中间体。
在上述多晶型体转化中并未使用晶种,然而晶种可用于提升转化和/或增加一种多晶型体向另一种的转化率。即使没有明确指明,但是多晶型体转化反应常常通过多种方法进行搅拌。搅拌的形式可为摇晃反应容器或通过用磁力搅拌器或机械搅拌器进行搅拌。多晶型体转化反应还可通过溶剂的沸腾作用进行搅拌。
无需进一步说明,据信本领域中技术人员使用先前的描述可利用本发明。因此,以下实例应理解为仅是例证性的,而不是以任何方式限制本公开。用于实例中的缩写如下:rpm为每分钟转数,pXRD为粉末X射线衍射,wt%为由HPLC测量的重量百分比(使用校准标准),a%为由HPLC在230nm波长处测量的面积百分比,DSC为差示扫描量热法,TGA为热重分析,并且KFT为Karl-Fischer滴定法。
制备实例中所用的分析方法描述于下文或表征实例中。
粉末X射线衍射(p-XRD)
粉末X射线衍射用于鉴定各种化合物1样品的晶相。用3040型PhilipsX’PERT自动化粉末衍射仪来获得数据。由铜阳极X射线源产生的辐射包括Cu-K(α1)、Cu-K(α2)和Cu-K(β)。所述衍射仪配备有镍过滤器,用于移除Cu-K(β)辐射,从而在原始数据中留下Cu-K(α1)和Cu-K(α2)。在Jade软件(MDI/Jade软件版本9.1)中的寻找波峰程序期间移除源自Cu-K(α2)的波峰,从而留下得自Cu-K(α1)的列出的最大值。X射线结晶学国际表中所列Cu-K(α1)或Cu(Kα1)辐射的波长为0.154056nm。Cu-K(α1)辐射的所列2θX射线最大值为由铜阳极X射线源所产生的最强辐射,并且有时简称为Cu-K(α)或Cu-Kα。
热重分析(TGA)
在Thermal Analysis Q5000设备上进行热重分析,以将样品的相对重量损失确定为温度的函数。将测试样品(2-6mg)精确称重至样品盘(铂,100μL)中。将样品在25mL/min氮气流速下以10℃/min的加热速率从起始温度(25℃)加热至最终温度(250或300℃)。使用Thermal AnalysisAdvantage热分析软件分析TGA扫描并且绘图。
高效液相色谱法(HPLC)
HPLC用于确定化合物1和中间体的纯度。使用具有DAD/UV检测器和反相柱(Agilent
Figure BDA0000489766520000221
SB C18(4.6×150)mm,3.5μm,部件号863953-902)的Agilent1100/1200系列HPLC系统。流量为1mL/min,运行时间为25分钟,注射体积为3.0μL,并且柱箱温度为40℃。使用根据表1的移动相梯度,其中移动相A为0.075体积%的正磷酸,并且移动相B为乙腈(HPLC等级)。通过充分混合0.75mL的正磷酸(AR等级)与1000mL的去离子水(Milli-Q等级),并且透过薄膜过滤器(0.45μm孔尺寸)过滤,制备移动相A。通过称重30.0mg的标准物至100mL标准体积烧瓶中,溶解并且用稀释剂稀释,制备标准物。通过称重30.0mg的样品至100mL标准体积烧瓶中,溶解并且用稀释剂稀释,制备样品。为了分析,使HPLC系统和柱与初始移动相平衡。依序运行空白样品、标准样品和测试样品。化合物1的保持时间为约14.8分钟。出现在空白样品中的波峰不整合,整合所有其它波峰,并且由样品层析报告a%纯度。对于重量%确定,根据标准样品校准测试样品的浓度。
表1
移动相梯度表
时间(分钟) 移动相A的体积分数(%) 移动相B的体积分数(%)
0 80 20
15 30 70
19 10 90
25 10 90
质子核磁共振( 1 H-NMR)
在Bruker Advance300/400仪器上进行质子-NMR分析。操作频率为400MHz,光谱频率范围为0-16ppm,延迟时间为2秒,脉冲宽度为12μs,最小扫描数为8。通过称重约0.01g的样品或参考标准物,加入0.6mL的DMSO-d6以溶解内容物并转移至NMR管中,制备样品。氘代DMSO(DMSO-d6)得自Cambridge Isotope Laboratory。
水含量
由Karl-Fischer滴定法(KFT)进行水含量分析。
制备实例1
合成化合物1的甲苯溶剂化物形式(形式TS)
步骤A:制备8-氯-6-(三氟甲基)咪唑并[1,2-a]吡啶-2-碳酰氯
在23℃下在氮气氛下,向配备有置顶式搅拌器、热袋、加料漏斗和氮气管的3000mL三颈圆底烧瓶中,加入甲苯(1000mL)、N-甲酰基哌啶(3.54g,0.031mol)和亚硫酰氯(67g,0.559mol)。将所得反应物料加热至82℃,并且在60分钟的时间内分批(5批)加入8-氯-6-(三氟甲基)咪唑并[1,2-a]吡啶-2-羧酸(100g,0.373mol)(如WO2010/129500中制备)。用500mL甲苯淋洗反应器壁。加入后,在90℃下搅拌所得反应物料75分钟,并且由HPLC监控反应的进展。为此,用3mL甲醇稀释0.5mL反应物料,并且由HPLC检测其对应的甲酯,来间接分析酰氯的形成。2小时后,HPLC分析指示约0.35a%的未反应8-氯-6(三氟甲基)咪唑并[1,2-a]吡啶-2-羧酸和约99.0a%的8-氯-6(三氟甲基)咪唑并[1,2-a]吡啶-2-羧酸甲酯。将所得反应物料进一步加热至140℃(油浴温度)并且在大气压力下于约109℃(质温)和105-107℃(蒸气温度)下蒸馏2.5小时,以移除存在于反应物料中的甲苯(约600mL)和过量的亚硫酰氯。蒸馏后,在60分钟的时间内将反应物料逐渐冷却至30℃。由HPLC在230nm下测得,8-氯-6-(三氟甲基)咪唑并[1,2-a]吡啶-2-羧酸的浓度为约0.07a%,并且8-氯-6-(三氟甲基)咪唑并[1,2-a]吡啶-2-羧酸甲酯的浓度为约99.2a%。
步骤B:制备8-氯-N-[(2-氯-5-甲氧基苯基)磺酰基]-6-(三氟甲基)-咪唑并 [1,2-a]吡啶-2-甲酰胺(化合物1)
在30分钟的时间内将步骤A所得的酰氯溶液冷却至0℃,并且在0℃下在氮气氛下向其中加入乙酸乙酯(400mL)。将所得反应物料在0℃下搅拌5分钟,并且向其中加入2-氯-5-甲氧基苯磺酰胺(90g,0.391mol)(如WO2010/129500中制备)。在60分钟的时间内使用加料漏斗,将三丁胺(242g,1.305mol)滴加到所得反应物料中。在加入期间观察到温度上升8℃。加入后,将所得反应物料在10℃下搅拌30分钟,并且温度逐渐上升至25℃。监控反应的进展。为此,用3mL甲醇稀释0.5mL反应物料,并且在230nm下由HPLC分析进行分析。25℃下约15分钟后,8-氯-6-(三氟甲基)咪唑并[1,2-a]吡啶-2-羧酸甲酯的浓度为约4.30a%,8-氯-6-(三氟甲基)咪唑并[1,2-a]吡啶-2-羧酸的浓度为约1.81a%,未反应的2-氯-5-甲氧基苯磺酰胺的浓度为约2.86a%,并且化合物1的浓度为约86.5a%。将所得反应物料在25℃下搅拌过夜,并且由HPLC在230nm下监控反应的进展。25℃下15小时后,8-氯-6-(三氟甲基)咪唑并[1,2-a]吡啶-2-羧酸甲酯的浓度为约0.84a%、8-氯-6-(三氟甲基)咪唑并[1,2-a]吡啶-2-羧酸的浓度为约1.72a%,未反应的2-氯-5-甲氧基苯磺酰胺的浓度为约2.20a%,并且化合物1的浓度为约91.9a%。
将反应物料在25℃下搅拌,并且25℃下在60分钟的时间内加入水(360mL)。在45分钟的时间内,将HCl(32重量%,191g)的200mL水溶液加入所得反应混合物中。在HCl加入期间,反应物料初始变成澄清溶液,然后在加入结束期间逐渐变成浑浊液体。在该加入期间观察到温度上升9℃。加入后,将所得反应物料加热至55℃,搅拌60分钟,逐渐冷却至5℃,然后在5℃下搅拌30分钟,并且过滤。用水洗涤湿饼(用3100mL洗涤3次),并且在布氏漏斗上真空干燥。分析真空干燥材料的氯离子含量,其指示不存在显著量的氯盐。用甲苯(2×400mL)洗涤湿饼,并且在布氏漏斗上真空干燥约12小时。获得185克灰白色固体状粗产物。产物中甲苯和乙酸乙酯含量分别为17.3重量%和0.855重量%。水含量为0.84重量%。粗产物(湿样品)的HPLC纯度为99.8a%和80.0重量%。基于HPLC重量%分析的产率为85%。
1H-NMR符合包含甲苯的化合物1[(DMSO-d6)δ3.86(s,3H),7.30(d,1H),7.57(dd,1H),7.64(d,1H),7.96(d,1H),8.84(s,1H),9.34(d,1H)]。甲苯与化合物1的摩尔比为约1.06,从而指示1∶1的甲苯溶剂化物。pXRD衍射图案符合化合物1的甲苯溶剂化物(形式TS)。粗制湿固体用于形式转化研究。
制备实例2
制备化合物1的混合形式A和B
化合物1的甲苯溶剂化物如制备实例1中所述来制备,并且通过在90℃下在真空炉(8-15kPa绝对压力)中干燥4天来去溶剂化。产物中的甲苯含量为0.11重量%,并且水含量为0.09重量%。
1H-NMR符合化合物1[(DMSO-d6)δ3.86(s,3H),7.30(d,1H),7.57(dd,1H),7.64(d,1H),7.96(d,1H),8.84(s,1H),9.34(d,1H)]。由HPLC测得的纯度为99.9a%和99.0重量%。DSC热谱显示具有211.1℃和219.1℃波峰温度的两个吸热峰。所述pXRD图案确认所述材料为晶体,并且对应于形式A和形式B的晶体混合物。
制备实例3
化合物1的甲苯溶剂化物向形式A的转化
25℃下向配备有顶部搅拌器、油浴、Dean-Stark设备和温度探针的500mL三颈圆底烧瓶中,加入根据制备实例1制备的25g化合物1湿饼(甲苯含量=17.3重量%)和水(75mL)。将所得反应物料加热至95℃(反应物料温度),并且在以约850rpm搅拌的同时,在95-96℃下维持5小时的时间。在从反应物料移除甲苯的同时,将Dean-Stark设备收集的水循环以维持大约恒定的反应体积。约3小时后未观察到甲苯的进一步蒸馏。在搅动下从反应物料中取出浆液样品。由GC分析确定,浆液的甲苯和乙酸乙酯含量分别为56ppm和17ppm。从反应混合物中取出约10mL的样品,冷却至25℃,过滤并且在布氏漏斗上真空干燥15分钟。湿饼显示约429ppm的甲苯和36ppm的乙酸乙酯。在55℃下在真空炉(8-15kPa绝对压力)中将湿饼干燥1小时,并且由DSC和pXRD分析。DSC和pXRD数据两者符合化合物1的形式A。
由于得自反应物料的样品的一部分指示转化为形式A,所以过滤整个反应物料,在55℃下在真空炉(8-15kPa绝对压力)中干燥1小时。由pXRD和DSC分析干燥的产物。DSC和pXRD数据两者符合化合物1的形式A。
制备实例4
化合物1的甲苯溶剂化物(形式TS)的附加多晶型体转化研究
用水、甲醇以及它们的混合物作为悬浮介质,进行根据制备实例3的形式转化实验。除非另外指明,所用实验条件和设备均如制备实例3中所述。在每个实验中,使用根据制备实例1制备的25g化合物1的湿饼(甲苯含量=17.3重量%)作为原料。实验条件总结于表2中。包括制备实例3的条件以供参考。悬浮液在回流条件下经受共沸蒸馏,以使用Dean-Stark设备移除甲苯。3至5小时后,不再看见甲苯被移除,并且过滤所得浆液,在55℃下在真空炉(8-15kPa绝对压力)中干燥1小时,并且由DSC和pXRD进行分析。表2中所列全部实例的DSC和pXRD数据符合化合物1的形式A。
表2
多晶型体转化研究和所得形式的实验条件
Figure BDA0000489766520000271
制备实例5
用于制备化合物1各种晶体形式的溶剂筛选
评估一组用于制备包括化合物1溶剂化物形式在内的各种晶体形式的溶剂。根据制备实例2制备化合物1的原料。将由此制备的化合物1等分试样在表3所列的溶剂选择中溶解或形成浆液,并且根据以下描述进行处理。由1H-NMR、pXRD、DSC和TGA进行所得干燥材料的分析。表3还报告了吸热DSC事件和所得晶体形式。
在实例5a中,56℃下将1g化合物1溶解于6.5mL丙酮中。在1小时时间内将所述溶液缓慢冷却至约5℃。将所得晶体过滤,抽吸干燥1小时,并且在65℃和8kPa绝对压力下,在真空炉中干燥12小时。通过所得材料的pXRD、DSC、TGA和1H-NMR分析指示为形式A。
在实例5b中,使1g化合物1在10mL甲醇中形成浆液,回流3小时,过滤,冷却至约25℃,抽吸过滤1小时,并且在70℃和8kPa绝对压力下,在真空炉中干燥12小时。通过所得材料的pXRD、DSC、TGA和1H-NMR分析指示为形式A。
在实例5c中,使1g化合物1在10mL去离子水中形成浆液,回流3小时,冷却至约25℃,过滤,抽吸过滤1小时,并且在70℃和8kPa绝对压力下,在真空炉中干燥12小时。通过所得材料的pXRD、DSC、TGA和1H-NMR分析指示为形式A。
在实例5d中,使1g化合物1在10mL正庚烷中形成浆液,回流3小时,冷却至约25℃,过滤,抽吸过滤1小时,并且在70℃和8kPa绝对压力下,在真空炉中干燥12小时。通过所得材料的pXRD、DSC、TGA和1H-NMR分析指示为形式A。
在实例5e中,使1g化合物1在65℃下溶解于14mL乙酸乙酯中。在1小时期间内将所述溶液冷却至5℃。将所得晶体过滤,抽吸干燥1小时,并且在65℃和8kPa绝对压力下,在真空炉中干燥12小时。通过所得材料的pXRD、DSC、TGA和1H-NMR分析指示为包含乙酸乙酯的溶剂化物形式。
在实例5f中,使1g化合物1在10mL异丙醇中回流3小时,冷却至约25℃,过滤,抽吸过滤1小时,并且在65℃和8kPa绝对压力下,在真空炉中干燥12小时。通过所得材料的pXRD、DSC、TGA和1H-NMR分析指示为包含异丙醇的溶剂化物形式。
在实例5g中,使1g化合物1在10mL甲基叔丁基醚中回流3小时,冷却至约25℃,过滤,抽吸过滤1小时,并且在65℃和8kPa绝对压力下,在真空炉中干燥12小时。通过所得材料的pXRD、DSC、TGA和1H-NMR分析指示为包含甲基叔丁基醚的溶剂化物形式。
在实例5h中,使1g化合物1在65℃下溶解于12mL乙腈中。在4小时时间内将所述溶液缓慢冷却至5℃。将所得晶体过滤,抽吸干燥1小时,并且在65℃和8kPa绝对压力下,在真空炉中干燥12小时。通过所得材料的pXRD、DSC、TGA和1H-NMR分析指示为形式D。
在实例5i中,使1g化合物1在65℃下溶解于12mL四氢呋喃中。在4小时时间内将所述溶液缓慢冷却至25℃。将所得晶体过滤,抽吸干燥1小时,并且在65℃和8kPa绝对压力下,在真空炉中干燥12小时。通过所得材料的pXRD、DSC、TGA和1H-NMR分析指示为包含四氢呋喃的溶剂化物形式。
在实例5j中,使1g化合物1在12mL乙醇中形成浆液,回流3小时,冷却至约25℃,过滤,抽吸过滤1小时,并且在70℃和8kPa绝对压力下,在真空炉中干燥12小时。通过所得材料的pXRD、DSC、TGA和1H-NMR分析指示为包含乙醇的溶剂化物形式。
在实例5k中,使1g化合物1在10mL萘烷中形成浆液,在120℃下加热3小时,冷却至约25℃,过滤,抽吸过滤1小时,并且在90℃和8kPa绝对压力下,在真空炉中干燥12小时。通过所得材料的pXRD、DSC、TGA和1H-NMR分析指示为包含萘烷的溶剂化物形式。
在实例5l中,将1g化合物1在65℃下溶解于12.5mL甲基异丁基酮中。在3小时期间内将所述溶液冷却至约25℃。将所得晶体过滤,抽吸干燥1小时,并且在90℃和8kPa绝对压力下,在真空炉中干燥12小时。通过所得材料的pXRD、DSC、TGA和1H-NMR分析指示为包含甲基异丁基酮的溶剂化物形式。
在实例5m中,使1g化合物1在120℃下溶解于6mL三甲苯中。在4小时期间内将所得溶液缓慢冷却至约25℃。将所得晶体过滤,抽吸干燥1小时,并且在90℃和8kPa绝对压力下,在真空炉中干燥12小时。通过所得材料的pXRD、DSC、TGA和1H-NMR分析指示为形式A和B的混合物。
在实例5n中,使1g化合物1在90℃下溶解于17mL甲苯中。在4小时期间内将所得溶液缓慢冷却至约25℃。将所得晶体过滤,抽吸干燥1小时,并且在90℃和8kPa绝对压力下,在真空炉中干燥12小时。通过所得材料的pXRD、DSC、TGA和1H-NMR分析指示为包含甲苯的溶剂化物形式。在上述干燥条件下即使附加干燥12小时后,残余的甲苯仍保留在产物中。
在实例5o中,使1g化合物1在25℃下溶解于15mL二氯甲烷中。将所得溶液缓慢冷却至约5℃,并且在5℃下保持30分钟。将所得晶体过滤,抽吸干燥1小时,并且在65℃和8kPa绝对压力下,在真空炉中干燥12小时。通过所得材料的pXRD、DSC、TGA和1H-NMR分析指示为形式B。
在实例5p中,120℃下使1g化合物1在10mL萘满中成浆3小时,缓慢冷却至约25℃,过滤,抽吸过滤1小时,并且在90℃和8kPa绝对压力下,在真空炉中干燥12小时。通过所得材料的pXRD、DSC、TGA和1H-NMR分析指示为形式A和B的混合物。
在实例5q中,使1g化合物1在65℃下溶解于9mL的1,4-二氧戊环中。4小时内使所得溶液缓慢冷却至约25℃,并且在25℃下保持12小时。将所得晶体过滤,抽吸干燥1小时,并且在70℃和8kPa绝对压力下,在真空炉中干燥12小时。通过所得材料的pXRD、DSC、TGA和1H-NMR分析指示为包含1,4-二氧戊环的溶剂化物形式。
在实例5r中,使1g化合物1在80℃下溶解于7mL乙酸中。4小时内使所得溶液缓慢冷却至约25℃,并且在25℃下保持12小时。将所得晶体过滤,抽吸干燥1小时,并且在70℃和8kPa绝对压力下,在真空炉中干燥12小时。通过所得材料的pXRD、DSC、TGA和1H-NMR分析指示为形式D。
在实例5s中,使1g化合物1在70℃下溶解于7mL乙酸异丙酯中。4小时内使所得溶液缓慢冷却至约25℃,并且在25℃下保持12小时。将所得晶体过滤,抽吸干燥1小时,并且在70℃和8kPa绝对压力下,在真空炉中干燥12小时。通过所得材料的pXRD、DSC、TGA和1H-NMR分析指示为包含乙酸异丙酯的溶剂化物形式。
在实例5t中,100℃下使1g化合物1在10mL邻二甲苯中形成浆液,冷却至约25℃,过滤,抽吸过滤1小时,并且在90℃和8kPa绝对压力下,在真空炉中干燥12小时。通过所得材料的pXRD、DSC、TGA和1H-NMR分析指示为形式A和B的混合物。
表3
使用多种溶剂的晶体形式转化研究
实例编号 溶剂 获得的多晶型体形式 DSC吸热1(℃) DSC吸热2(℃)
5a 丙酮 A 210.9 218.9
5b 甲醇 A 209.9 218.7
5c A 212.1 218.7
5d 正庚烷 A 212.8 219.1
5e 乙酸乙酯 溶剂化物 210.8 218.6
5f 异-丙醇 溶剂化物 211.4 218.3
5g 甲基叔丁基醚 溶剂化物 210.3 218.4
5h 乙腈 D 212.8 219.4
5i 四氢呋喃 溶剂化物 210.5 218.6
5j 乙醇 溶剂化物 208.2 218.7
5k 萘烷 溶剂化物 211.1 218.3
5l 甲基异丁酮 溶剂化物 211.6 218.9
5m 三甲苯 A+B 211.8 218.4
5n 甲苯 溶剂化物 210.6 218.8
5o 二氯甲烷 B 210.5 218.5
5p 萘满 A+B 212.9 219.0
5q 1,4-二氧戊环 溶剂化物 210.8 218.9
5r 乙酸 D 213.1 219.5
5s 乙酸异丙酯 溶剂化物 211.6 218.9
5t 邻二甲苯 A+B 212.0 218.6
制备实例6
制备化合物1的多晶型体形式D
将根据制备实例2制备的化合物1与乙腈在65℃下加热5分钟,以制备化合物1的多晶型体形式D。将所得的澄清溶液在4小时内逐渐冷却至5℃,并且在该温度下不搅动维持12小时。将所形成的晶体过滤,并且在65℃下在真空炉(8kPa绝对压力)中干燥12小时。发现分离出的固体具有独立的pXRD衍射图案,指示不同的晶体形式(多晶型体形式D)。
还使用乙酸作为溶剂,根据上述方法制备形式D,如呈现相同的pXRD图案所显示的。还经由单晶XRD分析从乙腈和乙酸中结晶的样品,如下文表征实例所述。
制备实例7
晶体形式A和B的混合物在液体制剂中的稳定性
如制备实例2中所述,制备化合物1的多晶型体形式A和形式B的混合物。通过pXRD确认存在两种多晶型体形式。
制备包含混合多晶型体形式A和B的化合物1的悬浮浓缩制剂X。制剂X的组成示于下表中。所有成分以表中所列成分顺序混合,以获得6.5克的总量。使用立式磨机在配备有变速置顶式叶轮的30mL烧瓶中,使用14.3克0.8至1.0mm尺寸的玻璃珠研磨结合成分的混合物。将烧瓶内容物在室温下以4000rpm速率搅拌5分钟,然后以6000rpm速率搅拌13分钟。以400至1000倍放大率的光学显微镜(Leica,型号DM LS)评定所得制剂,以评估制剂中化合物1颗粒的均匀性、尺寸和形状。发现所述颗粒为不规则形状,并且在约3至10μm的窄范围中。使样品在室温下静置约15小时,然后在显微镜下再次检查;发现已形成尺寸范围介于约5至30μm之间的较大立方晶体。而且,已形成长度介于约50至200μm之间的突枝状晶体团。种晶体大小和形式的此类改变构成不可取的制剂不稳定性,其可导致非期望的效果,如活性化合物沉降出来或较大晶体由于它们比表面积减少而无法提供充分的生物效力。
制剂样品在室温下静置共18小时后,使用与上述相同的设备和条件,以6000rpm速率再次研磨45分钟。显微镜下的观察显示,化合物1颗粒均匀分散在约3至10μm的尺寸范围内。将样品分开,并且在室温和54℃下分别储存14天。在显微镜下再次检查两种储存的样品,显示在任一个储存温度下,均没有晶体生长或形式改变的迹象,指示制剂具有良好的粒度稳定性。HPLC确定,在室温和54℃下储存的样品中,化合物1的浓度分别为49.7重量%和51.2重量%,指示制剂具有良好的化学稳定性。
为了确定晶体生长后已再次研磨的制剂样品中化合物1的晶体形式,如下所述将化合物1从制剂分离出来。在1.5mL离心管中将制剂等分试样(0.72克)进行各30分钟的6次离心循环。每次离心后,移除上清液,以去离子水替代,并且将试管内容物充分混合。最终离心循环后,去除上清液,并且在40℃下将固体干燥约70小时。通过所得材料的pXRD和DSC分析指示纯多晶型体形式A。
制剂实例X
Figure BDA0000489766520000331
制备实例8
制备和分离8-氯-6-(三氟甲基)咪唑并[1,2-a]吡啶-2-碳酰氯
在23-25℃下在氮气氛下,向250mL四颈圆底烧瓶中加入甲苯(50mL)、N-甲酰基哌啶(0.177g,1.6mmol)和亚硫酰氯(3.37g,27.8mmol)。将所得反应物料在20分钟的时间内加热至82℃,并且在25分钟的时间内分批加入该8-氯-6-(三氟甲基)咪唑并[1,2-a]吡啶-2-羧酸(5.0g,18.6mmol)中。还加入附加的甲苯(25mL)。在酸的加入期间,反应物料从浆液变为释出HCl气体的淡绿色溶液。将所得物料加热至90℃并且搅拌90分钟,并且由HPLC监控反应的进展(将0.5mL反应物料用3mL甲醇稀释,并且分析其相对应的甲酯,以分析酰氯的形成)。90分钟后,HPLC分析(230nm)指示未反应酸为0.32A%,并且甲酯为99.24A%。在~109℃(物料温度)下在大气压下将所得反应物料蒸馏30分钟的时间,以去除甲苯-亚硫酰氯混合物(~50mL)。在蒸馏期间,反应物料变成深褐色。将反应物料在30分钟的时间内逐渐冷却至30℃,并且由HPLC分析样品。HPLC(230nm)分析指示,未反应酸为~0.33%,并且形成的甲酯为~99.12%。用氮气流使标题酰氯在50℃下在真空下完全干燥30分钟,以去除残余甲苯,并且由HPLC和1H NMR分析。分离出灰色固体状标题酰氯(6.5g)。HPLC纯度(230nm)为95.60%AP(以甲酯测量)。
1H-NMR(CDCl3)δ7.57(s,1H),8.53(s,1H),8.56(s,1H)。
1H-NMR(DMSO-d6)δ7.90(s,1H),8.68(s,1H),9.30(s,1H)。
表征实例1
化合物1多晶型体形式A的X射线粉末衍射
使用粉末X射线衍射来鉴定各种化合物1样品的晶相。用3040型Philips X’PERT自动化粉末衍射仪来获得数据。衍射仪配备有自动可变防散射器和发散狭缝、X’Celerator RTMS检测器和Ni滤光器。辐射为Cu-K(α)(45kV,40mA)。在室温下,使用在θ-θ几何中具有0.02度的等步长和每步320秒的计数时间的连续扫描,收集3至50度2θ的数据。如果需要,用玛瑙研钵和研杵研磨样品,并且在低背景非晶形二氧化硅样本夹持器上制备成粉末状材料的薄层。使用9.1版MDI/Jade软件与InternationalCommittee for Diffraction Data数据库PDF4+2008进行相鉴定。使用MDI/Jade“Find Peaks”程序计算化合物1的形式A的Cu-K(α1)X射线衍射最大值,并且列于表4中。
表4
化合物1的多晶型体形式A的2θX射线最大值(以度计)
11.651 21.026 25.973 30.652 36.967 42.451 47.813
12.854 21.543 26.490 31.905 37.703 42.935 48.167
13.705 23.097 27.308 32.657 37.956 43.538 48.648
14.056 23.582 27.611 33.042 38.607 44.089 49.118
15.426 24.285 27.995 34.629 38.992 44.740 49.502
18.286 24.584 29.131 35.028 39.875 45.926
18.836 24.954 29.764 35.614 40.443 46.644
19.789 25.604 30.367 35.982 41.632 47.279
表征实例2
化合物1多晶型体形式B的模拟X射线粉末衍射图案
通过由化合物1的多晶型体形式B的单晶结构确定的原子坐标和晶胞参数计算模拟粉末图案。这基于在-100℃下收集的数据。使用CambridgeMercury程序,以Cu波长(0.154056nm)、3至50度2θ和0.02度步长计算X射线图案。波峰位置选自使用第9版MDI/Jade软件的计算图案。使用MDI/Jade“Find Peaks”程序计算化合物1的形式B的Cu-K(α1)X射线衍射最大值,并且列于表5中。
表5
化合物1的多晶型体形式B的2θX射线最大值(以度计)
7.998 15.259 20.999 27.283 32.382 37.442 43.139
8.362 15.778 21.880 27.581 32.758 37.903 43.478
9.460 16.038 22.718 28.242 32.961 38.340 44.259
10.417 16.341 23.082 28.642 33.342 38.537 45.199
10.938 16.603 23.341 29.139 33.943 39.340 45.438
11.997 17.219 23.979 29.657 34.400 39.742 46.102
12.339 18.120 24.583 30.177 34.683 39.942 46.399
12.738 18.683 24.822 30.520 35.161 40.241 47.100
13.083 18.981 25.060 30.921 35.358 41.001 48.120
14.020 19.502 25.978 31.479 36.040 42.559 49.097
14.443 20.320 26.519 31.958 36.463 42.782
表征实例3
化合物1多晶型体形式C的模拟X射线粉末衍射图案
通过由化合物1的多晶型体形式C的单晶结构确定的原子坐标和晶胞参数计算模拟粉末图案。这基于在-100℃下收集的数据。使用CambridgeMercury程序,以Cu波长(0.154056nm)、3至50度2θ和0.02度步长计算X射线图案。波峰位置选自使用第9版MDI/Jade软件的计算图案。使用MDI/Jade“Find Peaks”程序计算化合物1的形式C的Cu-K(α1)X射线衍射最大值,并且列于表6中。
表6
化合物1的多晶型体形式C的2θX射线最大值(以度计)
6.181 15.442 20.760 25.837 31.279 36.920 42.080
7.222 15.777 21.161 26.300 31.878 37.480 42.662
7.603 16.423 21.585 26.557 32.499 37.719 43.141
8.363 16.859 22.120 27.160 33.061 38.239 44.44
8.657 17.360 22.420 27.520 33.479 38.457 44.899
9.377 17.697 22.996 28.180 33.737 38.956 45.141
11.860 18.340 23.542 28.661 34.418 39.378 46.300
12.421 18.583 23.880 29.281 34.662 39.601 47.319
13.041 19.098 24.379 29.579 35.541 40.360 47.639
13.583 19.420 24.701 30.001 35.961 41.059 48.239
14.479 19.899 25.181 30.502 36.239 41.640 48.825
15.041 20.360 25.622 30.761 36.618 41.861
表征实例4
化合物1多晶型体形式D的模拟X射线粉末衍射图案
通过由化合物1的多晶型体形式D的单晶结构确定的原子坐标和晶胞参数计算模拟粉末图案。这基于在-100℃下收集的数据。使用CambridgeMercury程序,以Cu波长(0.154056nm)、3至50度2θ和0.02度步长计算X射线图案。波峰位置选自使用第9版MDI/Jade软件的计算图案。使用MDI/Jade“Find Peaks”程序计算化合物1的形式D的Cu-K(α1)X射线衍射最大值,并且列于表7中。
表7
化合物1的多晶型体形式D的2θX射线最大值(以度计)
5.981 16.160 24.099 28.717 32.343 37.858 46.103
10.342 17.821 24.679 28.921 32.658 39.200 46.420
11.641 18.001 25.121 29.162 33.060 39.521 47.980
12.263 18.478 25.279 29.516 33.442 40.160 48.797
12.520 19.320 25.682 29.801 34.420 40.461
14.598 20.778 26.120 29.943 35.421 41.160
14.840 21.281 26.922 30.143 36.683 41.556
15.378 22.583 27.497 31.219 37.023 42.641
15.620 23.320 28.460 31.600 37.383 43.620
表征实例5
化合物1多晶型体形式TS的X射线粉末衍射图案
使用粉末X射线衍射以表征化合物1的甲苯溶剂化物多晶型体形式(多晶型体形式TS)。用3040型Philips X’PERT自动化粉末衍射仪来获得数据。衍射仪配备有自动可变防散射器和发散狭缝、X’Celerator RTMS检测器和Ni滤光器。辐射为Cu-K(α)(45kV,40mA)。在室温下,使用在θ-θ几何中具有0.02度的等步长和每步320秒的计数时间的连续扫描,收集3至50度2θ的数据。如果需要,用玛瑙研钵和研杵轻微研磨样品,并且在低背景硅样本夹持器上制备成粉末状材料的薄层。使用9.1版MDI/Jade软件与International Committee for Diffraction Data数据库PDF4+2008进行相鉴定。使用MDI/Jade“Find Peaks”程序计算化合物1的形式TS的Cu-K(α1)X射线衍射最大值,并且列于表8中。
表8
化合物1的多晶型体形式TS的2θX射线最大值(以度计)
6.889 14.508 18.603 24.451 32.222 36.906 42.015
8.608 14.908 19.053 25.672 32.671 37.452 43.869
9.997 15.728 20.325 26.942 33.561 38.323 45.173
11.433 16.481 21.643 27.945 33.994 39.057 46.092
12.871 16.998 22.429 28.913 34.528 40.711 47.514
13.606 17.433 23.316 30.951 36.114 41.548 48.148
表征实例6
化合物1的多晶型体形式A的单晶X射线衍射
通过缓慢蒸发甲醇,生长多晶型体形式A的适宜单晶。选择具有0.10×0.10×0.04mm近似尺寸的无色不规则块状物,以用于数据收集并且安装在聚合物环上。使用具有Apex-II检测器的Bruker Platform测角计收集单晶数据。所述衍射仪配备有使用Mo-Kα辐射
Figure BDA0000489766520000386
的入射光束单色仪和单管准直器。在数据收集期间,将晶体在-100℃氮气流中冷却。
使用包括Sainplus和SADABS的Apex-II程序包,将数据编入索引并整合。三斜晶胞参数确定为:
Figure BDA0000489766520000382
α=86.690(5)°,β=87.984(5)°,γ=65.114(4)°,
Figure BDA0000489766520000383
确定空间群为P-1。分子量为468.23g/mol,从而给出计算密度为1.739g/cm3,并且对于Z=2,μ(Mo)=0.54mm-1。数据减少获得2θ范围=3.50至53.12°的3684个独立数据。使用基于Int.Tab.Vol C表4.2.6.8和6.1.1.4的散射因子F2的精化Shelxtl程序包,进行结构解析和精化。最终精化统计包括数据/参数比率=13.90,对F2的适合度=1.02,R指标[I>4σ(I)]R1=0.0506,wR2=0.0977,R指标(所有数据)R1=0.0951,wR2=0.1141,
Figure BDA0000489766520000384
Figure BDA0000489766520000385
表9和10中列出原子分数坐标(×104)和等效各向同性位移参数。U(eq)定义为正交Uij张量迹线的三分之一。估计的标准偏差示于括号中。
表9
化合物1多晶型体形式A的原子坐标(×10 4 )和等效各向同性位移参 数(A 2 ×10 3 )
原子 x y z U(eq)
Cl(1) -561(1) -1094(1) 6924(1) 43(1)
Cl(2) 2856(2) 1915(1) 10437(1) 62(1)
S(1) 4552(1) 2760(1) 8088(1) 32(1)
F(1) -6506(2) 2428(2) 4590(2) 44(1)
F(2) -5576(3) 3508(2) 3277(2) 49(1)
F(3) -4749(3) 1156(2) 3306(2) 54(1)
O(1) 1474(3) 4766(2) 6746(2) 37(1)
O(2) 5691(3) 1379(3) 8579(2) 49(1)
O(3) 5180(3) 3493(3) 7231(2) 45(1)
N(1) 2988(3) 2445(3) 7517(2) 30(1)
N(2) 403(3) 1635(3) 6768(2) 30(1)
N(4) -1720(3) 2916(3) 5502(2) 26(1)
C(1) 1618(4) 3510(4) 6917(3) 29(1)
C(2) 373(4) 2995(3) 6476(3) 27(1)
C(3) -911(4) 3799(4) 5719(3) 28(1)
C(5) -891(4) 1609(3) 6177(3) 27(1)
C(6) -1524(4) 513(3) 6103(3) 30(1)
C(7) -2841(4) 743(4) 5388(3) 32(1)
C(8) -3613(4) 2086(4) 4711(3) 29(1)
C(9) -3054(4) 3157(4) 4776(3) 30(1)
C(10) -5083(4) 2298(4) 3966(3) 36(1)
C(11) 3454(4) 4034(3) 9144(3) 26(1)
C(12) 2725(4) 3667(4) 10134(3) 36(1)
C(13) 1858(5) 4738(5) 10897(3) 51(1)
C(14) 1684(5) 6159(5) 10692(4) 56(1)
C(15) 2388(4) 6525(4) 9708(4) 44(1)
原子 x y z U(eq)
C(16) 3282(4) 5461(3) 8930(3) 33(1)
O(4) 2424(7) 7917(6) 9159(6) 46(2)
C(17) 1161(9) 9199(8) 9661(7) 50(2)
O(4′) 2039(6) 7914(5) 9778(5) 39(2)
C(17′) 2858(9) 8429(8) 8874(6) 40(2)
表10
化合物1多晶型体形式A的氢坐标(×10 4 )和各向同性位移参数(A 2 ×10 3 )
原子 x y z U(eq)
H(3A) -1180 4749 5415 34
H(7A) -3248 18 5337 38
H(9A) -3563 4037 4338 36
H(13A) 1379 4498 11565 61
H(14A) 1090 6873 11219 67
H(16A) 3765 5705 8266 39
H(1) 3010(40) 1620(40) 7630(30) 26(9)
H(17A) 1226 10061 9297 75
H(17B) 1380 9161 10469 75
H(17C) 23 9242 9556 75
H(17D) 2567 9456 8956 61
H(17E) 2461 8300 8144 61
H(17F) 4095 7877 8916 61
表征实例7
化合物1的多晶型体形式B的单晶X射线衍射
通过在160℃下热梯度升华,生长化合物1的多晶型体形式B的适宜单晶。选择具有0.40×0.26×0.13mm近似尺寸的无色棱柱,以用于数据收集并且安装在聚合物环上。使用具有Apex-II检测器的Bruker Platform测角计收集单晶数据。所述衍射仪配备有使用Mo-Kα辐射
Figure BDA0000489766520000416
的入射光束单色仪和单管准直器。在数据收集期间,将晶体在-100℃氮气流中冷却。
使用包括Sainplus和SADABS的Apex-II程序包,将数据编入索引并整合。三斜晶胞参数确定为:
Figure BDA0000489766520000411
Figure BDA0000489766520000412
α=109.171(2)°,β=92.359(2)°,γ=106.342(2)°,
Figure BDA0000489766520000413
确定空间群为P-1。分子量为468.23g/mol,从而给出计算密度为1.658g/cm3,并且对于Z=4,μ(Mo)=0.52mm-1。数据减少获得2θ范围=2.94至54.50°的8320个独立数据。使用基于Int.Tab.Vol C表4.2.6.8和6.1.1.4的散射因子F2的精化Shelxtl程序包,进行结构解析和精化。最终精化统计包括数据/参数比率=13.80,对F2的适合度=1.06,R指标[I>4σ(I)]R1=0.0446,wR2=0.1012,R指标(所有数据)R1=0.0732,wR2=0.1120,
Figure BDA0000489766520000415
表11和12中列出原子分数坐标(×104)和等效各向同性位移参数。U(eq)定义为正交Uij张量迹线的三分之一。估计的标准偏差示于括号中。
表11
化合物1多晶型体形式B的原子坐标(×10 4 )和等效各向同性位移参 数(A 2 ×10 3 )
原子 x y z U(eq)
Cl(1) 9215(1) 2511(1) 5201(1) 40(1)
Cl(2) 12637(1) 398(1) 6790(1) 43(1)
Cl(21) 9857(1) 8175(1) 2427(1) 56(1)
Cl(22) 7769(1) 1721(1) 1632(1) 46(1)
S(1) 14843(1) 2991(1) 7570(1) 27(1)
S(21) 5885(1) 3011(1) 2823(1) 29(1)
F(1) 11222(2) 5634(2) 2620(1) 51(1)
F(2) 9386(2) 5058(2) 2883(1) 47(1)
F(3) 10074(2) 3794(2) 1859(1) 50(1)
F(21) 9708(2) 8703(2) -1033(2) 50(1)
原子 x y z U(eq)
F(22) 8228(2) 9345(2) -592(1) 51(1)
F(23) 7908(2) 7651(2) -1780(1) 50(1)
O(1) 15222(2) 3594(2) 5823(1) 32(1)
O(2) 15978(2) 3936(2) 7792(1) 33(1)
O(3) 14209(2) 2833(2) 8341(1) 35(1)
O(4) 17604(2) 649(2) 6058(2) 40(1)
O(21) 4965(2) 3179(2) 983(1) 33(1)
O(22) 4817(2) 3289(2) 3094(2) 37(1)
O(23) 6841(2) 3215(2) 3546(1) 36(1)
O(24) 2664(2) -1058(2) 1334(2) 41(1)
N(1) 13905(3) 3245(2) 6861(2) 28(1)
N(2) 12055(2) 3283(2) 5595(2) 27(1)
N(4) 12302(2) 4104(2) 4441(2) 26(1)
N(21) 6521(3) 3877(2) 2211(2) 30(1)
N(22) 7666(2) 5770(2) 1618(2) 29(1)
N(24) 7309(2) 5998(2) 203(2) 26(1)
C(1) 14219(3) 3510(2) 6049(2) 25(1)
C(2) 13250(3) 3662(2) 5486(2) 25(1)
C(3) 13421(3) 4156(3) 4779(2) 27(1)
C(5) 11482(3) 3544(2) 4942(2) 26(1)
C(6) 10240(3) 3303(3) 4650(2) 29(1)
C(7) 9881(3) 3673(3) 3946(2) 32(1)
C(8) 10766(3) 4306(3) 3503(2) 30(1)
C(9) 11950(3) 4518(3) 3741(2) 29(1)
C(10) 10365(3) 4704(3) 2724(2) 35(1)
C(11) 15046(3) 1589(2) 6871(2) 26(1)
C(12) 14097(3) 475(3) 6557(2) 32(1)
C(13) 14335(3) -598(3) 6047(2) 34(1)
C(14) 15493(3) -580(3) 5873(2) 34(1)
原子 x y z U(eq)
C(15) 16435(3) 522(3) 6182(2) 30(1)
C(16) 16193(3) 1609(3) 6679(2) 29(1)
C(17) 17922(4) -453(3) 5647(3) 46(1)
C(21) 5955(3) 3886(2) 1383(2) 28(1)
C(22) 6678(3) 4840(2) 1042(2) 26(1)
C(23) 6447(3) 4944(3) 175(2) 28(1)
C(25) 8026(3) 6471(3) 1101(2) 28(1)
C(26) 8967(3) 7601(3) 1327(2) 34(1)
C(27) 9146(3) 8181(3) 676(2) 36(1)
C(28) 8374(3) 7646(3) -225(2) 31(1)
C(29) 7485(3) 6573(3) -461(2) 28(1)
C(30) 8560(3) 8321(3) -914(2) 36(1)
C(31) 5448(3) 1474(2) 2009(2) 26(1)
C(32) 6258(3) 918(3) 1535(2) 30(1)
C(33) 5848(3) -318(3) 975(2) 36(1)
C(34) 4655(3) -1007(3) 883(2) 34(1)
C(35) 3848(3) -459(3) 1359(2) 30(1)
C(36) 4245(3) 794(3) 1904(2) 29(1)
C(37) 2241(4) -2352(3) 810(3) 52(1)
表12
化合物1多晶型体形式B的氢坐标(×10 4 )和各向同性位移参数(A 2 ×10 3 )
原子 x y z U(eq)
H(1) 13230(30) 3160(20) 6978(18) 10(7)
H(3) 14080(30) 4460(30) 4550(20) 24(8)
H(7) 9040(30) 3560(30) 3780(20) 44(10)
H(9) 12600(20) 4960(20) 3477(18) 16(7)
原子 x y z U(eq)
H(13) 13680(30) -1300(30) 5870(20) 28(8)
H(14) 15620(30) -1310(30) 5560(20) 50(10)
H(16) 16810(30) 2340(30) 6860(20) 29(8)
H(17) 18850(40) -150(30) 5690(20) 47(10)
H(17A) 17470(30) -980(30) 5000(30) 47(10)
H(17B) 17690(30) -990(30) 6000(30) 49(10)
H(21) 7250(30) 4290(30) 2360(30) 50(11)
H(23) 5860(30) 4480(20) -310(20) 21(7)
H(27) 9760(30) 8870(30) 810(20) 45(10)
H(29) 6950(30) 6140(30) -1030(20) 36(9)
H(33) 6400(30) -650(30) 670(20) 43(10)
H(34) 4340(30) -1920(30) 500(20) 46(9)
H(36) 3700(30) 1180(30) 2210(20) 32(8)
H(37) 1360(40) -2660(30) 890(30) 60(12)
H(37A) 2670(30) -2750(30) 1070(30) 50(11)
H(37B) 2260(40) -2520(40) 100(30) 75(13)
表征实例8
化合物1的多晶型体形式C的单晶X射线衍射
通过在160℃下热梯度升华,生长化合物1的多晶型体形式C的适宜单晶。选择具有0.13×0.13×0.06mm近似尺寸的无色三角板,以用于数据收集并且安装在聚合物环上。使用具有Apex-II检测器的Bruker Platform测角计收集单晶数据。所述衍射仪配备有使用Mo-Kα辐射
Figure BDA0000489766520000444
的入射光束单色仪和单管准直器。在数据收集期间,将晶体在-100℃氮气流中冷却。
使用包括Sainplus和SADABS的Apex-II程序包,将数据编入索引并整合。三斜晶胞参数确定为:
Figure BDA0000489766520000441
Figure BDA0000489766520000442
α=92.255(6)°,β=92.597(5)°,γ=107.947(5)°,
Figure BDA0000489766520000443
确定空间群为P-1。分子量为468.23g/mol,从而给出计算密度为1.706g/cm3,并且对于Z=8,μ(Mo)=0.53mm-1。数据减少获得2θ范围=3.62至48.48°的11680个独立数据。使用基于Int.Tab.Vol C表4.2.6.8和6.1.1.4的散射因子F2的精化Shelxtl程序包,进行结构解析和精化。最终精化统计包括数据/参数比率=11.13,对F2的适合度=0.97,R指标[I>4σ(I)]R1=0.0595,wR2=0.1201,R指标(所有数据)R1=0.1454,wR2=0.1546,
Figure BDA0000489766520000451
Figure BDA0000489766520000452
表13和14中列出原子分数坐标(×104)和等效各向同性位移参数。U(eq)定义为正交Uij张量迹线的三分之一。估计的标准偏差示于括号中。
表13
化合物1多晶型体形式C的原子坐标(×10 4 )和等效各向同性位移参 数(A 2 ×10 3 )
原子 x y z U(eq)
Cl(1) 6400(1) 6726(1) 286(1) 44(1)
Cl(2) 8884(2) 9826(1) 2927(1) 60(1)
Cl(21) 4766(2) 4474(1) 1777(1) 64(1)
Cl(22) 3672(1) 5663(1) -310(1) 47(1)
Cl(41) -1571(2) 8384(1) 4287(1) 51(1)
Cl(42) -2104(1) 5101(1) 2310(1) 50(1)
Cl(61) -2362(1) 7296(1) 2514(1) 44(1)
Cl(62) 1367(1) 9154(1) 5072(1) 44(1)
S(1) 6067(1) 9674(1) 2720(1) 36(1)
S(21) 2573(2) 7356(1) 33(1) 40(1)
S(41) 750(1) 5488(1) 2654(1) 35(1)
S(61) 2152(1) 7311(1) 4686(1) 36(1)
F(1) 6635(4) 9361(3) -1935(2) 67(1)
F(2) 7359(4) 8227(4) -1897(2) 94(2)
F(3) 5493(4) 7950(3) -2006(2) 76(1)
F(21) 5541(3) 6625(3) 4390(2) 62(1)
F(22) 4429(4) 5213(3) 4307(2) 70(1)
原子 x y z U(eq)
F(23) 6251(3) 5541(3) 4114(2) 62(1)
F(41) -2215(4) 7759(3) 6688(2) 74(1)
F(42) -3901(4) 6885(3) 6346(2) 69(1)
F(43) -2665(3) 6280(3) 6762(2) 59(1)
F(61) -721(3) 8196(3) 192(2) 66(1)
F(62) 749(3) 9422(3) 416(2) 56(1)
F(63) -1022(3) 9418(3) 586(2) 64(1)
O(1) 6083(4) 10736(3) 1590(2) 42(1)
O(2) 6210(3) 8915(3) 3055(2) 38(1)
O(3) 4969(4) 9858(3) 2708(2) 45(1)
O(4) 7499(5) 13124(3) 3513(2) 67(2)
O(21) 3416(4) 8404(3) 1265(2) 42(1)
O(22) 1805(4) 7893(3) 142(2) 48(1)
O(23) 3604(4) 7755(3) -300(2) 50(1)
O(24) -1363(4) 5143(3) -928(2) 44(1)
O(41) 56(3) 4553(3) 3832(2) 35(1)
O(42) 780(4) 6183(3) 2224(2) 40(1)
O(43) 1826(3) 5342(3) 2871(2) 41(1)
O(44) 186(4) 2227(3) 1824(2) 57(1)
O(61) 3329(4) 8208(3) 3584(2) 36(1)
O(62) 2817(4) 6711(3) 4507(2) 42(1)
O(63) 1163(4) 6960(3) 5056(2) 43(1)
O(64) 6113(3) 8915(3) 5767(2) 39(1)
N(1) 6349(4) 9441(3) 2002(2) 34(1)
N(2) 6290(4) 8632(3) 838(2) 30(1)
N(4) 6322(4) 9259(3) -80(2) 32(1)
N(21) 2965(5) 7016(4) 698(2) 44(1)
N(22) 4007(4) 6278(3) 1604(2) 32(1)
N(24) 4376(4) 6743(3) 2608(2) 31(1)
原子 x y z U(eq)
N(41) 77(4) 5774(3) 3242(2) 31(1)
N(42) -936(4) 6537(3) 4124(2) 30(1)
N(44) -1560(4) 6033(3) 5037(2) 30(1)
N(61) 1602(4) 7655(3) 4062(2) 31(1)
N(62) 310(4) 7796(3) 2988(2) 31(1)
N(64) 1005(4) 8472(3) 2118(2) 31(1)
C(1) 6214(5) 9972(4) 1521(3) 32(2)
C(2) 6259(5) 9528(4) 907(3) 32(2)
C(3) 6282(5) 9940(4) 356(3) 32(2)
C(5) 6318(5) 8484(4) 238(3) 27(1)
C(6) 6379(5) 7676(4) -107(3) 33(2)
C(7) 6438(5) 7708(5) -735(3) 39(2)
C(8) 6424(5) 8527(4) -1034(3) 33(2)
C(9) 6356(5) 9295(5) -712(3) 37(2)
C(10) 6495(6) 8534(6) -1718(3) 49(2)
C(11) 7193(6) 10723(4) 2970(3) 37(2)
C(12) 8367(6) 10756(5) 3083(3) 43(2)
C(13) 9183(7) 11568(5) 3341(3) 57(2)
C(14) 8865(7) 12324(6) 3481(3) 57(2)
C(15) 7713(8) 12321(4) 3363(3) 50(2)
C(16) 6822(6) 11500(5) 3092(3) 43(2)
C(17) 6329(6) 13094(5) 3426(3) 53(2)
C(21) 3414(5) 7600(5) 1228(3) 36(2)
C(22) 3792(5) 7111(4) 1715(3) 29(1)
C(23) 4033(5) 7411(4) 2331(3) 32(2)
C(25) 4359(5) 6064(4) 2150(3) 31(2)
C(26) 4720(5) 5308(4) 2339(3) 37(2)
C(27) 5029(5) 5238(4) 2929(3) 41(2)
C(28) 5002(5) 5950(4) 3385(3) 36(2)
原子 x y z U(eq)
C(29) 4684(5) 6676(4) 3223(3) 33(2)
C(30) 5306(6) 5831(5) 4046(3) 47(2)
C(31) 1724(5) 6269(4) -327(2) 31(2)
C(32) 2190(5) 5557(4) -485(3) 32(2)
C(33) 1468(5) 4728(4) -763(3) 35(2)
C(34) 287(6) 4623(5) -906(3) 39(2)
C(35) -183(5) 5331(4) -768(3) 32(2)
C(36) 520(5) 6151(4) -474(3) 35(2)
C(37) -1866(5) 5879(5) -836(3) 46(2)
C(41) -203(5) 5260(5) 3757(3) 30(1)
C(42) -807(5) 5681(4) 4205(3) 28(1)
C(43) -1190(5) 5346(4) 4760(3) 29(1)
C(45) -1403(5) 6733(4) 4634(3) 28(1)
C(46) -1717(5) 7546(4) 4813(3) 34(2)
C(47) -2170(5) 7599(4) 5372(3) 35(2)
C(48) -2279(5) 6860(4) 5776(3) 33(2)
C(49) -1989(5) 6085(5) 5617(3) 37(2)
C(50) -2770(6) 6933(5) 6392(3) 46(2)
C(51) -230(5) 4393(4) 2346(2) 30(2)
C(52) -1440(5) 4251(4) 2185(3) 34(2)
C(53) -2098(6) 3397(5) 1914(3) 41(2)
C(54) -1611(6) 2699(5) 1789(3) 45(2)
C(55) -419(6) 2850(4) 1936(3) 40(2)
C(56) 264(5) 3695(4) 2224(3) 35(2)
C(57) -450(7) 1370(5) 1493(4) 73(2)
C(61) 2255(6) 8011(4) 3571(3) 28(1)
C(62) 1538(5) 8145(4) 3029(3) 31(2)
C(63) 1978(5) 8563(4) 2509(3) 31(2)
C(65) 10(5) 8010(4) 2430(3) 25(1)
原子 x y z U(eq)
C(66) -1125(5) 7837(4) 2120(3) 28(1)
C(67) -1205(5) 8116(4) 1546(3) 32(2)
C(68) -167(5) 8584(4) 1243(3) 36(2)
C(69) 919(5) 8758(5) 1529(3) 37(2)
C(70) -276(6) 8904(5) 615(3) 45(2)
C(71) 3137(5) 8336(4) 5069(2) 28(1)
C(72) 2789(5) 9102(4) 5244(3) 30(2)
C(73) 3582(5) 9836(4) 5586(2) 31(2)
C(74) 4710(5) 9801(4) 5765(2) 32(2)
C(75) 5043(5) 9037(4) 5603(3) 29(1)
C(76) 4259(5) 8300(4) 5236(2) 29(1)
C(77) 6895(5) 9597(4) 6204(3) 42(2)
表14
化合物1多晶型体形式C的氢坐标(×10 4 )和各向同性位移参数(A 2 ×10 3 )
原子 x y z U(eq)
H(1A) 6596 8954 1925 41
H(21A) 2885 6417 723 53
H(41A) -119 6292 3227 38
H(61A) 840 7608 4042 37
H(3A) 6273 10558 288 38
H(7A) 6489 7179 -972 47
H(9A) 6332 9839 -915 44
H(13A) 9988 11587 3421 69
H(14A) 9441 12871 3665 68
H(16A) 6023 11489 3001 52
H(17A) 6235 13679 3596 80
原子 x y z U(eq)
H(17B) 5822 12566 3637 80
H(17C) 6096 13018 2981 80
H(23A) 3970 7974 2520 39
H(27A) 5268 4718 3049 49
H(29A) 4668 7148 3524 40
H(33A) 1782 4231 -856 42
H(34A) -212 4052 -1102 47
H(36A) 192 6637 -370 42
H(37A) -2714 5656 -970 69
H(37B) -1455 6407 -1078 69
H(37C) -1777 6081 -395 69
H(43A) -1198 4764 4919 35
H(47A) -2412 8124 5492 42
H(49A) -2076 5595 5893 44
H(53A) -2921 3286 1809 49
H(54A) -2092 2115 1602 54
H(56A) 1081 3793 2337 42
H(57A) 87 996 1427 110
H(57B) -764 1502 1091 110
H(57C) -1112 1021 1732 110
H(63A) 2791 8857 2433 37
H(67A) -1967 7999 1338 39
H(69A) 1615 9074 1327 45
H(73A) 3359 10372 5700 37
H(74A) 5253 10312 6002 38
H(76A) 4497 7778 5103 35
H(77A) 7548 9370 6350 64
H(77B) 6449 9698 6557 64
H(77C) 7222 10188 6004 64
表征实例9
化合物1的多晶型体形式D的单晶X射线衍射
通过缓慢蒸发在乙腈中的化合物1的饱和溶液,生长化合物1的多晶型体形式D的适宜单晶。选择具有0.50×0.50×0.33mm近似尺寸的无色不规则块状物,以用于数据收集并且安装在聚合物环上。使用具有Apex-II检测器的Bruker Platform测角计收集单晶数据。所述衍射仪配备有使用Mo-Kα辐射的入射光束单色仪和单管准直器。在数据收集期间,将晶体在-100℃氮气流中冷却。
使用包括Sainplus和SADABS的Apex-II程序包,将数据编入索引并整合。三斜晶胞参数确定为:
Figure BDA0000489766520000513
α=92.207(6)°,β=97.182(7)°,γ=99.385(6)°,
Figure BDA0000489766520000514
确定空间群为P-1。分子量为468.23g/mol,从而给出计算密度为1.704g/cm3,并且对于Z=2,μ(Mo)=0.53mm-1。数据减少获得2θ范围=4.76至56.88°的4449个独立数据。使用基于Int.Tab.Vol C表4.2.6.8和6.1.1.4的散射因子F2的精化Shelxtl程序包,进行结构解析和精化。最终精化统计包括数据/参数比率=16.66,对F2的适合度=1.00,R指标[I>4σ(I)]R1=0.0466,wR2=0.1221,R指标(所有数据)R1=0.0718,wR2=0.1362,
Figure BDA0000489766520000516
表15和16中列出原子分数坐标(×104)和等效各向同性位移参数。U(eq)定义为正交Uij张量迹线的三分之一。估计的标准偏差示于括号中。
表15
化合物1多晶型体形式D的原子坐标(×10 4 )和等效各向同性位移参 数(A 2 ×10 3 )
原子 x y z U(eq)
O(4) 1339(3) -2648(2) 3615(1) 49(1)
S(1) 4949(1) 2693(1) 3312(1) 36(1)
Cl(1) 12928(1) 5241(1) 1308(1) 43(1)
F(1) 13968(2) 1644(2) -1576(1) 48(1)
O(1) 4162(2) 1171(2) 1398(1) 41(1)
原子 x y z U(eq)
N(1) 6173(3) 2856(3) 2440(2) 36(1)
C(1) 5682(3) 2018(3) 1619(2) 32(1)
Cl(2) 8842(1) 1369(1) 4055(1) 48(1)
F(2) 12443(2) 3251(2) -2282(1) 51(1)
O(2) 6042(3) 3790(2) 3997(1) 46(1)
C(2) 7200(3) 2233(3) 1034(2) 32(1)
N(2) 8877(3) 3242(2) 1299(1) 32(1)
F(3) 11181(2) 816(2) -2290(1) 52(1)
O(3) 3039(3) 2824(2) 2997(1) 44(1)
C(3) 7183(4) 1454(3) 216(2) 39(1)
N(4) 8915(3) 1993(2) -47(1) 33(1)
C(5) 9893(3) 3085(3) 634(2) 31(1)
C(6) 11726(3) 3857(3) 493(2) 32(1)
C(7) 12457(3) 3499(3) -271(2) 34(1)
C(8) 11386(3) 2355(3) -936(2) 33(1)
C(9) 9639(4) 1613(3) -825(2) 37(1)
C(10) 12227(4) 2016(3) -1778(2) 39(1)
C(11) 4973(3) 739(3) 3610(2) 32(1)
C(12) 6625(3) 176(3) 3922(2) 35(1)
C(13) 6522(4) -1388(3) 4108(2) 39(1)
C(14) 4776(4) -2387(3) 4004(2) 40(1)
C(15) 3129(4) -1807(3) 3719(2) 36(1)
C(16) 3234(3) -244(3) 3513(2) 34(1)
C(17) 1087(5) -4247(3) 3840(2) 52(1)
表16
化合物1多晶型体形式D的氢坐标(×10 4 )和各向同性位移参数(A 2 ×10 3 )
原子 x y z U(eq)
H(1) 7050(40) 3210(30) 2544(18) 24(8)
H(3A) 6187 704 -101 47
H(7A) 13680 4010 -364 41
H(9A) 8933 854 -1269 44
H(13A) 7646 -1781 4308 47
H(14A) 4714 -3459 4128 48
H(16A) 2113 148 3306 41
H(17A) -266 -4648 3827 79
H(17B) 1746 -4324 4449 79
H(17C) 1608 -4866 3401 79
表征实例10
化合物1的多晶型体形式TS的单晶X射线衍射
通过缓慢蒸发化合物1的甲苯饱和溶液,生长化合物1的甲苯溶剂化物(被指定为多晶型体形式TS)的适宜单晶。选择具有0.48×0.13×0.04mm近似尺寸的无色针状物,以用于数据收集并且安装在聚合物环上。使用具有Apex-II检测器的Bruker Platform测角计收集单晶数据。所述衍射仪配备有使用Mo-Kα辐射的入射光束单色仪和单管准直器。在数据收集期间,将晶体在-100℃氮气流中冷却。
使用包括Sainplus和SADABS的Apex-II程序包,将数据编入索引并整合。三斜晶胞参数确定为:
Figure BDA0000489766520000532
Figure BDA0000489766520000533
α=100.594(9)°,β=109.609(8)°,γ=110.924(8)°,
Figure BDA0000489766520000534
Figure BDA0000489766520000535
确定空间群为P-1。分子量为560.36g/mol,从而给出计算密度为1.547g/cm3,并且对于Z=4,μ(Mo)=0.42mm-1。数据减少获得2θ范围=3.48至54.44°的10653个独立数据。使用基于Int.Tab.Vol C表4.2.6.8和6.1.1.4的散射因子F2的精化Shelxtl程序包,进行结构解析和精化。最终精化统计包括数据/参数比率=16.31,对F2的适合度=1.02,R指标[I>4σ(I)]R1=0.0727,wR2=0.1676,R指标(所有数据)R1=0.1546,wR2=0.2053,表17和18中列出原子分数坐标(×104)和等效各向同性位移参数。U(eq)定义为正交Uij张量迹线的三分之一。估计的标准偏差示于括号中。
表17
化合物1多晶型体形式TS的原子坐标(×10 4 )和等效各向同性位移参 数(A 2 ×10 3 )
原子 x y z U(eq)
Cl(1) 4975(1) 1411(1) 2566(1) 53(1)
Cl(2) 114(1) 2917(1) 505(1) 58(1)
Cl(21) 1524(1) 1282(1) -13(1) 50(1)
Cl(22) 7874(1) 3395(1) 3083(1) 58(1)
S(1) 2877(1) 4894(1) 1388(1) 36(1)
S(21) 7216(1) 5258(1) 3748(1) 34(1)
F(1) 5308(3) 2050(2) 6851(2) 60(1)
F(2) 4357(3) 588(2) 5748(2) 63(1)
F(3) 6348(3) 1455(3) 6287(3) 76(1)
F(21) 845(3) 1366(3) -3764(2) 65(1)
F(22) 1629(3) 350(2) -3557(2) 66(1)
F(23) 2696(3) 1749(2) -3651(2) 62(1)
O(1) 3274(3) 5092(2) 3429(2) 40(1)
O(2) 2613(3) 4373(3) 407(2) 47(1)
O(3) 3920(3) 5885(2) 1903(3) 43(1)
O(4) 816(3) 7018(2) 2121(3) 48(1)
O(21) 7020(3) 5485(2) 1840(2) 39(1)
O(22) 6914(3) 4706(2) 4361(2) 44(1)
O(23) 7210(3) 6215(2) 3903(2) 44(1)
O(24) 11876(3) 7562(3) 4794(3) 55(1)
N(1) 3126(3) 4153(3) 2015(3) 32(1)
N(2) 4142(3) 3090(3) 3025(3) 29(1)
N(4) 4399(3) 3041(3) 4535(3) 29(1)
原子 x y z U(eq)
N(21) 6163(3) 4503(3) 2618(3) 31(1)
N(22) 4119(3) 3178(3) 791(3) 30(1)
N(24) 4031(3) 3083(3) -711(3) 29(1)
C(1) 3403(4) 4405(3) 3013(3) 32(1)
C(2) 3831(4) 3765(3) 3480(3) 26(1)
C(3) 3987(4) 3756(3) 4406(3) 32(1)
C(5) 4478(4) 2654(3) 3673(3) 31(1)
C(6) 4878(4) 1896(3) 3625(4) 35(1)
C(7) 5145(4) 1551(3) 4389(4) 37(1)
C(8) 5029(4) 1963(3) 5241(4) 36(1)
C(9) 4669(4) 2709(3) 5319(3) 33(1)
C(10) 5267(5) 1535(4) 6039(4) 44(1)
C(11) 1509(4) 4968(3) 1392(3) 33(1)
C(12) 332(4) 4134(3) 990(4) 38(1)
C(13) -702(4) 4273(4) 971(4) 43(1)
C(14) -582(4) 5230(4) 1334(4) 42(1)
C(15) 579(4) 6052(4) 1731(4) 36(1)
C(16) 1633(4) 5922(3) 1773(4) 36(1)
C(17) -250(5) 7204(4) 2029(4) 51(1)
C(21) 6202(4) 4726(3) 1797(3) 29(1)
C(22) 5168(4) 3956(3) 854(3) 29(1)
C(23) 5127(4) 3920(3) -56(3) 31(1)
C(25) 3447(4) 2664(3) -157(3) 28(1)
C(26) 2271(4) 1776(3) -689(3) 33(1)
C(27) 1791(4) 1348(3) -1674(3) 34(1)
C(28) 2456(4) 1803(3) -2195(3) 31(1)
C(29) 3547(4) 2656(3) -1715(3) 32(1)
C(30) 1912(5) 1324(4) -3276(4) 42(1)
C(31) 8710(4) 5430(3) 3815(3) 31(1)
原子 x y z U(eq)
C(32) 8999(4) 4644(4) 3571(4) 39(1)
C(33) 10224(5) 4854(4) 3700(4) 45(1)
C(34) 11158(5) 5834(4) 4098(4) 45(1)
C(35) 10883(4) 6621(4) 4372(4) 42(1)
C(36) 9649(4) 6417(4) 4213(3) 35(1)
C(37) 11653(5) 8372(4) 5147(6) 77(2)
C(40) 582(7) 2435(6) 3159(6) 104(3)
C(41) 1006(5) 1600(5) 3079(5) 72(2)
C(42) 1132(6) 1203(5) 2253(5) 66(2)
C(43) 1515(6) 476(6) 2168(6) 76(2)
C(44) 1832(6) 105(5) 2992(8) 104(3)
C(45) 1677(6) 548(6) 3814(6) 78(2)
C(46) 1282(6) 1266(6) 3819(5) 80(2)
C(50) 6001(8) 1857(6) -648(9) 144(5)
C(51) 4910(12) 1078(9) -849(11) 159(5)
C(52) 4059(10) 307(7) -1675(6) 98(3)
C(53) 2955(10) -523(8) -1811(8) 124(3)
C(54) 2697(11) -556(9) -1003(8) 125(4)
C(55) 3450(17) 147(14) -140(10) 181(7)
C(56) 4560(12) 994(9) -24(8) 116(4)
表18
化合物1多晶型体形式TS的氢坐标(×10 4 )和各向同性位移参数(A 2 ×10 3 )
原子 x y z U(eq)
H(1A) 3082 3582 1708 39
H(21A) 5550 3933 2537 37
H(3A) 3841 4158 4862 39
原子 x y z U(eq)
H(7A) 5409 1037 4353 45
H(9A) 4608 2992 5897 40
H(13A) -1508 3706 706 52
H(14A) -1306 5314 1308 50
H(16A) 2444 6489 2065 44
H(17A) 37 7930 2289 76
H(17B) -658 6875 2403 76
H(17C) -858 6935 1331 76
H(23A) 5731 4379 -201 37
H(27A) 1015 747 -2022 41
H(29A) 3977 2960 -2066 38
H(33A) 10419 4320 3513 54
H(34A) 11995 5973 4185 54
H(36A) 9448 6954 4376 42
H(37A) 12456 8992 5482 115
H(37B) 11291 8243 5613 115
H(37C) 11059 8445 4591 115
H(40A) 39 2329 3502 156
H(40B) 106 2417 2495 156
H(40C) 1329 3091 3529 156
H(42A) 942 1450 1723 79
H(43A) 1577 210 1585 92
H(44A) 2119 -395 2977 125
H(45A) 1856 335 4370 94
H(46A) 1197 1545 4386 96
H(50A) 5833 2242 -1081 215
H(50B) 6582 1608 -760 215
H(50C) 6388 2292 43 215
H(52A) 4208 312 -2243 117
原子 x y z U(eq)
H(53A) 2410 -1040 -2438 149
H(54A) 1958 -1102 -1079 150
H(55A) 3271 104 410 217
H(56A) 5082 1514 603 140
表征实例11
差示扫描量热实验
观察化合物1的纯多晶型体形式A的DSC曲线,以表现出起始温度为212℃的明显吸热(信号最大值在212.6℃),信号最大值在213℃的放热紧接其后或与其重叠。这些吸热-放热事件,跟随起始温度218℃的主熔化吸热(信号最大值在219℃,终点在225℃,转化热为63J/g)。
观察化合物1的多晶型体形式B的DSC曲线,以表现出起始温度为205℃的微弱吸热(信号最大值在208℃,转化热为4J/g)以及起始温度为217.9℃的明显主吸热(信号最大值在218℃,转化热为56J/g)。
观察化合物1的多晶型体形式D的DSC曲线,以表现出起始温度为211℃的微弱吸热(最大值在212℃,转化热为10J/g)以及起始温度为218℃的明显主吸热(最大值在219℃,转化热为62J/g)。
观察化合物1的多晶型体形式TS(甲苯溶剂化物)的DSC曲线,以表现出四种吸热。吸热1是起始温度为118℃的宽吸热(信号最大值在137℃,转化热为74J/g)。吸热2具有200℃的起始温度(信号最大值在202℃,转化热为6J/g)。吸热3具有207℃的起始温度(信号最大值在208℃,转化热为3J/g)。吸热4具有216℃的起始温度(信号最大值在217℃,转化热为42J/g)。
观察由根据制备实例2的多晶型体形式TS制备的化合物1的多晶型体形式A和B的混合物的DSC曲线,以表现出起始温度为208℃的微吸热(信号最大值在211℃,转化热为4.6J/g)以及起始温度为218℃的明显主吸热(信号最大值在219℃,转化热为58J/g)。
表征实例12
相对稳定性实验
使化合物1的各种晶体形式的相对稳定性经受非竞争性和竞争性互变实验。对于非竞争性实验,仅使用简单起始晶体形式以研究转化为另一种更稳定形式的潜势。对于竞争性实验,将两种或更多种晶体形式混合在一起,并且研究其转化为更稳定形式的潜势。实验条件描述于下文中并且总结于表19中。
在实例12a中,在约95℃下将根据制备实例5c制备的化合物1的形式A(0.4g)在去离子水(4mL)中回流3小时。将浆液冷却至25-30℃,过滤,抽吸干燥1小时,并且在70℃和8kPa绝对压力下于真空炉中干燥12小时。通过所得材料的pXRD、DSC、TGA和1H-NMR分析指示,晶体形式保持不变,即形式A。
在实例12b中,在约95℃下将根据制备实例5f制备的化合物1的形式B(0.4g)在去离子水(4mL)中回流3小时。将浆液冷却至25-30℃,过滤,抽吸干燥1小时,并且在70℃和8kPa绝对压力下于真空炉中干燥12小时。通过所得材料的pXRD、DSC、TGA和1H-NMR分析指示为形式A。
在实例12c中,在约95℃下将根据制备实例5g制备的化合物1的形式D(0.4g)在去离子水(4mL)中回流3小时。将浆液冷却至25-30℃,过滤,抽吸干燥1小时,并且在70℃和8kPa绝对压力下于真空炉中干燥12小时。通过所得材料的pXRD、DSC、TGA和1H-NMR分析指示为形式A。
在实例12d中,在约95℃下将根据制备实例1制备的化合物1的形式TS(1g)在去离子水(10mL)中回流3小时。将浆液冷却至25-30℃,过滤,抽吸干燥1小时,并且在65℃和8kPa绝对压力下于真空炉中干燥12小时。通过所得材料的pXRD、DSC、TGA和1H-NMR分析指示为形式A。
在实例12e中,将分别根据制备实例5c和5f制备的化合物1的形式A(0.6g)和形式B(0.6g)作为固体共混,并且在约95℃下在去离子水(12mL)中回流3小时。将浆液冷却至25-30℃,过滤,抽吸干燥1小时,并且在65℃和8kPa绝对压力下于真空炉中干燥12小时。通过所得材料的pXRD、DSC、TGA和1H-NMR分析指示为形式A。
在实例12f中,将分别根据制备实例5f和5g制备的化合物1的形式B(0.6g)和形式D(0.6g)作为固体共混,并且在约95℃下在去离子水(12mL)中回流3小时。将浆液冷却至25-30℃,过滤,抽吸干燥1小时,并且在65℃和8kPa绝对压力下于真空炉中干燥12小时。通过所得材料的pXRD、DSC和1H-NMR分析指示为形式A。
在实例12g中,将分别根据制备实例5c和5g制备的化合物1的形式A(0.6g)和形式D(0.6g)作为固体共混,并且在约95℃下在去离子水(12mL)中回流3小时。将浆液冷却至25-30℃,过滤,抽吸干燥1小时,并且在65℃和8kPa绝对压力下于真空炉中干燥12小时。通过所得材料的pXRD、DSC和1H-NMR分析指示为形式A。
在实例12h中,将分别根据制备实例5c、5f、5g和1制备的化合物1的形式(0.25g)、形式B(0.25g)、形式D(0.25g)和形式TS(0.25g)作为固体共混,并且在约95℃下在去离子水(10mL)中回流3小时。将浆液冷却至25-30℃,过滤,抽吸干燥1小时,并且在65℃和8kPa绝对压力下于真空炉中干燥12小时。通过所得材料的pXRD、DSC和1H-NMR分析指示为形式A。
在实例12i中,将分别根据制备实例5c、5f、5g和2制备的化合物1的形式(0.25g)、形式B(0.25g)、形式D(0.25g)和混合形式A和B(0.25g)作为固体共混,并且在约95℃下在去离子水(10mL)中回流3小时。将浆液冷却至25-30℃,过滤,抽吸干燥1小时,并且在65℃和8kPa绝对压力下于真空炉中干燥12小时。通过所得材料的pXRD、DSC和1H-NMR分析指示为形式A。
在实例12j中,将分别根据制备实例5c、5f、5g和2制备的化合物1的形式(0.25g)、形式B(0.25g)、形式D(0.25g)和混合形式A和B(0.25g)作为固体共混,并且在约55℃下甲醇(10mL)中加热3小时。将浆液冷却至25-30℃,过滤,抽吸干燥1小时,并且在55℃和1.3kPa绝对压力下于真空炉中干燥12小时。通过所得材料的pXRD、DSC和1H-NMR分析指示为形式A。
在实例12k中,将分别根据制备实例5c、5f和5g制备的化合物1的形式(0.9g)、形式B(0.9g)、形式D(0.9g)作为固体共混,并且在约55℃下在去离子水(27mL)中加热168小时。将浆液冷却至25-30℃,过滤,抽吸干燥1小时,并且在65℃和8kPa绝对压力下于真空炉中干燥12小时。通过所得材料的pXRD、DSC和1H-NMR分析指示为形式A。
在实例12l中,将根据制备实例2制备的化合物1混合形式A和B(2.0g)加入配备有磁力搅拌器和温度探针的100mL三颈圆底烧瓶中。加入去离子水(40mL),并且将所得浆液在25℃下搅拌约168小时。将浆液过滤,抽吸干燥1小时,并且在65℃和8kPa绝对压力下于真空炉中干燥12小时。通过所得材料的pXRD、DSC和1H-NMR分析指示为形式A。
表19
化合物1各种晶体形式的相对稳定性实验
实例 起始晶体形式 溶剂 温度(℃);时间(小时) 所得晶体形式
12a A 95;3 A
12b B 95;3 A
12c D 95;3 A
12d TS 95;3 A
12e A,B 95;3 A
12f B,D 95;3 A
12g A,D 95;3 A
12h A,B,D,TS 95;3 A
12i A,B,D,A+B 95;3 A
12j A,B,D,A+B 甲醇 55;3 A
12k A,B,D 55;168 A
12l A+B 25;168 A
表征实例13
化合物1的多晶型体形式A的稳定性实验
如下确定化合物1的形式A的物理稳定性。通过pXRD、DSC、HPLC和1H-NMR分析根据制备实例3制备的化合物1,并且发现其为99.9%纯度的纯晶体形式A(通过230nm检测波长下的HPLC峰面积)。将样品的等分试样(3.0g)置于初级聚乙烯袋中,用氮气吹扫所述初级聚乙烯袋并且密封。然后将初级聚乙烯袋置于二级聚乙烯袋中,再次用氮气吹扫二级聚乙烯袋,并且将硅胶小袋置于内袋和外袋之间。然后将双重袋装材料放入三重层合铝袋中,并且在40℃下在稳定室中放置30天。通过所得材料的HPLC和1H-NMR分析指示99.9%纯度的化合物1的纯形式A(通过230nm下的HPLC峰面积)。通过pXRD和DSC分析指示纯多晶型体形式A。结果确认研究条件下化合物1的化学稳定性以及多晶型体形式A的稳定性。
表征实例14
化合物1的多晶型体形式C的单晶X射线衍射
通过在250℃下热梯度升华,生长化合物1的多晶型体形式C的适宜单晶。选择具有~0.320×0.230×0.060mm近似尺寸的无色不规则板,以用于数据收集并且安装在聚合物环上。使用具有Apex-II检测器的BrukerPlatform测角计收集单晶数据。所述衍射仪配备有使用MoKα辐射
Figure BDA0000489766520000621
Figure BDA0000489766520000622
的入射光束单色仪和单管准直器。晶体在室温(23℃)下测试。
使用包括Sainplus和SADABS的Apex-II程序包,将数据编入索引并整合。三斜晶胞参数确定为:
Figure BDA0000489766520000623
Figure BDA0000489766520000629
α=90.306(7)°,β=93.619(7)°,γ=113.045(7)°,
Figure BDA0000489766520000624
确定空间群为P-1。分子量为468.23g/mol,从而给出计算密度为1.598g/cm3,并且对于Z=8,μ(Mo)=0.50mm-1。数据减少获得2θ范围=2.18至48.66°的12368个独立数据。使用基于Int.Tab.Vol C表4.2.6.8和6.1.1.4的散射因子F2的精化Shelxtl程序包,进行结构解析和精化。最终精化统计包括数据/参数比率=11.78,对F2的适合度=1.29,R指标[I>4σ(I)]R1=0.1124,wR2=0.2544,R指标(所有数据)R1=0.2440,wR2=0.2969,
Figure BDA0000489766520000625
不对称单元包含四个分子。冷却晶体时,形式经历结晶相改变。将相同晶体冷却至-100℃,并且所得单元晶胞参数为三斜P-1,
Figure BDA0000489766520000627
α=92.255(6)°,β=92.597(5)°,γ=107.947(5)°,Z=8。列出原子分数坐标(×104)和等效各向同性位移参数,并且U(eq)定义为正交Uij张量迹线的三分之一。估计的标准偏差示于括号中。
表20
室温下化合物1多晶型体形式C的原子坐标(×10 4 )和等效各向同性 位移参数(A 2 ×10 3 )
原子 x y z U(eq)
Cl(1) 4670(3) 13564(3) 3673(3) 108(1)
S(1) 1417(2) 8900(2) 3990(2) 65(1)
F(1) 8439(7) 14244(9) 4765(8) 181(6)
O(1) 3384(5) 8914(6) 4286(4) 63(2)
N(1) 2497(6) 9779(6) 3957(5) 63(3)
C(1) 3379(8) 9633(10) 4162(6) 59(3)
Cl(2) 1838(3) 9382(3) 2330(2) 107(1)
F(2) 8467(7) 14127(8) 3653(8) 171(5)
O(2) 1334(6) 8480(6) 4678(5) 79(3)
N(2) 4144(6) 11407(7) 3965(5) 53(2)
C(2) 4247(7) 10565(8) 4112(5) 50(3)
F(3) 8678(5) 13101(7) 4328(6) 141(4)
O(3) 740(5) 9310(5) 3776(5) 81(3)
C(3) 5184(8) 10643(8) 4262(6) 56(3)
O(4) 690(7) 5473(7) 3345(6) 100(3)
N(4) 5739(6) 11615(7) 4166(5) 55(2)
C(5) 5081(8) 12039(8) 4010(6) 52(3)
C(6) 5483(9) 13038(9) 3902(7) 68(3)
C(7) 6491(9) 13545(9) 3980(6) 68(3)
C(8) 7099(8) 13062(10) 4151(7) 66(3)
C(9) 6737(8) 12148(9) 4241(6) 66(3)
C(10) 8165(11) 13633(14) 4262(13) 116(6)
C(11) 1374(8) 8024(9) 3354(7) 60(3)
C(12) 1529(8) 8254(9) 2653(8) 71(4)
C(13) 1416(10) 7550(13) 2146(8) 87(4)
C(14) 1127(9) 6643(13) 2348(9) 94(5)
原子 x y z U(eq)
C(15) 987(8) 6381(10) 3064(8) 71(4)
C(16) 1098(7) 7116(9) 3557(7) 65(4)
C(17) 429(12) 4715(11) 2852(10) 142(7)
Cl(21) -386(3) 768(3) 557(2) 113(1)
S(21) 3458(3) 4973(3) 1524(2) 84(1)
F(21) -3470(7) 1165(10) -889(6) 194(6)
O(21) 1767(6) 5507(7) 1015(5) 91(3)
N(21) 2265(7) 4326(8) 1364(6) 84(3)
C(21) 1586(9) 4665(12) 1078(7) 69(4)
Cl(22) 2787(3) 4447(3) 3157(2) 114(1)
F(22) -3951(8) 871(11) 145(8) 209(7)
O(22) 3845(6) 4303(6) 1803(5) 98(3)
N(22) 514(8) 2977(8) 837(5) 68(3)
C(22) 634(9) 3935(9) 860(6) 63(3)
F(23) -3741(8) 2247(9) -295(7) 177(5)
O(23) 3798(7) 5471(6) 903(5) 109(4)
C(23) -188(11) 4043(10) 647(7) 73(4)
O(24) 4400(8) 8393(8) 2211(6) 110(3)
N(24) -892(8) 3151(8) 464(5) 72(3)
C(25) -401(9) 2512(10) 583(6) 65(3)
C(26) -967(11) 1527(10) 415(7) 73(4)
C(27) -1900(11) 1273(11) 160(7) 91(5)
C(28) -2371(11) 1913(12) 29(7) 79(4)
C(29) -1858(10) 2823(12) 186(7) 76(4)
C(30) -3393(14) 1514(19) -229(11) 134(8)
C(31) 3518(9) 5823(10) 2194(8) 74(4)
C(32) 3231(9) 5579(9) 2877(8) 75(4)
C(33) 3283(9) 6314(12) 3353(8) 89(5)
C(34) 3658(9) 7281(12) 3122(9) 85(5)
原子 x y z U(eq)
C(35) 3979(10) 7468(12) 2464(10) 86(4)
C(36) 3868(9) 6762(11) 1969(8) 84(4)
C(37) 4462(11) 9140(11) 2628(9) 117(6)
Cl(41) 12222(2) 12142(3) 2485(2) 92(1)
S(41) 13696(2) 11329(3) 5916(2) 72(1)
F(41) 8722(7) 12391(8) 2197(6) 141(4)
O(41) 11559(6) 10827(6) 5869(4) 69(2)
N(41) 12934(6) 11401(6) 5260(4) 61(3)
C(41) 11946(8) 11132(8) 5315(7) 54(3)
Cl(42) 14434(3) 13607(3) 5610(2) 105(1)
F(42) 8192(7) 10930(8) 2016(6) 160(4)
O(42) 13290(6) 10410(6) 6221(5) 83(3)
N(42) 11841(6) 11547(6) 4061(5) 56(3)
C(42) 11402(8) 11256(7) 4692(6) 44(3)
F(43) 7846(7) 11502(9) 2938(5) 149(4)
O(43) 14622(6) 11639(7) 5610(4) 94(3)
C(43) 10451(8) 11113(7) 4625(6) 55(3)
O(44) 13303(7) 12294(8) 8454(5) 92(3)
N(44) 10263(6) 11316(6) 3941(5) 58(3)
C(45) 11128(8) 11594(8) 3586(7) 53(3)
C(46) 11154(8) 11825(8) 2881(7) 57(3)
C(47) 10330(10) 11825(9) 2555(7) 84(4)
C(48) 9429(9) 11571(9) 2898(7) 70(4)
C(49) 9411(8) 11318(8) 3592(7) 64(3)
C(50) 8555(12) 11585(14) 2526(10) 99(5)
C(51) 13735(7) 12186(9) 6559(7) 56(3)
C(52) 14059(8) 13152(10) 6413(7) 70(4)
C(53) 14149(9) 13814(9) 6983(8) 84(4)
C(54) 13868(9) 13451(11) 7640(8) 86(5)
原子 x y z U(eq)
C(55) 13543(9) 12513(12) 7787(8) 77(4)
C(56) 13458(8) 11865(9) 7232(7) 69(4)
C(57) 12973(14) 11357(13) 8624(9) 135(7)
Cl(61) 2116(3) 798(3) 973(2) 107(1)
S(61) 1366(3) 4063(3) -1109(2) 73(1)
F(61) 5652(9) 1888(11) 2485(6) 182(6)
O(61) 3563(6) 4694(6) -937(5) 75(3)
N(61) 2059(7) 3768(7) -523(5) 64(3)
C(61) 3074(10) 4077(10) -558(7) 68(4)
Cl(62) 619(3) 1748(3) -1210(2) 102(1)
F(62) 6661(11) 2798(12) 1845(12) 288(11)
O(62) 1807(7) 5075(6) -1209(4) 85(3)
N(62) 2901(7) 2719(8) 234(5) 62(3)
C(62) 3502(10) 3547(8) -65(6) 55(3)
F(63) 6029(13) 1417(15) 1633(7) 249(10)
O(63) 414(6) 3643(7) -838(5) 98(3)
C(63) 4436(9) 3767(9) 128(7) 59(3)
O(64) 1969(7) 4070(6) -3699(5) 90(3)
N(64) 4456(7) 3084(8) 586(5) 66(3)
C(65) 3485(11) 2471(10) 625(7) 69(4)
C(66) 3312(10) 1619(9) 1020(7) 74(4)
C(67) 4065(12) 1504(11) 1415(7) 83(4)
C(68) 5007(12) 2198(13) 1416(8) 88(4)
C(69) 5229(10) 2981(11) 995(8) 81(4)
C(70) 5785(14) 2080(20) 1862(13) 127(7)
C(71) 1361(8) 3412(10) -1888(7) 62(3)
C(72) 1026(8) 2440(9) -1937(7) 66(3)
C(73) 977(9) 1965(10) -2579(8) 77(4)
C(74) 1292(8) 2507(10) -3180(8) 69(4)
原子 x y z U(eq)
C(75) 1620(9) 3487(10) -3138(7) 67(4)
C(76) 1667(8) 3952(9) -2495(8) 69(4)
C(77) 1778(12) 3604(11) -4407(7) 116(6)
表21
室温下化合物1多晶型体形式C的氢坐标(×10 4 )和各向同性位移参 数(A 2 ×10 3 )
原子 x y z U(eq)
H(1A) 2536 10329 3817 75
H(3A) 5404 10169 4395 67
H(7A) 6759 14202 3919 82
H(9A) 7160 11845 4358 79
H(13A) 1538 7703 1673 105
H(14A) 1014 6166 2001 113
H(16A) 980 6973 4031 78
H(17A) 193 4123 3096 213
H(17B) 991 4765 2603 213
H(17C) -79 4732 2517 213
H(21A) 2053 3732 1467 101
H(23A) -272 4617 627 88
H(27A) -2268 627 61 110
H(29A) -2151 3258 109 91
H(33A) 3077 6176 3812 107
H(34A) 3678 7775 3425 102
H(36A) 4020 6904 1500 101
H(37A) 4909 9722 2440 175
H(37B) 4697 9070 3103 175
H(37C) 3825 9162 2638 175
原子 x y z U(eq)
H(41A) 13172 11620 4862 73
H(43A) 10006 10913 4977 66
H(47A) 10339 11997 2080 100
H(49A) 8838 11150 3829 76
H(53A) 14389 14468 6912 101
H(54A) 13903 13879 8007 103
H(56A) 13213 11214 7315 83
H(57A) 12855 11299 9122 203
H(57B) 13458 11109 8527 203
H(57C) 12373 11002 8344 203
H(61A) 1786 3408 -181 77
H(63A) 4972 4282 -18 70
H(67A) 3943 961 1682 100
H(69A) 5871 3427 982 98
H(73A) 741 1302 -2608 93
H(74A) 1280 2202 -3613 83
H(76A) 1899 4615 -2466 83
H(77A) 1957 4081 -4763 173
H(77B) 1093 3203 -4482 173
H(77C) 2159 3223 -4439 173
表征实例15
化合物1多晶型体形式C的X射线粉末衍射图案
使用粉末X射线衍射来表征化合物1的多晶型体形式C。用3040型Philips X’PERT自动化粉末衍射仪来获得数据。衍射仪配备有自动可变防散射器和发散狭缝、X’Celerator RTMS检测器和Ni滤光器。辐射为Cu-K(α)(45kV,40mA)。在室温下,使用在θ-θ几何中具有0.02度的等步长和每步320秒的计数时间的连续扫描,收集3至50度2θ的数据。如果需要,用玛瑙研钵和研杵轻微研磨样品,并且在低背景硅样本夹持器上制备成粉末状材料的薄层。使用9.1版MDI/Jade软件与International Committee forDiffraction Data数据库PDF4+2008进行相鉴定。使用MDI/Jade“FindPeaks”程序计算化合物1的形式C的Cu-K(α1)X射线衍射最大值,并且列于表22中。
表22
化合物1的多晶型体形式C的2θX射线最大值(以度计)
7.691 17.198 20.909 25.371 30.149 36.6 42.498
7.991 18.035 21.797 25.674 30.634 37.389 45.142
11.133 18.636 22.214 25.956 31.272 38.054 45.99
12.587 18.939 23.299 26.409 31.619 38.442 46.229
13.305 19.389 23.547 27.395 32.056 38.651 48.188
13.757 19.889 24.103 28.498 32.898 40.661 49.561
15.463 20.312 24.269 28.728 33.594 40.86
16.683 20.476 24.438 29.808 33.813 41.721
制剂/效用
化合物1的固体形式将一般用作组合物即制剂中的寄生性线虫防治活性成分,其中至少一种额外组分选自表面活性剂、固体稀释剂和液体载体(即载有活性物质或可能的其它组分的液体流体;还称为液体稀释剂)。选择所述制剂或组合物成分,以与所述活性成分的物理特性、应用模式和环境因素诸如土壤类型、水分和温度一致。
杀线虫活性成分的可用制剂一般包括液体和固体组合物两者。液体组合物包括溶液(如可乳化浓缩物)、乳液(包括微乳液)、分散体和悬浮液、以及这些形式的组合(如浓悬乳液)。术语“悬浮液”尤其是指通过加入化学添加剂以最小化或停止活性成分沉降而稳定的颗粒分散体。在颗粒的分散体或悬浮液中(如含水悬浮液浓缩物和油分散体制剂),液体载体形成颗粒(如化合物1的固体形式)分散或悬浮于其中的连续液相。在组合颗粒悬浮液或分散体与包含第二(不混溶)液体的乳液(如浓悬乳液制剂)的组合物中,液体载体形成连续液相,不仅颗粒悬浮于其中,而且第二液体的液滴(即非连续液相)乳化于其中。
根据形成连续液相的液体载体的性质,分散体和悬浮液可为含水的(即主要包含水作为液体载体)或非水的(即包含水不混溶的有机化合物作为液体载体,通常称为“油”)。含水液体组合物的一般类型包括可溶性浓缩物、悬浮液浓缩物、胶囊悬浮液、浓缩乳液、微乳液以及浓悬乳液。因此在浓悬乳液中,形成连续液相的液体载体是含水的(即包含水作为其主要组分),并且水不混溶的液体组分乳化于所述含水液体载体中。非水液体组合物的一般类型包括可乳化浓缩物、可微乳化浓缩物、可分散浓缩物以及油分散体。悬浮液浓缩物包含分散于连续液相中的颗粒,并且在加入水中时作为颗粒分散体存在。浓悬乳液和油分散体形成颗粒分散体和乳液,它们在加入水中时共存,其中这些相中的一种或多种可包含活性成分。(在本发明组合物中,颗粒分散体包含化合物1的固体形式。)
固体组合物的一般类型包括粉剂、粉末、颗粒、粒料、小粒、锭剂、片剂、填充膜(包括种子包衣)等,它们可为水分散性的(“可润湿的”)或水溶性的。除了通常在液体和固体制剂两种类型中具有应用以外,由成膜液体形成的膜和包衣对于种子处理尤其可用。可包封(包括微包封)活性成分,并且进一步形成液体悬浮液或分散体或形成固体制剂,以在施用至目标时保护活性成分或者控制或延缓活性成分的释放。作为另外一种选择,可将包含活性成分的整个制剂包封(或“包覆”)。包封还可控制或延缓活性成分的释放。可制备高强度组合物并用作中间体,以用于后续制备较低强度液体和固体制剂。
可喷雾的制剂通常在喷雾前分散在适宜的介质中。将此类液体制剂和固体制剂配制成易于在喷雾介质(通常为水)中稀释的制剂。喷洒体积的范围可以为每公顷约一升至几千升,但更典型为每公顷约十至几百升。可喷雾的制剂可在水槽中与水或另一种适宜的介质混合,以通过空气或地面施用来处理叶,或者施用到植物的生长介质中。液体和干燥制剂可直接定量加入滴灌系统中,或者在种植期间定量加入垄沟中。液体和固体制剂可在种植前的种子处理时施用到作物和其它期望植被的种子上,以通过全身吸收来保护发育中的根部和其它地下植物部分和/或叶。
尽管根据本发明的化合物1的固体形式可通过与溶解所述固体形式的溶剂组合,用于制备液体溶液、可乳化浓缩物和乳液,但是所述固体形式仅可在包含作为固体(例如颗粒)的化合物1的配制组合物中保持它们的同一性。本发明的杀线虫组合物中,所述组合物包含至少一种化合物1的固体形式,因此包含含有化合物1的液体组合物(如分散体、悬浮液、浓悬乳液)和化合物1的固体组合物。
即使化合物1的所有多晶型体形式和非晶形固体形式均可用于制备本发明的杀线虫组合物,但是多晶型体形式A对于形成杀线虫组合物尤其可用,尤其式对于具有优异的物理和化学稳定性的液体组合物。尽管当分离并且维持在接近室温时,化合物1的所有多晶型体形式和非晶形固体形式相对稳定(亚稳定),然而它们相对于多晶型体形式A是热动力学不稳定的。因此,它们本质上易转化为多晶型体形式A。与水分接触、经受更高温度或长时间段可促进转化为更稳定的晶体形式。与溶剂接触一般也促进晶体形式的转化。因此,包含化合物1的其它多晶型体形式、多晶型体形式的混合物或非晶形固体形式的液体组合物尤其容易自发性重结晶为多晶型体形式A(参见制备实例7)。因为最小的成核作用和缓慢生长,形成的多晶型体形式A晶体将相对少且大。这可造成降低的生物功效以及增加的活性成分沉淀,因为高生物活性和悬浮性取决于分散于液体组合物中小粒度的固体活性成分。使用多晶型体形式A以制备杀线虫组合物免除了稍后在组合物中重结晶的风险。另外,包含比形式A较不稳定的晶体形式的制剂在晶体形式的比率改变时,在其储存寿命过程中可能改变其生物活性。由于所需的使用率(每公顷的活性成分量)将不可预期地改变,因此这一般是高度非期望的。因此值得注意的是,本发明的杀线虫组合物包含化合物1的多晶型体形式A。
包含至少一种化合物1的固体形式的液体和固体制剂两者将通常包含有效量的活性成分、固体稀释剂或液体载体、以及表面活性剂,所述量在以下近似范围内,其合计达100重量%。在包含至少一种化合物1的固体形式的本发明组合物中,活性成分(即化合物1的固体形式和任选地其它活性成分)、稀释剂和表面活性剂组分的量的大致范围如下:
Figure BDA0000489766520000711
Figure BDA0000489766520000721
固体稀释剂包括例如粘土例如膨润土、蒙脱石、绿坡缕石和高岭土、石膏、纤维素、二氧化钛、氧化锌、淀粉、糊精、糖(例如乳糖、蔗糖)、硅石、滑石粉、云母、硅藻土、尿素、碳酸钙、碳酸钠和碳酸氢钠以及硫酸钠。典型的固体稀释剂描述于Watkins等人的Handbook of Insecticide DustDiluents and Carriers第2版(Dorland Books,Caldwell,New Jersey)中。
液体稀释剂包括例如水、N,N-二甲基烷酰胺(例如N,N-二甲基甲酰胺)、柠檬烯、二甲基亚砜、N-烷基吡咯烷酮(例如N-甲基吡咯烷酮)、乙二醇、三甘醇、丙二醇、二丙二醇、聚丙二醇、碳酸亚丙酯、碳酸亚丁酯、石蜡(例如白矿物油、正链烷烃、异链烷烃)、烷基苯、烷基萘、甘油、三乙酸甘油酯、山梨醇、甘油三乙酸酯、芳族烃、脱芳脂族化合物、烷基苯、烷基萘、酮(如环己酮、2-庚酮、异佛尔酮和4-羟基-4-甲基-2-戊酮)、乙酸酯(如乙酸异戊酯、乙酸己酯、乙酸庚酯、乙酸辛酯、乙酸壬酯、乙酸十三烷基酯和乙酸异冰片酯)、其它酯(如烷基化乳酸酯、二元酯和γ-丁内酯)、并且可为直链、支链、饱和或不饱和醇(如甲醇、乙醇、正丙醇、异丙醇、正丁醇、异丁醇、正己醇、2-乙基己醇、正辛醇、癸醇、异癸醇、异十八醇、鲸蜡醇、月桂醇、十三烷醇、油醇、环己醇、四氢糠醇、二丙酮醇和苄醇)。液体稀释剂还包括饱和和不饱和脂肪酸(通常为C6-C22)的甘油酯,如植物种子和果实的油(例如橄榄油、蓖麻油、亚麻籽油、芝麻油、谷物(玉米)油、花生油、葵花籽油、葡萄籽油、红花油、棉籽油、大豆油、油菜籽油、椰子油和棕榈仁油)、动物源脂肪(例如牛脂、猪脂、猪油、鳕鱼肝油、鱼油)、以及它们的混合物。液体稀释剂还包括烷基化(例如甲基化、乙基化、丁基化)脂肪酸,其中脂肪酸可通过得自植物和动物源的甘油酯的水解获得,并且可通过蒸馏纯化。典型的液体稀释剂描述于Marsden的Solvents Guide第2版(Interscience,New York,1950)中。
本发明的固体组合物和液体组合物通常包含一种或多种表面活性剂。当加入液体中时,表面活性剂(还被称为“表面活性试剂”)通常修饰、最通常减小液体的表面张力。根据表面活性剂分子中的亲水基团和亲脂基团的性质,表面活性剂可用作润湿剂、分散剂、乳化剂或消泡剂。
表面活性剂可分为非离子的、阴离子的或阳离子的。用于本发明组合物的非离子表面活性剂包括但不限于:醇烷氧基化物诸如基于天然醇和合成醇(其可为支链或直链的)并且由醇和环氧乙烷、环氧丙烷、环氧丁烷或它们混合物制备的醇烷氧基化物;胺乙氧基化物、烷醇酰胺和乙氧基化烷醇酰胺;烷氧基化甘油三酯,诸如乙氧基化大豆油、蓖麻油和油菜籽油;烷基苯酚烷氧基化物,诸如辛基苯酚乙氧基化物、壬基苯酚乙氧基化物、二壬基苯酚乙氧基化物和十二烷基苯酚乙氧基化物(由苯酚和环氧乙烷、环氧丙烷、环氧丁烷或它们混合物制得);环氧乙烷或环氧丙烷制备的嵌段聚合物和其中末端嵌段由环氧丙烷制备的反式嵌段聚合物;乙氧基化脂肪酸;乙氧基化脂肪酯和油;乙氧基化甲酯;乙氧基化三苯乙烯基苯酚(包括由环氧乙烷、环氧丙烷、环氧丁烷或它们混合物制备的那些);脂肪酸酯、甘油酯、基于羊毛脂的衍生物、多乙氧基化酯(诸如多乙氧基化脱水山梨糖醇脂肪酸酯、多乙氧基化山梨醇脂肪酸酯和多乙氧基化甘油脂肪酸酯);其它脱水山梨糖醇衍生物,诸如脱水山梨糖醇酯;聚合物表面活性剂,诸如无规共聚物、嵌段共聚物、醇酸peg(聚乙二醇)树脂、接枝或梳型聚合物以及星型聚合物;聚乙二醇(peg);聚乙二醇脂肪酸酯;基于有机硅的表面活性剂;和糖衍生物,诸如蔗糖酯、烷基多苷和烷基多糖。
可用的阴离子表面活性剂包括但不限于:烷基芳基磺酸及其盐;羧化醇或烷基苯酚乙氧基化物;二苯基磺酸酯衍生物;木质素和木质素衍生物,诸如木质素磺酸盐;马来酸或琥珀酸或它们的酸酐;烯烃磺酸酯;磷酸酯,诸如醇烷氧基化物的磷酸酯、烷基苯酚烷氧基化物的磷酸酯和苯乙烯基苯酚乙氧基化物的磷酸酯;基于蛋白质的表面活性剂;肌氨酸衍生物;苯乙烯基苯酚醚硫酸盐;油和脂肪酸的硫酸盐和磺酸盐;乙氧基化烷基苯酚的硫酸盐和磺酸盐;醇的硫酸盐;乙氧基化醇的硫酸盐;胺和酰胺的磺酸盐,诸如N,N-烷基牛磺酸盐;苯、异丙基苯、甲苯、二甲苯以及十二烷基苯和十三烷基苯的磺酸盐;缩聚萘磺酸盐;萘和烷基萘的磺酸盐;石油馏分的磺酸盐;磺基琥珀酰胺酸盐;以及磺基琥珀酸盐和它们的衍生物,诸如二烷基磺基琥珀酸盐。
可用的阳离子表面活性剂包括但不限于:酰胺和乙氧基化酰胺;胺诸如N-烷基丙二胺、三亚丙基三胺和二亚丙基四胺,和乙氧基化胺、乙氧基化二胺以及丙氧基化胺(由胺和环氧乙烷、环氧丙烷、环氧丁烷或它们的混合物制备);胺盐诸如胺乙酸盐和二胺盐;季铵盐,如简单季盐、乙氧基化季盐和二季盐;以及胺氧化物,诸如烷基二甲基胺氧化物和双-(2-羟乙基)-烷基胺氧化物。
还可用于本发明组合物的是非离子表面活性剂和阴离子表面活性剂的混合物,或非离子表面活性剂和阳离子表面活性剂的混合物。非离子、阴离子和阳离子表面活性剂以及它们的推荐用途公开于多个已公布的参考文献中,包括由McCutcheon’s Division,The Manufacturing ConfectionerPublishing Co.出版的“McCutcheon’s Emulsifiers and Detergents”(北美和国际年鉴版);Sisely和Wood,Encyclopedia of Surface Active Agents,Chemical Publ.Co.,Inc.,New York,1964中描述的那些。以及A.S.Davidson和B.Milwidsky的“Synthetic Detergents”第七版(John Wiley andSons,New York,1987)。
本发明的组合物还可包含本领域中技术人员已知为辅助制剂的制剂助剂和添加剂(其中的一些也可被认为起到固体稀释剂、液体稀释剂或表面活性剂的作用)。此类制剂助剂和添加剂可控制:pH(缓冲剂)、加工期间的发泡(消泡剂诸如聚有机硅氧烷)、活性成分的沉降(悬浮剂)、粘度(触变或假塑性增稠剂)、容器中的微生物生长(抗微生物剂)、产品冷冻(防冻剂)、颜色(染料/颜料分散体)、洗脱(成膜剂或粘着剂)、蒸发(防蒸发剂)以及其它制剂属性。成膜剂包括例如聚乙酸乙烯酯、聚乙酸乙烯酯共聚物、聚乙烯吡咯烷酮-乙酸乙烯酯共聚物、聚乙烯醇、聚乙烯醇共聚物和蜡。制剂助剂和添加剂的实例包括由McCutcheon’s Division,TheManufacturing Confectioner Publishing Co.出版的McCutcheon’s Volume2:Functional Materials,北美和国际年鉴版;以及PCT公布WO03/024222中列出的那些。
通常通过将活性成分溶于溶剂中或通过在液体或干燥稀释剂中研磨,将化合物1的固体形式和任何其它活性成分掺入本发明的组合物中。可通过简单地混合所述成分来制备溶液,包括可乳化浓缩物。如果用作可乳化浓缩物的液体组合物的溶剂是水不混溶的,则通常加入乳化剂以使含有活性物质的溶剂在用水稀释时乳化。可使用介质磨湿磨具有至多2000μm粒径的活性成分浆液,以获得具有低于3μm平均直径的颗粒。含水浆液可制成成品悬浮液浓缩物(参见例如U.S.3,060,084)或者通过喷雾干燥进一步加工以形成水分散性颗粒。干燥制剂通常需要干燥研磨加工,其产生2至10μm范围内的平均粒径。粉剂和粉末可通过共混和碾磨(如用锤磨机或流能磨)制备。可通过将活性物质喷雾在预成形的颗粒载体上或通过附聚技术来制备颗粒和粒料。参见Browning的“Agglomeration”(Chemical Engineering,1967年12月4日,第147-48页);Perry的“ChemicalEngineer’sHandbook”第4版(McGraw-Hill,New York,1963,第8-57页和后文)和WO91/13546。粒料可如U.S.4,172,714中所述来制备。水分散性和水溶性颗粒可如U.S.4,144,050、U.S.3,920,442和DE3,246,493中所提出来制备。片剂可如U.S.5,180,587、U.S.5,232,701和U.S.5,208,030中所提出来制备。膜可如GB2,095,558和U.S.3,299,566中所提出来制备。
关于制剂领域的其它信息,参见T.S.Woods的Pesticide Chemistry andBioscience,The Food-Environment Challenge中的“The Formulator’s Toolbox-Product Forms for Modern Agriculture”,T.Brooks和T.R.Roberts编辑,Proceedings of the9th International Congress on Pesticide Chemistry,The RoyalSociety of Chemistry,Cambridge,1999,第120-133页。还参见U.S.3,235,361,第6栏,第16行至第7栏,第19行和实例10-41;U.S.3,309,192,第5栏,第43行至第7栏,第62行和实例8、12、15、39、41、52、53、58、132、138-140、162-164、166、167和169-182;U.S.2,891,855,第3栏,第66行至第5栏,第17行和实例1-4;Klingman的“Weed Control as a Science”(John Wiley and Sons,Inc.,New York,1961,第81-96页);Hance等人的“Weed Control Handbook”第8版(Blackwell Scientific Publications,Oxford,1989);以及Developments informulation technology(PJB Publications,Richmond,UK,2000)。
示出以下制剂实例以进一步说明,但不以任何方式限制本公开。所有百分比按重量给出,并且所有制剂使用常规技术制备。无需进一步说明,据信本领域技术人员使用以上叙述和参考文献可将本发明利用至其最大限度。
制剂实例A
高强度浓缩物
化合物1的多晶型体形式A           98.5%
二氧化硅气凝胶                   0.5%
合成的非晶形精细二氧化硅         1.0%
制剂实例B
可润湿粉末
Figure BDA0000489766520000771
制剂实例C
颗粒
化合物1的多晶型体形式A                               10.0%
绿坡缕石颗粒(低挥发性物质,0.71/0.30mm;U.S.S.       90.0%
No.25-50筛)
制剂实例D
挤出的粒料
Figure BDA0000489766520000772
制剂实例E
可乳化浓缩物
化合物1的多晶型体形式A和B             10.0%
聚氧乙烯山梨醇六油酸酯                20.0%
C6-C10脂肪酸甲酯                      70.0%
制剂实例F
微乳液
制剂实例G
种子处理剂
Figure BDA0000489766520000782
制剂实例H
肥料棍
Figure BDA0000489766520000791
因此,化合物1的固体形式以及它们的组合物在农业上可用于保护大田作物免受寄生性线虫的侵害,并且还在非农业上用于保护其它园艺作物和植物免受食植性寄生线虫的侵害。该用途包括保护包含基因工程(即转基因)或通过诱变改性引入以提供有利特征的遗传物质的作物和其它植物(即农业和非农业两者)。此类特征的例子包括除草剂耐受性、食植性害虫(例如昆虫、螨虫、蚜虫、蜘蛛、线虫、蜗牛、植物病原真菌、细菌和病毒)抗性、改善的植物生长、对不利生长条件(诸如高温或低温、低土壤水分或高土壤水分和高盐度)增加的耐受性、增加的开花或结果、更大的收获量、更快的成熟、更高质量和/或营养价值的所收获产品、或改善的所收获产品的储藏或加工特性。可将转基因植物改性,以表达多种特征。包含通过基因工程或诱变提供的特征的植物的例子包括表达杀昆虫苏云金芽孢杆菌毒素的各种谷物、棉花、大豆和马铃薯,诸如YIELD
Figure BDA0000489766520000799
Figure BDA0000489766520000794
以及各种耐除草剂的谷物、棉花、大豆和油菜籽诸如ROUNDUP
Figure BDA0000489766520000796
LIBERTY
Figure BDA0000489766520000797
以及表达N-乙酰转移酶(GAT)以提供对草甘膦除草剂抗性的作物,或包含HRA基因、提供对除草剂的抗性、抑制乙酰乳酸合酶(ALS)的作物。化合物1的固体形式以及它们的组合物可与通过基因工程引入或通过诱变改性的特征协同相互作用,从而增强特征的表型表达或功效,或增加本发明化合物和组合物的寄生性线虫防治功效。具体地,化合物1的固体形式以及它们的组合物可与对寄生性线虫具有毒性的蛋白质或其它天然产品的表型表达协同相互作用,以提供对这些害虫的大于累加的防治。
本发明的组合物还可任选地包含植物营养素,例如包含至少一种植物营养素的肥料组合物,所述植物营养素选自氮、磷、钾、硫、钙、镁、铁、铜、硼、锰、锌和钼。值得注意的是包含至少一种肥料组合物的组合物,所述肥料组合物包含至少一种植物营养素,所述植物营养素选自氮、磷、钾、硫、钙和镁。还包含至少一种植物营养素的本发明的组合物可为液体或固体的形式。值得注意的是颗粒、小棍或片剂形式的固体制剂。通过将本发明的化合物或组合物与肥料组合物连同配制成分混合,然后通过诸如制粒或挤出的方法制备制剂,可制备包含肥料组合物的固体制剂。作为另外一种选择,通过将本发明的化合物或组合物在挥发性溶剂中的溶液或悬浮液喷雾到先前制备的尺寸稳定的混合物形式(例如颗粒、小棍或片剂)的肥料组合物上,然后蒸发所述溶剂,可制备固体制剂。
化合物1的固体形式可表现出抗广谱寄生性线虫的活性,所述寄生性线虫生活或生长在植物(例如叶、果实、茎、根或种子)或动物以及人类(例如血管或消化系统或其它组织)内或以其为食物,因此损害生长和储存的农业作物、林业、温室作物、观赏植物和苗圃作物,或影响动物和人类健康。尤其要关注的作物为果实蔬菜如茄科和葫芦科作物、农场作物如香蕉和咖啡、根部作物如马铃薯、洋葱和胡萝卜、以及大田作物如烟草、花生、棉花、甘蔗和大豆。
化合物1的固体形式对线虫门的有腺纲和胞管肾纲两两种类别的成员具有活性,包括经济上重要的以下类目成员:嘴刺目、矛线目、小杆目、圆线虫目、蛔虫目、尖尾目、旋尾目、垫刃目和滑刃目,诸如但不限于经济上重要的农业害虫,诸如根结线虫属的根结线虫、胞囊属和球形胞囊属的孢囊线虫、根腐线虫属的根腐线虫、肾状线虫属的肾形线虫、穿孔线虫属的穿孔线虫、刺线虫属的刺线虫、螺旋线虫属和盾线虫属的螺旋线虫、半穿刺线虫属的柑橘线虫、毛刺线虫属和拟毛刺属的残根线虫、剑线虫属的剑线虫、矮化线虫属的矮化线虫、针线虫属和镫形线虫属的针线虫、冠线虫属的矛线虫、环科的环形线虫、茎线虫属和肿瘤线虫属的茎线虫、以及滑刃线虫属和红轮线虫属的叶/茎线虫;以及动物与人类健康寄生虫(即经济上重要的蛔虫,如马体内的寻常圆线虫、狗体内的犬蛔虫、羊体内的捻转胃虫、狗体内的犬心丝虫等)。
值得注意的是,使用化合物1的固体形式用于防治南方根结线虫(Meloidogyne incognita)。本领域中技术人员将会知道,化合物1的固体形式对所有生长阶段的所有线虫不同样有效。
化合物1的固体形式还对扁形动物门、绦虫纲(条虫)和吸虫纲(吸虫)类别的成员具有活性,包括影响动物和人类健康的寄生虫(即经济上重要的吸虫和条虫)(如马体内的叶形裸头绦虫、反刍动物体内的肝片形吸虫等)。
化合物1的固体形式可与一种或多种其它生物学活性化合物或试剂混合以形成多组分杀昆虫剂,从而赋予甚至更广谱的农业和非农业用途,所述生物学活性化合物或试剂包括杀昆虫剂、杀真菌剂、杀线虫剂、杀细菌剂、杀螨剂、除草剂、除草剂安全剂、生长调节剂诸如昆虫蜕皮抑制剂和生根刺激剂、化学不育剂、化学信息素、拒斥剂、诱虫剂、信息素、取食刺激剂、其它生物学活性化合物或昆虫致病细菌、病毒或真菌。因此,本发明还涉及组合物,所述组合物包含化合物1的固体形式和有效量的至少一种附加的生物学活性化合物或试剂,并且还可包含表面活性剂、固体稀释剂或液体稀释剂中的至少一种。对于本发明的混合物,可将其它生物学活性化合物或试剂连同化合物1的固体形式配制以形成预混物,或者其它生物学活性化合物或试剂可与化合物1的固体形式分开配制,并且在施用前将两种制剂组合在一起(例如在喷雾罐中),或着作为另外一种选择,依次施用。
可与化合物1的固体形式一起配制的此类生物活性化合物或试剂的例子为杀昆虫剂,如阿巴美丁、高灭磷、灭螨醌、啶虫脒、氟丙菊酯、磺胺螨酯、双甲脒、阿维菌素、印苦楝子素、甲基谷硫磷、联苯菊酯、联苯肼酯、双三氟虫脲、硼酸酯、扑虱灵、硫线磷、西维因、克百威、杀螟丹、伐虫脒、氯虫苯甲酰胺、溴虫腈、定虫隆、氯蜱硫磷、甲基氯蜱硫磷、可芬诺、螨死净、可尼丁、氰虫酰胺、丁氟螨酯、氟氯氰菊酯、高效氟氯氰菊酯、三氟氯氰菊酯、γ-三氟氯氰菊酯、λ-三氟氯氰菊酯、氯氰菊酯、α-氯氰菊酯、ζ-氯氰菊酯、灭蝇胺、溴氢菊酯、丁醚脲、敌匹硫磷、迪厄尔丁、除虫脲、四氟甲醚菊酯、杀虫双、乐果、呋虫胺、二苯丙醚、甲氨基阿维菌素、硫丹、顺式氰戊菊酯、乙虫腈、醚菊酯、乙螨唑、苯丁锡、苯硫威、苯氧威、甲氰菊酯、腈苯苯醚菊酯、氟虫腈、氟啶虫酰胺、氟虫酰胺、氟氰戊菊酯、嘧虫胺、氟虫脲、氟胺氰菊酯、氟胺氰菊酯、大福松、伐虫脒、噻唑磷、氯虫酰肼、氟铃脲、噻螨酮、氟蚁腙、吡虫啉、因得克、杀昆虫皂、异柳磷、虱螨脲、马拉硫磷、氰氟虫腙、蜗牛敌、甲胺磷、杀扑磷、甲硫威、乙肟威、甲氧普烯、甲氧滴滴涕、甲氧卞氟菊酯、久效磷、甲氧虫酰肼、烯啶虫胺、硝乙脲噻唑、双苯氟脲、多氟虫酰脲、草氨酰、对硫磷、甲基对硫磷、扑灭司林、甲拌磷、伏杀硫磷、亚胺硫磷、磷胺、抗蚜威、丙溴磷、丙氟菊酯、克螨特、丙三苯醚菊酯、吡蚜酮、吡嗪氟虫腈、除虫菊酯、哒螨酮、啶虫丙醚、披福贵(pyrifluquinazon)、氰溴虫酰胺、蚊蝇醚、鱼藤酮、理阿诺碱、多菌虫素、多杀菌素、季酮螨酯、螺甲螨酯、螺虫乙酯、硫丙磷、虫酰肼、吡螨胺、伏虫脲、七氟菊酯、特丁硫磷、司替罗磷、似虫菊、噻虫啉、噻虫嗪、硫双灭多威、杀虫双、唑虫酰胺、四溴菊酯、唑蚜威、敌百虫、杀铃脲、苏云金芽孢杆菌δ-内毒素、昆虫病原、昆虫病原病毒和昆虫病原真菌。
值得注意的是杀昆虫剂,如阿巴美丁、啶虫脒、氟丙菊酯、双甲脒、阿维菌素、印苦楝子素、联苯菊酯、扑虱灵、硫线磷、西维因、杀螟丹、氯虫苯甲酰胺、溴虫腈、氯蜱硫磷、可尼丁、氰虫酰胺、氟氯氰菊酯、β-氟氯氰菊酯、三氟氯氰菊酯、γ-三氟氯氰菊酯、λ-三氟氯氰菊酯、氯氰菊酯、α-氯氰菊酯、ζ-氯氰菊酯、灭蝇胺、溴氢菊酯、迪厄尔丁、呋虫胺、二苯丙醚、甲氨基阿维菌素、硫丹、顺式氰戊菊酯、乙虫腈、依芬宁、乙螨唑、苯硫威、苯氧威、腈苯苯醚菊酯、氟虫腈、氟啶虫酰胺、氟虫酰胺、氟虫脲、氟胺氰菊酯、伐虫脒、噻唑磷、氟铃脲、氟蚁腙、吡虫啉、茚虫威、虱螨脲、氰氟虫腙、灭赐克、乙肟威、甲氧普烯、甲氧虫酰肼、烯啶虫胺、硝乙脲噻唑、双苯氟脲、草氨酰、吡蚜酮、除虫菊酯、哒螨酮、啶虫丙醚、蚊蝇醚、理阿诺碱、多菌虫素、多杀菌素、季酮螨酯、螺甲螨酯、螺虫乙酯、虫酰肼、似虫菊、噻虫啉、噻虫嗪、硫双灭多威、杀虫双、四溴菊酯、唑蚜威、杀铃脲、苏云金芽孢杆菌δ-内毒素、苏云金芽孢杆菌的所有菌株以及核型多角体病毒的所有菌株。
用于与化合物1的固体形式混合的生物学制剂的一个实施例包括昆虫致病细菌如苏云金芽孢杆菌,和包封的苏云金芽孢杆菌δ-内毒素如通过方法制备的
Figure BDA0000489766520000833
生物杀昆虫剂(
Figure BDA0000489766520000834
为Mycogen Corporation(Indianapolis,Indiana,USA)的商标);昆虫病原真菌如绿僵真菌;和昆虫病原(天然存在的和遗传修饰的)病毒,包括杆状病毒、核型多角体病毒(NPV)如谷实夜蛾核型多角体病毒(HzNPV)、芹菜夜蛾核型多角体病毒(AfNPV);和颗粒体病毒(GV),如苹果蠹蛾颗粒体病毒(CpGV)。
尤其值得注意的是其中其它无脊椎害虫防治活性成分属于与化合物1的固体形式不同的化学类别或者具有与其不同的作用位点的组合。在某些情况下,与至少一种具有类似防治范围但是不同作用位点的其它无脊椎害虫防治活性成分组合,对于抗性管理将是尤其有利的。因此,本发明的组合物还可包含至少一种附加无脊椎害虫防治活性成分,所述活性成分具有类似防治范围,但是属于不同的化学类别或者具有不同的作用位点。这些附加生物活性化合物或试剂包括但不限于钠通道调节剂如联苯菊酯、氯氰菊酯、三氟氯氰菊酯、高三氟氯氰菊酯、氟氯氰菊酯、β-氟氯氰菊酯、溴氢菊酯、四氟甲醚菊酯、顺式氰戊菊酯、腈苯苯醚菊酯、茚虫威、甲氧卞氟菊酯、丙氟菊酯、除虫菊酯和四溴菊酯;胆碱酯酶抑制剂例如氯蜱硫磷、乙肟威、草氨酰、硫双灭多威和唑蚜威;新烟碱例如啶虫脒、可尼丁、呋虫胺、吡虫啉、烯啶虫胺、硝乙脲噻唑、噻虫啉和噻虫嗪;大环内酯杀昆虫剂例如多菌虫素、多杀菌素、阿巴美丁、阿维菌素和甲氨基阿维菌素;GABA(γ-氨基丁酸)-门控氯通道拮抗剂如阿维菌素或阻滞剂如乙虫腈和氟虫腈;甲壳质合成抑制剂例如扑虱灵、灭蝇胺、氟虫脲、氟铃脲、虱螨脲、双苯氟脲、多氟虫酰脲和杀铃脲;保幼激素模拟物例如二苯丙醚、苯氧威、甲氧普烯和蚊蝇醚;章鱼胺受体配体例如双甲脒;蜕皮抑制剂和蜕皮激素激动剂如印苦楝子素、甲氧虫酰肼和虫酰肼;理阿诺碱受体配体,如理阿诺碱,氨茴酸二酰胺,如氯虫苯甲酰胺、氰虫酰胺和氟虫酰胺;沙蚕毒素类似物例如杀螟丹;线粒体电子传递抑制剂例如溴虫腈、氟蚁腙和哒螨酮;脂质生物合成抑制剂例如季酮螨酯和螺甲螨酯;环二烯类杀昆虫剂如迪厄尔丁或硫丹;拟除虫菊酯;氨基甲酸酯;杀昆虫脲;以及生物试剂,包括核型多角体病毒(NPV)、苏云金芽孢杆菌成员、包封的苏云金芽孢杆菌δ-内毒素、以及其它天然存在或遗传修饰的杀昆虫病毒。
可与化合物1的固体形式一起配制的生物活性化合物或试剂的其它例子为:杀真菌剂如苯并噻二唑、杀螟丹、吲唑磺菌胺、戊环唑、嘧菌酯、苯霜灵、苯菌灵、苯噻菌胺、异丙基苯噻菌胺、binomial、联苯、双苯三唑醇、杀稻瘟菌素-S、波尔多液(三元硫酸铜)、啶酰菌胺/啶酰菌胺、糠菌唑、乙嘧酚磺酸酯、丁赛特、萎锈灵、环丙酰菌胺、敌菌丹、克菌丹、多菌灵、地茂散、百菌清、乙菌利、克霉唑、王铜、铜盐如硫酸铜和氢氧化铜、赛座灭、赛伏那、霜脲氰、环唑醇、嘧菌环胺、抑菌灵、双氯氰菌胺、哒菌清、氯硝胺、乙霉威、
Figure BDA0000489766520000841
醚唑、烯酰吗啉、醚菌胺、烯唑醇、烯唑醇-M、敌螨普、敌可挫、二噻农、十二环吗啉、多果定、益康唑、乙环唑、敌瘟磷、氟环唑、噻唑菌胺、乙嘧酚、依得利、
Figure BDA0000489766520000842
唑菌酮、咪唑并菌酮、氯苯嘧啶醇、腈苯唑、缬霉威、甲呋酰苯胺、环酰菌胺、氰菌胺、拌种咯、苯锈啶、丁苯吗啉、三苯基乙酸锡、三苯羟锡、福美铁、福拉宙、嘧菌腙、氟啶胺、咯菌腈、氟酰菌胺、氟吡菌胺、氟嘧菌酯、氟喹唑、氟喹唑、氟硅唑、磺菌胺、氟酰胺、粉唑醇、灭菌丹、三乙膦酸铝、麦穗宁、呋霜灵、呋吡菌胺、己唑醇、恶霉灵、克热净、抑霉唑、酰胺唑、双胍辛胺、碘菌威、种菌唑、异稻瘟净、异菌脲、丙森锌、异康唑、稻瘟灵、春雷霉素、克收欣、代森锰锌、双炔酰菌胺、代森锰、灭派林、精甲霜灵、灭锈胺、甲霜灵、叶菌唑、磺菌威、代森联、苯氧菌胺/苯氧菌胺、灭派林、苯菌酮、咪康唑、腈菌唑、新阿苏仁(甲基胂酸铁)、氟苯嘧啶醇、辛噻酮、呋酰胺、肟醚菌胺、恶霜灵、
Figure BDA0000489766520000843
喹酸、咪唑并、氧化萎锈灵、多效唑、戊菌唑、戊菌隆、吡噻菌胺、稻瘟酯、膦酸、苯酞、吡苯杀、啶氧菌酯、多抗霉素、烯丙异噻唑、咪鲜安、腐霉利、霜霉威、霜霉威盐酸盐、丙环唑、丙森锌、丙氧喹啉、丙硫菌唑、唑菌胺酯、白粉松、啶斑肟、嘧霉胺、啶斑肟、硝吡咯菌素、咯喹酮、喹唑、快诺芬、五氯硝基苯、硅噻菌胺、硅氟唑、螺环菌胺、链霉素、硫、戊唑醇、得克坚、克枯烂、四氯硝基苯、氟醚唑、噻苯哒唑、噻呋灭、托布津、甲基托布津、二硫四甲秋兰姆、噻酰菌胺、甲基立枯磷、甲苯氟磺胺、三唑酮、三唑醇、嘧菌醇、唑菌嗪、十三吗啉、垂吗酰胺三环唑、肟菌酯、嗪氨灵、灭菌唑、烯效唑、井冈霉素、乙烯菌核利、代森锌、福美锌和草酰胺;杀线虫剂诸如涕灭威、新烟碱、草氨酰和苯线磷;杀细菌剂诸如链霉素;杀螨剂诸如双甲脒、灭螨猛、克氯苯、三环锡、三氯杀螨醇、除螨灵、乙螨唑、喹螨醚、苯丁锡、甲氰菊酯、唑螨酯、噻螨酮、克螨特、哒螨酮和吡螨胺;
在某些情况下,化合物1的固体形式与其它生物活性(尤其是无脊椎害虫防治)化合物或试剂(即活性成分)的组合可得到大于累加(即协同)的效应。减少在环境中释放的活性成分的量,同时确保有效的害虫防治一直是所期望的。当在施用速率下与无脊椎害虫防治活性成分发生协同作用从而赋予农业上令人满意的无脊椎害虫防治水平时,此类组合可有利地用于减少作物生产成本,并且降低环境荷载。
可将化合物1的固体形式及其组合物施用到植物,所述植物经基因转化以表达对无脊椎害虫有毒的蛋白质(诸如苏云金芽孢杆菌δ-内毒素)。此类施用可提供更广谱的植物保护,并且有利地用于抗性管理。外部施用本发明化合物的功效可与表达的毒素蛋白质协同作用。
这些农业保护剂(即杀昆虫剂、杀真菌剂、杀线虫剂、杀螨剂、除草剂和生物学制剂)的一般参考文献包括“The Pesticide Manual”第13版(C.D.S.Tomlin编辑,British Crop Protection Council,Farnham,Surrey,U.K.,2003)和The BioPesticide Manual第2版(L.G.Copping编辑,British CropProtection Council,Farnham,Surrey,U.K.,2001)。
对于其中使用一种或多种这些不同混合组分的实施例,这些不同混合组分(总计)与固体形式化合物1的重量比通常介于约1∶3000和约3000∶1之间。值得注意的是介于约1∶300和约300∶1之间的重量比(例如介于约1∶30和约30∶1之间的比率)。本领域中技术人员可易于通过简单的实验来确定获得所期望生物活性范围所需的活性成分的生物学有效量。显然,包含这些额外组分可使寄生性线虫防治范围超出仅固体形式化合物1的防治范围。
表A列出了化合物1的固体形式与其它无脊椎害虫防治剂的特定组合,例证了本发明的混合物、组合物和方法,并且包括用于施用速率的重量比范围的附加实施例。表A的第一栏列出了特定的无脊椎害虫防治剂(例如第一栏中的“阿巴美丁”)。表A的第二栏列出了无脊椎害虫防治剂的作用模式(如果已知)或化学类别。表A的第三栏列出了在无脊椎害虫防治剂的施用速率下,其相对于化合物1的固体形式的重量比范围的一个或多个实施例(例如阿巴美丁相对于化合物1的固体形式按重量计为“50∶1至1∶50”)。因此,例如表A的第一行具体公开了可以介于50∶1至1∶50之间的重量比施用的固体形式化合物1与阿巴美丁的组合。表A的其余行可类似地解释。
表A
无脊椎害虫防治剂 作用模式或化学类别 典型的重量比
阿巴美丁 大环内酯 50∶1至1∶50
啶虫脒 新烟碱 150∶1至1∶200
双甲脒 章鱼胺受体配体 200∶1至1∶100
阿维菌素 大环内酯 50∶1至1∶50
印苦楝子素 蜕皮激素激动剂 100∶1至1∶120
β-氟氯氰菊酯 钠通道调节剂 150∶1至1∶200
联苯菊酯 钠通道调节剂 100∶1至1∶10
扑虱灵 甲壳质合成抑制剂 500∶1至1∶50
杀螟丹 沙蚕毒素类似物 100∶1至1∶200
氯虫苯甲酰胺 鱼尼丁受体配体 100∶1至1∶120
溴虫腈 线粒体电子传输抑制剂 300∶1至1∶200
氯蜱硫磷 胆碱酯酶抑制剂 500∶1至1∶200
可尼丁 新烟碱 100∶1至1∶400
氰虫酰胺 鱼尼丁受体配体 100∶1至1∶120
氟氯氰菊酯 钠通道调节剂 150∶1至1∶200
氟氯氰菊酯 钠通道调节剂 150∶1至1∶200
氯氰菊酯 钠通道调节剂 150∶1至1∶200
灭蝇胺 甲壳质合成抑制剂 400∶1至1∶50
溴氢菊酯 钠通道调节剂 50∶1至1∶400
迪厄尔丁 环二烯类杀昆虫剂 200∶1至1∶100
呋虫胺 新烟碱 150∶1至1∶200
二苯丙醚 蜕皮抑制剂 150∶1至1∶200
无脊椎害虫防治剂 作用模式或化学类别 典型的重量比
甲氨基阿维菌素 大环内酯 50∶1至1∶10
硫丹 环二烯类杀昆虫剂 200∶1至1∶100
顺式氰戊菊酯 钠通道调节剂 100∶1至1∶400
乙虫腈 GABA调节的氯离子通道阻滞剂 200∶1至1∶100
苯硫威 150∶1至1∶200
苯氧威 保幼激素模拟物 500∶1至1∶100
腈苯苯醚菊酯 钠通道调节剂 150∶1至1∶200
氟虫腈 GABA调节的氯离子通道阻滞剂 150∶1至1∶100
氟啶虫酰胺 200∶1至1∶100
氟虫酰胺 鱼尼丁受体配体 100∶1至1∶120
氟虫脲 甲壳质合成抑制剂 200∶1至1∶100
氟铃脲 甲壳质合成抑制剂 300∶1至1∶50
氟蚁腙 线粒体电子传输抑制剂 150∶1至1∶250
吡虫啉 新烟碱 1000∶1至1∶1000
茚虫威 钠通道调节剂 200∶1至1∶50
λ-氟氯氰菊酯 钠通道调节剂 50∶1至1∶250
虱螨脲 甲壳质合成抑制剂 500∶1至1∶250
氰氟虫腙 200∶1至1∶200
乙肟威 胆碱酯酶抑制剂 500∶1至1∶100
甲氧普烯 保幼激素模拟物 500∶1至1∶100
甲氧虫酰肼 蜕皮激素激动剂 50∶1至1∶50
烯啶虫胺 新烟碱 150∶1至1∶200
硝乙脲噻唑 新烟碱 150∶1至1∶200
双苯氟脲 甲壳质合成抑制剂 500∶1至1∶150
草氨酰 胆碱酯酶抑制剂 200∶1至1∶200
吡蚜酮 200∶1至1∶100
除虫菊酯 钠通道调节剂 100∶1至1∶10
哒螨酮 线粒体电子传输抑制剂 200∶1至1∶100
啶虫丙醚 200∶1至1∶100
无脊椎害虫防治剂 作用模式或化学类别 典型的重量比
蚊蝇醚 保幼激素模拟物 500∶1至1∶100
理阿诺碱 鱼尼丁受体配体 100∶1至1∶120
多菌虫素 大环内酯 150∶1至1∶100
多杀菌素 大环内酯 500∶1至1∶10
季酮螨酯 脂质生物合成抑制剂 200∶1至1∶200
螺甲螨酯 脂质生物合成抑制剂 200∶1至1∶200
虫酰肼 蜕皮激素激动剂 500∶1至1∶250
噻虫啉 新烟碱 100∶1至1∶200
噻虫嗪 新烟碱 1250∶1至1∶1000
硫双灭多威 胆碱酯酶抑制剂 500∶1至1∶400
杀虫双 150∶1至1∶100
四溴菊酯 钠通道调节剂 150∶1至1∶200
唑蚜威 胆碱酯酶抑制剂 250∶1至1∶100
杀铃脲 甲壳质合成抑制剂 200∶1至1∶100
苏云金芽孢杆菌 生物剂 50∶1至1∶10
苏云金芽孢杆菌Δ-内毒素 生物剂 50∶1至1∶10
NPV(例如Gemstar) 生物剂 50∶1至1∶10
值得注意的是本发明的组合物,其中所述至少一种附加的生物学活性化合物或试剂选自上表A中列出的无脊椎害虫防治剂。
化合物1的固体形式与附加的无脊椎害虫防治剂的重量比通常介于1000∶1和1∶1000之间,其中一个实施例为介于500∶1和1∶500之间,另一个实施例为介于250∶1和1∶200之间,并且另一个实施例为介于100∶1和1∶50之间。
下表B中列出的为包括化合物1的固体形式(多晶型体形式A)和附加的无脊椎动物害虫防治剂的特定组合物的实施例。
表B
Figure BDA0000489766520000901
Figure BDA0000489766520000911
下表C中列出的为包括化合物1的固体形式(多晶型体形式A)和附加杀真菌剂的特定组合物的实施例。
表C
Figure BDA0000489766520000921
Figure BDA0000489766520000931
(a)1-[4-[4-[5-(2,6-二氟苯基)-4,5-二氢-3-异唑基]-2-噻唑基]-1-哌啶基]-2-[5-甲基-3-(三氟甲基)-1H-吡唑-1-基]乙酮
在农业和非农业应用中,通过将生物学有效量的通常为组合物形式的化合物1的固体形式施用到害虫的环境中(包括侵害的农业和/或非农业场所),施用到待保护的区域,或直接施用到待防治的害虫上,来防治寄生性线虫。
因此,本发明包括在农业和/或非农业应用中防治寄生性线虫的方法,包括使寄生性线虫或其环境与生物学有效量的化合物1的固体形式接触,或与包含至少一种此类化合物的组合物或包含至少一种此类化合物和至少一种附加的生物学活性化合物或试剂的组合物接触。包含化合物1的固体形式和至少一种附加的生物活性化合物或试剂的适宜组合物的例子包括颗粒状组合物,其中所述附加的活性化合物存在于与本发明的化合物相同的颗粒上,或者存在于与本发明化合物颗粒的那些不相同的颗粒上。
为实现与本发明的化合物1的固体形式或组合物接触以保护大田作物免受寄生性线虫侵害,通常在种植前将化合物1的固体形式或组合物施用到作物种子,施用到作物植物的叶(例如叶片、茎杆、花朵、果实),或者在种植作物前或种植作物后施用到土壤或其它生长介质。
接触方法的一个实施例为通过喷雾。作为另外一种选择,可将包含本发明化合物的颗粒状组合物施用到植物叶或土壤。还可通过使植物与作为浸壤液体制剂、施用到土壤的颗粒状制剂、育苗箱处理剂或移植浸泡施用的包含本发明化合物的组合物接触,经由植物摄入来有效递送化合物1的固体形式。值得注意的是浸壤液体制剂形式的本发明的组合物。还值得注意的是防治寄生性线虫的方法,所述方法包括使寄生性线虫或其环境与生物学有效量的化合物1的固体形式接触,或与包含生物学有效量的固体形式化合物1的组合物接触。还值得注意的是这样的方法,其中环境为土壤,并且将所述组合物作为浸壤制剂施用到土壤。还值得注意的是,还可通过局部施用到所侵害位置来使化合物1的固体形式有效。其它接触方法包括通过直接喷雾和残余喷雾、航空喷雾、凝胶、种子包衣、微胶囊、全身吸收、饵料、耳标、大丸剂、喷雾器、熏剂、气溶胶、粉剂以及多种其它方法,来施用本发明的化合物1的固体形式或组合物。接触方法的一个实施例涉及包含本发明的化合物1的固体形式或组合物的尺寸上稳定的肥料颗粒、小棍或片剂。化合物1的固体形式还可浸渍到用于制造无脊椎害虫防治装置(例如防昆虫网)的材料中。
化合物1的固体形式还可用于种子处理中,以保护种子免受寄生性线虫侵害。在本公开和权利要求书上下文中,处理种子是指使种子与通常被配制为本发明组合物的生物学有效量的化合物1的固体形式接触。该种子处理剂保护种子免受无脊椎土壤害虫的侵害,并且一般还可保护由发芽的种子发育成的幼苗的根和其它植物部分与土壤接触。所述种子处理剂还通过使化合物1或第二活性成分在发育的植物内移位来提供叶保护。可将种子处理剂施用到各类种子,包括将发芽形成转基因植物以表达特定特征的那些。基因转化植物的代表性例子包括对寄生性线虫表达蛋白质毒性的那些如苏云金芽孢杆菌毒素,或表达除草剂抗性的那些如草甘膦乙酰转移酶,其提供对草甘膦的抗性。用化合物1的固体形式处理种子,还可增加由种子长成的植物的活力。
种子处理的一种方法为在播撒种子前,用化合物1的固体形式(即作为配制的组合物)喷雾或撒粉于种子。配制用于种子处理的组合物一般包含成膜剂或粘合剂。因此,本发明的种子包衣组合物通常包含生物学有效量的化合物1的固体形式和成膜剂或粘合剂。通过将可流动的悬浮液浓缩物直接喷雾到种子的滚动床中,然后将种子干燥来将种子包衣。作为另外一种选择,可将其它制剂类型如湿粉、溶液、浓悬乳液、可乳化浓缩物和乳液的水溶液喷雾于种子上。该方法尤其可用于将膜包衣施用于种子上。本领域中技术人员可采用各种包衣机器和方法。适宜的方法包括P.Kosters等人在SeedTreatment:Progress and Prospects(1994BCPC专著No.57)以及其中所列参考文献中列出的那些。
化合物1的固体形式以及它们的组合物,单独和与其它杀昆虫剂、杀线虫剂和杀真菌剂的组合都尤其可用于作物的种子处理,所述作物包括但不限于玉米或谷物、大豆、棉花、谷类食物(如小麦、燕麦、大麦、黑麦和稻)、马铃薯、蔬菜和油菜。
可与化合物1的固体形式一起配制以提供可用于种子处理中的混合物的其它杀昆虫剂或杀线虫剂包括但不限于阿巴美丁、啶虫脒、氟丙菊酯、双甲脒、阿维菌素、印苦楝子素、杀虫磺、联苯菊酯、扑虱灵、硫线磷、西维因、克百威、杀螟丹、氯虫苯甲酰胺、溴虫腈、氯蜱硫磷、可尼丁、氰虫酰胺、氟氯氰菊酯、β-氟氯氰菊酯、三氟氯氰菊酯、γ-三氟氯氰菊酯、高三氟氯氰菊酯、氯氰菊酯、α-氯氰菊酯、ζ-氯氰菊酯、灭蝇胺、溴氢菊酯、迪厄尔丁、呋虫胺、二苯丙醚、甲氨基阿维菌素、硫丹、顺式氰戊菊酯、乙虫腈、依芬宁、乙螨唑、苯硫威、苯氧威、腈苯苯醚菊酯、氟虫腈、氟啶虫酰胺、氟虫酰胺、氟虫脲、氟胺氰菊酯、伐虫脒、噻唑磷、氟铃脲、氟蚁腙、吡虫啉、茚虫威、氰氟虫腙、灭虫威、乙肟威、甲氧普烯、甲氧虫酰肼、烯啶虫胺、硝乙脲噻唑、双苯氟脲、草氨酰、吡蚜酮、除虫菊酯、哒螨酮、啶虫丙醚、蚊蝇醚、理阿诺碱、多菌虫素、多杀菌素、季酮螨酯、螺甲螨酯、螺虫乙酯、砜虫啶、虫酰肼、似虫菊、噻虫啉、噻虫嗪、硫双灭多威、杀虫双、四溴菊酯、唑蚜威、杀铃脲、苏云金芽孢杆菌δ-内毒素、苏云金芽孢杆菌的所有菌株以及核型多角体病毒的所有菌株。
可与化合物1的固体形式一起配制以提供可用于种子处理中的混合物的杀真菌剂包括但不限于吲唑磺菌胺、嘧菌酯、啶酰菌胺、多菌灵、萎锈灵、霜脲氰、环唑醇、恶醚唑、烯酰吗啉、氟啶胺、咯菌腈、氟喹唑、氟吡菌胺、氟嘧菌酯、粉唑醇、氟唑菌酰胺、种菌唑、异菌脲、甲霜灵、精甲霜灵、叶菌唑、腈菌唑、多效唑、戊苯吡菌胺、啶氧菌酯、丙硫菌唑、唑菌胺酯、环苯吡菌胺、硅噻菌胺、戊唑醇、噻菌灵、甲基硫菌灵、二硫四甲秋兰姆、肟菌酯和灭菌唑。
包含可用于种子处理的固体形式化合物1的组合物还可包含细菌和真菌,所述细菌和真菌具有提供保护植物免受病原真菌或细菌和/或土传动物如线虫的有害影响的能力。表现出杀线虫特性的细菌可包括但不限于坚强芽孢杆菌、蜡状芽孢杆菌、枯草杆菌和穿透巴斯德芽孢菌。适宜的坚强芽孢杆菌菌株为可以BioNemTM商购获得的菌株CNCM I-1582(GB-126)。适宜的蜡状芽孢杆菌菌株为菌株NCMM I-1592。两种芽孢杆菌属菌株均公开于US6,406,690中。表现出杀线虫活性的其它适宜细菌为解淀粉芽孢杆菌IN937a和枯草芽孢杆菌菌株GB03。表现出杀真菌特性的细菌可包括但不限于短小芽孢杆菌菌株GB34。表现出杀线虫特性的真菌种类可包括但不限于疣孢漆斑菌、淡紫拟青霉和淡紫紫孢菌。
种子处理剂还可包含一种或多种天然来源的杀线虫剂,例如称为接合子(harpin)的激发子蛋白质,其由某些细菌植物病原体例如梨火疫病菌分离而得。例子为作为N-HibitTMGold CST获得的Harpin-N-Tek种子处理技术。
种子处理剂还可包含一种或多种豆类根瘤细菌物种,如微共生固氮细菌慢生大豆根瘤菌。这些接种剂可任选地包含一种或多种脂类壳寡糖(LCO),其为根瘤细菌在豆科植物根部引发节结形成期间所产生的结节(Nod)因子。例如,品牌的种子处理技术结合LCO PromoterTechnologyTM与接种剂的组合。
种子处理剂还可包含一种或多种异黄酮,其可增加菌根真菌根部定殖的水平。菌根真菌通过增强根部吸收养分如水、硫酸盐、硝酸盐、磷酸盐和金属来改善植物生长。异黄酮的例子包括但不限于染料木黄酮、美皂异黄酮
A、刺芒柄花素、黄豆甙原、黄豆黄素、橘皮素、柚配质和红车轴草素。刺芒柄花素作为菌根接种剂产品如PHC
Figure BDA0000489766520000971
AG中的活性成分获得。
种子处理剂还可包含一种或多种植物活化剂,所述植物活化剂在被病原体接触后在植物中引起系统获得性抗性。引起此类保护性机制的植物活化剂例子为苯并噻二唑-S-甲基。
经处理的种子通常包含化合物1的固体形式,其量为约0.1g至1kg每100kg种子(即处理前按所述种子的重量计约0.0001至1%)。为种子处理配制的可流动悬浮液通常包含约0.5%至约70%的活性成分,约0.5%至约30%的成膜粘合剂,约0.5%至约20%的分散剂,0%至约5%的增稠剂,0%至约5%的颜料和/或染料,0%至约2%的消泡剂,0%至约1%的防腐剂和0%至约75%的挥发性液体稀释剂。
化合物1的固体形式还适用于处理除种子以外的植物繁殖材料,如果实、块茎或植物幼苗。在播种前可用所述化合物处理繁殖材料,或者在播种繁殖材料时可将所述化合物施用至播种位点。
对于农业施用,有效防治所需的施用率(即“生物学有效量”)将取决于诸如待防治的线虫种类、线虫的生命周期、生命阶段、其大小、位置、一年的时间、宿主作物或动物、摄食行为、交配行为、环境水分、温度等因素。在正常情况下,约0.01至2kg活性成分每公顷的施用率足以防治农业生态系统中的线虫,但是低达0.0001kg/公顷可能是足够的,或者高达8kg每公顷可能是需要的。对于非农业施用,有效使用率将在约1.0至50mg/平方米范围内,但是低达0.1mg/平方米可能是足够的,或者高达150mg/平方米可能是需要的。本领域中技术人员易于确定期望的寄生性线虫防治水平所需的生物学有效量。

Claims (18)

1.8-氯-N-[(2-氯-5-甲氧基苯基)磺酰基]-6-(三氟甲基)-咪唑并[1,2-a]吡啶-2-甲酰胺的多晶型体,所述多晶型体被指定为形式A,其特征在于具有至少以下2θ反射位置的室温粉末Cu(Kα1)X射线衍射图案
30.367 25.973 29.131 25.604 27.995 24.285 27.611 23.582 26.49 19.789
2.8-氯-N-[(2-氯-5-甲氧基苯基)磺酰基]-6-(三氟甲基)-咪唑并[1,2-a]吡啶-2-甲酰胺的多晶型体,所述多晶型体被指定为形式B,其特征在于具有至少以下2θ反射位置的-100℃模拟粉末Cu(Kα1)X射线衍射图案
28.242 20.999 25.978 18.981 25.06 18.12 24.583 17.219 23.082 7.998
3.8-氯-N-[(2-氯-5-甲氧基苯基)磺酰基]-6-(三氟甲基)-咪唑并[1,2-a]吡啶-2-甲酰胺的多晶型体,所述多晶型体为与甲苯的1比1溶剂化物,其被指定为形式TS,其特征在于具有至少以下2θ反射位置的室温粉末Cu(Kα1)X射线衍射图案
28.913 22.429 26.942 20.325 25.672 19.053 24.451 18.603 23.316 12.871
4.用于制备根据权利要求1所述的多晶型体形式A的方法,包括用8-氯-N-[(2-氯-5-甲氧基苯基)磺酰基]-6-(三氟甲基)-咪唑并[1,2-a]吡啶-2-甲酰胺的一种或多种固体形式与溶剂形成浆液,所述固体形式选自形式B、C、D、溶剂化物、非晶形形式以及前述任一种与形式A的混合物,以及在8-氯-N-[(2-氯-5-甲氧基苯基)磺酰基]-6-(三氟甲基)-咪唑并[1,2-a]吡啶-2-甲酰胺的固体形式转化为多晶型体形式A的同时维持所述浆液。
5.根据权利要求4所述的方法,其中8-氯-N-[(2-氯-5-甲氧基苯基)磺酰基]-6-(三氟甲基)-咪唑并[1,2-a]吡啶-2-甲酰胺的固体形式包含多晶型体形式A和形式B的混合物。
6.根据权利要求4或5所述的方法,其中将所述浆液加热至介于30℃和所述溶剂沸点之间的温度,并且搅拌。
7.根据权利要求4或5所述的方法,其中搅拌所述浆液。
8.根据权利要求4或5所述的方法,其中所述溶剂包括水、C5-C8烷烃、C1-C4烷醇或C3-C4酮。
9.根据权利要求8所述的方法,其中所述溶剂包括水或甲醇。
10.用于制备根据权利要求1所述的多晶型体形式A的方法,包括:
(A)在第一溶剂的存在下,使8-氯-6-三氟甲基-咪唑并[1,2-a]吡啶-2-碳酰氯或其盐与2-氯-5-甲氧基苯磺酰胺接触,以形成包含8-氯-N-[(2-氯-5-甲氧基苯基)磺酰基]-6-(三氟甲基)-咪唑并[1,2-a]吡啶-2-甲酰胺的中间固体形式的反应混合物,
(B)分离8-氯-N-[(2-氯-5-甲氧基苯基)磺酰基]-6-(三氟甲基)-咪唑并[1,2-a]吡啶-2-甲酰胺的中间固体形式,以及
(C)使8-氯-N-[(2-氯-5-甲氧基苯基)磺酰基]-6-(三氟甲基)-咪唑并[1,2-a]吡啶-2-甲酰胺的中间固体形式与第二溶剂接触,任选地加热至介于30℃与所述第二溶剂沸点之间的温度,以将所述中间固体形式转化为根据权利要求1所述的多晶型体形式A。
11.根据权利要求10所述的方法,其中8-氯-N-[(2-氯-5-甲氧基苯基)磺酰基]-6-(三氟甲基)-咪唑并[1,2-a]吡啶-2-甲酰胺的中间固体形式为溶剂化物。
12.根据权利要求11所述的方法,其中8-氯-N-[(2-氯-5-甲氧基苯基)磺酰基]-6-(三氟甲基)-咪唑并[1,2-a]吡啶-2-甲酰胺的中间固体形式为与甲苯的溶剂化物。
13.根据权利要求10所述的方法,其中8-氯-N-[(2-氯-5-甲氧基苯基)磺酰基]-6-(三氟甲基)-咪唑并[1,2-a]吡啶-2-甲酰胺的中间固体形式为非溶剂化的多晶型体或多晶型体的混合物。
14.根据权利要求10所述的方法,其中所述第一溶剂包括甲苯与乙酸乙酯的混合物,并且所述第二溶剂包括水、甲醇、丙酮或正庚烷。
15.杀线虫组合物,包含(a)根据权利要求1所述的多晶型体形式A,和(b)至少一种额外组分,所述额外组分选自表面活性剂、固体稀释剂和液体载体。
16.杀线虫组合物,包含(a)根据权利要求1所述的多晶型体形式A,和(b)至少一种其它杀线虫剂、杀昆虫剂或杀真菌剂。
17.保护植物免受线虫侵害的方法,包括向所述植物、或其部分或种子、或者向所述植物的生长介质施用杀线虫有效量的包含根据权利要求1所述的多晶型体形式A的8-氯-N-[(2-氯-5-甲氧基苯基)磺酰基]-6-(三氟甲基)-咪唑并[1,2-a]吡啶-2-甲酰胺。
18.化合物,其为8-氯-6-(三氟甲基)咪唑并[1,2-a]吡啶-2-碳酰氯。
CN201280050028.5A 2011-10-13 2012-10-05 杀线虫磺酰胺的固体形式 Pending CN103857677A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510616468.8A CN105175413A (zh) 2011-10-13 2012-10-05 杀线虫磺酰胺的固体形式

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161546660P 2011-10-13 2011-10-13
US61/546660 2011-10-13
PCT/US2012/058915 WO2013055584A1 (en) 2011-10-13 2012-10-05 Solid forms of nematocidal sulfonamides

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201510616468.8A Division CN105175413A (zh) 2011-10-13 2012-10-05 杀线虫磺酰胺的固体形式

Publications (1)

Publication Number Publication Date
CN103857677A true CN103857677A (zh) 2014-06-11

Family

ID=47040831

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201280050028.5A Pending CN103857677A (zh) 2011-10-13 2012-10-05 杀线虫磺酰胺的固体形式
CN201510616468.8A Pending CN105175413A (zh) 2011-10-13 2012-10-05 杀线虫磺酰胺的固体形式

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201510616468.8A Pending CN105175413A (zh) 2011-10-13 2012-10-05 杀线虫磺酰胺的固体形式

Country Status (25)

Country Link
US (1) US9040554B2 (zh)
EP (1) EP2766362B1 (zh)
JP (1) JP6099655B2 (zh)
KR (1) KR101960995B1 (zh)
CN (2) CN103857677A (zh)
AP (1) AP2014007615A0 (zh)
AR (1) AR088326A1 (zh)
AU (1) AU2012321120B2 (zh)
BR (1) BR112014008869A2 (zh)
CA (1) CA2848131C (zh)
ES (1) ES2674406T3 (zh)
HU (1) HUE038996T2 (zh)
IL (1) IL231425B (zh)
MX (1) MX339994B (zh)
MY (1) MY164147A (zh)
PL (1) PL2766362T3 (zh)
PT (1) PT2766362T (zh)
RS (1) RS57385B1 (zh)
RU (1) RU2615139C2 (zh)
SI (1) SI2766362T1 (zh)
TR (1) TR201809737T4 (zh)
TW (1) TWI577286B (zh)
UA (1) UA113968C2 (zh)
WO (1) WO2013055584A1 (zh)
ZA (1) ZA201401475B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106359413A (zh) * 2016-08-31 2017-02-01 冯涵丽 一种含有氟噻虫砜和三氟咪啶酰胺的杀虫组合物
CN107846876A (zh) * 2014-12-29 2018-03-27 Fmc有限公司 解淀粉芽孢杆菌rti301组合物和用于利于植物生长和治疗植物疾病的方法
CN107873740A (zh) * 2017-11-25 2018-04-06 惠州市无龄康态健康科技有限公司 一种用于防治蘑菇线虫病的增效杀线虫组合物
CN112805285A (zh) * 2018-10-05 2021-05-14 纳幕尔杜邦公司 用于制备某些杀线虫磺酰胺的方法和中间体

Families Citing this family (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2949215A1 (en) * 2004-03-18 2015-12-02 Novozymes Bioag A/S Isoflavonoid compounds and use thereof
EP2903438A1 (en) 2012-10-01 2015-08-12 Basf Se Pesticidally active mixtures comprising anthranilamide compounds
WO2014053407A1 (en) 2012-10-01 2014-04-10 Basf Se N-thio-anthranilamide compounds and their use as pesticides
WO2014053401A2 (en) 2012-10-01 2014-04-10 Basf Se Method of improving plant health
MX2015004175A (es) 2012-10-01 2015-06-10 Basf Se Uso de compuestos de n-tio-antranilamida en plantas cultivadas.
AR093828A1 (es) 2012-10-01 2015-06-24 Basf Se Mezclas activas como plaguicidas, que comprenden compuestos de antranilamida
BR112015003035A2 (pt) 2012-10-01 2017-12-05 Basf Se métodos para o controle de insetos, para a proteção de uma cultura e para o controle da resistência
WO2014053403A1 (en) 2012-10-01 2014-04-10 Basf Se Method of controlling insecticide resistant insects
WO2014079814A1 (en) 2012-11-22 2014-05-30 Basf Se Pesticidal mixtures
BR112015011777B1 (pt) 2012-11-22 2019-09-24 Basf Corporation Mistura sinérgica, kit para preparar uma composição pesticida útil, composição pesticida e método para proteger material de propagação vegetal
WO2014079772A1 (en) 2012-11-22 2014-05-30 Basf Se Pesticidal mixtures
WO2014079770A1 (en) 2012-11-22 2014-05-30 Basf Se Pesticidal mixtures
WO2014079804A1 (en) 2012-11-22 2014-05-30 Basf Se Pesticidal mixtures
WO2014079841A1 (en) 2012-11-22 2014-05-30 Basf Se Pesticidal mixtures
WO2014079820A1 (en) 2012-11-22 2014-05-30 Basf Se Use of anthranilamide compounds for reducing insect-vectored viral infections
WO2014079766A1 (en) 2012-11-22 2014-05-30 Basf Se Pesticidal mixtures
WO2014079774A1 (en) 2012-11-22 2014-05-30 Basf Se Pesticidal mixtures
EP2941125A1 (en) 2012-11-22 2015-11-11 BASF Corporation Pesticidal mixtures
WO2014079752A1 (en) 2012-11-23 2014-05-30 Basf Se Pesticidal mixtures
WO2014079813A1 (en) 2012-11-23 2014-05-30 Basf Se Pesticidal mixtures
EP2984074A1 (en) 2012-12-14 2016-02-17 Basf Se Malononitrile compounds for controlling animal pests
WO2014102244A1 (en) 2012-12-27 2014-07-03 Basf Se 2-(pyridin-3-yl)-5-hetaryl-thiazole compounds carrying an imine or imine-derived substituent for combating invertebrate pests
EP2792360A1 (en) 2013-04-18 2014-10-22 IP Gesellschaft für Management mbH (1aR,12bS)-8-cyclohexyl-11-fluoro-N-((1-methylcyclopropyl)sulfonyl)-1a-((3-methyl-3,8-diazabicyclo[3.2.1]oct-8-yl)carbonyl)-1,1a,2,2b-tetrahydrocyclopropa[d]indolo[2,1-a][2]benzazepine-5-carboxamide for use in treating HCV
JP2016522173A (ja) 2013-04-19 2016-07-28 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 有害動物を駆除するためのn−置換アシル−イミノ−ピリジン化合物および誘導体
WO2014202751A1 (en) 2013-06-21 2014-12-24 Basf Se Methods for controlling pests in soybean
JP2016529234A (ja) 2013-07-15 2016-09-23 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 殺有害生物化合物
EA201600270A1 (ru) 2013-09-19 2016-08-31 Басф Се N-ацилимино гетероциклические соединения
WO2015055497A1 (en) 2013-10-16 2015-04-23 Basf Se Substituted pesticidal pyrazole compounds
WO2015055757A1 (en) 2013-10-18 2015-04-23 Basf Se Use of pesticidal active carboxamide derivative in soil and seed application and treatment methods
US20160318897A1 (en) 2013-12-18 2016-11-03 Basf Se Azole compounds carrying an imine-derived substituent
US20160326153A1 (en) 2013-12-18 2016-11-10 Basf Se N-substituted imino heterocyclic compounds
WO2015104422A1 (en) 2014-01-13 2015-07-16 Basf Se Dihydrothiophene compounds for controlling invertebrate pests
AU2015257746B2 (en) 2014-05-08 2018-11-22 Bayer Cropscience Aktiengesellschaft Pyrazolopyridine sulfonamides as nematicides
JP6500900B2 (ja) * 2014-07-22 2019-04-17 住友化学株式会社 有害生物の防除方法
US10149477B2 (en) 2014-10-06 2018-12-11 Basf Se Substituted pyrimidinium compounds for combating animal pests
EP3214936A1 (en) 2014-11-06 2017-09-13 Basf Se 3-pyridyl heterobicyclic compound for controlling invertebrate pests
WO2016109424A1 (en) * 2014-12-29 2016-07-07 Fmc Corporation Microbial compositions and methods of use for benefiting plant growth and treating plant disease
UY36477A (es) * 2014-12-29 2017-06-30 Fmc Corp Composiciones de bacillus amyloliquefaciens rti472 y métodos de uso para beneficiar el crecimiento de las plantas y el tratamiento de enfermedades de las plantas
WO2016124769A1 (en) 2015-02-06 2016-08-11 Basf Se Pyrazole compounds as nitrification inhibitors
WO2016128261A2 (en) 2015-02-11 2016-08-18 Basf Se Pesticidal mixture comprising a pyrazole compound, an insecticide and a fungicide
US11064696B2 (en) 2015-04-07 2021-07-20 Basf Agrochemical Products B.V. Use of an insecticidal carboxamide compound against pests on cultivated plants
AR104596A1 (es) 2015-05-12 2017-08-02 Basf Se Compuestos de tioéter como inhibidores de la nitrificación
WO2016198613A1 (en) 2015-06-11 2016-12-15 Basf Se N-(thio)acylimino compounds
WO2016198611A1 (en) 2015-06-11 2016-12-15 Basf Se N-(thio)acylimino heterocyclic compounds
WO2017016883A1 (en) 2015-07-24 2017-02-02 Basf Se Process for preparation of cyclopentene compounds
PE20181006A1 (es) 2015-10-02 2018-06-26 Basf Se Compuestos de imino con un sustituyente de 2-cloropirimidin-5-ilo como agentes de control de plagas
CN113303339A (zh) 2015-11-30 2021-08-27 巴斯夫欧洲公司 顺式-茉莉酮和解淀粉芽孢杆菌的混合物
EP3426660A1 (en) 2016-03-09 2019-01-16 Basf Se Spirocyclic derivatives
WO2017153218A1 (en) 2016-03-11 2017-09-14 Basf Se Method for controlling pests of plants
MX2018011214A (es) 2016-03-15 2019-03-28 Bayer Cropscience Ag Sulfonamidas sustituidas para controlar plagas animales.
UA123912C2 (uk) 2016-04-01 2021-06-23 Басф Се Біциклічні сполуки
CN105901003A (zh) * 2016-04-25 2016-08-31 广东中迅农科股份有限公司 含有三氟咪啶酰胺的农药组合物
WO2017198588A1 (en) 2016-05-18 2017-11-23 Basf Se Capsules comprising benzylpropargylethers for use as nitrification inhibitors
CN106508924A (zh) * 2016-10-27 2017-03-22 佛山市盈辉作物科学有限公司 一种含三氟咪啶酰胺与氨基寡糖素的杀线组合物
CN106508956A (zh) * 2016-10-27 2017-03-22 佛山市盈辉作物科学有限公司 一种含三氟咪啶酰胺与噻唑膦的杀线组合物
TW201822637A (zh) 2016-11-07 2018-07-01 德商拜耳廠股份有限公司 用於控制動物害蟲的經取代磺醯胺類
CN106508969A (zh) * 2016-11-07 2017-03-22 佛山市盈辉作物科学有限公司 一种含三氟咪啶酰胺与淡紫拟青霉的杀线组合物
US20200077658A1 (en) 2016-12-16 2020-03-12 Basf Se Pesticidal Compounds
CN106857581B (zh) * 2017-02-28 2020-06-30 广东真格生物科技有限公司 一种含有三氟咪啶酰胺的杀线虫组合物
WO2018162312A1 (en) 2017-03-10 2018-09-13 Basf Se Spirocyclic derivatives
WO2018166855A1 (en) 2017-03-16 2018-09-20 Basf Se Heterobicyclic substituted dihydroisoxazoles
CN110506038B (zh) 2017-03-28 2023-11-24 巴斯夫欧洲公司 杀害虫化合物
CA3054591A1 (en) 2017-03-31 2018-10-04 Basf Se Pyrimidinium compounds and their mixtures for combating animal pests
WO2018192793A1 (en) 2017-04-20 2018-10-25 Basf Se Substituted rhodanine derivatives
RU2019136972A (ru) 2017-04-26 2021-05-26 Басф Се Замещенные сукцинимидные производные в качестве пестицидов
JP2020519607A (ja) 2017-05-10 2020-07-02 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 二環式殺有害生物性化合物
WO2018224455A1 (en) 2017-06-07 2018-12-13 Basf Se Substituted cyclopropyl derivatives
BR112019025331A2 (pt) 2017-06-16 2020-06-23 Basf Se Compostos da fórmula (i), composição, métodos de proteção de safras e de combate, método não terapêutico de tratamento, semente, uso dos compostos e uso de composto
CN110678469B (zh) 2017-06-19 2023-03-03 巴斯夫欧洲公司 用于防除动物害虫的取代嘧啶鎓化合物和衍生物
WO2018234488A1 (en) 2017-06-23 2018-12-27 Basf Se SUBSTITUTED CYCLOPROPYL DERIVATIVES
WO2019042932A1 (en) 2017-08-31 2019-03-07 Basf Se METHOD FOR CONTROLLING RICE PARASITES IN RICE
EP3453706A1 (en) 2017-09-08 2019-03-13 Basf Se Pesticidal imidazole compounds
BR112020006037A2 (pt) 2017-10-13 2020-10-06 Basf Se compostos, misturas pesticidas, composição agroquímica, métodos para controlar pragas de invertebrados, para proteger plantas e para proteção de material de propagação de plantas, semente e uso de compostos de fórmula (i)
WO2019121143A1 (en) 2017-12-20 2019-06-27 Basf Se Substituted cyclopropyl derivatives
BR112020012566B1 (pt) 2017-12-21 2024-03-05 Basf Se Composto da fórmula i, composição, método de combate ou controle de pragas invertebradas, método de proteção de plantas em crescimento contra ataque ou infestação por pragas invertebradas, semente revestida, e usos de um composto da fórmula i
KR20200108007A (ko) 2018-01-09 2020-09-16 바스프 에스이 질화작용 저해제로서의 실릴에티닐 헤타릴 화합물
WO2019137995A1 (en) 2018-01-11 2019-07-18 Basf Se Novel pyridazine compounds for controlling invertebrate pests
JP7444780B2 (ja) 2018-02-28 2024-03-06 ビーエーエスエフ ソシエタス・ヨーロピア 硝化阻害剤としてのn-官能化アルコキシピラゾール化合物の使用
EP3758491A1 (en) 2018-02-28 2021-01-06 Basf Se Use of pyrazole propargyl ethers as nitrification inhibitors
CN111683529B (zh) 2018-02-28 2022-10-14 巴斯夫欧洲公司 烷氧基吡唑作为硝化抑制剂的用途
WO2019175712A1 (en) 2018-03-14 2019-09-19 Basf Corporation New uses for catechol molecules as inhibitors to glutathione s-transferase metabolic pathways
WO2019175713A1 (en) 2018-03-14 2019-09-19 Basf Corporation New catechol molecules and their use as inhibitors to p450 related metabolic pathways
WO2019185413A1 (en) 2018-03-27 2019-10-03 Basf Se Pesticidal substituted cyclopropyl derivatives
BR112020019390A2 (pt) * 2018-04-13 2021-01-05 Bayer Aktiengesellschaft Combinações de ingredientes ativos com propriedades inseticidas, nematicidas e acaricidas
KR20210008036A (ko) 2018-05-15 2021-01-20 바스프 에스이 벤즈피리목산 및 옥사조술필을 포함하는 혼합물 및 이의 용도 및 이의 적용 방법
WO2019224092A1 (en) 2018-05-22 2019-11-28 Basf Se Pesticidally active c15-derivatives of ginkgolides
WO2020002472A1 (en) 2018-06-28 2020-01-02 Basf Se Use of alkynylthiophenes as nitrification inhibitors
PL3826982T3 (pl) 2018-07-23 2024-04-02 Basf Se Zastosowanie podstawionych związków tiazolidynowych jako inhibitora nitryfikacji
EP3826983B1 (en) 2018-07-23 2024-05-15 Basf Se Use of substituted 2-thiazolines as nitrification inhibitors
EP3613736A1 (en) 2018-08-22 2020-02-26 Basf Se Substituted glutarimide derivatives
US20220046925A1 (en) 2018-09-28 2022-02-17 Basf Se Method of controlling pests by seed treatment application of a mesoionic compound or mixture thereof
EP3628157A1 (en) 2018-09-28 2020-04-01 Basf Se Method of controlling insecticide resistant insects and virus transmission to plants
EP3628156A1 (en) 2018-09-28 2020-04-01 Basf Se Method for controlling pests of sugarcane, citrus, rapeseed, and potato plants
EP3628158A1 (en) 2018-09-28 2020-04-01 Basf Se Pesticidal mixture comprising a mesoionic compound and a biopesticide
EP3643705A1 (en) 2018-10-24 2020-04-29 Basf Se Pesticidal compounds
BR112021008491A2 (pt) 2018-11-28 2021-08-03 Basf Se composto da fórmula i, composição, método de combate ou controle de pragas invertebradas, método de proteção de plantas em crescimento, semente, uso de composto da fórmula i e método de tratamento ou proteção de animais
BR112021009395A2 (pt) 2018-12-18 2021-08-10 Basf Se compostos de pirimidínio substituídos, compostos de fórmula (i), métodos para proteger culturas, para o combate, controle, prevenção ou proteção, método não terapêutico para o tratamento de animais, semente e usos dos compostos de fórmula (i)
EP3696177A1 (en) 2019-02-12 2020-08-19 Basf Se Heterocyclic compounds for the control of invertebrate pests
EP3769623A1 (en) 2019-07-22 2021-01-27 Basf Se Mesoionic imidazolium compounds and derivatives for combating animal pests
US20220202017A1 (en) 2019-05-29 2022-06-30 Basf Se Mesoionic imidazolium compounds and derivatives for combating animal pests
EP3766879A1 (en) 2019-07-19 2021-01-20 Basf Se Pesticidal pyrazole derivatives
JP2023501978A (ja) 2019-11-07 2023-01-20 バイエル・アクチエンゲゼルシヤフト 動物害虫駆除用の置換スルホニルアミド
US20240101496A1 (en) 2021-02-02 2024-03-28 Basf Se Synergistic action of dcd and alkoxypyrazoles as nitrification inhibitors
CA3219128A1 (en) 2021-05-21 2022-11-24 Barbara Nave Use of an n-functionalized alkoxy pyrazole compound as nitrification inhibitor
CA3219022A1 (en) 2021-05-21 2022-11-24 Barbara Nave Use of ethynylpyridine compounds as nitrification inhibitors
CA3223077A1 (en) 2021-06-21 2022-12-29 Barbara Nave Metal-organic frameworks with pyrazole-based building blocks
WO2023203066A1 (en) 2022-04-21 2023-10-26 Basf Se Synergistic action as nitrification inhibitors of dcd oligomers with alkoxypyrazole and its oligomers
WO2024028243A1 (en) 2022-08-02 2024-02-08 Basf Se Pyrazolo pesticidal compounds

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010123791A1 (en) * 2009-04-22 2010-10-28 E. I. Du Pont De Nemours And Company Solid forms of an azocyclic amide
WO2010129500A2 (en) * 2009-05-04 2010-11-11 E. I. Du Pont De Nemours And Company Nematocidal sulfonamides

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2891855A (en) 1954-08-16 1959-06-23 Geigy Ag J R Compositions and methods for influencing the growth of plants
US3235361A (en) 1962-10-29 1966-02-15 Du Pont Method for the control of undesirable vegetation
US3060084A (en) 1961-06-09 1962-10-23 Du Pont Improved homogeneous, readily dispersed, pesticidal concentrate
US3299566A (en) 1964-06-01 1967-01-24 Olin Mathieson Water soluble film containing agricultural chemicals
US3309192A (en) 1964-12-02 1967-03-14 Du Pont Method of controlling seedling weed grasses
US4144050A (en) 1969-02-05 1979-03-13 Hoechst Aktiengesellschaft Micro granules for pesticides and process for their manufacture
US3920442A (en) 1972-09-18 1975-11-18 Du Pont Water-dispersible pesticide aggregates
US4172714A (en) 1976-12-20 1979-10-30 E. I. Du Pont De Nemours And Company Dry compactible, swellable herbicidal compositions and pellets produced therefrom
GB2095558B (en) 1981-03-30 1984-10-24 Avon Packers Ltd Formulation of agricultural chemicals
DE3246493A1 (de) 1982-12-16 1984-06-20 Bayer Ag, 5090 Leverkusen Verfahren zur herstellung von wasserdispergierbaren granulaten
US5180587A (en) 1988-06-28 1993-01-19 E. I. Du Pont De Nemours And Company Tablet formulations of pesticides
ATE208560T1 (de) 1989-08-30 2001-11-15 Kynoch Agrochemicals Proprieta Herstellung eines dosierungsmittels
AU651335B2 (en) 1990-03-12 1994-07-21 E.I. Du Pont De Nemours And Company Water-dispersible or water-soluble pesticide granules from heat-activated binders
DE69122201T2 (de) 1990-10-11 1997-02-06 Sumitomo Chemical Co Pestizide Zusammensetzung
US6406690B1 (en) 1995-04-17 2002-06-18 Minrav Industries Ltd. Bacillus firmus CNCM I-1582 or Bacillus cereus CNCM I-1562 for controlling nematodes
TWI283164B (en) 2001-09-21 2007-07-01 Du Pont Anthranilamide arthropodicide treatment
KR20080077650A (ko) * 2005-12-14 2008-08-25 마켓심 케미칼 웍스 리미티드 5-아미노-1-[2,6-디클로로-4-(트리플루오로메틸)페닐]-4-[(트리플루오로메틸)설피닐]-1h-피라졸-s-카르보니트릴의다형체 및 무정형

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010123791A1 (en) * 2009-04-22 2010-10-28 E. I. Du Pont De Nemours And Company Solid forms of an azocyclic amide
WO2010129500A2 (en) * 2009-05-04 2010-11-11 E. I. Du Pont De Nemours And Company Nematocidal sulfonamides

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107846876A (zh) * 2014-12-29 2018-03-27 Fmc有限公司 解淀粉芽孢杆菌rti301组合物和用于利于植物生长和治疗植物疾病的方法
CN106359413A (zh) * 2016-08-31 2017-02-01 冯涵丽 一种含有氟噻虫砜和三氟咪啶酰胺的杀虫组合物
CN107873740A (zh) * 2017-11-25 2018-04-06 惠州市无龄康态健康科技有限公司 一种用于防治蘑菇线虫病的增效杀线虫组合物
CN112805285A (zh) * 2018-10-05 2021-05-14 纳幕尔杜邦公司 用于制备某些杀线虫磺酰胺的方法和中间体

Also Published As

Publication number Publication date
RU2615139C2 (ru) 2017-04-04
TW201316904A (zh) 2013-05-01
JP2014534194A (ja) 2014-12-18
PT2766362T (pt) 2018-06-25
HUE038996T2 (hu) 2018-12-28
RU2014118950A (ru) 2015-11-20
CN105175413A (zh) 2015-12-23
UA113968C2 (xx) 2017-04-10
WO2013055584A1 (en) 2013-04-18
AR088326A1 (es) 2014-05-28
SI2766362T1 (en) 2018-06-29
EP2766362A1 (en) 2014-08-20
MY164147A (en) 2017-11-30
CA2848131C (en) 2020-04-07
TR201809737T4 (tr) 2018-07-23
US9040554B2 (en) 2015-05-26
KR20140082789A (ko) 2014-07-02
TWI577286B (zh) 2017-04-11
PL2766362T3 (pl) 2018-09-28
ZA201401475B (en) 2015-08-26
US20140228393A1 (en) 2014-08-14
ES2674406T3 (es) 2018-06-29
JP6099655B2 (ja) 2017-03-22
IL231425B (en) 2018-01-31
IL231425A0 (en) 2014-04-30
KR101960995B1 (ko) 2019-03-21
BR112014008869A2 (pt) 2017-04-25
MX339994B (es) 2016-06-21
AU2012321120B2 (en) 2017-05-25
EP2766362B1 (en) 2018-04-11
MX2014004289A (es) 2014-07-30
RS57385B1 (sr) 2018-09-28
AU2012321120A1 (en) 2014-03-13
CA2848131A1 (en) 2013-04-18
AP2014007615A0 (en) 2014-05-31

Similar Documents

Publication Publication Date Title
CN103857677A (zh) 杀线虫磺酰胺的固体形式
CN102413693B (zh) 磺酰胺杀线虫剂
CN103188934B (zh) 磺酰胺杀线虫剂
CN110372617B (zh) 一种药用组合物、丙硫菌唑的晶型及其制备方法、应用
UA127242C2 (uk) Суміші й композиції, які містять штами paenibacillus або фузарицидини і хімічні пестициди
CN102459256A (zh) 一种偶氮环酰胺的固体形式
CN105198874A (zh) 介离子吡啶并[1,2-a]嘧啶杀虫剂
CN105693638A (zh) 一种杀菌化合物、杀菌剂组合物和制剂及其应用
EA020755B1 (ru) Инсектицидные соединения
CN103998426B (zh) 作为植物生长调节化合物的独脚金内酰胺衍生物
JP6272843B2 (ja) ピリドピリミジニウムの分子内塩の固体形態
CN105308025A (zh) 杀真菌吡唑的固体形式
CN103998425B (zh) 作为植物生长调节化合物的斯特里格拉克塔姆(strigolactam)衍生物
TW200908882A (en) Novel crystalline form of 3-(difluormethyl)-1-methyl-N-(3',4',5'-trifluor[1,1'-biphenyl]-2-yl)-1H-pyrazol-4-carboxamide
CN105517995A (zh) 作为杀虫剂的六元c-n键合的芳基硫化物和芳基硫氧化物衍生物
KR20150020565A (ko) 식물 생장 조절 화합물
CN113853115A (zh) 含有flupyrimin的稻害虫防除用固体制剂
KR20180038463A (ko) 식물 생장 조절제 화합물
CN115379759A (zh) 有害生物防除方法、以及有害生物防除剂组合物及有害生物防除剂套装
EA019508B1 (ru) Инсектицидные соединения
CN108779092A (zh) 杀线虫杂环酰胺
KR20170115053A (ko) 식물 생장 조절제로서의 2-옥소-3,4-디하이드로퀴놀린 화합물
JP2021518360A (ja) 植物成長調節化合物
KR20190025633A (ko) 식물 생장 조절제 화합물
KR20190114987A (ko) 발아 촉진제

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140611