TW201316904A - 殺線蟲磺醯胺之固體形態 - Google Patents

殺線蟲磺醯胺之固體形態 Download PDF

Info

Publication number
TW201316904A
TW201316904A TW101133631A TW101133631A TW201316904A TW 201316904 A TW201316904 A TW 201316904A TW 101133631 A TW101133631 A TW 101133631A TW 101133631 A TW101133631 A TW 101133631A TW 201316904 A TW201316904 A TW 201316904A
Authority
TW
Taiwan
Prior art keywords
compound
chloro
polymorph
trifluoromethyl
pyridine
Prior art date
Application number
TW101133631A
Other languages
English (en)
Other versions
TWI577286B (zh
Inventor
Richard A Berger
Christian Hoffmann
William J Marshall
Rafael Shapiro
Original Assignee
Du Pont
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du Pont filed Critical Du Pont
Publication of TW201316904A publication Critical patent/TW201316904A/zh
Application granted granted Critical
Publication of TWI577286B publication Critical patent/TWI577286B/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/90Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having two or more relevant hetero rings, condensed among themselves or with a common carbocyclic ring system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • A61P33/10Anthelmintics
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Abstract

本發明係揭露8-氯-N-[(2-氯-5-甲氧苯基)磺醯基]-6-(三氟甲基)-咪唑[1,2-a]吡啶-2-甲醯胺(化合物1)之固體形態。本發明並提供製備化合物1固體形態及將化合物1之一種固體形態轉換為另一種固體形態的方法。本發明揭露殺線蟲組成物,其包含殺線蟲有效量之化合物1之固體形態及至少一種選自於由界面活性劑、固體稀釋劑以及載液所組成之群組的額外成分。亦揭露包含化合物1之固體形態及至少一種其他殺線蟲劑、殺蟲劑及/或殺真菌劑之混合物的組成物。本發明亦揭露保護植物免受線蟲侵害之方法,包含施用一殺線蟲有效量之包括多形體形態A之化合物1至該植物或其部分或種子或至該植物的生長介質。

Description

殺線蟲磺醯胺之固體形態
本發明係關於8-氯-N-[(2-氯-5-甲氧苯基)磺醯基]-6-(三氟甲基)-咪唑[1,2-a]吡啶-2-甲醯胺之固體形態、其製備、組成物及使用作為殺線蟲劑的方法。
化學化合物之固態可為非晶性(亦即原子位置無長程規則性)或晶性(亦即原子以規則重複式樣排列)。術語「多形體」意指一化學化合物之一種特定結晶形態(亦即晶格結構),其可存在以一種以上之固態晶形存在。多形體可能在如晶體形狀、密度、硬度、顏色、化學穩定性、熔點、吸濕性、可懸浮性、溶解性及溶解速率等之化學及物理(亦即生理化學的)性質以及如生物可利用性、生物有效性及毒性等生物性質上有所出入。
目前仍無法預測一化學化合物之固體形態可存在之結晶形態的生理化學性質,如熔點或溶解性。此外,甚至仍無法預測一化合物固態是否存在一種以上的結晶形態。
PCT專利公開案WO 2010/129500揭露殺線蟲磺醯胺8-氯-N-[(2-氯-5-甲氧苯基)磺醯基]-6-(三氟甲基)-咪唑[1,2-a]-吡啶-2-甲醯胺及其製備方法以及此化合物作為一殺線蟲劑的利用性。因而揭露此化合物之新穎固體形態、其組成物及其製備方法與使用。
本發明係關於8-氯-N-[(2-氯-5-甲氧苯基)磺醯基]-6-(三氟甲基)-咪唑[1,2-a]吡啶-2-甲醯胺(化合物1)之固體形態。更特定言之,本發明係關於化合物1之一種多形體,將其指定為形態A,其特徵在於其粉體X光繞射圖像具有至少2θ反射位置30.367、29.131、27.995、27.611、26.49、25.973、25.604、24.285、23.582及19.789度。
本發明亦關於直接製備化合物1各種固體形態之方法(亦即非始自其他化合物1之固體形態)。更具體而言,本發明係關於一種製備化合物1之所欲多形體的方法,包含:形成一反應混合物,其係藉由在一第一溶劑的存在下使2-氯-5-甲氧苯磺醯胺接觸8-氯-6-三氟甲基-咪唑[1,2-a]吡啶-2-羰基氯以形成化合物1之一種固體形態,然後使化合物1之該固體形態與一第二溶劑混合,以將該固體形態轉換為該多形體形態A。本發明亦關於將化合物1之一種固體形態轉換為另一種固體形態的方法。更具體而言,本發明係關於一種製備被指定為形態A之化合物1多形體之方法,該方法包含:以選自於由形態B、C、D、溶劑合物、非晶形態及其與形態A之混合物所組成之群組的化合物1之一或多種固體形態之一溶劑形成一料漿,以及在化合物1之該等固體形態轉換為多形體形態A時維持該料漿。
本發明亦關於製備化合物1(即2-氯-5-甲氧苯磺醯胺及8-氯-6-三氟甲基-咪唑[1,2-a]吡啶-2-羰基氯)之方法中所使用的化合物。
本發明亦關於一種殺線蟲組成物,包含:(a)化合物1之多形體形態A;以及(b)至少一種選自於由界面活性劑、固體稀釋劑以及載液所組成之群組的額外成分。
本發明亦關於一種殺線蟲組成物,包含:(a)化合物1之多形體形態A;以及(b)至少一種其他殺線蟲劑、殺蟲劑及/或殺真菌劑。
本發明進一步關於一種保護一植物免受線蟲侵害的方法,包含:施用一殺線蟲有效量之包括該多形體形態A之化合物1至該植物或其部分或種子或至該植物的生長介質。
如本文中所使用,術語「包含」、「包括」、「具有」或「含有」或其任何變化皆旨在涵蓋非排他性的包含。例如,含有清單列出的複數元素的一組成物、製程、方法、製品或裝置不一定僅限於清單上所列出的這些元素而已,而是可以包括未明確列出但卻是該組成物、製程、方法、製品或設裝置固有的其他元素。此外,除非有相反的明確說明,「或」是指涵括性的「或」,而不是指排他性的「或」。例如,以下任何一種情況均滿足條件A或B:A是真實的(或存在的)且B是虛假的(或不存在的),A是虛假的(或不存在的)且B是真實的(或存在的),以及A和B都是真實的(或存在的)。
同樣地,位於本發明之元素或成份之前的不定冠詞「一」及「一個」旨在非限制性地說明該元素或成份的實例數目(即出現數)。因此「一」或「一個」應理解 為包括一個或至少一個,且該元素或成分的單數詞形也包括複數,除非該數目顯然是指單數。
術語「殺線蟲劑(nematocide)」在技術領域中某些時候英文拼音為「nematicide」。殺線蟲劑為一種用於控制(包括預防、減少或消除)寄生性線蟲的化合物。
本發明內容與申請專利範圍中所揭露之術語「線蟲」係指線蟲門之活生物體。如一般定義,「寄生蟲」係在另一個描述為「宿主」的活生物體(例如植物)內生活或生長或攝食。如本揭露內容與申請專利範圍中所述之「寄生性線蟲」係特別指一種造成植物的組織受傷或損傷或其他型式疾病之線蟲。
「感染」意指線蟲的存在數目對植物造成危害。該存在可為在環境中,例如在農作物或其他種類的植物上。
如本揭露內容與申請專利範圍中所述之術語「殺寄生蟲的」及「殺寄生蟲地」意指在寄生性線蟲上之可觀察到的效果,以提供植物免受線蟲侵害之保護。殺線蟲的效果通常指目標寄生性線蟲的出現或活動降低。在線蟲上之前述效果包含細胞壞死、死亡、生長遲緩、活動減低或持續在宿主植物上或體內的能力降低、餵食下降及繁殖的抑制。此等在寄生性線蟲之效果提供植物寄生感染之控制(包括預防、減少或消除)。因此寄生性線蟲之「控制」意指在線蟲上達到殺寄生蟲的效果。「殺寄生蟲的有效劑量」及「生物有效劑量」在本內文中,使用在化學化合物控制寄生性線蟲之描述時,意指一個計量之化合物,其足以控制寄生性線蟲。
術語「農藝」意指田間作物之生產,如食物與纖維以及包含大豆與其他豆科植物、穀類(例如,小麥、燕麥、大麥、黑麥、稻米、玉米(aize/corn))、葉菜類(例如,萵苣、甘藍菜,及其他甘藍類作物)、果菜類(例如,番茄、胡椒、茄子、十字花科植物及瓜類)、馬鈴薯、甘藷、葡萄、棉花、樹果類(例如,梨果、石科及柑橘)、小果實類(漿果、櫻桃)以及其他特別作物(例如,芥花籽油、向日葵、橄欖)。
術語「非農藝」意指有別於田間作物,如園藝作物(如非生長於田地之溫室、苗圃或裝飾性植物)、草坪(如草皮場、牧草地、高爾夫球場、草地、運動場等)、農林及植被管理。
如本揭露內容及申請專利範圍中所提到,「植物」包括植物界的成員,特別是所有生命階段的種子植物(spermatopsida),包括幼嫩植物(如發芽種子發育成為幼苗)及成熟生殖階段(如產生花及種子的植物)。植物的部分包括通常在生長介質表面下生長的向地部分,像是根、塊莖、鱗莖和球莖,以及在生長介質上生長的部分,像是葉子(包括莖及葉)、花、果實和種子。生長介質包含土壤、液體營養素介質、凝膠營養素介質或混合泥炭、樹皮、鋸屑、砂、浮石、珍珠岩、蛭石及其他類似產物的土壤。如本文中所提到,用語「幼苗」,無論是單獨使用或與其他字組合,意指從一種子胚芽發育的幼嫩植物。
術語「水可互溶」用於「水可互溶溶劑」時,意指一液體溶劑(包括溶劑化合物之混合物)可以任何比例 完全溶於水(且水可溶於該溶劑)中,其係處於包含該水可互溶溶劑之(如反應)媒介的溫度下。甲醇、乙醇、丙酮及乙腈皆屬水可互溶溶劑之實例。
反之,術語「水不互溶」用於「水不互溶有機化合物」、「水不互溶液體成分」或「水不互溶載液」物質之上下文時,表示該物質於所需溫度下(對於調配的組成物約在室溫)以任何比例不溶於水(且水溶於該物質)。通常用為調配組成物中之載液或其他液體成分的水不互溶物質呈現極低水溶性,且水亦難溶於該水不互溶物質。通常用於製劑之水不互溶物質,其於20℃下以重量計之水溶性低於約1%,或低於約0.1%,或甚至低於約0.01%。
「連續液相」用於敘述液體調配組成物時,意指由該載液所形成之液相。連續液相提供大量液體媒介,供其他調配用成分溶解、分散(作為固體微粒)或乳化於(作為液滴)其中。若此載液為水性(可選擇地包含溶解水溶性化合物之水),一乳化於該水性載液之液體係由一水不互溶液體成分形成。
本揭露中使用之術語「室溫」意指在一約18℃及約26℃之間之溫度。
術語「多形體」意指一化學化合物之一種特定結晶形態(亦即晶格結構),其可存在以一種以上之固態晶形存在。
本發明之實施例包括:實施例1. 8-氯-N-[(2-氯-5-甲氧苯基)磺醯基]-6-(三氟甲基)-咪唑[1,2-a]吡啶-2-甲醯胺(化合物 1)之多形體,其在本發明內容中指定為形態A且其特徵在於一室溫粉體Cu(Kα1)X-光繞射圖像具有至少2θ反射位置
實施例2. 8-氯-N-[(2-氯-5-甲氧苯基)磺醯基]-6-(三氟甲基)-咪唑[1,2-a]吡啶-2-甲醯胺(化合物1)之多形體,其在本發明內容中指定為形態B且其特徵在於-100℃模擬Cu(Kα1)X光繞射圖像具有至少2θ反射位置
實施例3. 8-氯-N-[(2-氯-5-甲氧苯基)磺醯基]-6-(三氟甲基)-咪唑[1,2-a]吡啶-2-甲醯胺(化合物1)之多形體,其在本發明內容中指定為形態D且其特徵在於-100℃模擬Cu(Kα1)X光繞射圖像具有至少2θ反射位置
實施例4. 8-氯-N-[(2-氯-5-甲氧苯基)磺醯基]-6-(三氟甲基)-咪唑[1,2-a]吡啶-2-甲醯胺(化合物1)之多形體,其在本發明內容中指定為形態TS且其特徵在於一室溫粉體Cu(Kα1)X光繞射圖像具有至少2θ反射位置
實施例5. 本發明內容中所述用於製備實施例1之多形體形態A之方法,包含以選自於由形態B、C、D、溶劑合物、非晶形態及其與形態A之混合物所組成之群組之化合物1之一或多種固體形態之一溶劑形成一料漿,並且在化合物1之該等固體形態轉換為多形體形態A時維持該料漿。
實施例6. 實施例5之方法,其中化合物1之該固體形態包含多形體形態B。
實施例7. 實施例5之方法,其中化合物1之該固體形態包含多形體形態C。
實施例8. 實施例5之方法,其中化合物1之該固體形態包含多形體形態D。
實施例9. 實施例5之方法,其中化合物1之該固體形態包含多形體形態TS。
實施例10. 實施例5之方法,其中化合物1之該固體形態包含一多形體形態A及形態B之混合物。
實施例11. 實施例5至10之任一種方法,其中該料漿係加熱至一30℃及溶劑沸點間之溫度並攪拌。
實施例11a. 實施例5至11之任一種方法,其中該料漿係加熱至一55℃及100℃間之溫度並攪拌。
實施例11b. 實施例5至11之任一種方法,其中該料漿係加熱至一65℃及95℃間之溫度並攪拌。
實施例12. 實施例5至10之任一種方法,其中攪拌該料漿。
實施例13. 實施例5至12之任一種方法,其中該溶劑包含水、C5-C8烷、C1-C4烷醇或C3-C4酮。
實施例14. 實施例13之方法,其中該溶劑包含水、正庚烷、甲醇或丙酮。
實施例15. 實施例14之方法,其中該溶劑包含水、甲醇或丙酮。
實施例16. 實施例15之方法,其中該溶劑包含水或甲醇。
實施例17. 實施例16之方法,其中該溶劑包含水。
實施例18. 本發明內容中所述用於製備化合物1多形體形態A之方法,包含:(A)在一第一溶劑的存在下,使8-氯-6-三氟甲基-咪唑[1,2-a]吡啶-2-羰基氯或其鹽接觸2-氯-5-甲氧苯磺醯胺,以形成含有化合物1之一中間固體形態的反應混合物、(B)分離化合物1之該中間固體形態以及(C)使化合物1之該中間固體形態接觸一第二溶劑,視需要加熱至一30℃與該第二溶劑沸點間之溫度,以將該中間固體形態轉換為化合物1之多形體形態A。
實施例19. 實施例18之方法,其中8-氯-6-三氟甲基-咪唑[1,2-a]吡啶-2-羰基氯的製備係藉由使8-氯-6-(三氟甲基)咪唑[1,2-a]吡啶-2-羧酸接觸一氯化劑。
實施例20. 實施例19之方法,其中該氯化劑為亞硫醯氯、草醯氯或光氣。
實施例21. 實施例20之方法,其中該氯化劑為亞硫醯氯。
實施例21a. 實施例19至21之任一種方法,其中該氯化劑與8-氯-6-三氟甲基-咪唑[1,2-a]吡啶-2-羧酸的莫耳比係在約1.2:1至約1.5:1之範圍。
實施例22. 實施例19至21a之任一種方法,其中8-氯-6-三氟甲基-咪唑[1,2-a]吡啶-2-羰基氯的製備係藉由在一氯化溶劑中氯化8-氯-6-三氟甲基-咪唑[1,2-a]吡啶-2-羧酸。
實施例23. 實施例22之方法,其中該氯化溶劑為甲苯、二甲苯、氯苯、苯甲醚、三甲苯或四氫萘。
實施例24. 實施例23之方法,其中該氯化溶劑為甲苯、二甲苯或苯甲醚。
實施例25. 實施例24之方法,其中該氯化溶劑為甲苯。
實施例26. 實施例19至25之任一種方法,其中8-氯-6-(三氟甲基)咪唑[1,2-a]吡啶-2-羧酸係在N,N-二甲基甲醯胺或N-甲醯哌啶的存在下接觸一氯化劑。
實施例27. 實施例26之方法,其中8-氯-6-(三氟甲基)咪唑[1,2-a]吡啶-2-羧酸係在N-甲醯哌啶的存在下接觸一氯化劑。
實施例27a. 實施例26之方法,其中8-氯-6-(三氟甲基)咪唑[1,2-a]吡啶-2-羧酸係在N,N-二甲基甲醯胺的存在下接觸一氯化劑。
實施例28. 實施例19至27a之任一種方法,其中8-氯-6-(三氟甲基)咪唑[1,2-a]吡啶-2-羧酸係在0至85℃之溫度範圍下接觸一氯化劑。
實施例29. 實施例28之方法,其中8-氯-6-(三氟甲基)咪唑[1,2-a]吡啶-2-羧酸係在75至85℃之溫度範圍下接觸一亞硫醯氯。
實施例30. 實施例19至29之任一種方法,其中在與2-氯-5-甲氧苯磺醯胺接觸之前,先自該8-氯-6-三氟甲基-咪唑[1,2-a]吡啶-2-羰基氯移除多餘的氯化劑。
實施例31. 實施例18至30之任一種方法,其中在步驟(A)中該8-氯-6-三氟甲基-咪唑[1,2-a]吡啶-2-羰基氯為一HCl鹽形態。
實施例32. 實施例22至31之任一種方法,其中在步驟(A)中該8-氯-6-三氟甲基-咪唑[1,2-a]吡啶-2-羰基氯為在該氯化溶劑中之一料漿形態。
實施例33. 實施例18至32之任一種方法,其中在步驟(A)中8-氯-6-三氟甲基-咪唑[1,2-a]吡啶-2-羧酸與2-氯-5-甲氧苯磺醯胺之莫耳比係在1:1.1至1:1之範圍。
實施例34. 實施例18至33之任一種方法,其中在步驟(A)中該8-氯-6-三氟甲基-咪唑[1,2-a]吡啶-2-羰基氯與該2-氯-5-甲氧苯磺醯胺係在一鹼的存在下進行接觸。
實施例35. 實施例34之方法,其中該鹼為三級胺。
實施例36. 實施例35之方法,其中該鹼為三丁胺、三乙胺或二異丙基乙胺。
實施例37. 實施例36之方法,其中該鹼為三丁胺。
實施例38. 實施例34至37之任一種方法,其中在步驟(A)中鹼與2-氯-5-甲氧苯磺醯胺之莫耳比係在2.8:1至3.5:1之範圍。
實施例39. 實施例22至38之任一種方法,其中該第一溶劑包含該氯化溶劑及選自於乙酸乙酯、四氫呋喃、二氯甲烷及二氯乙烷與該氯化溶劑中之至少一種溶劑的混合物。
實施例40. 實施例39之方法,其中該第一溶劑包含該氯化溶劑與乙酸乙酯之一混合物。
實施例40a. 實施例40之方法,其中該第一溶劑包含甲苯與乙酸乙酯之一混合物。
實施例41. 實施例18至40a之任一種方法,其中在步驟(A)中該8-氯-6-三氟甲基-咪唑[1,2-a]吡啶-2-羰基氯及該2-氯-5-甲氧苯磺醯胺係在0至25℃之溫度範圍下進行接觸。
實施例42. 施例41之方法,其中在步驟(A)中該8-氯-6-三氟甲基-咪唑[1,2-a]吡啶-2-羰基氯及該2-氯-5-甲氧苯磺醯胺係在15至25℃之溫度範圍下進行接觸。
實施例43. 實施例39至42之任一種方法,其中當在步驟(A)中反應完成時,每當量之該鹼最多添加1當量的水性酸以中和該反應混合物。
實施例44. 實施例43之方法,其中該水性酸為鹽酸。
實施例45. 實施例43或44之方法,其中在添加水性酸後,在50至60℃之範圍下加熱該反應混合物一至兩個小時,以形成化合物1之該中間固體形態。
實施例46. 實施例43至45之任一種方法,其中在水性酸的存在下加熱該反應混合物後,將該反應混合物冷卻至5至15℃之溫度範圍。
實施例47. 實施例18至46之任一種方法,其中在步驟(B)中,過濾該反應混合物以分離化合物1之該中間固體形態。
實施例48. 實施例47之方法,其中化合物1之該中間固體形態為一溶劑合物。
實施例48a. 實施例48之方法,其中化合物1之該中間固體形態為一甲苯溶劑合物。
實施例48b. 實施例47之方法,其中化合物1之該中間固體形態為一非溶合之多形體或多形體混合物。
實施例49. 實施例18至48b之任一種方法,其中在步驟(B)中分離的化合物1之中間固體形態係在步驟(C)中與一第二溶劑接觸,以使化合物1之該中間固體形態轉換為多形體形態A。
實施例50. 實施例18至49之任一種方法,其中在步驟(C)中之溫度係在30℃與該第二溶劑之沸點之間。
實施例51. 實施例50之方法,其中在步驟(C)中之溫度係至少30℃。
實施例51a. 實施例50之方法,其中在步驟(C)中之溫度係至少55℃。
實施例52. 實施例50之方法,其中在步驟(C)中之溫度係最高為該第二溶劑的沸點。
實施例53. 實施例18至52之任一種方法,其中該第二溶劑包含水、甲醇、丙酮或正庚烷。
實施例54. 實施例53之方法,其中該第二溶劑包含水或甲醇。
實施例55. 實施例54之方法,其中該第二溶劑包含水。
實施例56. 實施例18至55之任一種方法,其中該第二溶劑為水,且步驟(C)之溫度係在90至100℃之範圍。
實施例57. 實施例18至54之任一種方法,其中該第二溶劑為甲醇,且步驟(C)之溫度係在55至65℃之範圍。
實施例58. 實施例18至57之任一種方法,其中當步驟(C)之轉換反應完成時,冷卻該第二溶劑,並進行過濾以自該第二溶劑分離出多形體形態A。
本發明實施例,包括以上實施例1-58以及任何其他在此所述之實施例,可以任何方式結合。
化合物1為8-氯-N-[(2-氯-5-甲氧苯基)磺醯基]-6-(三氟甲基)-咪唑[1,2-a]吡啶-2-甲醯胺並具有下列分子結構:
目前已知化合物1之固態可製備為一種以上之固體形態。該等固體形態包括一非晶固體形態,其中分子位置並無長程規則性(如發泡體及玻璃體)。該等固體形態亦包括結晶形態,其中構成分子在三維方向以規則重複式樣排列。術語「多形體」指一化學化合物之特定結晶形態,其可存在為一種以上之固態結晶體結構(如晶格式)。術語「堆積多形體」指具有不同晶體堆積之化合物的特定結晶形態。本發明化合物1之結晶形態關於一種實施例,其包括一單一多形體(亦即單一結晶形態),且關於一種實施例,其包括多形體之混合(亦即不同結晶形態)。多形體可以在化學、物理和生物特性有所不同,像是晶體形狀、密度、硬度、顏色、化學穩定性、熔點、吸濕性、可懸浮性、溶解性、溶解速率和生物利用度。熟習該項技術者將瞭解到,式1化合物之一 種多形體相較於相同式1化合物之另一種多形體或多形體混合物,可顯示出有利效果(例如適於製備有用的製劑、穩定性、改善生物性表現)。化學穩定性、過濾性、溶解性、吸濕性、熔點、固體密度及流動性方面的差異,對製造方法及製劑方面的研發及線蟲的控制效能會有明顯的影響。現在已達成化合物1之特定多形體的製備及單離。
化合物1一種指定為多形體形態TS之結晶多形體形態為1:1(莫耳比)的甲苯溶劑合物。多形體形態TS可經X光粉體繞射、單晶X光結構分析與差式掃描熱分析法特徵化。
圖1顯示化合物1多形體形態TS之粉體X光繞射圖像。特徵描述實例5之表8中表列出對應的2θ值。化合物1多形體形態TS可藉由室溫粉體Cu(Kα1)X光繞射圖像進行鑑定,其具有至少2θ反射位置(單位為度)
單晶X光繞射亦可用於特徵化多形體形態TS。特徵描述實例10提供多形體形態TS之單晶X光繞射描 述。多形體形態TS之晶體具有三斜單元晶胞且通常顯現針狀形態。
化合物1之多形體形態TS也可由差式掃描熱分析法特徵化。DSC指出多形體形態TS之熔點約為217℃。特徵描述實例11提供DSC實驗之細節。
多形體形態TS可在化合物1製備期間在甲苯溶劑的存在下自其起始材料直接製備,如製備實例1所述。多形體形態TS亦可藉由化合物1於甲苯中之飽和溶液緩慢蒸發進行製備。多形體形態TS可轉換為其他多形體形態或形態混合物,如製備實例2至4所述。
化合物1之第二種結晶多形體形態係指定為多形體形態A。此固體形態並未進行溶合作用。多形體形態A可經X光粉體繞射、單晶X光結構分析與差式掃描熱分析法(DSC)特徵化。
圖1顯示化合物1多形體形態A之粉體X光繞射圖像。特徵描述實例1之表4中表列出對應的2θ值。化合物1多形體形態A可藉由室溫粉體Cu(Kα1)X光繞射圖像進行鑑定,其具有至少2θ反射位置(單位為度)
多形體形態A亦可用單晶X光繞射進行特徵化。特徵描述實例6提供關於多形體形態A之單晶X光繞射描述。多形體形態A之晶體具有三斜單元晶胞,並通常顯現不規則塊狀形態。
化合物1之多形體形態A亦可透過差式掃描熱分析釐清其特性。DSC指出多形體形態A之熔點約為219℃。特徵描述實例11提供DSC實驗之細節。多形體形態A在其純固體形態下為物性及化性穩定的(顯示於特徵描述實例13)。
純多形體形態A之製備可藉由在像水或甲醇的溶劑中加熱,進行甲苯溶劑合物(形態TS)之溶劑合物溶解,如製備實例3及4所述。化合物1多形體形態A之製備亦可藉由將多形體形態A及B之混合物在溶劑沸點或接近的溫度下進行加熱,然後冷卻至室溫或更低溫度,如製備實例5所述。甲醇、水、丙酮或正庚烷為此方法特別有用的溶劑。
化合物1之另一結晶多形體形態指定為多形體形態B。此固體形態並未進行溶合作用。多形體形態B可經X光粉體繞射、單晶X光結構分析與差式掃描熱分析特徵化其性質。
多形體形態B可用單晶X光繞射進行特徵化。特徵描述實例7提供關於多形體形態B之單晶X光繞射描述。多形體形態B之晶體具有三斜單元晶胞,並通常顯現稜柱狀形態。
模擬粉體圖像係由化合物1多形體形態B之單晶結構所確定的原子配位及晶胞參數進行計算並顯示於圖 1。特徵描述實例2之表5中表列出多形體形態B之粉體X光繞射圖像的對應2θ值。化合物1多形體形態B可藉由-100℃模擬粉體Cu(Kα1)X光繞射圖像進行鑑定,其具有至少2θ反射位置(單位為度)
化合物1之多形體形態B亦可經由差式掃描熱分析加以特徵化。DSC指出多形體形態B之熔點約為218℃。特徵描述實例11提供DSC實驗之細節。
多形體形態B可以多形體形態A之混合物形式獲得,其係藉由進行甲苯溶劑合物(形態TS)之溶劑合物溶解而得,如製備實例2所述。多形體形態B之製備可藉由在二氯甲烷中加熱多形體形態A及B之混合物,如製備實例5所述。化合物1多形體形態B之製備亦可藉由在160℃下進行熱梯度昇華作用而達成。
化合物1之另一結晶多形體形態指定為多形體形態C。此固體形態並未進行溶合作用。多形體形態C可經X光粉體繞射及單晶X光結構分析特徵化其性質。
多形體形態C可用單晶X光繞射進行特徵化。特徵描述實例8提供在-100℃之多形體形態C之單晶X光繞射描述,而特徵描述實例14提供在23℃之多形體 形態C之單晶X光繞射描述。多形體形態C的晶體具有三斜單元晶胞,並通常顯現三角板形態。
模擬粉體圖像係由化合物1之多形體形態C在-100℃之單晶結構所確定的原子配位及晶胞參數進行計算並顯示於圖1。特徵描述實例3之表6中表列出多形體形態C之-100℃模擬粉體Cu(Kα1)X光繞射圖像的對應2θ值。特徵描述實例15之表22中表列出多形體形態C之室溫模擬粉體Cu(Kα1)X光繞射圖像的對應2θ值。
化合物1多形體形態C之製備可藉由在160℃下進行熱梯度昇華作用而達成。
化合物1之另一結晶多形體形態指定為多形體形態D。此固體形態並未進行溶合作用。多形體形態D可經X光粉體繞射、單晶X光結構分析與差式掃描熱分析特徵化其性質。
多形體形態D可用單晶X光繞射進行特徵化。特徵描述實例9提供關於多形體形態D之單晶X光繞射描述。多形體形態D之晶體具有三斜單元晶胞,並通常顯現不規則塊狀形態。
模擬粉體圖像係由化合物1多形體形態D之單晶結構所確定的原子配位及晶胞參數進行計算並顯示於圖1。特徵描述實例4之表7中表列出多形體形態D之粉體X光繞射圖像的對應2θ值。化合物1多形體形態D可藉由-100℃模擬粉體Cu(Kα1)X光繞射圖像進行鑑定,其具有至少2θ反射位置(單位為度)
化合物1之多形體形態D也可由差式掃描熱分析法特徵化。DSC指出多形體形態D之熔點約為218℃。特徵描述實例11提供DSC實驗之細節。
純多形體形態D之製備可藉由在乙腈或乙酸中加熱多形體形態A及B之混合物達成,如製備實例5及6所述。
化合物1亦可以非晶固體之形態存在。化合物1非晶形態之粉體X光繞射圖像(pXRD)顯示在整個2θ角度下有廣泛的反射圖像但缺乏顯著反射訊號,因此很容易與化合物1結晶形態之pXRD圖像進行區別。非晶固體形態之製備可藉由本領域已知的標準方法進行,例如將含有化合物1之溶液蒸發至乾燥、藉由快速冷卻熔化的化合物1、藉由噴灑乾燥化合物1的溶液或藉由冷凍乾燥含有化合物1的冷凍液。
化合物1可藉由各種方法進行製備。其中一種方法係涉及將起始酸8-氯-6-(三氟甲基)咪唑[1,2-a]吡啶-2-羧酸及2-氯-5-甲氧基苯磺醯胺與任何數目的醯胺鍵偶合形成偶合試劑。其中特別有用的方法係利用1-(3-二甲基-胺基丙基)-3-乙基-碳二亞胺氫氯化物,並描述於 世界專利公開案WO 2010/129500之合成實例1。另一種方法係利用起始羧酸之混合酸酐作為一種促進容易與磺醯胺形成醯胺鍵之方法。某些用於製造起始羧酸之混合酸酐最有用的試劑為氯甲酸乙酯及氯甲酸異丁酯。另一種製備化合物1之方法涉及形成該起始酸之酯類並使其與磺醯胺鈉鹽進行反應。有用的起始酸酯類為甲基或乙基酯。磺醯胺鈉鹽之製備可藉由與氫化鈉進行反應。化合物1亦可由該起始羧酸之酸氯化物製備並與磺醯胺偶合,如製備實例1所述。
化合物1多形體形態A之製備可藉由一種製程完成,其中化合物1係由其起始材料進行製備(製備實例1)以初始產生一化合物1之中間固體形態。初始單離的中間固體形態可為多形體形態混合物、非形態A之多形體形態或化合物1之溶劑合物。化合物1之中間固體形態可藉由許多方法轉換為純多形體形態A(製備實例2至5及特徵描述實例19)。
製備化合物1之多形體形態A特別有用的方法為一種製程,其中化合物1之中間固體形態為一甲苯溶劑合物(多形體形態TS)。多形體形態TS係直接由如流程1所示之前驅起始材料進行製備。該方法涉及在氯化溶劑(甲苯)的存在下以一氯化劑處理式2之化合物(8-氯-6-(三氟甲基)咪唑[1,2-a]吡啶-2-羧酸),以形成化合物3之酸氯化物。然後酸氯化物化合物3在鹼的存在下以式4之化合物(2-氯-5-甲氧苯磺醯胺)進行處理以形成一化合物1之鹽。當反應完成時,將該混合物以水性酸進行處理以中和任何多餘的鹼,並確保形成中性醯基 磺醯胺產物。溫熱並攪拌水性料漿以溶解鹽,並促使該產物從溶液中結晶出。該產物結晶為化合物1之甲苯溶劑合物(形態TS),並藉由固-液分離(例如過濾)進行分離,且乾燥形成純溶劑合物或進一步處理以形成多形體形態A。
對應流程1第一部分之反應通常使用相對於化合物2為1至2莫耳當量的氯化劑。氯化劑對式2化合物之莫耳比更通常是在約1.2:1至約1.5:1之範圍。若化合物2含有某些殘餘的水,則氯化劑對化合物2的比率要更高。可用於此轉形之氯化劑包含亞硫醯氯、草醯氯或光氣。亞硫醯氯特別有用。酸氯化物的形成通常藉由添加相對於化合物2為1至10重量百分比的甲醯胺進行 催化。可用於形成酸氯化物之催化劑包含N,N-二甲基甲醯胺及N-甲醯基哌啶。可用於流程1中氯化作用的溶劑(氯化溶劑)係任何對氯化試劑為惰性的溶劑。特別有用的溶劑為甲苯、二甲苯、氯苯、苯甲醚、均三甲苯及四氫萘。甲苯為特別有用的溶劑。酸氯化物(化合物3)的形成通常是在適合氯化試劑之0至85℃溫度範圍或接近氯化試劑之沸點下進行。草醯氯或光氣適合較低的溫度。亞硫醯氯適合75至85℃之溫度範圍。可藉由化合物2之甲基酯的形成來監控反應之進展。將該反應混合物之等分試樣以甲醇進行處理並藉由HPLC進行分析,以確認未反應的化合物2及化合物3與甲醇反應形成的酯之比率。反應時間通常在2至3小時的範圍。最後,為了分離酸氯化物及氯化劑,將該反應混合物加熱至該反應混合物的沸點以移除多餘的氯化劑(亞硫醯氯)並減少溶劑量。將反應質濃縮至約一半的體積,且將所得料漿(化合物3於氯化溶劑中)冷卻至室溫。當亞硫醯氯為氯化劑且甲苯為氯化溶劑時,則所得料漿為化合物3之氯化氫鹽於甲苯中。
流程1第二部分涉及式3之化合物及式4之磺醯胺反應以形成醯基磺醯胺化合物1。反應物之莫耳比通常在1至1.1當量的化合物4比1當量的化合物2之範圍,且1.05當量的化合物4比1當量的化合物2之比例為特別有用。偶合反應係在鹼的存在下進行,以中和釋出的氯化氫當量。使用的鹼量相對於磺醯胺通常在2.5至4當量的範圍,其中2.8至3.5的範圍為特別有用。鹼係用於中和酸氯化物鹽起始材料之HCl當量(化合物3 中含有氮的雜環在強酸條件下形成氯化氫鹽)以及在酸氯化物及磺醯胺反應中產生之HCl當量。鹼亦自該產物中之酸醯基磺醯胺官能基移除一質子以形成該產物之鹽。許多三級胺可用於作為此偶合反應的鹼。實例為三丁胺、三乙胺及二異丙基乙胺。可用於流程1第二部分之溶劑為提供磺醯胺及化合物1部分溶解性之極性非質子溶劑。可用之溶劑包含乙酸乙酯、四氫呋喃、二氯甲烷及二氯乙烷。乙酸乙酯特別有用。來自部分A之酸氯化物料漿通常以乙酸乙酯稀釋,其中使用約1體積的甲苯料漿對1至2體積的乙酸乙酯之比例。製備化合物1多形體形態A之製程中(步驟(A))的「第一溶劑」係為氯化溶劑及針對偶合反應之溶解性添加的溶劑(例如乙酸乙酯)之混合物。將該反應混合物(化合物3於該溶劑混合物中)冷卻至0至15℃之溫度範圍並以化合物4進行處理。然後以液滴方式加入三級胺鹼,並讓該反應混合物溫熱至室溫。將該反應進行攪拌2至18小時的時間。藉由甲醇處理該反應混合物之等分試樣並觀察化合物1、化合物4及化合物2之甲基酯相對比例以再次監控該反應。
反應完成時,該反應混合物通常以水稀釋以溶解鹽並降低該產物之溶解性,因而提升高純度產物的結晶。然後添加水性酸至反應混合物以形成任何早先並非氯化氫鹽形態之多餘三級胺鹽。此酸化作用對於從在該產物中與酸醯基磺醯胺官能基形成之三級胺鹽釋出中性形態的產物化合物1而言是必要的。通常對於每當量的三級胺鹼添加至少約1莫耳當量的酸,以使該反應中所 用之酸氯化物之當量數目處於過量。對於該反應中使用的每當量三級胺鹼可添加1當量以上的酸以確保為酸性環境,但是為了降低成本及減少廢液處理,通常添加不超過約0.5當量的過量酸。可使用其他水溶性酸取代鹽酸。另一合適的水溶性酸實例為硫酸。針對多質子酸,必須根據可用之質子數調整酸的莫耳當量。當酸添加完成時,通常將該反應混合物在50至60℃之範圍下加熱並攪拌1至2小時。此程序促進形成較大尺寸之晶體以利過濾。然後將反應料漿冷卻至5至15℃之溫度範圍並進行過濾。以水沖洗濕固體數次,以去除微量鹽及多餘酸。然後以甲苯沖洗濕固體數次以從該固體產物置換任何殘餘的水及乙酸乙酯。此粗產物濕固體為1:1(莫耳比)之化合物1溶劑合物及甲苯(多形體形態TS)。
此產物之甲苯溶劑合物(形態TS)係由進入該製程第二部分以製備化合物1之該製程第一部分中所使用之甲苯溶劑所形成。若以非甲苯的溶劑進行氯化作用,則所得化合物1之中間固體形態不會單離為一甲苯溶劑合物。若形成一強溶劑合物時,粗產物化合物1可單離為偶合製程所用之部分「第一溶劑」混合物之任何溶劑之溶劑合物。或者當製備化合物1使用的溶劑不具有形成溶劑合物的傾向時(例如鄰二甲苯),則化合物1之中間固體形態產物會單離成一非溶合之多形體或多形體混合物。
溶劑合物、非溶合的多形體或多形體混合物形態之化合物1初始係藉由過濾法從該反應混合物「分離」以 產生一濕固體或濕餅。然後分離出的化合物1固體形態可藉由乾燥或移除黏附到該固體外表面的最後溶劑跡量進一步「單離」。然後該分離的濕固體或單離的乾燥固體可進一步被轉換為其他多形體形態。此單離的固體亦可藉由許多分析方法進行特徵化。
粗產物的濕固體多形體形態TS可直接用於如製備實例3所述之進一步轉換。多形體形態TS藉由在水中形成料漿並在一裝置中於約95-96℃進行蒸餾可進行溶劑溶合物溶解並轉換為多形體形態A,該裝置藉由共沸蒸餾讓甲苯成為餾出物進行移除,例如使用Dean-Stark分離器。將該混合物加熱3至5小時,且自料漿移除甲苯時將Dean-Stark分離器中收集的水送回該反應以維持固定的反應體積。將該反應冷卻至室溫、進行過濾並在55℃真空下(8-15 kPa絕對壓力)乾燥一小時。所得產物由pXRD確認為純多形體形態A。製備實例4描述改變此程序仍可造成多形體形態TS同樣轉換為形態A。水及甲醇兩者以及水與甲醇之混合物可用作為例如利用Dean-Stark裝置之蒸餾以進行溶劑溶合物溶解程序的溶劑。溶劑溶合物溶解/多形體轉換反應可在約30℃及該溶劑之沸點間之溫度完成。溶劑溶合物溶解/多形體轉換反應在約55℃及該溶劑之沸點間之溫度特別有效率(溶劑的沸點取決於使用的溶劑或溶劑混合物而有所不同),如製備實例4之表2所示。結果符合純多形體形態A,表示其在所研究的反應條件中為最穩定的多形體形態。
多形體形態TS之粗產物濕固體亦可在約90℃真空(8-15 kPa絕對壓力)烤箱中乾燥約4天進行溶劑合物溶解,而得到多形體形態A及B的混合物,如製備實例2所述。然後從多形體形態TS進行溶劑合物溶解而得到的多形體形態A及B之混合物可被進一步轉換為其他多形體形態,如製備實例5所述。將原始衍生自形態TS之溶劑合物溶解的多形體形態A及B之樣本懸浮於一溶劑中,並加熱及攪拌一段時間,然後冷卻且藉由過濾及在真空烤箱中乾燥而單離。許多溶劑可用於此轉換程序中,且所得到的特定多形體形態係取決於使用的溶劑。製備實例5之表3總結實驗結果。許多溶劑可得到純多形體形態A。在95-100℃水或正庚烷中加熱攪拌3小時可得到多形體形態A。在60℃甲醇中加熱攪拌3小時亦可得到多形體形態A。起始多形體混合物在溫熱狀況下溶解於某些溶劑,因此將這些溶劑的溶液冷卻至室溫或低於室溫以促進結晶。在這些溶劑中之晶體形態轉換產生許多多形體形態。丙酮(水、甲醇及正庚烷亦同)產生多形體形態A,二氯甲烷產生多形體形態B,而乙腈及乙酸兩者產生多形體形態D。
特徵描述實例12研究化合物1之純多形體及多形體混合物在加熱至95℃的水中或加熱至55℃的甲醇中之相對穩定性。在所有實例中,起始多形體或多形體混合物轉換成形態A。這些實驗指出在所研究的條件中形態A為熱動力最穩定的多形體形態。特徵描述實例12中的數據顯示多形體形態B及多形體形態D可作為製 備多形體形態A的中間物。在製備實例3及4中亦顯示多形體形態TS為製備多形體形態A的中間物。
在上述的多形體轉換中並未使用種子晶體,但是種子晶體可用於提升轉換及/或增加一種多形體轉換成另一種的轉換率。雖未明確敘明,但是多形體轉換反應通常可藉由許多方法進行攪拌。攪拌的形式可為搖晃反應容器或利用磁攪拌器或機械攪拌器進行攪拌。多形體轉換反應亦可藉由溶劑的沸騰作用進行攪拌。
不需進一步闡述,精於此技藝人士藉由以上描述即可利用本發明。因此,以下實例僅為說明之用,而絕非用於限制本發明之揭露內容。實例中使用的縮寫如下:rpm為每分鐘轉速,pXRD為粉體X光繞射,wt%為使用HPLC量測的重量百分比(使用校正標準),a%為使用HPLC在波長230 nm量測的面積百分比,DSC為差式掃描熱分析法,TGA為熱重分析,而KFT為Karl-Fischer滴定法。
製備實例所用的分析方法係描述於下文或特徵描述實例中。
粉體X光繞射(p-XRD)
粉體X光繞射係用於鑑定各種化合物1樣本的晶相。數據係利用型號3040之Philips X’PERT自動粉體繞射儀取得。由一銅陽極X光源產生之輻射包含Cu-K(α1)、Cu-K(α2)及Cu-K(β)。該繞射儀配備有一鎳過濾器,用於移除Cu-K(β)輻射而在原始資料中留下Cu-K(α1)及Cu-K(α2)。在Jade Software(MDI/Jade軟體 版本9.1)之尋找波峰常式中移除源自於Cu-K(α2)的波峰,留下Cu-K(α1)列出的最大值。表列在X光結晶學之國際表之Cu-K(α1)或Cu(Kα1)輻射的波長為0.154056 nm。表列Cu-K(α1)輻射之2θ X光最大值,其中Cu-K(α1)輻射為一銅陽極X光源所產生的最強輻射,且有時簡稱為Cu-K(α)或Cu-Kα。
熱重分析(TGA)
在Thermal Analysis Q5000設備上執行熱重分析,以確認樣本之相對重量損失係為溫度的函數。將測試樣本(2-6 mg)精確地秤重至樣本盤(鉑,100 μL)。將樣本在25 mL/分鐘氮流速下以10℃/分鐘的加熱速率從起始溫度(25℃)加熱至最終溫度(250或300℃)。利用Thermal Analysis Advantage的熱分析軟體分析TGA掃描並繪圖。
高效液相色層析法(HPLC)
HPLC係用於確認化合物1及中間物的純度。使用具有DAD/UV偵測器及逆相管柱(Agilent Zorbax® SB C18(4.6×150)mm,3.5 μm,Part No.863953-902)之Agilent 1100/1200系列HPLC系統。流率為1 mL/分鐘,執行時間為25分鐘,注射體積為3.0 μL,且管柱烤箱溫度為40℃。使用表1之移動相梯度,其中移動相A為0.075體積%的正磷酸,且移動相B為乙腈(HPLC等級)。移動相A的製備係藉由充分混合0.75 mL的正磷酸(AR等級)與1000 mL的去離子水(Milli-Q等級), 並且透過薄膜過濾器(孔徑為0.45 μm)進行過濾。標準品的製備係藉由秤重30.0 mg的標準品至100 mL標準體積燒瓶、溶解並以稀釋劑稀釋。樣本的製備係藉由秤重30.0 mg的樣本至100 mL標準體積燒瓶、溶解並以稀釋劑稀釋。為了分析,以初始移動相校正HPLC系統及管柱。依序進行一空白樣本、一標準樣本及測試樣本的測試。化合物1之滯留時間係約14.8分鐘。不積分出現在空白樣本的波峰,積分所有其他波峰,並由樣本色層分析得知a%純度。根據標準樣本校正測試樣本之濃度來確認wt%。
質子-核磁共振(1H-NMR)
以Bruker Advance 300/400儀器執行質子-NMR分析。運作頻率為400 MHz,光譜頻率範圍為0-16 ppm,延遲時間為2秒,脈寬為12 μs,最少掃描數為8。樣本的製備係藉由秤重約0.01 g的樣本或參考標準,添加0.6 mL的DMSO-d6以溶解內容物並轉移至NMR試管。 氘代DMSO(DMSO-d6)係來自Cambridge Isotope Laboratory。
含水量
藉由Karl-Fischer滴定法(KFT)執行含水量分析。
製備實例1 化合物1之甲苯溶劑合物形態(形態TS)之合成 步驟A:8-氯-6-(三氟甲基)咪唑[1,2-a]吡啶-2-羰基氯之製備
在23℃氮氣氛圍下將甲苯(1000 mL)、N-甲醯哌啶(3.54 g,0.031 mol)及亞硫醯氯(67 g,0.559莫耳)倒入至配備有頂部攪拌器、熱袋、加料漏斗及氮氣管之3000 mL三頸圓底燒瓶。將所得反應質加熱至82℃,並於60分鐘的時間內以分批方式(5批)倒入8-氯-6-(三氟甲基)咪唑[1,2-a]吡啶-2-羧酸(100 g,0.373莫耳)(用WO 2010/129500中的方法製備)。以500 mL的甲苯潤洗反應器壁面。添加後,在90℃下攪拌所得反應質75分鐘,並用HPLC監控反應之進展。為此,以3 mL的甲醇稀釋0.5 mL的反應質,並利用HPLC偵測相應的甲基酯來間接分析酸氯化物的形成。2小時後,HPLC分析顯示約0.35 a%的未反應8-氯-6(三氟甲基)咪唑[1,2-a]吡啶-2-羧酸及約99.0 a%的8-氯-6(三氟甲基)咪唑[1,2-a]吡啶-2-羧酸甲基酯。將所得反應質進一步加熱至140℃(油浴溫度)並在大氣壓力下於約109℃(質溫)及105-107℃(蒸氣溫度)下進行蒸餾2.5小時,以移除存 在於反應質中的甲苯(約600 mL)及多餘的亞硫醯氯。蒸餾後,在60分鐘的時間內將反應質逐漸冷卻至30℃。HPLC於230 nm下測得8-氯-6-(三氟甲基)咪唑[1,2-a]吡啶-2-羧酸的濃度為約0.07 a%,而8-氯-6-(三氟甲基)咪唑[1,2-a]吡啶-2-羧酸甲基酯的濃度為約99.2 a%。
步驟B:8-氯-N-[(2-氯-5-甲氧苯基)磺醯基]-6-(三氟甲基)-咪唑[1,2-a]吡啶-2-甲醯胺(化合物1)之製備
在30分鐘的時間內將步驟A所得之酸氯化物溶液冷卻至0℃,並在0℃氮氣氛圍下倒入乙酸乙酯(400 mL)。所得反應質在0℃下攪拌5分鐘,並倒入2-氯-5-甲氧苯磺醯胺(90 g,0.391莫耳)(用WO 2010/129500中的方法製備)。在60分鐘的時間內使用加料漏斗以液滴方式將三丁胺(242 g,1.305莫耳)加入所得反應質。在添加期間觀察到溫度增加8℃。於添加後,將所得反應質在10℃下攪拌30分鐘並將溫度逐漸上升至25℃。監控反應之進展。為此,以3 mL的甲醇稀釋0.5 mL的反應質,並於230 nm下以HPLC分析進行分析。在25℃下約15分鐘後,8-氯-6-(三氟甲基)咪唑[1,2-a]吡啶-2-羧酸甲基酯的濃度係約4.30 a%,8-氯-6-(三氟甲基)咪唑[1,2-a]吡啶-2-羧酸的濃度約1.81 a%,未反應的2-氯-5-甲氧苯磺醯胺的濃度為約2.86 a%,而化合物1的濃度約86.5 a%。將所得反應質在25℃下攪拌一整夜並由HPLC於230 nm下監控反應之進展。在25℃下15小時後,8-氯-6-(三氟甲基)咪唑[1,2-a]吡啶-2-羧酸甲基酯的 濃度為約0.84 a%、8-氯-6-(三氟甲基)咪唑[1,2-a]吡啶-2-羧酸的濃度為約1.72 a%,未反應的2-氯-5-甲氧苯磺醯胺的濃度為約2.20 a%,而化合物1的濃度為約91.9 a%。
將反應質在25℃下進行攪拌,並於25℃下在60分鐘的時間內倒入水(360 mL)。在45分鐘的時間內,將HCl(32 wt%,191 g)於200 mL水的溶液加入所得反應混合物。於HCl添加期間,反應質起初變成澄清溶液,然後在添加結束時逐漸變成霧狀液體。於此添加期間觀察到溫度增加9℃。於添加後,將所得反應質加熱至55℃,攪拌60分鐘,逐漸冷卻至5℃,然後在5℃下攪拌30分鐘並進行過濾。利用水沖洗濕餅(使用3100 mL沖洗3次)並在Büchner漏斗上進行真空乾燥。分析真空乾燥材料的氯化物含量,其指出不存在大量的氯化鹽。利用甲苯(2×400 mL)沖洗濕餅並在Büchner漏斗上進行真空乾燥約12小時。得到185克灰白色固體的粗產物。在該產物中的甲苯及乙酸乙酯含量分別為17.3 wt%及0.855 wt%。含水量為0.84 wt%。粗產物(濕樣本)的HPLC純度為99.8 a%及80.0 wt%。基於HPLC wt%分析的產率為85%。
1H-NMR符合含甲苯之化合物1[(DMSO-d6)δ 3.86(s,3H),7.30(d,1H),7.57(dd,1H),7.64(d,1H),7.96(d,1H),8.84(s,1H),9.34(d,1H)]。甲苯及化合物1之莫耳比係約1.06,表示1:1的甲苯溶劑合物。pXRD繞射圖像符合化合物1之甲苯溶劑合物(形態TS)。粗產物濕固體係用於形態轉換研究。
製備實例2 化合物1之混合形態A及B的製備
化合物1之甲苯溶劑合物的製備如製備實例1所述,並將其於90℃真空烤箱(8-15 kPa絕對壓力)中乾燥4天以進行溶劑合物溶解。產物中的甲苯含量為0.11 wt%,而含水量為0.09 wt%。
1H-NMR符合化合物1[(DMSO-d6)δ 3.86(s,3H),7.30(d,1H),7.57(dd,1H),7.64(d,1H),7.96(d,1H),8.84(s,1H),9.34(d,1H)]。HPLC測得的純度為99.9 a%及99.0 wt%。DSC溫度記錄圖顯示有波峰溫度211.1℃及219.1℃的兩個吸熱。pXRD圖像確認該材料為晶體並對應於形態A及形態B之晶體混合物。
製備實例3 化合物1之甲苯-溶劑合物轉換為形態A
於25℃下將根據製備實例1製備的25 g化合物1濕餅(甲苯含量=17.3 wt%)及水(75 mL)倒入配備有頂部攪拌器、油浴、Dean-Stark裝置及溫度探針之500 mL三頸圓底燒瓶。將所得反應質加熱至95℃(反應質溫度)並以約850 rpm攪拌時維持在95-96℃五小時。從反應質移除甲苯時,將Dean-Stark裝置收集的水循環以維持大約固定的反應體積。約3小時後未觀察到進一步的甲苯蒸餾。在攪動下自反應質取出料漿樣本。以GC分析確認料漿之甲苯及乙酸乙酯含量分別為56 ppm及17 ppm。自反應混合物取出約10 mL的樣本,冷卻至25℃,進行過濾並在Büchner漏斗上真空乾燥15分鐘。 濕餅顯示約429 ppm的甲苯及36 ppm的乙酸乙酯。於55℃真空烤箱(8-15 kPa絕對壓力)中將濕餅乾燥1小時並利用DSC及pXRD進行分析。DSC及pXRD數據皆符合化合物1之形態A。
由於反應質之部分樣本指出轉換為形態A,所以過濾整個反應質,在55℃真空烤箱(8-15 kPa絕對壓力)中乾燥1小時。利用pXRD及DSC分析乾燥的產物。DSC及pXRD的數據皆符合化合物1之形態A。
製備實例4 化合物1之甲苯-溶劑合物(形態TS)的其他多形體轉換研究
以水、甲醇及其混合物作為懸浮介質進行製備實例3之形態轉換實驗。除非另外註明,否則使用的實驗條件及裝置都與製備實例3所描述者相同。在各實驗中,根據製備實例1製備的25g化合物1濕餅(甲苯含量=17.3 wt%)係用作為起始材料。表2總結實驗條件。包括製備實例3的條件作為參考。懸浮液在回流條件下進行共沸蒸餾以使用Dean-Stark裝置移除甲苯。經過3至5小時後,不再看見有甲苯被移除,且過濾所得料漿,在55℃真空烤箱(8-15 kPa絕對壓力)乾燥1小時並利用DSC及pXRD進行分析。表2所列全部實例之DSC及pXRD數據符合化合物1之形態A。
表2多形體轉換研究及所得形態之實驗條件
製備實例5 製備各種化合物1晶體形態的溶劑篩選
評估一組用於製備包含化合物1溶劑合物形態之各種晶體形態的溶劑。根據製備實例2製備化合物1的起始材料。藉此製備的化合物1等分試樣在表3所列的溶劑選擇中溶解或形成料漿,並根據以下描述進行處理。利用1H-NMR、pXRD、DSC及TGA進行所得乾材料的分析。表3也提出吸熱DSC事件及所得晶體形態。
在實例5a中,1 g的化合物1在56℃下溶解於6.5 mL的丙酮。在1小時的時間內將該溶液慢慢冷卻至約5℃。將所得晶體過濾、進行吸乾1小時並在65℃及8 kPa絕對壓力下於真空烤箱中乾燥12小時。所得材料之pXRD、DSC、TGA及1H-NMR分析係指出形態A。
在實例5b中,1 g的化合物1在10 mL的甲醇中形成料漿,回流3小時,過濾,冷卻至約25℃,進行吸乾1小時,並在70℃及8 kPa絕對壓力下於真空烤箱 中乾燥12小時。所得材料之pXRD、DSC、TGA及1H-NMR分析係指出形態A。
在實例5c中,1 g的化合物1在10 mL的去離子水中形成料漿,回流3小時,冷卻至約25℃,過濾,進行吸乾1小時,並在70℃及8 kPa絕對壓力下於真空烤箱中乾燥12小時。所得材料之pXRD、DSC、TGA及1H-NMR分析係指出形態A。
在實例5d中,1 g的化合物1在10 mL的正庚烷中形成料漿,回流3小時,冷卻至約25℃,過濾,進行吸乾1小時,並在70℃及8 kPa絕對壓力下於真空烤箱中乾燥12小時。所得材料之pXRD、DSC、TGA及1H-NMR分析係指出形態A。
在實例5e中,1 g的化合物1在65℃下溶解於14 mL的乙酸乙酯。在1小時的時間內將該溶液冷卻至5℃。將所得晶體過濾、進行吸乾1小時,並在65℃及8 kPa絕對壓力下於真空烤箱中乾燥12小時。所得材料之pXRD、DSC、TGA及1H-NMR分析係指出含乙酸乙酯之溶劑合物形態。
在實例5f中,將1 g的化合物1在10 mL的異丙醇中回流3小時,冷卻至約25℃,過濾、進行吸乾1小時並在65℃及8 kPa絕對壓力下於真空烤箱中乾燥12小時。所得材料之pXRD、DSC、TGA及1H-NMR分析係指出含異丙醇之溶劑合物形態。
在實例5g中,將1 g的化合物1在10 mL的甲基叔丁醚中回流3小時,冷卻至約25℃,過濾、進行吸乾1小時並在65℃及8 kPa絕對壓力下於真空烤箱中乾 燥12小時。所得材料之pXRD、DSC、TGA及1H-NMR分析係指出含甲基叔丁醚之溶劑合物形態。
在實例5h中,將1 g的化合物1在65℃下溶解於12 mL的乙腈。在4小時的時間內將該溶液慢慢冷卻至5℃。將所得晶體過濾、進行吸乾1小時並在65℃及8 kPa絕對壓力下於真空烤箱中乾燥12小時。所得材料之pXRD、DSC、TGA及1H-NMR分析係指出形態D。
在實例5i中,將1 g的化合物1在65℃下溶解於12 mL的四氫呋喃。在4小時的時間內將該溶液慢慢冷卻至25℃。將所得晶體過濾、進行吸乾1小時並在65℃及8 kPa絕對壓力下於真空烤箱中乾燥12小時。所得材料之pXRD、DSC、TGA及1H-NMR分析係指出含四氫呋喃之溶劑合物形態。
在實例5j中,將1 g的化合物1在12 mL的乙醇中形成料漿,回流3小時,冷卻至約25℃,過濾,進行吸乾1小時並在70℃及8 kPa絕對壓力下於真空烤箱中乾燥12小時。所得材料之pXRD、DSC、TGA及1H-NMR分析係指出含乙醇之溶劑合物形態。
在實例5k中,將1 g的化合物1在10 mL的十氫萘中形成料漿,於120℃下加熱3小時,冷卻至約25℃,過濾,進行吸乾1小時並在90℃及8 kPa絕對壓力下於真空烤箱中乾燥12小時。所得材料之pXRD、DSC、TGA及1H-NMR分析係指出含十氫萘之溶劑合物形態。
在實例5l中,將1 g的化合物1在65℃下溶解於12.5 mL的甲基異丁基酮。在3小時的時間內將該溶液 冷卻至約25℃。將所得晶體過濾、進行吸乾1小時並在90℃及8 kPa絕對壓力下於真空烤箱中乾燥12小時。所得材料之pXRD、DSC、TGA及1H-NMR分析係指出含甲基異丁基酮之溶劑合物形態。
在實例5m中,將1 g的化合物1在120℃下溶解於6 mL的均三甲苯。在4小時的時間內將該溶液慢慢冷卻至約25℃。將所得晶體過濾、進行吸乾1小時並在90℃及8 kPa絕對壓力下於真空烤箱中乾燥12小時。所得材料之pXRD、DSC、TGA及1H-NMR分析係指出形態A及B的混合物。
在實例5n中,將1 g的化合物1在90℃下溶解於17 mL的甲苯。在4小時的時間內將所得溶液慢慢冷卻至約25℃。將所得晶體過濾、進行吸乾1小時並在90℃及8 kPa絕對壓力下於真空烤箱中乾燥12小時。所得材料之pXRD、DSC、TGA及1H-NMR分析係指出含甲苯之溶劑合物形態。在上述的乾燥條件下即使額外乾燥12小時後,殘餘的甲苯仍在產物中。
在實例5o中,將1 g的化合物1在25℃下溶解於15 mL的二氯甲烷。將所得溶液慢慢冷卻至約5℃並在5℃下維持30分鐘。將所得晶體過濾、進行吸乾1小時並在65℃及8 kPa絕對壓力下於真空烤箱中乾燥12小時。所得材料之pXRD、DSC、TGA及1H-NMR分析係指出形態B。
在實例5p中,將1 g的化合物1在120℃下於10 mL四氫萘形成料漿3小時,慢慢冷卻至約25℃,過濾、進行吸乾1小時並在90℃及8 kPa絕對壓力下於真空烤 箱中乾燥12小時。所得材料之pXRD、DSC、TGA及1H-NMR分析係指出形態A及B的混合物。
在實例5q中,將1 g的化合物1在65℃下溶解於9 mL的1,4-二氧陸圜。在4小時的時間內將所得溶液慢慢冷卻至約25℃並在25℃下維持12小時。將所得晶體過濾、進行吸乾1小時並在70℃及8 kPa絕對壓力下於真空烤箱中乾燥12小時。所得材料之pXRD、DSC、TGA及1H-NMR分析係指出含1,4-二氧陸圜之溶劑合物形態。
在實例5r中,將1 g的化合物1在80℃下溶解於7 mL的乙酸。在4小時的時間內將所得溶液慢慢冷卻至約25℃並在25℃下維持12小時。將所得晶體過濾、進行吸乾1小時並在70℃及8 kPa絕對壓力下於真空烤箱中乾燥12小時。所得材料之pXRD、DSC、TGA及1H-NMR分析係指出形態D。
在實例5s中,將1 g的化合物1在70℃下溶解於7 mL的乙酸異丙酯。在4小時的時間內將所得溶液慢慢冷卻至約25℃並在25℃下維持12小時。將所得晶體過濾、進行吸乾1小時並在70℃及8 kPa絕對壓力下於真空烤箱中乾燥12小時。所得材料之pXRD、DSC、TGA及1H-NMR分析係指出含乙酸異丙酯之溶劑合物形態。
在實例5t中,將1 g的化合物1在100℃下於10 mL鄰二甲苯中形成料漿,冷卻至約25℃,過濾,進行吸乾1小時並在90℃及8 kPa絕對壓力下於真空烤箱中乾燥12小時。所得材料之pXRD、DSC、TGA及1H-NMR分析係指出形態A及B的混合物。
製備實例6 化合物1多形體形態D之製備
將根據製備實例2製備的化合物1與乙腈在65℃下加熱5分鐘以製備化合物1多形體形態D。將所得的澄清溶液在4小時的時間內逐漸冷卻至5℃並在該溫度下維持12小時不攪動。將所形成的晶體進行過濾並在65℃真空烤箱(8 kPa絕對壓力)乾燥12小時。經發現 單離的固體具有獨特的pXRD繞射圖像,指出截然不同的晶體形態(多形體形態D)。
形態D亦可使用乙酸作為溶劑根據上述程序進行製備,可由呈現相同的pXRD圖像佐證。由乙腈及乙酸結晶而成的兩個樣本也利用單晶XRD進行分析,如下列特徵描述實例所述。
製備實例7 晶體形態A及B之混合物在液體製劑中的穩定性
製備實例2描述化合物1多形體形態A及形態B混合物之製備。以pXRD確認這兩種多形體形態的存在。
製備含有混合多形體形態A及B之化合物1之懸浮濃縮製劑X。製劑X的組成列示於下表。所有成分以表中列示的順序結合以產生6.5克的總量。利用磨碎機在配備有變速頂部葉輪之30 ml燒瓶中使用14.3克大小0.8至1.0 mm之玻璃珠研磨結合成分之混合物。將燒瓶內容物在室溫下以4000 rpm攪拌5分鐘,接著以6000 rpm攪拌13分鐘。以400至1000倍放大率之光學顯微鏡(Leica,型號DM LS)評估所得製劑,以評估製劑中化合物1微粒之均勻性、尺寸及形狀。經發現微粒為不規則形狀且在約3至10 μm的窄範圍中。讓樣本在室溫下靜置約15小時,然後用顯微鏡再次檢查;發現到已形成尺寸範圍在約5至30 μm之間的較大立方晶體。再者,已形成長度在約50至200 μm之間的突枝狀晶體團。此種晶體大小及形態上的改變構成非期望的製劑不 穩定性,其可導致不欲的效果,例如活性化合物沈降出或較大晶體因為比表面積減少所以無法提供充分的生物藥效。
製劑樣本在室溫下靜置總共18小時後,使用與上述相同的設備及條件以6000 rpm再次研磨45分鐘。顯微鏡下的觀察顯示化合物1微粒均勻分散在約3至10 μm的大小範圍。將樣本分開且分別在室溫及54℃下存放14天。在顯微鏡下再次檢查這兩個存放樣本,顯示不論在哪個存放溫度下都沒有晶體成長或形態改變的跡象,指出製劑有良好的微粒尺寸穩定性。HPLC確認存放在室溫及54℃之樣本中的化合物1濃度分別為49.7 wt%及51.2 wt%,指出製劑有良好的化學穩定性。
為了確認在晶體成長後已再次研磨之製劑樣本中化合物1之晶體形態,如下文所述將化合物1從製劑分離出來。在1.5 ml離心管中將等分的製劑(0.72克)進行各30分鐘的6次離心循環。每次離心後,移除上澄液以去離子水替代,並將試管內容物充分混合。最終離心循環後,去除上澄液,並在40℃下將固體乾燥約70小時。所得材料之pXRD及DSC分析係指出純多形體形態A。
製劑實例X
製備實例8 8-氯-6-(三氟甲基)咪唑[1,2-a]吡啶-2-羰基氯的製備及單離
在23-25℃氮氣氛圍下將甲苯(50 mL)、N-甲醯哌啶(0.177 g,1.6 mmol)及亞硫醯氯(3.37 g,27.8 mmol)倒入至250 mL四頸圓底燒瓶。將所得反應質在20分鐘的時間內加熱至82℃,並於25分鐘的時間內以部分加入方式加入8-氯-6-(三氟甲基)咪唑[1,2-a]吡啶-2-羧酸(5.0 g,18.6 mmol)。也加入額外的甲苯(25 mL)。在添加酸的期間,反應質從料漿改變為釋出HCl氣體的淡綠色溶液。將所得反應質加熱至90℃並攪拌90分鐘,並用HPLC監控反應之進展(將0.5 mL的反應質以3 mL甲醇稀釋並分析相對應甲基酯以進行酸氯化物的形成分析)。在90分鐘後,HPLC分析(230 nm)指出未反應酸為0.32 A%而甲基酯為99.24 A%。在約109℃(質溫度)及大氣壓力下蒸餾所得反應質一段30分鐘的時間,以去除甲苯-亞硫醯氯混合物(約50 mL)。於蒸餾期間,反應質變成暗棕色。將反應質在30分鐘的時間內逐漸冷卻至30℃並用HPLC分析樣本。HPLC(230 nm)分析指出未反應酸約為0.33%,而形成的甲基酯約為99.12%。將標題酸氯化物利用氮氣流在50℃真空下進行30分鐘完全乾燥,以去除殘餘甲苯並利用HPLC及1H NMR進行分 析。將標題酸氯化物單離為一灰色固體(6.5 g)。HPLC純度(230 nm)為95.60% AP(以甲基酯量測)。
1H-NMR(CDCl3)δ 7.57(s,1H),8.53(s,1H),8.56(s,1H)。
1H-NMR(DMSO-d6)δ 7.90(s,1H),8.68(s,1H),9.30(s,1H)。
特徵描述實例1 化合物1多形體形態A之X光粉體繞射
粉體X光繞射係用於鑑定各種化合物1樣本的晶相。數據係利用型號3040之Philips X’PERT自動粉體繞射儀取得。該繞射儀配備有自動變化抗散射及發散光柵、X’Celerator RTMS偵測器及Ni過濾器。輻射為Cu-K(α)(45 kV,40 mA)。數據係在室溫下使用θ-θ幾何中0.02度的等步進尺寸且每步320秒計數時間之連續掃描3至50度2θ收集而得。如有需要,利用瑪瑙研缽及杵研磨樣本,並在低背景非晶二氧化矽樣本容器上製備成一層薄粉體材料層。將MDI/Jade軟體版本9.1與International Committee之繞射資料庫PDF4+ 2008一起用於相鑑定。使用MDI/Jade「Find Peaks」常式計算化合物1形態A之Cu-K(α1)X光繞射最大值並列示於表4。
特徵描述實例2 化合物1多形體形態B之模擬X光粉體繞射圖像
由化合物1多形體形態B之單晶結構所確認的原子配位及晶胞參數計算模擬粉體圖像。其係基於在-100℃下收集到的資料。使用Cambridge Mercury程式以Cu波長(0.154056 nm)、3至50度2θ及0.02度步進尺寸計算X光圖像。使用MDI/Jade軟體版本9從計算的圖像中選擇波峰位置。使用MDI/Jade「Find Peaks」常式計算化合物1形態B之Cu-K(α1)X光繞射最大值並列示於表5。
特徵描述實例3 化合物1多形體形態C之模擬X光粉體繞射圖像
由化合物1多形體形態C之單晶結構所確認的原子配位及晶胞參數計算模擬粉體圖像。其係基於在-100℃下收集到的資料。使用Cambridge Mercury程式以Cu波長(0.154056 nm)、3至50度2θ及0.02度步進尺寸計算X光圖像。使用MDI/Jade軟體版本9從計算的圖像中選擇波峰位置。使用MDI/Jade「Find Peaks」常式計算化合物1形態C之Cu-K(α1)X光繞射最大值並列示於表6。
特徵描述實例4 化合物1多形體形態D之模擬X光粉體繞射圖像
由化合物1多形體形態D之單晶結構所確認的原子配位及晶胞參數計算模擬粉體圖像。其係基於在-100℃下收集到的資料。使用Cambridge Mercury程式以Cu波長(0.154056 nm)、3至50度2θ及0.02度步進尺寸計算X光圖像。使用MDI/Jade軟體版本9從計算的圖像中選擇波峰位置。使用MDI/Jade「Find Peaks」常式計算化合物1形態D之Cu-K(α1)X光繞射最大值並列示於表7。
特徵描述實例5 化合物1多形體形態TS之X光粉體繞射圖像
將粉體X光繞射用於特徵化化合物1之甲苯溶劑合物多形體形態(多形體形態TS)的性質。數據係利用型號3040之Philips X’PERT自動粉體繞射儀取得。該繞射儀配備有自動變化抗散射及發散光柵、X’Celerator RTMS偵測器及Ni過濾器。輻射為Cu-K(α)(45 kV,40 mA)。數據係在室溫下使用θ-θ幾何中0.02度的等步進尺寸且每步320秒計數時間之連續掃描3至50度2θ收集而得。如有需要,利用瑪瑙研缽及杵輕微研磨樣本,並在低背景矽樣本容器上製備成一層薄粉體材料層。將MDI/Jade軟體版本9.1與International Committee之繞射資料庫PDF4+ 2008一起用於相鑑定。使用MDI/Jade「Find Peaks」常式計算化合物1形態TS之Cu-K(α1)X光繞射最大值並列示於表8。
特徵描述實例6 化合物1多形體形態A之單晶X光繞射
多形體形態A之合適單晶係由緩慢蒸發甲醇進行成長。選擇大小約0.10×0.10×0.04 mm之無色不規則 塊狀物用於收集數據並裝設至一聚合物迴圈。使用具有Apex-II偵測器之Bruker Platform測角儀收集單晶資料。該繞射儀配備有使用Mo-Kα輻射(λ=0.71073 Å)之入射光束單色器及單管準直器。於資料收集期間,將晶體在-100℃氮氣流中進行冷卻。
使用包含Sainplus及SADABS之Apex-II程式套件將數據進行索引及整合。三斜晶胞參數確認為:a=8.483(3)Å,b=10.004(3)Å,c=11.638(4)Å,α=86.690(5)°,β=87.984(5)°,γ=65.114(4)°,體積=894.4(5)Å3。空間群經確認為P-1。分子量為468.23 g/mol,計算密度為1.739 g/cm3以及Z=2時μ(Mo)=0.54 mm-1。資料精減為從2θ範圍=3.50至53.12°之3684筆獨特資料。使用基於Int.Tab.Vol C表4.2.6.8及6.1.1.4之散射因子F2微調之Shelxtl程式套件進行結構解析及微調。最終微調統計包括數據/參數比=13.90,對F2的吻合度=1.02,R指標[I>4σ(I)]R1=0.0506,wR2=0.0977,R指標(所有資料)R1=0.0951,wR2=0.1141,最大差異峰及谷=0.310及-0.379 e/Å3。表9及10列示原子分數配位(x 104)及等效等向置換參數。U(eq)定義為直角Uij張量紀錄之三分之一。估計標準偏差示於括號中。
表10化合物1多形體形態A的氫配位(x 104)及等向置換參數(A2×103)
特徵描述實例7 化合物1多形體形態B之單晶X光繞射
化合物1多形體形態B之合適單晶係於160℃下由熱梯度昇華作用進行成長。選擇大小約0.40×0.26×0.13 mm之無色稜柱用於收集數據並裝設至一聚合物迴圈。使用具有Apex-II偵測器之Bruker Platform測角儀收集單晶資料。該繞射儀配備有使用Mo-Kα輻射(λ=0.71073 Å)之入射光束單色器及單管準直器。於資料收集期間,將晶體在-100℃氮氣流中進行冷卻。
使用包含Sainplus及SADABS之Apex-II程式套件將數據進行索引及整合。三斜晶胞參數確認為:a=11.6429(17)Å,b=12.0937(17)Å,c=14.859(2)Å,α=109.171(2)°,β=92.359(2)°,γ=106.342(2)°,體積=1875.6(5)Å3。空間群經確認為P-1。分子量為468.23 g/mol,計算密度為1.658 g/cm3以及Z=4時μ(Mo)= 0.52 mm-1。資料精減為從2θ範圍=2.94至54.50°之8320筆獨特資料。使用基於Int.Tab.Vol C表4.2.6.8及6.1.1.4之散射因子F2微調之Shelxtl程式套件進行結構解析及微調。最終微調統計包括數據/參數比=13.80,對F2的吻合度=1.06,R指標[I>4σ(I)]R1=0.0446,wR2=0.1012,R指標(所有資料)R1=0.0732,wR2=0.1120,最大差異峰及谷=0.354及-0.453 e/Å3。表11及12列示原子分數配位(x 104)及等效等向置換參數。U(eq)定義為直角Uij張量紀錄之三分之一。估計標準偏差示於括號中。
特徵描述實例8 化合物1多形體形態C的單晶X光繞射
化合物1多形體形態C之合適單晶係於160℃下由熱梯度昇華成長。選擇大小約0.13×0.13×0.06 mm之無色三角板用於收集數據並裝設至一聚合物迴圈。使用具有Apex-II偵測器之Bruker Platform測角儀收集單晶資料。該繞射儀配備有使用Mo-Kα輻射(λ=0.71073 Å)之入射光束單色器及單管準直器。於資料收集期間,將晶體在-100℃氮氣流中進行冷卻。
使用包含Sainplus及SADABS之Apex-II程式套件將數據進行索引及整合。三斜晶胞參數確認為:a=11.816(4)Å,b=15.036(5)Å,c=21.625(8)Å,α=92.255(6)°,β=92.597(5)°,γ=107.947(5)°,體積=3646(2)Å3。空間群經確認為P-1。分子量為468.23 g/mol,計算密度為1.706 g/cm3以及Z=8時μ(Mo)=0.53 mm-1。資料精減為從2θ範圍=3.62至48.48°之11680筆獨特資料。使用基於Int.Tab.Vol C表4.2.6.8及6.1.1.4之散射因子F2微調之Shelxtl程式套件進行結構解析及微調。最終微調統計包括數據/參數比=11.13,對F2的吻合度=0.97,R指標[I>4σ(I)]R1=0.0595,wR2=0.1201,R指標(所有資料)R1=0.1454,wR2=0.1546,最大差異峰及谷=0.890及-0.357 e/Å3。表13及14列示原子分數配位(x 104)及等效等向置換參數。U(eq)定義為直角Uij張量紀錄之三分之一。估計標準偏差示於括號中。
表13化合物1多形體形態C的原子配位(x 104)及等效等向置換參 數(A2×103)
特徵描述實例9 化合物1多形體形態D之單晶X光繞射
化合物1多形體形態D之合適單晶係藉由化合物1於乙腈中之飽和溶液緩慢蒸發進行成長。選擇大小約0.50×0.50×0.33 mm之無色不規則塊狀物用於收集數據並裝設至一聚合物迴圈。使用具有Apex-II偵測器之Bruker Platform測角儀收集單晶資料。該繞射儀配備有使用Mo-Kα輻射(λ=0.71073 Å)之入射光束單色器及單管準直器。於資料收集期間,將晶體在-100℃氮氣流中進行冷卻。
使用包含Sainplus及SADABS之Apex-II程式套件將數據進行索引及整合。三斜晶胞參數確認為:a= 7.223(3)Å,b=8.676(4)Å,c=14.905(6)Å,α=92.207(6)°,β=97.182(7)°,γ=99.385(6)°,體積=912.6(7)Å3。空間群經確認為P-1。分子量為468.23 g/mol,計算密度為1.704 g/cm3以及Z=2時μ(Mo)=0.53 mm-1。資料精減為從2θ範圍=4.76至56.88°之4449筆獨特資料。使用基於Int.Tab.Vol C表4.2.6.8及6.1.1.4之散射因子F2微調之Shelxtl程式套件進行結構解析及微調。最終微調統計包括數據/參數比=16.66,對F2的吻合度=1.00,R指標[I>4σ(I)]R1=0.0466,wR2=0.1221,R指標(所有資料)R1=0.0718,wR2=0.1362,最大差異峰及谷=0.379及-0.394 e/Å3。表15及16列示原子分數配位(x 104)及等效等向置換參數。U(eq)定義為直角Uij張量紀錄之三分之一。估計標準偏差示於括號中。
特徵描述實例10 化合物1多形體形態TS之單晶X光繞射
化合物1甲苯溶劑合物(指定為多形體形態TS)之合適單晶係藉由化合物1於甲苯中之飽和溶液緩慢蒸發進行成長。選擇大小約0.48×0.13×0.04 mm之無色針狀物用於收集數據並裝設至一聚合物迴圈。使用具有Apex-II偵測器之Bruker Platform測角儀收集單晶資料。該繞射儀配備有使用Mo-Kα輻射(λ=0.71073 Å)之入射光束單色器及單管準直器。於資料收集期間,將晶體在-100℃氮氣流中進行冷卻。
使用包含Sainplus及SADABS之Apex-II程式套件將數據進行索引及整合。三斜晶胞參數確認為:a=12.547(6)Å,b=15.165(7)Å,c=15.311(7)Å,α=100.594(9)°,β=109.609(8)°,γ=110.924(8)°,體積=2405.8(19)Å3。空間群經確認為P-1。分子量為560.36 g/mol,計算密度為1.547 g/cm3以及Z=4時μ(Mo)=0.42 mm-1。資料精減為從2θ範圍=3.48至54.44°之10653筆獨特資料。使用基於Int.Tab.Vol C表4.2.6.8及6.1.1.4之散射因子F2微調之Shelxtl程式套件進行結構解析及微調。最終微調統計包括數據/參數比=16.31,對F2的吻合度=1.02,R指標[I>4σ(I)]R1=0.0727,wR2=0.1676,R指標(所有資料)R1=0.1546,wR2=0.2053,最大差異峰及谷=0.641及-0.637 e/Å3。表17及18列示原子分數配位(x 104)及等效等向置換參數U(eq)定義為直角Uij張量紀錄之三分之一。估計標準偏差示於括號中。
特徵描述實例11 差式掃描熱分析實驗
觀察化合物1純多形體形態A之DSC曲線,顯現起始溫度212℃之明顯吸熱(訊號最大值在212.6℃),訊號最大值在213℃的放熱緊接其後或與其重疊。接在這些吸熱-放熱事件後的是起始溫度218℃之主熔化吸熱(訊號最大值在219℃,終點在225℃,轉移熱為63 J/g)。
觀察化合物1多形體形態B之DSC曲線,顯現起始溫度205℃之微吸熱(訊號最大值在208℃,轉移熱為4 J/g)以及起始溫度217.9℃之明顯主吸熱(訊號最大值在218℃,轉移熱為56 J/g)。
觀察化合物1多形體形態D之DSC曲線,顯現起始溫度211℃之微吸熱(訊號最大值在212℃,轉移熱為10 J/g)以及起始溫度218℃之明顯主吸熱(訊號最大值在219℃,轉移熱為62 J/g)。
觀察化合物1多形體形態TS(甲苯溶劑合物)之DSC曲線顯現四個吸熱。吸熱1為起始溫度118℃之寬 吸熱(訊號最大值在137℃,轉移熱為74 J/g)。吸熱2具有起始溫度200℃(訊號最大值在202℃,轉移熱為6 J/g)。吸熱3具有起始溫度207℃(訊號最大值在208℃,轉移熱為3 J/g)。吸熱4具有起始溫度216℃(訊號最大值在217℃,轉移熱為42 J/g)。
觀察根據製備實例2之多形體形態TS製備的化合物1多形體形態A及B混合物之DSC曲線,顯現起始溫度208℃之微吸熱(訊號最大值在211℃,轉移熱為4.6 J/g)以及起始溫度218℃之明顯主吸熱(訊號最大值在219℃,轉移熱為58 J/g)。
特徵描述實例12 相對穩定性實驗
對化合物1各種晶體形態之相對穩定性進行非競爭性及競爭性相互轉換實驗。非競爭性實驗僅使用單一起始晶體形態以研究轉換為另一更穩定形態的潛能。競爭性實驗一起混合兩種以上的晶體形態並研究其轉換為一種更穩定形態的潛能。實驗條件於下文描述並總結於表19。
在實例12a中,將根據製備實例5c製備的化合物1形態A(0.4 g)在約95℃下去離子水(4 mL)中進行回流3小時。將料漿冷卻至25-30℃,過濾、進行吸乾1小時並在70℃及8 kPa絕對壓力下於真空烤箱中乾燥12小時。所得材料之pXRD、DSC、TGA及1H-NMR分析係指出晶體形態保持不變,即形態A。
在實例12b中,將根據製備實例5f製備的化合物1形態B(0.4 g)在約95℃下去離子水(4 mL)中進行回流3小時。將料漿冷卻至25-30℃,過濾、進行吸乾1小時並在70℃及8 kPa絕對壓力下於真空烤箱中乾燥12小時。所得材料之pXRD、DSC、TGA及1H-NMR分析係指出形態A。
在實例12c中,將根據製備實例5g製備的化合物1形態D(0.4 g)在約95℃下去離子水(4 mL)中進行回流3小時。將料漿冷卻至25-30℃,過濾、進行吸乾1小時並在70℃及8 kPa絕對壓力下於真空烤箱中乾燥12小時。所得材料之pXRD、DSC、TGA及1H-NMR分析係指出形態A。
在實例12d中,將根據製備實例1製備的化合物1形態TS(1 g)在約95℃下去離子水(10 mL)中進行回流3小時。將料漿冷卻至25-30℃,過濾、進行吸乾1小時並在65℃及8 kPa絕對壓力下於真空烤箱中乾燥12小時。所得材料之pXRD、DSC、TGA及1H-NMR分析係指出形態A。
在實例12e中,將分別根據製備實例5c及5f製備的化合物1形態A(0.6 g)及形態B(0.6 g)以固體混合,並在約95℃下去離子水(12 mL)中進行回流3小時。將料漿冷卻至25-30℃,過濾、進行吸乾1小時並在65℃及8 kPa絕對壓力下於真空烤箱中乾燥12小時。所得材料之pXRD、DSC、TGA及1H-NMR分析係指出形態A。
在實例12f中,將分別根據製備實例5f及5g製備的化合物1形態B(0.6 g)及形態D(0.6 g)以固體混合,並在約95℃下去離子水(12 mL)中進行回流3小時。將料漿冷卻至25-30℃,過濾、進行吸乾1小時並在65℃及8 kPa絕對壓力下於真空烤箱中乾燥12小時。所得材料之pXRD、DSC及1H-NMR分析係指出形態A。
在實例12g中,將分別根據製備實例5c及5g製備的化合物1形態A(0.6 g)及形態D(0.6 g)以固體混合,並在約95℃下去離子水(12 mL)中進行回流3小時。將料漿冷卻至25-30℃,過濾、進行吸乾1小時並在65℃及8 kPa絕對壓力下於真空烤箱中乾燥12小時。所得材料之pXRD、DSC及1H-NMR分析係指出形態A。
在實例12h中,將分別根據製備實例5c、5f、5g及1製備的化合物1形態A(0.25 g)、形態B(0.25 g)、形態D(0.25 g)及形態TS(0.25 g)以固體混合,並在約95℃下去離子水(10 mL)中進行回流3小時。將料漿冷卻至25-30℃,過濾、進行吸乾1小時並在65℃及8 kPa絕對壓力下於真空烤箱中乾燥12小時。所得材料之pXRD、DSC及1H-NMR分析係指出形態A。
在實例12i中,將分別根據製備實例5c、5f、5g及2製備的化合物1形態A(0.25 g)、形態B(0.25 g)、形態D(0.25 g)及混合形態A及B(0.25 g)以固體混合,並在約95℃下去離子水(10 mL)中進行回流3小時。將料漿冷卻至25-30℃,過濾、進行吸乾1小時並在65℃及8 kPa絕對壓力下於真空烤箱乾燥12小時。所得材料之pXRD、DSC及1H-NMR分析係指出形態A。
在實例12j中,將分別根據製備實例5c、5f、5g及2製備的化合物1形態A(0.25 g)、形態B(0.25 g)、形態D(0.25 g)及混合形態A及B(0.25 g)以固體混合,並在約55℃下甲醇(10 mL)中加熱3小時。將料漿冷卻至25-30℃,過濾、進行吸乾1小時並在55℃及1.3 kPa絕對壓力下於真空烤箱中乾燥12小時。所得材料之pXRD、DSC及1H-NMR分析係指出形態A。
在實例12k中,將分別根據製備實例5c、5f及5g製備的化合物1形態A(0.9 g)、形態B(0.9 g)、形態D(0.9 g)以固體混合,並在約55℃下去離子水(27 mL)中加熱168小時。將料漿冷卻至25-30℃,過濾、進行吸乾1小時並在65℃及8 kPa絕對壓力下於真空烤箱中乾燥12小時。所得材料之pXRD、DSC及1H-NMR分析係指出形態A。
在實例12l中,將根據製備實例2製備的化合物1混合形態A及B(2.0 g)加入配備有磁性攪拌器及溫度探針之100 mL三頸圓底燒瓶。加入去離子水(40 mL)並在25℃下攪拌所得料漿約168小時。過濾料漿,吸乾1小時並在65℃及8 kPa絕對壓力下於真空烤箱中乾燥12小時。所得材料之pXRD、DSC及1H-NMR分析係指出形態A。
特徵描述實例13 化合物1多形體形態A之穩定性實驗
如下文進行化合物1形態A之物理穩定性確認。利用pXRD、DSC、HPLC及1H-NMR分析根據製備實例3製備的化合物1,發現其為純度99.9%之純晶體形態A(藉由230 nm偵測波長之HPLC峰區)。將樣本之等分試樣(3.0 g)放置在一級聚乙烯袋,以氮氣沖刷該一級聚乙烯袋並密封。然後將一級聚乙烯袋放在二級聚乙烯袋中,再次以氮氣沖刷二級聚乙烯袋,並將矽膠囊放在內袋及外袋之間。然後將雙重袋裝材料放入三重層合鋁袋中並在40℃穩定室中放30天。所得材料之HPLC及1H-NMR分析係指出純度99.9%之化合物1純形態A(藉由230 nm偵測波長之HPLC峰區)。pXRD及DSC分析係指出純多形體形態A。實驗結果確認在研究條件下化合物1之化學穩定性以及多形體形態A之穩定性。
特徵描述實例14 化合物1多形體形態C之單晶X光繞射
化合物1多形體形態C之合適單晶係於250℃下由熱梯度昇華作用進行成長。選擇大小約0.320×0.230×0.060 mm之無色不規則板用於收集數據並裝設至一聚合物迴圈。使用具有Apex-II偵測器之Bruker Platform測角儀收集單晶資料。該繞射儀配備有使用Mo-Kα輻射(λ=0.71073 Å)之入射光束單色器及單管準直器。晶體在室溫(23℃)下進行。
使用包含Sainplus及SADABS之Apex-II程式套件將數據進行索引及整合。三斜晶胞參數確認為:a=14.835(7)Å,b=15.216(8)Å,c=18.790(10)Å,α=90.306(7)°,β=93.619(7)°,γ=113.045(7)°,體積=3893(3)Å3。空間群經確認為P-1。分子量為468.23 g/mol,計算密度為1.598 g/cm3以及Z=8時μ(Mo)=0.50 mm-1。資料精減為從2θ範圍=2.18至48.66°之12368筆獨特資料。使用基於Int.Tab.Vol C表4.2.6.8及6.1.1.4之散射因子F2微調之Shelxtl程式套件進行結構解析及微調。最終微調統計包括數據/參數比=11.78,對F2的吻合度=1.29,R指標[I>4σ(I)]R1=0.1124,wR2=0.2544,R指標(所有資料)R1=0.2440,wR2=0.2969,最大差異峰及谷=0.656及-0.435 e/Å3。不對稱單元含有四個分子。冷卻晶體時,形態產生結晶相改變。將相同微晶冷卻至-100℃,而所得單元晶胞參數為三斜型,P-1,a=11.816(4)Å,b=15.036(5)Å,c=21.625(8)Å,α=92.255(6)°,β=92.597(5)°,γ= 107.947(5)°,體積=3646(2)Å3,Z=8。原子分數配位(x 104)及等效等向置換參數如列示,且U(eq)定義為直角Uij張量紀錄之三分之一。估計標準偏差示於括號中。
特徵描述實例15 化合物1多形體形態C之X光粉體繞射圖像
將粉體X光繞射用於特徵化化合物1多形體形態C之性質。數據係利用型號3040之Philips X’PERT自動粉體繞射儀取得。該繞射儀配備有自動變化抗散射及發散光柵、X’Celerator RTMS偵測器及Ni過濾器。輻射為Cu-K(α)(45 kV,40 mA)。數據係在室溫下使用θ-θ幾 何中0.02度的等步進尺寸且每步320秒計數時間之連續掃描3至50度2θ收集而得。如有需要,利用瑪瑙研缽及杵輕微研磨樣本,並在低背景矽樣本容器上製備成一層薄粉體材料層。將MDI/Jade軟體版本9.1與International Committee之繞射資料庫PDF4+ 2008一起用於相鑑定。使用MDI/Jade「Find Peaks」常式計算化合物1形態C之Cu-K(α1)X光繞射最大值並列示於表22。
製劑/效用
化合物1之固體形態通常使用為一組成物(亦即製劑)中之一寄生性線蟲控制活性成分,其具有至少一種選自於由界面活性劑、固體稀釋劑以及載液(亦即載有活性或可能其他成分之液態流體,亦稱為液態稀釋劑)所組成之群組的額外成分。此製劑或組成物成分係經選 擇,以配合活性成分之物理性質、施用型態與土壤種類、濕度和溫度等環境因素。
殺線蟲活性成分之有用製劑一般包括液體和固體組成物。液體組成物包括溶液(如可乳化濃縮物)、乳劑(包括微乳劑)、分散液、懸浮液及各形態之混合(如濃懸乳劑)。術語「懸浮液」尤指藉由添加化學添加劑以最小化或停止活性成分沉降,從而達成穩定之微粒物質分散液。在一微粒物質分散液或懸浮液中(如水性懸浮液濃縮物及油性分散液製劑),一載液形成連續液相,其中分散或懸浮有微粒物質(如化合物1之固體形態)。在一由微粒物質懸浮液或分散液結合乳劑所構成之組成物中,該乳劑含有一第二(不互溶)液體(如濃懸乳劑製劑),一載液形成連續液相,其中不僅有微粒物質懸浮,亦有第二液體之液滴(亦即非連續液相)乳化於其中。
根據形成連續液相之載液的性質,分散液及懸浮液可為水性(亦即主要包含水作為載液)或非水性(亦即包含水不互溶有機化合物作為載液,通常稱為「油」)。水性液體組成物一般分為可溶濃縮物、懸浮液濃縮物、膠囊懸浮液、濃縮乳劑、微乳劑以及濃懸乳劑。濃懸乳劑中形成連續液相之載液為水性(亦即以水為主要成分),而水不互溶液體成分則乳化於該水性載液中。非水性液體組成物一般包括可乳化濃縮物、微可乳化濃縮物、可分散濃縮物以及油性分散液。懸浮液濃縮物包含分散於連續液相中之微粒物質,在添加水後存在為微粒物質分散液。濃懸乳劑及油性分散液可形成微粒物質分 散液或乳劑,其在添加水後共存,該等相中之一或多種可包含活性成分。(在本組成物中,微粒物質分散液包含化合物1之固體形態。)
固態組成物一般分為粉塵、粉末、細粒、顆粒、細珠、錠劑、片體、充填膜(包括種衣劑)及類似者,其可為水可分散型(「可沾濕」)或水溶性者。除通常施用之液體及固體製劑種類以外,由成膜液體製成之膜體或衣劑對於種子處理尤其有用。活性成分可經囊封化(encapsulated,包括微囊封化)後進一步製成液態懸浮液或分散液或固體製劑,以在施用至標的的過程中保護活性成分,或控制或達成活性成分之緩釋。或者,整體製劑,包括活性成分,可經囊封化(或「包覆」)。囊封可控制或延緩活性成分之釋放。可先製備高強度組成物並使用為中間物,供後續製備低強度液體及固體製劑之用。
可噴灑配方通常在噴灑前會先在適合的介質中擴展。此類液體及固體製劑係配製為可迅速稀釋於噴灑介質(通常是水)中。噴灑的量可從每公頃約一到數千公升,但更通常為從每公頃約十到數百公升。可噴灑製劑可在桶中與水或其他適合介質混合,藉由空中或地面施用而運用於葉處理,或施用於植物的生長介質。液體製劑與乾製劑可在播種時,直接計量加入滴流灌溉系統或犁溝。液體和固體配方可以施用於農作物和其他所欲植物的種子,作為播種前種子處理之用,透過系統性吸收以保護發育中的根及其它地下的植物部分及/或葉。
雖然依據本發明化合物1之固體形態可藉由組合一可溶解該固體形態之溶劑,而製備出液體溶液、可乳化濃縮物及乳劑,但僅在調製成之組成物含有化合物1為固體時,該固體形態方能保有其性質。本發明殺線蟲組成物中,該組成物包含化合物1之至少一固體形態,因此包括其中含有化合物1為固體之液體組成物(如分散液、懸浮液、濃懸乳劑)及化合物1之固體組成物。
雖然化合物1之所有多形體形態與非晶固體形態皆可用於製備本發明之殺線蟲組成物,但多形體形態A對於形成殺線蟲組成物尤其有用,特別在液體組成物上展現優良之物理及化學穩定性。雖然單離及維持在接近室溫時化合物1之所有多形體形態及非晶固體形態相對穩定(亞穩定),但是它們相對於多形體形態A係為熱動力不穩定。因此,其先天即易轉換為多形體形態A。接觸濕氣、受到較高溫度或歷經長時間可促進轉換為更穩定的晶體形態。與溶劑接觸通常可促進晶體形態之轉換。因此,包含化合物1之其他多形體形態、多形體形態混合物或非晶固體形態之液體組成物特別容易自發性再結晶為多形體形態A(參見製備實例7)。因為凝核作用低且成長緩慢,形成之多形體形態A晶體將較少但較大。此可造成生物效力降低與活性成分沉澱之增加,因為高生物活性與懸浮性之達成條件必須建立於液體組成物中固體活性成分之較小粒徑。利用多形體形態A製備殺線蟲組成物,可免除組成物稍後再結晶之風險。再者,含有比形態A較不穩定之晶體形態之製劑於晶體形態比例改變時,在自身儲放壽命期間可改變其生 物活性。因為所需的使用率(每公頃活性成分量)會以不可預期的方式改變,所以極不希望發生上述情況。因此,重點在於本發明之殺線蟲組成物包含化合物1之多形體形態A。
含化合物1至少一種固體形態之液體和固體製劑皆應包含有效量之活性成分、固體稀釋劑或載液,以及界面活性劑,其比例如以下概略之範圍,以重量計加總為100%。本發明含化合物1之至少一固體形態組成物中活性成分(亦即化合物1之固體形態及可選擇之其他活性成分)、稀釋劑以及界面活性劑成分之一般含量範圍如下:
固體稀釋劑包括例如,黏土如膨土、微晶高嶺石、厄帖浦石與高嶺土、石膏、纖維素、二氧化鈦、氧化鋅、澱粉、糊精、糖(例如乳糖、蔗糖)、二氧化矽、滑石、雲母、矽藻土、尿素、碳酸鈣、碳酸鈉與碳酸氫鈉及硫酸鈉。典型固體稀釋劑係描述於Watkins et al.,Handbook of Insecticide Dust Diluents and Carriers,2nd Ed.,Dorland Books,Caldwell,New Jersey中。
液體稀釋劑包括例如水、N,N-二甲基烷醯胺(例如N,N-二甲基甲醯胺)、薴烯、二甲基亞碸、N-烷吡咯啶酮(例如N-甲基吡咯啶酮)、乙二醇、三甘醇、丙二醇、二丙二醇、聚丙二醇、丙烯碳酸鹽、丁烯碳酸鹽、石蠟(例如白礦油、正石蠟、異石蠟)、烷基苯、烷基萘、甘油、三乙酸甘油酯(glycerol triacetate)、山梨糖醇、三乙醯甘油(triacetin)、芳族烴、脫芳脂族、像是環己酮、2-庚酮、異佛酮及4-羥基-4-甲基-2-戊酮的酮類、像是乙酸異戊酯、乙酸己酯、乙酸庚酯、乙酸辛酯、乙酸壬酯、乙酸十三酯及乙酸異莰酯的醋酸鹽、像是烷化乳酸酯(alkylated lactate ester)、二元酯及γ-丁內酯的其他酯類、以及醇類,其可為線性、分支、飽和或不飽和,像是甲醇、乙醇、正丙醇、異丙醇、正丁醇、異丁醇、正己醇、2-乙基己醇、正辛醇、癸醇、異癸醇、異十八醇、鯨蠟醇、月桂醇、十三醇、油醇、環己醇、四氫糠醇、二丙酮醇及苯甲醇。液體稀釋劑也包括飽和以及不飽和脂肪酸的甘油酯類(典型為C6-C22),例如植物種子以及水果油(例如橄欖、蓖麻、亞麻仁、芝麻、玉米、花生、向日葵、葡萄籽、紅花、棉籽、黃豆、油菜、椰子以及棕櫚仁之油)、動物性脂肪(例如牛油、豬肉獸脂、豬油、鱈魚肝油、魚油),以及其混合物。液體稀釋劑也包括烷化脂肪酸(例如甲基化、乙基化、丁基化),其中該脂肪酸可藉由水解來自植物和動物來源的甘油酯而獲得,並可用蒸餾純化。典型的液體稀釋劑係描述於Marsden,Solvents Guide,2nd Ed.,Interscience,New York,1950中。
本發明的固體和液體組成物通常包括一或多種界面活性劑。當加入至液體中時,界面活性劑(也已知為「界面活性劑」)通常會改變(最常為減少)液體的表面張力。取決於界面活性劑分子中親水性和親油性基的性質,界面活性劑可用作為潤濕劑、分散劑、乳化劑或消泡劑。
界面活性劑可以分類為非離子性、陰離子性或陽離子性。用於本發明組成物之非離子界面活性劑包括,但不限於:酒精烷氧基,例如基於自然以及合成的酒精之酒精烷氧基(其可能為分支或線型)以及由酒精以及環氧乙烷、丙烯氧化物、伸丁基氧化物或其混合物所製備而得;胺乙氧化物、烷醇醯胺與乙氧基化烷醇醯胺;像是乙氧基化黃豆、蓖麻和油菜籽油的烷氧基化三酸甘油酯;像是辛苯酚乙氧化物(octylphenol ethoxylates)、壬苯酚乙氧化物、二壬苯酚乙氧化物及十二烷苯酚乙氧化物(由苯酚及環氧乙烷、環氧丙烷、環氧丁烷或其混合物所製備)的烷基酚烷氧化物;由環氧乙烷或環氧丙烷所製備的團聯聚合物,以及其中的終端嵌段由環氧丙烷所製備的反向團聯聚合物;乙氧基化脂肪酸;乙氧基化脂肪酯和油;乙氧基化甲酯;乙氧基化三苯乙烯苯酚(包括那些由環氧乙烷、環氧丙烷、環氧丁烷或其混合物所製備者);脂肪酸酯、甘油酯、羊毛脂為基礎的衍生物、像是聚乙氧基化山梨醇酐脂肪酸酯、聚乙氧基化山梨糖醇脂肪酸酯及聚乙氧基化甘油脂肪酸酯的聚乙氧基化酯;其他像是山梨醇酐酯的山梨醇酐衍生物;像是隨機共聚物、團聯共聚物、醇酸peg(聚乙二醇)樹脂、接 枝或梳形聚合物及星形聚合物的聚合界面活性劑;聚乙二醇(pegs);聚乙二醇脂肪酸酯;聚矽氧為基礎的界面活性劑;以及像是蔗糖酯、烷基聚葡萄糖苷和烷基多醣的糖衍生物。
可用的陰離子界面活性劑包括但不限於:烷芳基磺酸及其鹽類;羧基化醇或烷基酚乙氧化物;二苯磺酸鹽衍生物;木質素及像是木質磺酸鹽的木質素衍生物;順丁烯二酸或琥珀酸或它們的酐;烯烴磺酸鹽;像是醇烷氧化物之磷酸酯、烷基酚烷氧化物之磷酸酯及苯乙烯苯酚乙氧化物之磷酸酯的磷酸酯;蛋白質為基礎的界面活性劑;肌胺酸衍生物;苯乙烯酚醚硫酸鹽;油和脂肪酸的硫酸鹽和磺酸鹽;乙氧基化烷基酚的硫酸鹽和磺酸鹽;醇類的硫酸鹽;乙氧基化醇類的硫酸鹽;胺和醯胺的磺酸鹽,像是N,N-烷牛磺酸酯;苯、異丙苯、甲苯、二甲苯及十二苯和十三苯的磺酸鹽;縮合萘的磺酸鹽;萘及烷基萘的磺酸鹽;分餾石油的磺酸鹽;磺琥珀醯胺酸鹽(sulfosuccinamates);及磺琥珀酸鹽(sulfosuccinates)及其衍生物,像是二烷基磺琥珀酸鹽。
可用的陽離子界面活性劑包括但不限於:醯胺及乙氧基化醯胺;胺,像是N-烷基丙二胺、三丙烯三胺與二丙烯四胺,以及乙氧基化胺、乙氧基化二胺和丙氧基化胺(由胺及環氧乙烷、環氧丙烷、環氧丁烷或其混合物所製備);胺鹽,像是胺乙酸鹽及二胺鹽;四級銨鹽,像是一般四級鹽、乙氧基化四級鹽及雙四級鹽;以及氧化胺,像是烷二甲胺氧化物(alkyldimethylamine oxides) 及雙-(2-羥乙基)-烷基胺氧化物(bis-(2-hydroxyethyl)-alkylamine oxides)。
亦可用於本發明組成物者為非離子界面活性劑與陰離子界面活性劑的混合物,或非離子界面活性劑與陽離子界面活性劑的混合物。非離子性、陰離子性及陽離子性界面活性劑及其建議用法可見於眾多公開文獻,包括McCutcheon’s Emulsifiers and Detergents,美國及國際年報版,McCutcheon’s Division出版,The Manufacturing Confectioner Publishing Co.;Sisely and Wood,Encyclopedia of Surface Active Agents,Chemical Publ.Co.,Inc.,New York,1964;以及A.S.Davidson and B.Milwidsky,Synthetic Detergents,Seventh Edition,John Wiley and Sons,New York,1987。
本發明組成物亦可包含製劑輔助劑及添加劑,及熟悉該項技術領域者熟知之製劑助劑(其中部分亦可視為提供固體稀釋劑、液體稀釋劑或界面活性劑之功能)。這些配方輔劑以及添加劑可能控制:pH(緩衝液)、加工過程中的發泡(像是聚有機矽氧烷的消泡劑)、活性成分的沉積(懸浮劑)、黏度(觸變或假塑性增稠劑)、容器內微生物生長(抗菌劑)、產物凍結(防凍劑)、顏色(染料/顏料分散液)、洗脫(成膜劑或黏著劑)、蒸發(蒸發阻滯劑)及其他配方特性。成膜劑包括例如聚乙酸乙烯、聚乙酸乙烯共聚物、聚乙烯吡咯烷酮-乙酸乙烯酯共聚物、聚乙烯醇、聚乙烯醇共聚物及蠟。製劑輔助劑及添加劑之實例包括列於以下文獻者:McCutcheon’s Volume 2:Functional Materials,美國及國 際年報版,McCutcheon’s Division出版,The Manufacturing Confectioner Publishing Co.;以及PCT公開號WO 03/024222。
通常藉由將化合物1及任何其他的活性成分的固體形態溶解於一溶劑中,或在液體或乾稀釋劑中將其磨碎,使該活性成分併入本發明的組成物中。藉由簡單混合成分可製備出液劑,包括可乳化濃縮物。若打算用作為可乳化濃縮物之液體組成物的溶劑與水不互溶,則通常會在用水稀釋時,加入乳化劑以乳化該含活性成分之溶劑。粒徑高達2,000 μm的活性成分漿液可使用介質研磨機濕磨,以獲得平均直徑在3 μm以下的粒子。水性漿液可製成為成品懸浮濃縮物(請參見如U.S.3,060,084)或藉由噴霧乾燥進一步加工成水分散性粒劑。乾式製劑通常需要乾磨製程,其產生的平均粒徑在2到10 μm的範圍內。塵粉及粉劑可藉由摻合以及研磨(如以錘磨或液能研磨機)而製備。粒劑及丸劑係經由將活性材料噴灑於預成形之粒狀載體或以黏聚技術製成。參見Browning,“Agglomeration”,Chemical Engineering,December 4,1967,147-48頁;Perry’s Chemical Engineer’s Handbook,4th Ed.,McGraw-Hill,New York,1963,8-57頁及後文,以及WO 91/13546。丸劑可如U.S.4,172,714中所述者製備。水分散性與水溶性粒劑可如U.S.4,144,050、U.S.3,920,442與DE 3,246,493中所教示者製備。錠劑可如U.S.5,180,587、U.S.5,232,701與U.S.5,208,030所教示者製備。膜衣可如GB 2,095,558與U.S.3,299,566所教示者製備。
針對製劑技術之進一步相關資訊,可見T.S.Woods,“The Formulator’s Toolbox-Product Forms for Modern Agriculture”in Pesticide Chemistry and Bioscience,The Food-Environment Challenge,T.Brooks and T.R.Roberts,Eds.,Proceedings of the 9th International Congress on Pesticide Chemistry,The Royal Society of Chemistry,Cambridge,1999,第120-133頁。亦可見U.S.3,235,361,第6欄16行至第7欄19行及實例10-41;U.S.3,309,192,第5欄43行至第7欄62行及實例8、12、15、39、41、52、53、58、132、138-140、162-164、166、167及169-182;U.S.2,891,855,第3欄66行至第5欄17行及實例1-4;Klingman,Weed Control as a Science,John Wiley and Sons,Inc.,New York,1961,81-96頁;Hance et al.,Weed Control Handbook,8th Ed.,Blackwell Scientific Publications,Oxford,1989;以及Developments in formulation technology,PJB Publications,Richmond,UK,2000。
以下製劑實例係用以進一步說明,而非用以限制本發明。所有百分比係以重量計且所有製劑之製備係採用現有技術。不需進一步闡明,精於此技藝人士藉由以上敘述及前案參照應可充分實施本發明。
製劑實例A
製劑實例B
製劑實例C
製劑實例D
製劑實例E
製劑實例F
製劑實例G
製劑實例H
因此,化合物1的固體形態及其組成物可用於農藝上保護田間作物免受寄生性線蟲感染,以及非農藝上保護其他園藝作物與植物免受食植物的寄生性線蟲感 染。此效用包括保護穀物與其他植物(即農藝的與非農藝的),其包含藉由基因遺傳工程(即基因轉殖)導入或藉由基因突變改良的基因材料以提供有利的特性。該特性之實例包括對除草劑的耐受性、對植食性害蟲抵抗性(如:昆蟲、蟎、蚜蟲、蜘蛛、線蟲、蝸牛、植物病原的真菌、細菌與病毒)、改善植物生長、增加對不利生長環境之耐受性,像是高或低溫、低或高土壤濕度與高鹽量、促進開花或結果、增加收成產量、更快成熟、提高收成產品的品質與/或營養價值或改善收成產品的儲存或處理特性。基因轉殖植物可被改良以表現多種特性。植物之實例內含以遺傳工程或基因突變方式提供之特徵,包括許多種表現殺蘇力菌(Bacillus thuringiensis)毒素之玉米、棉、黃豆及馬鈴薯,如YIELD GARD®、KNOCKOUT®、STARLINK®、BOLLGARD®、NuCOTN®及NEWLEAF®、許多種耐除草劑之玉米、棉、黃豆及油菜子,如ROUNDUP READY®、LIBERTY LINK®、IMI®、STS®及CLEARFIELD®、以及表現N-乙醯基轉換酶(GAT)之作物,其提供草甘膦除草劑之抵抗性或內含HRA基因之作物,該基因提供除草劑之抵抗性,以抑制乙醯乳酸合成酶(ALS)。化合物1的固體形態及其組成物可能與經由遺傳工程導入或基因突變修改獲得之性狀產生協同交互作用,因此增加表現型表現或性狀之有效性或增加本化合物與組成物控制寄生性線蟲之效果。具體而言,化合物1的固體形態及其組成物可能與對寄生性線蟲具有毒性的蛋白質或其他天然產物表 現型表現產生協同作用,以提供大於相加效果的害蟲控制。
本發明之組成物亦選擇性地包含植物養分,如:肥料組成物,其包含至少一種選自氮、磷、鉀、硫、鈣、鎂、鐵、銅、硼、錳、鋅及鉬之植物養分。注意到組成物包含至少一種肥料組成物,其包含至少一種選自氮、磷、鉀、硫、鈣及鎂之植物養分。本發明之組成物進一步包含至少一種植物養分,其可為液體或固體的型式。注意到固體配方為粒劑、小桿狀劑(small sticks)或片劑之型式。包含一種肥料組成物之固體配方可經由將本發明之化合物或組成物與肥料組成物連同製劑成分一起混合來製備,接著以像是粒化或擠壓之方法製備該配方。或者固體配方可藉由噴灑在揮發溶劑中之一種本發明化合物或組成物的溶液或懸浮液至先前製備好之肥料組成物上,該肥料組成物為尺寸穩定的混合物之型式,如:粒劑、小桿狀劑(small sticks)或片劑,接著將溶劑揮發而製備。
化合物1的固體形態具有抗眾多寄生性線蟲之活性,該等寄生性線蟲生活或生長在植物(例如葉、果實、莖、根或種子)或動物及人類(例如血管或消化系統或其他組織)內或以其為食物,因此損害生長、儲存農藝作物、農林、溫室作物、觀賞及苗圃作物或影響動物與人類的健康。特定目標作物為果實植物,如茄果類及瓜類作物、人工農場作物,如香蕉及咖啡、根部作物,如馬鈴薯、洋蔥及紅羅波,及農場作物,如煙草、花生、綿、甘蔗及黃豆。
化合物1的固體形態對線蟲門(Phylum Nematoda)之蜜腺柄綱(Adenophorea)與及胞管腎綱(Secernentea)兩綱成員皆有其活性,包含具經濟重要性的目內成員埃諾甫目(Enoplida)、矛線目(Dorylaimida)、小桿圓蟲目(Rhabditida)、圓蟲科(Strongylida)、蛔目(Ascarida)、尖尾目(Oxyurida)、旋尾目(Spirurida)、墊刃目(Tylenchida)及滑刃目(Aphelenchida),如有其經濟重要性之農業作物害蟲,但不限於此類,如:根瘤線蟲屬(genus Meloidogyne)的根瘤線蟲、根結線蟲屬(genera Heterodera)及馬鈴薯包囊線蟲屬(Globodera)的包囊線蟲(cyst nematodes)、根腐線蟲屬(genus Pratylenchus)的腐線蟲(lesion nematodes)、腎狀線蟲屬(genus Rotylenchulus)的腎形線蟲(reniform nematodes)、穿孔線蟲屬(genus Radopholus)的穿孔線蟲(burrowing nematodes)、刺線蟲屬(genus Belonolaimus)的刺線蟲(sting nematodes)、螺旋線蟲屬(genera Helicotylenchus)及盾線蟲屬(Scutellonema)之螺旋線蟲(spiral nematodes)、半穿刺線蟲屬(genus Tylenchulus)的柑橘線蟲(citrus nematodes)、毛刺線蟲屬(genera Trichodorus)及擬毛刺屬(Paratrichodorus)的殘根線蟲(stubby root nematodes)、劍線蟲屬(genus Xiphinema)的劍線蟲(dagger nematodes)、矮化線蟲屬(genus Tylenchorhynchus)的矮化線蟲(stunt nematodes)、針線蟲屬(genera Longidorus)及鐙形線蟲屬(Paralongidorus)的針線蟲(needle nematodes)、冠線蟲屬(genus Hoplolaimus)的矛線蟲(lance nematodes)、環科(family Criconematidae)的環形線蟲(ring nematodes)、莖線蟲屬(genera Ditylenchus)及腫瘤線蟲屬(Anguina)的莖線蟲(stem nematodes)與滑刃線蟲屬(genera Aphelenchoides)及紅輪線蟲屬(Rhadinaphelenchus)的葉/莖線蟲(foliar/stem nematodes);以及動物及人類健康之寄生蟲(包含具經濟重要性的蛔蟲,例如馬的尋常圓線蟲(Strongylus vulgaris)、狗的犬蛔蟲(Toxocara canis)、綿羊的捻轉血矛線蟲(Haemonchus contortus)、狗的犬心絲蟲(Dirofilaria immitis)等等)。
重點在於化合物1之固體形態使用於控制南方根結線蟲(Meloidogyne incognita)。熟習此項技藝者應了解化合物1之固體形態對所有成長階段的所有線蟲並不是具有相同效應。
化合物1之固體形態對扁形動物門、條蟲綱(條蟲)及吸蟲綱(吸蟲)之成員包含影響動物及人體健康的寄生蟲(即經濟上重要的吸蟲及條蟲)(例如馬的條蟲(Anoplocephala perfoliata)、反芻動物的吸蟲(Fasciola hepatica)等)亦會具有活性。
也可將化合物1的固體形態與一個或多個其他具有生物活性的化合物或試劑混合,包括殺蟲劑、殺真菌劑、殺線蟲劑、殺菌劑、殺蟎劑、除草劑、除草劑解毒劑、如昆蟲蛻皮抑制劑及生根興奮劑(rooting stimulants)的生長調節素、化學滅菌劑、化學傳訊素(semiochemicals)、驅蟲劑(repellents)、引誘劑、費洛蒙、激食因子(feeding stimulants)、其他具有生物活 性的化合物或蟲生細菌、病毒或真菌,以形成一多成分殺蟲劑,提供更廣泛的農業及非農業利用範圍。因此本發明亦關於一種組成物,其包含化合物1的固體形態與至少一種有效劑量之其他生物活性化合物或試劑,以及可進一步包含界面活性劑、固體稀釋劑或液體稀釋劑之至少一者。對於本發明之混合物而言,其他生物活性化合物或藥劑可與化合物1的固體形態一起配製,以形成一預混物,或其他生物活性化合物或藥劑可與化合物1的固體形態分開配製,並且兩種製劑在施用前先行結合(例如在一個噴灑桶中),或是依序施用。
可與化合物1的固體形態一起配製的該生物活性化合物或藥劑之實例為殺蟲劑,如阿巴汀(abamectin)、毆殺松(acephate)、亞醌蟎(acequinocyl)、亞滅培(acetamiprid)、阿納寧(acrinathrin)、磺胺蟎酯(amidoflumet)、三亞蹣(amitraz)、阿佛菌素(avermectin)、印楝素(azadirachtin)、谷速松(azinphos-methyl)、畢芬寧(bifenthrin)、聯苯肼酯(bifenazate)、雙三氟蟲脲(bistrifluron)、硼酸鹽、布芬淨(buprofezin)、硫線磷(cadusafos)、加保利(carbaryl)、加保扶(carbofuran)、培丹(cartap)、酸酯蟎(carzol)、剋安勃(chlorantraniliprole)、克凡派(chlorfenapyr)、克福隆(chlorfluazuron)、陶斯松(chlorpyrifos)、甲基陶斯松(chlorpyrifos-methyl)、可芬諾(chromafenozide)、克芬蟎(clofentezin)、可尼丁(clothianidin)、氰特破(cyantraniliprole)、賽芬蟎(cyflumetofen)、賽扶寧(cyfluthrin)、貝他賽扶寧 (beta-cyfluthrin)、賽洛寧(cyhalothrin)、伽瑪賽洛寧(gamma-cyhalothrin)、拉目達賽洛寧(lambda-cyhalothrin)、賽滅寧(cypermethrin)、亞滅寧(alpha-cypermethrin)、傑他賽滅寧(zeta-cypermethrin)、賽滅淨(cyromazine)、第滅寧(deltamethrin)、汰芬隆(diafenthiuron)、大利松(diazinon)、地特靈(dieldrin)、二福隆(diflubenzuron)、四氟甲醚菊酯(dimefluthrin)、殺蟲雙(dimehypo)、大滅松(dimethoate)、達特南(dinotefuran)、苯蟲醚(diofenolan)、因滅汀(emamectin)、安殺番(endosulfan)、益化利(esfenvalerate)、乙蟲清(ethiprole)、依芬寧(etofenprox)、依殺蟎(etoxazole)、芬佈賜(fenbutatin oxide)、芬硫克(fenothiocarb)、芬諾克(fenoxycarb)、芬普寧(fenpropathrin)、芬化利(fenvalerate)、芬普尼(fipronil)、氟尼胺(flonicamid)、氟蟲醯胺(flubendiamide)、護賽寧(flucythrinate)、嘧蟲胺(flufenerim)、氟芬隆(flufenoxuron)、福化利(fluvalinate、tau-fluvalinate)、大福松(fonophos)、覆滅蟎(formetanate)、福賽絕(fosthiazate)、合芬隆(halofenozide)、六伏隆(hexaflumuron)、合賽多(hexythiazox)、愛美松(hydramethylnon)、益達胺(imidacloprid)、因得克(indoxacarb)、殺蟲肥皂(insecticidal soaps)、亞芬松(isofenphos)、祿芬隆(lufenuron)、馬拉松(malathion)、美氟綜(metaflumizone)、滅蝸靈(metaldehyde)、達馬松 (methamidophos)、滅大松(methidathion)、滅賜克(methiodicarb)、納乃得(methomyl)、美賜平(methoprene)、甲氧DDT(methoxychlor)、美特寧(metofluthrin)、亞素靈(monocrotophos)、滅芬諾(methoxyfenozide)、烯啶蟲胺(nitenpyram)、尼殺賽(nithiazine)、諾伐隆(novaluron)、諾伏隆(noviflumuron)、毆殺滅(oxamyl)、巴拉松(parathion)、甲基巴拉松(parathion-methyl)、百滅寧(permethrin)、福瑞松(phorate)、裕必松(phosalone)、益滅松(phosmet)、福賜米松(phosphamidon)、比加普(pirimicarb)、佈飛松(profenofos)、佈福靈(profluthrin)、毆蟎多(propargite)、佈芬佈(protrifenbute)、派滅淨(pymetrozine)、派福羅(pyrafluprole)、除蟲菊精(pyrethrin)、畢達本(pyridaben)、啶蟲丙醚(pyridalyl)、披福貴(pyrifluquinazon)、披綠羅(pyriprole)、百利普芬(pyriproxyfen)、魚藤精(rotenone)、魚尼丁(ryanodine)、賜托拉(spinetoram)、賜諾殺(spinosad)、賜派芬(spiridiclofen)、螺甲蟎酯(spiromesifen)、螺蟲乙酯(spirotetramat)、甲丙硫磷(sulprofos)、得芬諾(tebufenozide)、得芬瑞(tebufenpyrad)、得福隆(teflubenzuron)、七氟菊酯(tefluthrin)、托福松(terbufos)、殺蟲畏(tetrachlorvinphos)、治滅寧(tetramethrin)、賽果培(thiacloprid)、賽速安(thiamethoxam)、硫敵克(thiodicarb)、殺蟲單(thiosultap-sodium)、脫芬瑞(tolfenpyrad)、泰滅寧 (tralomethrin)、唑蚜威(triazamate)、三氯松(trichlorfon)、三福隆(triflumuron)、蘇力菌(Bacillus thuringiensis)δ-內毒素(delta-endotoxins)、蟲生細菌(entomopathogenic bacteria)、蟲生病毒(entomopathogenic viruses)及蟲生真菌(entomopathogenic fungi)。
值得注意的是殺蟲劑,如阿巴汀(abamectin)、亞滅培(acetamiprid)、阿納寧(acrinathrin)、三亞蹣(amitraz)、阿佛菌素(avermectin)、印楝素(azadirachtin)、畢芬寧(bifenthrin)、布芬淨(buprofezin)、硫線磷(cadusafos)、加保利(carbaryl)、培丹(cartap)、剋安勃(chlorantraniliprole)、克凡派(chlorfenapyr)、陶斯松(chlorpyrifos)、可尼丁(clothianidin)、氰特破(cyantraniliprole)、賽扶寧(cyfluthrin)、貝他賽扶寧(beta-cyfluthrin)、賽洛寧(cyhalothrin)、拉目達賽洛寧(lambda-cyhalothrin)、伽瑪賽洛寧(gamma-cyhalothrin)、賽滅寧(cypermethrin)、亞滅寧(alpha-cypermethrin)、傑他賽滅寧(zeta-cypermethrin)、賽滅淨(cyromazine)、第滅寧(deltamethrin)、地特靈(dieldrin)、達特南(dinotefuran)、苯蟲醚(diofenolan)、因滅汀(emamectin)、安殺番(endosulfan)、益化利(esfenvalerate)、乙蟲清(ethiprole)、依芬寧(etofenprox)、依殺蟎(etoxazole)、芬硫克(fenothiocarb)、芬諾克(fenoxycarb)、芬化利(fenvalerate)、芬普尼(fipronil)、氟尼胺(flonicamid)、 氟蟲醯胺(flubendiamide)、氟芬隆(flufenoxuron)、福化利(fluvalinate)、覆滅蟎(formetanate)、福賽絕(fosthiazate)、六伏隆(hexaflumuron)、愛美松(hydramethylnon)、益達胺(imidacloprid)、因得克(indoxacarb)、祿芬隆(lufenuron)、美氟綜(metaflumizone)、滅賜克(methiodicarb)、納乃得(methomyl)、美賜平(methoprene)、滅芬諾(methoxyfenozide)、烯啶蟲胺(nitenpyram)、尼殺賽(nithiazine)、諾伐隆(novaluron)、毆殺滅(oxamyl)、派滅淨(pymetrozine)、除蟲菊精(pyrethrin)、畢達本(pyridaben)、啶蟲丙醚(pyridalyl)、百利普芬(pyriproxyfen)、魚尼丁(ryanodine)、賜托拉(spinetoram)、賜諾殺(spinosad)、賜派芬(spirodiclofen)、螺甲蟎酯(spiromesifen)、螺蟲乙酯(spirotetramat)、得芬諾(tebufenozide)、治滅寧(tetramethrin)、賽果培(thiacloprid)、賽速安(thiamethoxam)、硫敵克(thiodicarb)、殺蟲單(thiosultap-sodium)、泰滅寧(tralomethrin)、唑蚜威(triazamate)、三福隆(triflumuron)、蘇力菌(Bacillus thuringiensis)δ-內毒素、蘇力菌的所有品系及核多角體病毒(Nucleo polyhydrosis viruses)的所有品系與化合物1的固體形態一起混合的生物藥劑之一實施例包含蟲生細菌(entomopathogenic bacteria),例如蘇力菌與與囊封的蘇力菌δ-內毒素,例如MVP®及MVPII®生物殺蟲劑(以CellCap®製程製備(CellCap®、MVP®及MVPII®為Mycogen Corporation之商標, Indianapolis,Indiana,USA);蟲生真菌(entomopathogenic fungi),像是綠蠶黴菌(green muscardine fungus);及蟲生病毒(entomopathogenic viruses(包含自然發生及基因改良),包含桿狀病毒、核多角體病毒(nucleopolyhedro virus(NPV)),如:棉鈴蟲核多角體病毒(Helicoverpa zea nucleopolyhedrovirus(HzNPV))、芹菜夜蛾(Anagrapha falcifera nucleopolyhedrovirus(AfNPV));及顆粒體病毒(GV),像是蘋果蠹蛾顆粒體病毒(Cydia pomonella granulosis virus(CpGV))。
特別注意該組合,其中其他無脊椎動物害蟲之控制活性成分屬於不同於化合物1的固體形態之化學類別或有不同之作用位置。在某些實例中,具有至少一其他無脊椎動物害蟲控制活性成分(具有相似控制範圍但不同作用位點)的組合,將特別有利於抗藥性管理。因此,本發明之組成物可進一步包含至少一種有相似控制範圍之其他無脊椎害蟲控制活性成分,但屬於不同化學種類或有不同之作用位置。這些其他生物活性化合物或試劑包括但不限於以下所列:鈉離子通道調節劑,像是畢芬寧(bifenthrin)、賽滅寧(cypermethrin)、賽洛寧(cyhalothrin)、拉目達賽洛寧(lambda-cyhalothrin)、賽扶寧(cyfluthrin)、貝他賽扶寧(beta-cyfluthrin)、第滅寧(deltamethrin)、四氟甲醚菊酯(dimefluthrin)、益化利(esfenvalerate)、芬化利(fenvalerate)、因得克(indoxacarb)、美特寧(metofluthrin)、佈福靈(profluthrin)、除蟲菊精(pyrethrin)及泰滅寧 (tralomethrin);膽鹼酯酶抑制劑,像是陶斯松(chlorpyrifos)、納乃得(methomyl)、毆殺滅(oxamyl)、硫敵克(thiodicarb)與唑蚜威(triazamate);新菸鹼類(neonicotinoids),像是亞滅培(acetamiprid)、可尼丁(clothianidin)、達特南(dinotefuran)、益達胺(imidacloprid)、烯啶蟲胺(nitenpyram)、尼殺賽(nithiazine)、賽果培(thiacloprid)與賽速安(thiamethoxam);殺蟲巨環內酯(macrocyclic lactones),像是賜托拉(spinetoram)、賜諾殺(spinosad)、阿巴汀(abamectin)、阿佛菌素(avermectin)及因滅汀(emamectin);GABA(γ-胺丁酸)-調控氯離子通道拮抗劑,如阿佛菌素(avermectin)或阻斷劑,如乙蟲清(ethiprole)與芬普尼(fipronil);幾丁質合成抑制劑,像是布芬淨(buprofezin)、賽滅淨(cyromazine)、氟芬隆(flufenoxuron)、六伏隆(hexaflumuron)、祿芬隆(lufenuron)、諾伐隆(novaluron)、諾伏隆(noviflumuron)與三福隆(triflumuron);青春激素模擬物,像是苯蟲醚(diofenolan)、芬諾克(fenoxycarb)、美賜平(methoprene)與百利普芬(pyriproxyfen);章魚胺(octopamine)接受器配位基,像是三亞蹣(amitraz);蛻皮抑制劑及蛻皮激素促效劑,像是印楝素(azadirachtin)、滅芬諾(methoxyfenozide)與得芬諾(tebufenozide);魚尼丁(ryanodine)接受器配位基,像是魚尼丁(ryanodine)、鄰胺苯甲二醯胺(anthranilic diamides),像是剋安勃(chlorantraniliprole)、氰特破 (cyantraniliprole)與氟蟲醯胺(flubendiamide);沙蠶毒素類似物(nereistoxin analogs),像是培丹(cartap);粒線體電子傳遞抑制劑,像是克凡派(chlorfenapyr)、愛美松(hydramethylnon)與畢達本(pyridaben);脂質合成抑制劑,像是賜派芬(spirodiclofen)與螺甲蟎酯(spiromesifen);環二烯殺蟲劑(cyclodiene insecticides),像是地特靈(dieldrin)或安殺番(endosulfan);擬除蟲菊酯(pyrethroids);胺甲酸鹽(carbamates);脲殺蟲劑(insecticidal ureas);以及生物試劑包括核多角體病毒(NPV)、蘇力菌(Bacillus thuringiensis)之成員、經封裝的蘇力菌(Bacillus thuringiensis)德他內毒素,以及其他自然產生或基因改良之殺蟲病毒。
可用以與化合物1的固體形態一起配製之生物活性化合物或藥劑的進一步實例為:殺真菌劑,如阿拉酸式苯(acibenzolar)、愛地福(aldimorph)、吲唑磺菌胺(amisulbrom)、阿扎康唑(azaconazole)、亞托敏(azoxystrobin)、本達樂(benalaxyl)、免賴得(benomyl)、苯噻菌胺(benthiavalicarb)、苯噻菌胺-異丙基(benthiavalicarb-isopropyl)、binomial、聯苯(biphenyl)、bitertanol、保米黴素(blasticidin-S)、波多混合液(三元硫酸銅)、白克列(boscalid/nicobifen)、溴克座(bromuconazole)、布瑞莫(bupirimate)、得滅多(buthiobate)、萎鏽靈(carboxin)、加普胺(carpropamid)、四氯丹(captafol)、蓋普丹(captan)、貝芬替(carbendazim)、地茂散(chloroneb)、四氯異苯 腈(chlorothalonil)、克氯得(chlozolinate)、克霉唑(clotrimazole)、氯氧化銅、銅鹽,如硫酸銅、氫氧化銅、賽座滅(cyazofamid)、賽伏那(cyflunamid)、克絕(cymoxanil)、環克座(cyproconazole)、賽普洛(cyprodinil)、益發靈(dichlofluanid)、雙氯氰菌胺(diclocymet)、達滅淨(diclomezine)、大克爛(dicloran)、乙霉威(diethofencarb)、待克利(difenoconazole)、達滅芬(dimethomorph)、醚菌胺(dimoxystrobin)、達克利(diniconazole)、達克利-M、白粉克(dinocap)、敵可挫(discostrobin)、腈硫醌(dithianon)、十二環嗎啉(dodemorph)、多寧(dodine)、益康唑(econazole)、乙環唑(etaconazole)、護粒松(edifenphos)、依普座(epoxiconazole)、噻唑菌胺(ethaboxam)、依瑞莫(ethirimol)、依得利(ethridiazole)、凡殺同(famoxadone)、咪唑菌酮(fenamidone)、芬瑞莫(fenarimol)、芬克座(fenbuconazole)、纈黴威(fencaramid)、甲呋醯胺(fenfuram)、環醯菌胺(fenhexamid)、氰菌胺(fenoxanil)、拌種咯(fenpiclonil)、苯鏽啶(fenpropidin)、芬普福(fenpropimorph)、三苯醋錫(fentin acetate)、三苯羥錫(fentin hydroxide)、富爾邦(ferbam)、富拉宙(ferfurazoate)、富米綜(ferimzone)、扶吉胺(fluazinam)、護汰寧(fludioxonil)、氟醯菌胺(flumetover)、氟比來(fluopicolide)、氟嘧菌酯(fluoxastrobin)、氟喹唑(fluquinconazole)、護矽得(flusilazole)、氟硫滅 (flusulfamide)、福多寧(flutolanil)、護汰芬(flutriafol)、福爾培(folpet)、福賽得(fosetyl-aluminum)、麥穗寧(fuberidazole)、呋霜靈(furalaxyl)、福拉比(furametpyr)、菲克利(hexaconazole)、殺紋寧(hymexazole)、克熱淨(guazatine)、依滅列(imazalil)、易胺座(imibenconazole)、克熱淨(iminoctadine)、碘菌威(iodicarb)、種菌唑(ipconazole)、丙基喜樂松(iprobenfos)、依普同(iprodione)、丙森鋅(iprovalicarb)、異康唑(isoconazole)、亞賜圃(isoprothiolane)、嘉賜黴素(kasugamycin)、克收欣(kresoxim-methyl)、鋅錳乃浦(mancozeb)、雙炔醯菌胺(mandipropamid)、錳乃浦(maneb)、滅派林(mapanipyrin)、右滅達樂(mefenoxam)、滅普寧(mepronil)、滅達樂(metalaxyl)、滅特座(metconazole)、滅速克(methasulfocarb)、免得爛(metiram)、苯氧菌胺(metominostrobin/fenominostrobin)、滅派林(mepanipyrim)、滅芬農(metrafenone)、咪康唑(miconazole)、邁克尼(myclobutanil)、新阿蘇仁(neo-asozin)(鐵甲砷酸銨(ferric methanearsonate))、尼瑞莫(nuarimol)、辛噻酮(octhilinone)、呋醯胺(ofurace)、肟醚菌胺(orysastrobin)、毆殺斯(oxadixyl)、歐索林酸(oxolinic acid)、惡咪唑(oxpoconazole)、嘉保信(oxycarboxin)、巴克素(paclobutrazol)、平克座(penconazole)、賓克隆 (pencycuron)、吡噻菌胺(penthiopyrad)、稻瘟酯(perfurazoate)、膦酸、熱必斯(phthalide)、批苯殺(picobenzamid)、啶氧菌酯(picoxystrobin)、多氧菌素(polyoxin)、撲殺熱(probenazole)、撲克拉(prochloraz)、撲滅寧(procymidone)、普拔克(propamocarb)、普拔克鹽酸鹽(propamocarb-hydrochloride)、普克利(propiconazole)、甲基鋅乃浦(propineb)、丙氧喹啉(proquinazid)、丙硫菌唑(prothioconazole)、百克敏(pyraclostrobin)、白粉松(pyrazophos)、比芬諾(pyrifenox)、派美尼(pyrimethanil)、百泥勤(pyrolnitrine)、百快隆(pyroquilon)、奎因克座(quinconazole)、快諾芬(Quinoxyfen)、五氯硝基苯(quintozene)、矽噻菌胺(silthiofam)、矽氟唑(simeconazole)、葚孢菌素(spiroxamine)、鏈黴素、硫、得克利(tebuconazole)、得克堅(techrazene)、克枯爛(tecloftalam)、四氯硝基苯(tecnazene)、四克利(tetraconazole)、腐絕(thiabendazole)、賽氟滅(thifluzamide)、多保淨(thiophanate)、甲基多保淨(thiophanate-methyl)、得恩地(thiram)、噻醯菌胺(tiadinil)、脫克松(tolclofos-methyl)、基益發靈(tolylfluanid)、三泰芬(triadimefon)、甲三泰隆(triadimenol)、嘧菌醇(triarimol)、咪唑嗪(triazoxide)、三得芬(tridemorph)、三芬醯胺三賽唑(trimoprhamide tricyclazole)、三氟敏(trifloxystrobin)、賽福寧(triforine)、滅菌唑 (triticonazole)、單克素(uniconazole)、維利黴素(validamycin)、免克寧(vinclozolin)、鋅乃浦(zineb)、福美鋅(ziram)及座賽胺(zoxamide)。殺線蟲劑,像是得滅克(aldicarb)、新煙鹼類(imicyafos)、毆殺滅(oxamyl)及芬滅松(fenamiphos);殺菌劑,像是鏈黴素;殺蟎劑,像是三亞蹣(amitraz)、蟎離丹(chinomethionat)、克氯苯(chlorobenzilate)、錫蟎丹(cyhexatin)、大克蟎(dicofol)、得氯蟎(dienochlor)、依殺蟎(etoxazole)、芬殺蟎(fenazaquin)、芬佈賜(fenbutatin oxide)、芬普寧(fenpropathrin)、芬普蟎(fenpyroximate)、合賽多(hexythiazox)、毆蟎多(propargite)、畢達本(pyridaben)及得芬瑞(tebufenpyrad)。
在某些實例中,化合物1的固體形態與其他具有生物活性(特別是無脊椎動物害蟲防治)之化合物或藥劑(即活性成分)的組合可造成大於相加(即協同)的效果。理想總是降低活性成分於環境的排放量,同時確保有效之害蟲防治效果。當控制無脊椎害蟲之活性成分的施用率能給予農藝上令人滿意的無脊椎害蟲控制水平,並發生協同作用時,該組合可有利於降低作物生產成本與減少環境負荷。
化合物1之固體形態及其組成物可施用於至植物,經基因轉型為對害蟲之表達蛋白質毒素(如蘇力菌內毒素)。此應用可提供一更大範圍的植物保護與抗藥性管理的優勢。從外部施用的本發明殺真菌化合物之效果可能會與該表現的毒蛋白產生協同作用。
這些農業保護劑(即殺蟲劑、殺真菌劑、殺線蟲劑、殺蟎劑、除草劑及生物藥劑)的一般參考文獻包括The Pesticide Manual,13th Edition,C.D.S.Tomlin,Ed.,British Crop Protection Council,Farnham,Surrey,U.K.,2003 and The BioPesticide Manual,2nd Edition,L.G.Copping,Ed.,British Crop Protection Council,Farnham,Surrey,U.K.,2001。
對於其中使用一或多種這些各式混合伙伴藥劑的實施例而言,這些各式混合伙伴藥劑(總計)對化合物1之固體形態之重量比例通常為介於約1:3000與約3000:1之間。值得注意的是介於約1:300至約300:1間之重量比例(例如介於約1:30至約30:1間之比例)。熟習該項技術者可經由簡單實驗,迅速決定活性成分達成所需生物活性範圍必要之生物有效劑量。顯而易見的是,包含這些額外組份可擴展寄生性線蟲控制的範圍,使其超出單獨使用化合物1之固體形態所控制的範圍。
表A列出化合物1之固體形態與其他無脊椎動物害蟲控制劑特定組合,說明本發明之混合物、組成物和方法,以及包括使用率之重量比範圍之額外實施例。在表A中的第一欄中列出特定的無脊椎動物防治試劑(例如,第一行的「阿巴汀」(abamectin))。表A第二欄列出該無脊椎動物害蟲控制劑作用模式(若為已知)或化學分類。在表A中的第三欄中列出該無脊椎害蟲防治劑可施用率相對於化合物1之固體形態的重量比範圍之實施例(例如,阿巴汀(abamectin)與化合物1之固體形態之重量比為「50:1至1:50」)。因此,舉例而言,表 A第一行具體揭露化合物1之固體形態與阿巴汀(abamectin)的組合可以介於50:1至1:50之間的重量比施用。表A其餘行的架構與其類似。
值得注意的為本發明組成物中至少含一個選自列於以上表A中之其他生物活性化合物或試劑。
化合物1之固體形態與其他無脊椎動物害蟲防治劑之重量比通常介於1000:1及1:1000之間,於一實施例為介於500:1及1:500之間,另一實施例為介於250:1及1:200之間,且又一實施例為介於100:1及1:50之間。
下列表B為包含化合物1之固體形態(多形體形態A)及額外無脊椎動物害蟲控制劑之特定組成物實施例。
下列表C為包含化合物1之固體形態(多形體形態A)及額外殺真菌劑之特定組成物實施例。
在農藝與非農藝應用方面,藉由使用化合物1之固體形態來控制寄生性線蟲,通常在組成物型式及生物有效劑量下,施用至有害蟲的環境,其包括農藝的與/或非農藝的感染位置,或施用至欲保護區域,或直接施用至欲防治之害蟲上。
因此,本發明包含一種農藝與/或非農藝應用之控制寄生性線蟲的方法,包含以生物有效劑量之化合物1之固體形態、一種包含至少一種該化合物之組成物或一種包含至少一種該化合物與至少一種其他生物活性化合物或藥劑的組成物接觸寄生性線蟲或其環境。適合組成物之實例,包括化合物1之固體形態與至少一種包含粒劑組成物之其他生物活性化合物或藥劑,其中該其他活性化合物與本發明之化合物存在於同一個粒劑上,或者存在與本發明化合物不同之粒劑上。
為達到與化合物1之固體形態或本發明組成物接觸,以保護農場作物免受寄生性線蟲感染之目的,此化 合物1之固體形態或組成物通常用於播種前施用於作物種子、施用於作物植物之葉片(例如葉子、莖、花、果實)或在作物播種前或後施用於土讓或其他生長基質。
接觸方法之一實施例係藉由噴霧。或者,包含本發明化合物之顆粒組成物可施用於植物葉枝或土壤。化合物1之固體形態亦可藉由使植物與包含本發明化合物之組成物接觸,經由植物吸收而有效傳遞,本發明化合物係施用作為液體配方之土壤澆灌液、施用於土壤之顆粒配方、育苗盒處理或移植植物浸漬劑。值得注意的是呈土壤澆灌液體配方形式之本發明組成物。同時值得注意的是控制寄生性線蟲之方法,其包括以生物有效劑量之化合物1之固體形態或以包含生物有效劑量之化合物1之固體形態的組成物接觸寄生性線蟲或其環境。進一步值得注意的是此方法,其中該環境為土壤且該組成物係以土壤澆灌液配方形式施用於土壤。進一步值得注意的是其中化合物1之固體形態對於感染位置的局部使用亦有其效果。其他接觸方法包括藉由直接或殘餘地噴灑、空中噴灑、膠、種子塗佈、微囊封、系統性吸收、餌料、耳標、藥丸、噴霧器(fogger)、燻蒸劑、霧劑(aerosol)、粉劑與許多其他的方式來施用化合物1之固體形態或本發明組成物。接觸方法之一實施例涉及包含化合物1之固體形態或本發明之組成物之尺寸穩定的肥料粒劑、桿狀劑或片劑。化合物1之固體形態亦可注入材料中,以製作無脊椎動物防治裝置(例如防蟲網)。
化合物1之固體形態也可用於種子處理,用於保護種子免受寄生性線蟲侵害。在本發明揭露及申請專利範圍之內容中,處理種子表示將該種子接觸生物有效劑量之化合物1之固體形態,其通常配製成本發明之組成物。此種子處理保護種子免遭無脊椎土壤害蟲侵害,且一般亦可保護由發芽種子發育之秧苗之根及與土壤接觸的其他植物部分。透過發育植物內化合物1或第二活性成分之位移,此種子處理亦提供葉子之保護。種子處理可應用於所有類型之種子,包括將萌發出經遺傳轉型以表現特殊特性之植物的彼等種子。基因轉殖植物包括那些表現對寄生性線蟲有毒之蛋白,如蘇力菌毒素或那些表現除草劑之抗藥性,如草甘膦乙醯基轉換酶,其提供對草甘膦之抵抗性。利用化合物1固體形態之種子處理亦可增加種子長成植物的活力。
一種種子處理方法係藉由在播撒種子之前將化合物1之固體形態(亦即呈調配組成物形式)噴霧或噴灑至種子。經調配用於種子處理之組成物一般包含成膜劑或黏著劑。因此塗覆本發明組成物之種子通常包含生物有效量的化合物1之固體形態以及成膜劑或黏合劑。種子可藉由將可流動懸浮濃縮物直接噴霧至種子滾動床中,且接著使該等種子乾燥而塗布。再者,其他配方的形式,如濕粉劑、溶液、濃懸乳劑(suspoemulsions)、乳劑及含水乳液可噴灑至種子上。此方法尤其適用於將膜塗層施用於種子上。熟習此項技藝者可利用各種塗布機及塗布方法。適合的方法包括P.Kosters et al.,Seed Treatment:Progress and Prospects,1994 BCPC Mongraph No.57及其中列出之參考文獻中所列出之彼等方法。
化合物1之固體形態及其組成物,無論是單獨或與其他殺蟲劑、殺線蟲劑及殺真菌劑結合,均對於作物的種子處理特別有用,該作物包括但不限於玉米、大豆、棉花、穀物(例如小麥、燕麥、大麥、黑麥和米)、馬鈴薯、蔬菜和油菜。
可與化合物1之固體形態配製成可用於種子處理之混合物之其他殺蟲劑或殺線蟲劑包括但不限於阿巴汀(abamectin)、亞滅培(acetamiprid)、阿納寧(acrinathrin)、三亞蹣(amitraz)、阿佛菌素(avermectin)、印楝素(azadirachtin)、免速達(bensultap)、畢芬寧(bifenthrin)、布芬淨(buprofezin)、硫線磷(cadusafos)、加保利(carbaryl)、加保扶(carbofuran)、培丹(cartap)、剋安勃(chlorantraniliprole)、克凡派(chlorfenapyr)、陶斯松(chlorpyrifos)、可尼丁(clothianidin)、氰特破(cyantraniliprole)、賽扶寧(cyfluthrin)、β-賽扶寧(beta-cyfluthrin)、賽洛寧(cyhalothrin)、γ-賽洛寧(gamma-cyhalothrin)、λ-賽洛寧(lambda-cyhalothrin)、賽滅寧(cypermethrin)、α-賽滅寧(alpha-cypermethrin)、ζ-賽滅寧(zeta-cypermethrin)、賽滅淨(cyromazine)、第滅寧(deltamethrin)、地特靈(dieldrin)、達特南(dinotefuran)、苯蟲醚(diofenolan)、因滅汀(emamectin)、安殺番(endosulfan)、益化利(esfenvalerate)、乙蟲清(ethiprole)、依芬寧 (etofenprox)、依殺蟎(etoxazole)、芬硫克(fenothiocarb)、芬諾克(fenoxycarb)、芬化利(fenvalerate)、芬普尼(fipronil)、氟尼胺(flonicamid)、氟蟲醯胺(flubendiamide)、氟芬隆(flufenoxuron)、福化利(fluvalinate)、覆滅蟎(formetanate)、福賽絕(fosthiazate)、六伏隆(hexaflumuron)、愛美松(hydramethylnon)、益達胺(imidacloprid)、因得克(indoxacarb)、祿芬隆(lufenuron)、美氟綜(metaflumizone)、滅賜克(methiodicarb)、納乃得(methomyl)、美賜平(methoprene)、滅芬諾(methoxyfenozide)、烯啶蟲胺(nitenpyram)、尼殺賽(nithiazine)、諾伐隆(novaluron)、毆殺滅(oxamyl)、派滅淨(pymetrozine)、除蟲菊精(pyrethrin)、畢達本(pyridaben)、啶蟲丙醚(pyridalyl)、百利普芬(pyriproxyfen)、魚尼丁(ryanodine)、賜托拉(spinetoram)、賜諾殺(spinosad)、賜派芬(spirodiclofen)、螺甲蟎酯(spiromesifen)、螺蟲乙酯(spirotetramat)、氟啶蟲胺腈(sulfoxaflor)、得芬諾(tebufenozide)、治滅寧(tetramethrin)、噻蟲啉(thiacloprid)、賽速安(thiamethoxam)、硫敵克(thiodicarb)、殺蟲單(thiosultap-sodium)、泰滅寧(tralomethrin)、唑蚜威(triazamate)、三福隆(triflumuron)、蘇力菌δ內毒素、蘇力菌的所有品系及核多角體病毒的所有品系。
可與化合物1之固體形態配製成可用於種子處理之混合物之殺真菌劑包括但不限於安美速 (amisulbrom)、亞托敏(azoxystrobin)、白克列(boscalid)、貝芬替(carbendazim)、萎鏽靈(carboxin)、克絕(cymoxanil)、環克座(cyproconazole)、待克利(difenoconazole)、達滅芬(dimethomorph)、扶吉胺(fluazinam)、護汰寧(fludioxonil)、氟喹唑(fluquinconazole)、氟吡菌胺(fluopicolide)、氟嘧菌酯(fluoxastrobin)、護汰芬(flutriafol)、巴斯夫(fluxapyroxad)、依普克唑(ipconazole)、依普同(iprodione)、滅達樂(metalaxyl)、精甲霜靈(mefenoxam)、滅特座(metconazole)、邁克尼(myclobutanil)、巴克素(paclobutrazole)、賓福芬(penflufen)、啶氧菌酯(picoxystrobin)、丙硫菌唑(prothioconazole)、百克敏(pyraclostrobin)、賽達傷(sedaxane)、硅噻菌胺(silthiofam)、得克利(tebuconazole)、腐絕(thiabendazole)、甲基多保淨(thiophanate-methyl)、得恩地(thiram)、三氟敏(trifloxystrobin)及滅菌唑(triticonazole)。
包含有用於種子處理之化合物1固體形態之組成物可進一步包含能提供免受植物病原的真菌或細菌及/或例如線蟲的土傳動物侵害之保護能力的細菌及真菌。顯示出殺線蟲性質的細菌可包含但不限於堅強芽孢桿菌(Bacillus firmus)、仙人掌桿菌(Bacillus cereus)、枯草桿菌(Bacillius subtiliis)及穿透巴斯德芽孢菌(Pasteuria penetrans)。合適的堅強芽孢桿菌(Bacillus firmus)品係為市場上可買到的BioNemTM之品系CNCM I-1582(GB-126)。合適的仙人掌桿菌(Bacillus cereus)品 係為品系NCMM I-1592。這兩個桿菌(Bacillus)品系係揭露在US 6,406,690中。顯示出殺線蟲活性之其他合適細菌為液化澱粉芽孢桿菌(B.amyloliquefaciens)IN937a及枯草桿菌(B.subtilis)品系GB03。顯示出殺真菌性質的細菌可包含但不限於短小芽孢桿菌(B.pumilus)品系GB34。顯示出殺線蟲性質的真菌種類可包含但不限於疣孢漆斑菌(Myrothecium verrucaria)、淡紫擬青黴(Paecilomyces lilacinus)及淡紫紫孢菌(Purpureocillium lilacinum)。
種子處理亦可包含一種以上天然來源之殺線蟲劑,例如稱為接合子(harpin)的激發子蛋白,其係自例如梨火疫病菌(Erwinia amylovora)的某些細菌植物病原分離而得。其中一個實例係名為N-HibitTM Gold CST之Harpin-N-Tek種子處理技術。
種子處理亦可包含一種以上的大豆根瘤細菌,例如微共生固氮細菌慢生型大豆根瘤菌(Bradyrhizobium japonicum)。這些接種劑可視需要包含一種以上的脂類殼寡糖(ipo-chitooligosaccharides(LCOs)),其為根瘤細菌在豆科植物根部激發結瘤所產生的結瘤作用(Nod)因子。舉例而言,Optimize®品牌的種子處理技術整合LCO Promoter TechnologyTM且結合接種劑。
種子處理亦可包含一種以上的異黃酮,其可增加菌根菌根部拓殖的程度。菌根菌加強根部吸收養分例如水、硫酸鹽、硝酸鹽、磷酸鹽及金屬來改善植物成長。異黃酮的實例包括但不限於染料木黃酮、美皂異黃酮A、刺芒柄花素、大豆異黃酮苷素、大豆黃素、橘皮苷 素、柚配質及紅車軸草異黃酮。刺芒柄花素可得自例如PHC Colonize® AG之菌根接種劑產物中的活性成分。
種子處理亦可包含一種以上的植物活化劑,於植物接觸病原後引發植物中系統性獲得抗性。引發此種保護機制之植物活化劑實例為阿拉酸式苯-S-甲基(acibenzolar-S-methyl)。
經處理之種子通常包含每100 kg種子約0.1 g至1 kg(即處理前種子重量之約0.0001%至1%)之化合物1之固體形態。經調配用於種子處理之可流動懸浮液通常包含約0.5%至約70%之活性成分、約0.5%至約30%之成膜黏著劑、約0.5%至約20%之分散劑、0%至約5%之增稠劑、0%至約5%之顏料及/或染料、0%至約2%之消泡劑、0%至約1%之防腐劑及0%至約75%之揮發性液體稀釋劑。
化合物1之固體形態亦適合用於處理種子以外的植物繁殖材料,例如果實、塊莖或植物幼苗。在播種前可利用化合物處理繁殖材料,或者在播種繁殖材料時可施用化合物至播種位置。
對於農藝應用而言,達成有效控制所需之施用率(亦即「生物有效量」)將視諸如有待控制之線蟲品種、線蟲之生命週期、生命階段、其尺寸、地點、季節、宿主作物或動物、攝食行為、交配行為、周圍濕度、溫度及其類似物的因素而定。在正常情狀下,在農藝的生態系統中,使用率約每公頃0.01至2 kg的活性成分足以控制線蟲,但少量如0.0001 kg/公頃可能即足夠或可能需要多如8 kg/公頃。在非農藝應用上,所需有效的使 用率範圍從約1.0至50 mg/平方公尺,但少量如0.1 mg/平方公尺可能即足夠或可能需要多如150 mg/平方公尺。熟悉該項技術之人士可輕易決定所需之生物有效數量,以達寄生性線蟲控制的要求程度。
圖1顯示化合物1多形體形態A、B、C、D及TS之Cu(Kα1)粉體X光繞射圖像,其以圖式顯示計數為單位的絕對X光強度相對以度為單位之2θ反射位置。

Claims (18)

  1. 一種8-氯-N-[(2-氯-5-甲氧苯基)磺醯基]-6-(三氟甲基)-咪唑[1,2-a]吡啶-2-甲醯胺之多形體,其指定為形態A,其特徵在於一室溫粉體Cu(Kα1)X光繞射圖像具有至少2θ反射位置
  2. 一種8-氯-N-[(2-氯-5-甲氧苯基)磺醯基]-6-(三氟甲基)-咪唑[1,2-a]吡啶-2-甲醯胺之多形體,其指定為形態B,其特徵在於-100℃的模擬粉體Cu(Kα1)X光繞射圖像具有至少2θ反射位置
  3. 一種8-氯-N-[(2-氯-5-甲氧苯基)磺醯基]-6-(三氟甲基)-咪唑[1,2-a]吡啶-2-甲醯胺之多形體,係作為一與甲苯為1比1的溶劑合物,其指定為形態TS,其特徵在於一室溫粉體Cu(Kα1)X光繞射圖像具有至少2θ反射位置
  4. 一種用於製備請求項1所述之多形體形態A之方法,包含:以一溶劑形成選自於由形態B、C、D、溶劑合物、非晶形態及前述任一者與形態A之混合物所組成之群組的8-氯-N-[(2-氯-5-甲氧苯基)磺醯基]-6-(三氟甲基)-咪唑[1,2-a]吡啶-2-甲醯胺之一或多種固體形態之一料漿,以及在8-氯-N-[(2-氯-5-甲氧苯基)磺醯基]-6-(三氟甲基)-咪唑[1,2-a]吡啶-2-甲醯胺之該固體形態轉換為多形體形態A時維持該料漿。
  5. 如請求項4所述之方法,其中8-氯-N-[(2-氯-5-甲氧苯基)磺醯基]-6-(三氟甲基)-咪唑[1,2-a]吡啶-2-甲醯胺之該固體形態包含多形體形態A及形態B之一混合物。
  6. 如請求項4或5所述之方法,其中加熱該料漿至30℃與該溶劑之沸點間之一溫度並攪拌。
  7. 如請求項4或5所述之方法,其中攪拌該料漿。
  8. 如請求項4或5所述之方法,其中該溶劑包含水、C5-C8烷、C1-C4烷醇或C3-C4酮。
  9. 如請求項8所述之方法,其中該溶劑包含水或甲醇。
  10. 一種製備請求項1所述之多形體形態A的方法,包含:(A)在一第一溶劑的存在下,使8-氯-6-三氟甲基-咪唑[[1,2-a]吡啶-2-羰基氯或其一鹽接觸2-氯-5-甲氧苯磺醯胺,以形成含有8-氯-N-[(2-氯-5-甲氧苯基)磺醯基]-6-(三氟甲基)-咪唑[1,2-a]吡啶-2-甲醯胺之一中間固體形態之一反應混合物;(B)分離8-氯-N-[(2-氯-5-甲氧苯基)磺醯基]-6-(三氟甲基)-咪唑[1,2-a]吡啶-2-甲醯胺之該中間固體形態;以及(C)使8-氯-N-[(2-氯-5-甲氧苯基)磺醯基]-6-(三氟甲基)-咪唑[1,2-a]吡啶-2-甲醯胺之該中間固體形態接觸一第二溶劑,視需要加熱至30℃與該第二溶劑之沸點間之一溫度,以將該中間固體形態轉換為請求項1所述之多形體形態A。
  11. 如請求項10所述之方法,其中8-氯-N-[(2-氯-5-甲氧苯基)磺醯基]-6-(三氟甲基)-咪唑[1,2-a]吡啶-2-甲醯胺之該中間固體形態為一溶劑合物。
  12. 如請求項11所述之方法,其中8-氯-N-[(2-氯-5-甲氧苯基)磺醯基]-6-(三氟甲基)-咪唑[1,2-a]吡啶-2-甲醯胺之該中間固體形態為與甲苯之一溶劑合物。
  13. 如請求項10所述之方法,其中8-氯-N-[(2-氯-5-甲氧苯基)磺醯基]-6-(三氟甲基)-咪唑[1,2-a]吡啶-2-甲醯胺之該中間固體形態為一非溶合之多形體或多形體混合物。
  14. 如請求項10所述之方法,其中該第一溶劑包含甲苯與乙酸乙酯之一混合物,且該第二溶劑包含水、甲醇、丙酮或正庚烷。
  15. 一種殺線蟲組成物,包含:(a)請求項1所述之該多形體形態A以及(b)至少一種選自於由界面活性劑、固體稀釋劑以及載液所組成之群組的額外成分。
  16. 一種殺線蟲組成物,包含:(a)請求項1所述之該多形體形態A以及(b)至少一種其他殺線蟲劑、殺蟲劑或殺真菌劑。
  17. 一種保護一植物免受線蟲侵害之方法,包含施用一殺線蟲有效量之包括請求項1所述之該多形體形態A之8-氯-N-[(2-氯-5-甲氧苯基)磺醯基]-6-(三氟甲基)-咪唑[1,2-a]吡啶-2-甲醯胺至該植物或其部分或種子或至該植物的生長介質。
  18. 一種化合物,其為8-氯-6-(三氟甲基)咪唑[1,2-a]吡啶-2-羰基氯。
TW101133631A 2011-10-13 2012-09-14 殺線蟲磺醯胺之固體形態 TWI577286B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201161546660P 2011-10-13 2011-10-13

Publications (2)

Publication Number Publication Date
TW201316904A true TW201316904A (zh) 2013-05-01
TWI577286B TWI577286B (zh) 2017-04-11

Family

ID=47040831

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101133631A TWI577286B (zh) 2011-10-13 2012-09-14 殺線蟲磺醯胺之固體形態

Country Status (25)

Country Link
US (1) US9040554B2 (zh)
EP (1) EP2766362B1 (zh)
JP (1) JP6099655B2 (zh)
KR (1) KR101960995B1 (zh)
CN (2) CN103857677A (zh)
AP (1) AP2014007615A0 (zh)
AR (1) AR088326A1 (zh)
AU (1) AU2012321120B2 (zh)
BR (1) BR112014008869A2 (zh)
CA (1) CA2848131C (zh)
ES (1) ES2674406T3 (zh)
HU (1) HUE038996T2 (zh)
IL (1) IL231425B (zh)
MX (1) MX339994B (zh)
MY (1) MY164147A (zh)
PL (1) PL2766362T3 (zh)
PT (1) PT2766362T (zh)
RS (1) RS57385B1 (zh)
RU (1) RU2615139C2 (zh)
SI (1) SI2766362T1 (zh)
TR (1) TR201809737T4 (zh)
TW (1) TWI577286B (zh)
UA (1) UA113968C2 (zh)
WO (1) WO2013055584A1 (zh)
ZA (1) ZA201401475B (zh)

Families Citing this family (112)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2949215A1 (en) * 2004-03-18 2015-12-02 Novozymes Bioag A/S Isoflavonoid compounds and use thereof
EP2903438A1 (en) 2012-10-01 2015-08-12 Basf Se Pesticidally active mixtures comprising anthranilamide compounds
WO2014053407A1 (en) 2012-10-01 2014-04-10 Basf Se N-thio-anthranilamide compounds and their use as pesticides
WO2014053401A2 (en) 2012-10-01 2014-04-10 Basf Se Method of improving plant health
MX2015004175A (es) 2012-10-01 2015-06-10 Basf Se Uso de compuestos de n-tio-antranilamida en plantas cultivadas.
AR093828A1 (es) 2012-10-01 2015-06-24 Basf Se Mezclas activas como plaguicidas, que comprenden compuestos de antranilamida
BR112015003035A2 (pt) 2012-10-01 2017-12-05 Basf Se métodos para o controle de insetos, para a proteção de uma cultura e para o controle da resistência
WO2014053403A1 (en) 2012-10-01 2014-04-10 Basf Se Method of controlling insecticide resistant insects
WO2014079814A1 (en) 2012-11-22 2014-05-30 Basf Se Pesticidal mixtures
BR112015011777B1 (pt) 2012-11-22 2019-09-24 Basf Corporation Mistura sinérgica, kit para preparar uma composição pesticida útil, composição pesticida e método para proteger material de propagação vegetal
WO2014079772A1 (en) 2012-11-22 2014-05-30 Basf Se Pesticidal mixtures
WO2014079770A1 (en) 2012-11-22 2014-05-30 Basf Se Pesticidal mixtures
WO2014079804A1 (en) 2012-11-22 2014-05-30 Basf Se Pesticidal mixtures
WO2014079841A1 (en) 2012-11-22 2014-05-30 Basf Se Pesticidal mixtures
WO2014079820A1 (en) 2012-11-22 2014-05-30 Basf Se Use of anthranilamide compounds for reducing insect-vectored viral infections
WO2014079766A1 (en) 2012-11-22 2014-05-30 Basf Se Pesticidal mixtures
WO2014079774A1 (en) 2012-11-22 2014-05-30 Basf Se Pesticidal mixtures
EP2941125A1 (en) 2012-11-22 2015-11-11 BASF Corporation Pesticidal mixtures
WO2014079752A1 (en) 2012-11-23 2014-05-30 Basf Se Pesticidal mixtures
WO2014079813A1 (en) 2012-11-23 2014-05-30 Basf Se Pesticidal mixtures
EP2984074A1 (en) 2012-12-14 2016-02-17 Basf Se Malononitrile compounds for controlling animal pests
WO2014102244A1 (en) 2012-12-27 2014-07-03 Basf Se 2-(pyridin-3-yl)-5-hetaryl-thiazole compounds carrying an imine or imine-derived substituent for combating invertebrate pests
EP2792360A1 (en) 2013-04-18 2014-10-22 IP Gesellschaft für Management mbH (1aR,12bS)-8-cyclohexyl-11-fluoro-N-((1-methylcyclopropyl)sulfonyl)-1a-((3-methyl-3,8-diazabicyclo[3.2.1]oct-8-yl)carbonyl)-1,1a,2,2b-tetrahydrocyclopropa[d]indolo[2,1-a][2]benzazepine-5-carboxamide for use in treating HCV
JP2016522173A (ja) 2013-04-19 2016-07-28 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 有害動物を駆除するためのn−置換アシル−イミノ−ピリジン化合物および誘導体
WO2014202751A1 (en) 2013-06-21 2014-12-24 Basf Se Methods for controlling pests in soybean
JP2016529234A (ja) 2013-07-15 2016-09-23 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 殺有害生物化合物
EA201600270A1 (ru) 2013-09-19 2016-08-31 Басф Се N-ацилимино гетероциклические соединения
WO2015055497A1 (en) 2013-10-16 2015-04-23 Basf Se Substituted pesticidal pyrazole compounds
WO2015055757A1 (en) 2013-10-18 2015-04-23 Basf Se Use of pesticidal active carboxamide derivative in soil and seed application and treatment methods
US20160318897A1 (en) 2013-12-18 2016-11-03 Basf Se Azole compounds carrying an imine-derived substituent
US20160326153A1 (en) 2013-12-18 2016-11-10 Basf Se N-substituted imino heterocyclic compounds
WO2015104422A1 (en) 2014-01-13 2015-07-16 Basf Se Dihydrothiophene compounds for controlling invertebrate pests
AU2015257746B2 (en) 2014-05-08 2018-11-22 Bayer Cropscience Aktiengesellschaft Pyrazolopyridine sulfonamides as nematicides
JP6500900B2 (ja) * 2014-07-22 2019-04-17 住友化学株式会社 有害生物の防除方法
US10149477B2 (en) 2014-10-06 2018-12-11 Basf Se Substituted pyrimidinium compounds for combating animal pests
EP3214936A1 (en) 2014-11-06 2017-09-13 Basf Se 3-pyridyl heterobicyclic compound for controlling invertebrate pests
CN107846876A (zh) * 2014-12-29 2018-03-27 Fmc有限公司 解淀粉芽孢杆菌rti301组合物和用于利于植物生长和治疗植物疾病的方法
WO2016109424A1 (en) * 2014-12-29 2016-07-07 Fmc Corporation Microbial compositions and methods of use for benefiting plant growth and treating plant disease
UY36477A (es) * 2014-12-29 2017-06-30 Fmc Corp Composiciones de bacillus amyloliquefaciens rti472 y métodos de uso para beneficiar el crecimiento de las plantas y el tratamiento de enfermedades de las plantas
WO2016124769A1 (en) 2015-02-06 2016-08-11 Basf Se Pyrazole compounds as nitrification inhibitors
WO2016128261A2 (en) 2015-02-11 2016-08-18 Basf Se Pesticidal mixture comprising a pyrazole compound, an insecticide and a fungicide
US11064696B2 (en) 2015-04-07 2021-07-20 Basf Agrochemical Products B.V. Use of an insecticidal carboxamide compound against pests on cultivated plants
AR104596A1 (es) 2015-05-12 2017-08-02 Basf Se Compuestos de tioéter como inhibidores de la nitrificación
WO2016198613A1 (en) 2015-06-11 2016-12-15 Basf Se N-(thio)acylimino compounds
WO2016198611A1 (en) 2015-06-11 2016-12-15 Basf Se N-(thio)acylimino heterocyclic compounds
WO2017016883A1 (en) 2015-07-24 2017-02-02 Basf Se Process for preparation of cyclopentene compounds
PE20181006A1 (es) 2015-10-02 2018-06-26 Basf Se Compuestos de imino con un sustituyente de 2-cloropirimidin-5-ilo como agentes de control de plagas
CN113303339A (zh) 2015-11-30 2021-08-27 巴斯夫欧洲公司 顺式-茉莉酮和解淀粉芽孢杆菌的混合物
EP3426660A1 (en) 2016-03-09 2019-01-16 Basf Se Spirocyclic derivatives
WO2017153218A1 (en) 2016-03-11 2017-09-14 Basf Se Method for controlling pests of plants
MX2018011214A (es) 2016-03-15 2019-03-28 Bayer Cropscience Ag Sulfonamidas sustituidas para controlar plagas animales.
UA123912C2 (uk) 2016-04-01 2021-06-23 Басф Се Біциклічні сполуки
CN105901003A (zh) * 2016-04-25 2016-08-31 广东中迅农科股份有限公司 含有三氟咪啶酰胺的农药组合物
WO2017198588A1 (en) 2016-05-18 2017-11-23 Basf Se Capsules comprising benzylpropargylethers for use as nitrification inhibitors
CN106359413A (zh) * 2016-08-31 2017-02-01 冯涵丽 一种含有氟噻虫砜和三氟咪啶酰胺的杀虫组合物
CN106508924A (zh) * 2016-10-27 2017-03-22 佛山市盈辉作物科学有限公司 一种含三氟咪啶酰胺与氨基寡糖素的杀线组合物
CN106508956A (zh) * 2016-10-27 2017-03-22 佛山市盈辉作物科学有限公司 一种含三氟咪啶酰胺与噻唑膦的杀线组合物
TW201822637A (zh) 2016-11-07 2018-07-01 德商拜耳廠股份有限公司 用於控制動物害蟲的經取代磺醯胺類
CN106508969A (zh) * 2016-11-07 2017-03-22 佛山市盈辉作物科学有限公司 一种含三氟咪啶酰胺与淡紫拟青霉的杀线组合物
US20200077658A1 (en) 2016-12-16 2020-03-12 Basf Se Pesticidal Compounds
CN106857581B (zh) * 2017-02-28 2020-06-30 广东真格生物科技有限公司 一种含有三氟咪啶酰胺的杀线虫组合物
WO2018162312A1 (en) 2017-03-10 2018-09-13 Basf Se Spirocyclic derivatives
WO2018166855A1 (en) 2017-03-16 2018-09-20 Basf Se Heterobicyclic substituted dihydroisoxazoles
CN110506038B (zh) 2017-03-28 2023-11-24 巴斯夫欧洲公司 杀害虫化合物
CA3054591A1 (en) 2017-03-31 2018-10-04 Basf Se Pyrimidinium compounds and their mixtures for combating animal pests
WO2018192793A1 (en) 2017-04-20 2018-10-25 Basf Se Substituted rhodanine derivatives
RU2019136972A (ru) 2017-04-26 2021-05-26 Басф Се Замещенные сукцинимидные производные в качестве пестицидов
JP2020519607A (ja) 2017-05-10 2020-07-02 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 二環式殺有害生物性化合物
WO2018224455A1 (en) 2017-06-07 2018-12-13 Basf Se Substituted cyclopropyl derivatives
BR112019025331A2 (pt) 2017-06-16 2020-06-23 Basf Se Compostos da fórmula (i), composição, métodos de proteção de safras e de combate, método não terapêutico de tratamento, semente, uso dos compostos e uso de composto
CN110678469B (zh) 2017-06-19 2023-03-03 巴斯夫欧洲公司 用于防除动物害虫的取代嘧啶鎓化合物和衍生物
WO2018234488A1 (en) 2017-06-23 2018-12-27 Basf Se SUBSTITUTED CYCLOPROPYL DERIVATIVES
WO2019042932A1 (en) 2017-08-31 2019-03-07 Basf Se METHOD FOR CONTROLLING RICE PARASITES IN RICE
EP3453706A1 (en) 2017-09-08 2019-03-13 Basf Se Pesticidal imidazole compounds
BR112020006037A2 (pt) 2017-10-13 2020-10-06 Basf Se compostos, misturas pesticidas, composição agroquímica, métodos para controlar pragas de invertebrados, para proteger plantas e para proteção de material de propagação de plantas, semente e uso de compostos de fórmula (i)
CN107873740A (zh) * 2017-11-25 2018-04-06 惠州市无龄康态健康科技有限公司 一种用于防治蘑菇线虫病的增效杀线虫组合物
WO2019121143A1 (en) 2017-12-20 2019-06-27 Basf Se Substituted cyclopropyl derivatives
BR112020012566B1 (pt) 2017-12-21 2024-03-05 Basf Se Composto da fórmula i, composição, método de combate ou controle de pragas invertebradas, método de proteção de plantas em crescimento contra ataque ou infestação por pragas invertebradas, semente revestida, e usos de um composto da fórmula i
KR20200108007A (ko) 2018-01-09 2020-09-16 바스프 에스이 질화작용 저해제로서의 실릴에티닐 헤타릴 화합물
WO2019137995A1 (en) 2018-01-11 2019-07-18 Basf Se Novel pyridazine compounds for controlling invertebrate pests
JP7444780B2 (ja) 2018-02-28 2024-03-06 ビーエーエスエフ ソシエタス・ヨーロピア 硝化阻害剤としてのn-官能化アルコキシピラゾール化合物の使用
EP3758491A1 (en) 2018-02-28 2021-01-06 Basf Se Use of pyrazole propargyl ethers as nitrification inhibitors
CN111683529B (zh) 2018-02-28 2022-10-14 巴斯夫欧洲公司 烷氧基吡唑作为硝化抑制剂的用途
WO2019175712A1 (en) 2018-03-14 2019-09-19 Basf Corporation New uses for catechol molecules as inhibitors to glutathione s-transferase metabolic pathways
WO2019175713A1 (en) 2018-03-14 2019-09-19 Basf Corporation New catechol molecules and their use as inhibitors to p450 related metabolic pathways
WO2019185413A1 (en) 2018-03-27 2019-10-03 Basf Se Pesticidal substituted cyclopropyl derivatives
BR112020019390A2 (pt) * 2018-04-13 2021-01-05 Bayer Aktiengesellschaft Combinações de ingredientes ativos com propriedades inseticidas, nematicidas e acaricidas
KR20210008036A (ko) 2018-05-15 2021-01-20 바스프 에스이 벤즈피리목산 및 옥사조술필을 포함하는 혼합물 및 이의 용도 및 이의 적용 방법
WO2019224092A1 (en) 2018-05-22 2019-11-28 Basf Se Pesticidally active c15-derivatives of ginkgolides
WO2020002472A1 (en) 2018-06-28 2020-01-02 Basf Se Use of alkynylthiophenes as nitrification inhibitors
PL3826982T3 (pl) 2018-07-23 2024-04-02 Basf Se Zastosowanie podstawionych związków tiazolidynowych jako inhibitora nitryfikacji
EP3826983B1 (en) 2018-07-23 2024-05-15 Basf Se Use of substituted 2-thiazolines as nitrification inhibitors
EP3613736A1 (en) 2018-08-22 2020-02-26 Basf Se Substituted glutarimide derivatives
US20220046925A1 (en) 2018-09-28 2022-02-17 Basf Se Method of controlling pests by seed treatment application of a mesoionic compound or mixture thereof
EP3628157A1 (en) 2018-09-28 2020-04-01 Basf Se Method of controlling insecticide resistant insects and virus transmission to plants
EP3628156A1 (en) 2018-09-28 2020-04-01 Basf Se Method for controlling pests of sugarcane, citrus, rapeseed, and potato plants
EP3628158A1 (en) 2018-09-28 2020-04-01 Basf Se Pesticidal mixture comprising a mesoionic compound and a biopesticide
ES2955596T3 (es) * 2018-10-05 2023-12-04 Corteva Agriscience Llc Proceso e intermedios para la preparación de determinadas sulfonamidas nematicidas
EP3643705A1 (en) 2018-10-24 2020-04-29 Basf Se Pesticidal compounds
BR112021008491A2 (pt) 2018-11-28 2021-08-03 Basf Se composto da fórmula i, composição, método de combate ou controle de pragas invertebradas, método de proteção de plantas em crescimento, semente, uso de composto da fórmula i e método de tratamento ou proteção de animais
BR112021009395A2 (pt) 2018-12-18 2021-08-10 Basf Se compostos de pirimidínio substituídos, compostos de fórmula (i), métodos para proteger culturas, para o combate, controle, prevenção ou proteção, método não terapêutico para o tratamento de animais, semente e usos dos compostos de fórmula (i)
EP3696177A1 (en) 2019-02-12 2020-08-19 Basf Se Heterocyclic compounds for the control of invertebrate pests
EP3769623A1 (en) 2019-07-22 2021-01-27 Basf Se Mesoionic imidazolium compounds and derivatives for combating animal pests
US20220202017A1 (en) 2019-05-29 2022-06-30 Basf Se Mesoionic imidazolium compounds and derivatives for combating animal pests
EP3766879A1 (en) 2019-07-19 2021-01-20 Basf Se Pesticidal pyrazole derivatives
JP2023501978A (ja) 2019-11-07 2023-01-20 バイエル・アクチエンゲゼルシヤフト 動物害虫駆除用の置換スルホニルアミド
US20240101496A1 (en) 2021-02-02 2024-03-28 Basf Se Synergistic action of dcd and alkoxypyrazoles as nitrification inhibitors
CA3219128A1 (en) 2021-05-21 2022-11-24 Barbara Nave Use of an n-functionalized alkoxy pyrazole compound as nitrification inhibitor
CA3219022A1 (en) 2021-05-21 2022-11-24 Barbara Nave Use of ethynylpyridine compounds as nitrification inhibitors
CA3223077A1 (en) 2021-06-21 2022-12-29 Barbara Nave Metal-organic frameworks with pyrazole-based building blocks
WO2023203066A1 (en) 2022-04-21 2023-10-26 Basf Se Synergistic action as nitrification inhibitors of dcd oligomers with alkoxypyrazole and its oligomers
WO2024028243A1 (en) 2022-08-02 2024-02-08 Basf Se Pyrazolo pesticidal compounds

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2891855A (en) 1954-08-16 1959-06-23 Geigy Ag J R Compositions and methods for influencing the growth of plants
US3235361A (en) 1962-10-29 1966-02-15 Du Pont Method for the control of undesirable vegetation
US3060084A (en) 1961-06-09 1962-10-23 Du Pont Improved homogeneous, readily dispersed, pesticidal concentrate
US3299566A (en) 1964-06-01 1967-01-24 Olin Mathieson Water soluble film containing agricultural chemicals
US3309192A (en) 1964-12-02 1967-03-14 Du Pont Method of controlling seedling weed grasses
US4144050A (en) 1969-02-05 1979-03-13 Hoechst Aktiengesellschaft Micro granules for pesticides and process for their manufacture
US3920442A (en) 1972-09-18 1975-11-18 Du Pont Water-dispersible pesticide aggregates
US4172714A (en) 1976-12-20 1979-10-30 E. I. Du Pont De Nemours And Company Dry compactible, swellable herbicidal compositions and pellets produced therefrom
GB2095558B (en) 1981-03-30 1984-10-24 Avon Packers Ltd Formulation of agricultural chemicals
DE3246493A1 (de) 1982-12-16 1984-06-20 Bayer Ag, 5090 Leverkusen Verfahren zur herstellung von wasserdispergierbaren granulaten
US5180587A (en) 1988-06-28 1993-01-19 E. I. Du Pont De Nemours And Company Tablet formulations of pesticides
ATE208560T1 (de) 1989-08-30 2001-11-15 Kynoch Agrochemicals Proprieta Herstellung eines dosierungsmittels
AU651335B2 (en) 1990-03-12 1994-07-21 E.I. Du Pont De Nemours And Company Water-dispersible or water-soluble pesticide granules from heat-activated binders
DE69122201T2 (de) 1990-10-11 1997-02-06 Sumitomo Chemical Co Pestizide Zusammensetzung
US6406690B1 (en) 1995-04-17 2002-06-18 Minrav Industries Ltd. Bacillus firmus CNCM I-1582 or Bacillus cereus CNCM I-1562 for controlling nematodes
TWI283164B (en) 2001-09-21 2007-07-01 Du Pont Anthranilamide arthropodicide treatment
KR20080077650A (ko) * 2005-12-14 2008-08-25 마켓심 케미칼 웍스 리미티드 5-아미노-1-[2,6-디클로로-4-(트리플루오로메틸)페닐]-4-[(트리플루오로메틸)설피닐]-1h-피라졸-s-카르보니트릴의다형체 및 무정형
TWI508962B (zh) * 2009-04-22 2015-11-21 Du Pont 氮雜環醯胺之固體形態
TWI482771B (zh) 2009-05-04 2015-05-01 Du Pont 磺醯胺殺線蟲劑

Also Published As

Publication number Publication date
RU2615139C2 (ru) 2017-04-04
JP2014534194A (ja) 2014-12-18
PT2766362T (pt) 2018-06-25
HUE038996T2 (hu) 2018-12-28
RU2014118950A (ru) 2015-11-20
CN105175413A (zh) 2015-12-23
UA113968C2 (xx) 2017-04-10
WO2013055584A1 (en) 2013-04-18
AR088326A1 (es) 2014-05-28
CN103857677A (zh) 2014-06-11
SI2766362T1 (en) 2018-06-29
EP2766362A1 (en) 2014-08-20
MY164147A (en) 2017-11-30
CA2848131C (en) 2020-04-07
TR201809737T4 (tr) 2018-07-23
US9040554B2 (en) 2015-05-26
KR20140082789A (ko) 2014-07-02
TWI577286B (zh) 2017-04-11
PL2766362T3 (pl) 2018-09-28
ZA201401475B (en) 2015-08-26
US20140228393A1 (en) 2014-08-14
ES2674406T3 (es) 2018-06-29
JP6099655B2 (ja) 2017-03-22
IL231425B (en) 2018-01-31
IL231425A0 (en) 2014-04-30
KR101960995B1 (ko) 2019-03-21
BR112014008869A2 (pt) 2017-04-25
MX339994B (es) 2016-06-21
AU2012321120B2 (en) 2017-05-25
EP2766362B1 (en) 2018-04-11
MX2014004289A (es) 2014-07-30
RS57385B1 (sr) 2018-09-28
AU2012321120A1 (en) 2014-03-13
CA2848131A1 (en) 2013-04-18
AP2014007615A0 (en) 2014-05-31

Similar Documents

Publication Publication Date Title
TWI577286B (zh) 殺線蟲磺醯胺之固體形態
TWI482771B (zh) 磺醯胺殺線蟲劑
TWI568721B (zh) 殺真菌之吡唑混合物
US9023850B2 (en) Nematocidal sulfonamides
JP6272843B2 (ja) ピリドピリミジニウムの分子内塩の固体形態
TW201532520A (zh) 殺真菌吡唑的固態形式
TW202226947A (zh) 用於對抗植物病原真菌的新型雜環化合物
US20200404911A1 (en) Nematocidal heterocyclic amides
WO2021055378A1 (en) Nematicidal compositions
OA17036A (en) Solid forms of nematocidal sulfonamides.