CN103715259A - 包括石墨烯沟道的隧穿场效应晶体管 - Google Patents

包括石墨烯沟道的隧穿场效应晶体管 Download PDF

Info

Publication number
CN103715259A
CN103715259A CN201310221610.XA CN201310221610A CN103715259A CN 103715259 A CN103715259 A CN 103715259A CN 201310221610 A CN201310221610 A CN 201310221610A CN 103715259 A CN103715259 A CN 103715259A
Authority
CN
China
Prior art keywords
electrode
semiconductor layer
raceway groove
tunneling field
effect transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310221610.XA
Other languages
English (en)
Other versions
CN103715259B (zh
Inventor
许镇盛
朴晟准
卞卿溵
D.徐
宋伣在
李载昊
郑现钟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of CN103715259A publication Critical patent/CN103715259A/zh
Application granted granted Critical
Publication of CN103715259B publication Critical patent/CN103715259B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/737Hetero-junction transistors
    • H01L29/7371Vertical transistors
    • H01L29/7376Resonant tunnelling transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y99/00Subject matter not provided for in other groups of this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0895Tunnel injectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1606Graphene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7391Gated diode structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78681Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising AIIIBV or AIIBVI or AIVBVI semiconductor materials, or Se or Te
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78684Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising semiconductor materials of Group IV not being silicon, or alloys including an element of the group IV, e.g. Ge, SiN alloys, SiC alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thin Film Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

提供包括石墨烯沟道的隧穿场效应晶体管(TFET)。该TFET包括:在基板上的第一电极;在第一电极上的半导体层;在半导体层上的石墨烯沟道,该石墨烯沟道朝向与第一电极间隔开的第一区域延伸;在石墨烯沟道上的第二电极,该第二电极在第一区域上;覆盖石墨烯沟道的栅绝缘层;以及在栅绝缘层上的栅电极。第一电极和石墨烯沟道设置为彼此面对,半导体层设置在其间。

Description

包括石墨烯沟道的隧穿场效应晶体管
技术领域
本公开涉及包括石墨烯沟道的隧穿场效应晶体管(TFET),更具体而言,涉及其中栅电压通过石墨烯沟道与电极之间的半导体被施加到隧穿载流子的TFET。
背景技术
近来具有二维六方碳结构的石墨烯已经作为代替半导体的新材料受到关注,因而对于石墨烯的研究在全球正被积极地进行。当具有零带隙半导体的石墨烯被制成具有小于或等于10nm的宽度的石墨烯纳米带(GNR)时,由于尺寸效应,在GNR中形成带隙,因而,在室温下操作的场效应晶体管(FET)可以使用GNR制备。
在制备使用GNR的石墨烯晶体管时,石墨烯晶体管的开/关比增大,但是GNR中的迁移率由于GNR的紊乱边缘而大大减小并且石墨烯晶体管的导通电流低。备选地,垂直电场可以被施加到双层石墨烯以形成带隙。然而,难以执行该方法,因为难以使用大面积化学气相沉积(CVD)生长均匀的双层石墨烯并且由于随机的域(domain)而难以实现该方法。
发明内容
提供包括石墨烯沟道的隧穿场效应晶体管(TFET),其通过施加栅电压提供控制隧穿通过石墨烯沟道与电极之间的半导体的电流的器件。
额外的方面将在以下的描述中被部分地阐述且部分将通过该描述明显或者可以通过所给出的实施方式的实践而习知。
根据示例实施方式,一种包括可调势垒的石墨烯开关器件包括:在基板上的第一电极;在第一电极上的半导体层;在半导体层上的石墨烯沟道,该石墨烯沟道延伸到基板上的与第一电极间隔开的第一区域;在石墨烯沟道上的第二电极,该第二电极设置在第一区域上;覆盖石墨烯沟道的栅绝缘层;以及在栅绝缘层上的栅电极,其中第一电极的一部分和石墨烯沟道设置为彼此面对,半导体层设置在其间。
第一区域还可以包括形成在石墨烯沟道与基板之间的第一绝缘层。
第一电极可以包括主体部分和从主体部分朝向第一区域在半导体层下面延伸的延伸部分,第一电极的所述部分是延伸部分。
半导体层可以包括镓铟锌氧化物(GIZO)、a-Si、Si、HIZO、MoS2、CdSe、ZnO、AlP、InP、SrTiO3、Ge、GaAs、SiC、AlAs、GaN、CdTe、CuO、NiO或GaMnAs。
延伸部分的厚度可以比主体部分的厚度薄。
半导体层可以具有在大约1nm到大约30nm范围内的厚度。
第一电极可以包括Pt、Ni、Au、Pd、Co、Be、Cu、Re、Ru、Fe、W、Sb、Mo、Ag或Cr。
上述晶体管可以是具有与半导体层的杂质的极性相同的极性的单极性晶体管。
根据施加到栅电极的栅电压,在第一电极和石墨烯沟道之间形成的半导体层的能带的隧穿厚度可以是可变的。
石墨烯沟道可以由1至4层石墨烯组成。
第一能量势垒可以形成在半导体层与第一电极之间的界面和半导体层与石墨烯沟道之间的界面两者之一处。
在半导体层与第一电极之间的界面和半导体层与所述石墨烯之间的界面两者中的另一个处,形成比第一能量势垒低的第二能量势垒。
第二能量势垒可以小于或等于0.3eV。
附图说明
通过结合附图对实施方式的以下描述,这些和/或其它方面将变得明显且更易于理解,在附图中:
图1是示出根据本发明实施方式的包括石墨烯沟道的隧穿场效应晶体管(TFET)的截面图;
图2A至图2C是描述图1的TFET的操作的能带图;以及
图3是示出根据本发明实施方式的包括石墨烯沟道的TFET的I-V特性的曲线图。
具体实施方式
现在将详细参考实施方式,其实例在附图中示出,其中相同的参考标记始终表示相同的元件。在这点上,本实施方式可具有不同的形式并且不应被理解为限于在此阐述的描述。因此,以下仅通过参考附图描述实施方式来说明本说明书的多个方面。
图1是示出根据本发明实施方式的包括石墨烯沟道的隧穿场效应晶体管(TFET)100的截面图。
参考图1,第一电极120设置在基板110上,第一绝缘层130形成在与第一电极相邻的区域中。第一电极120包括主体部分122和延伸到第一绝缘层130的延伸部分124。延伸部分124的一端与第一绝缘层130相邻地设置。延伸部分124可以比主体部分122薄。
半导体层140形成在延伸部分124上,石墨烯沟道150形成在半导体层140上。石墨烯沟道150延伸到第一绝缘层130上。在石墨烯沟道150上,第二电极160形成为面对第一绝缘层130。
栅绝缘层170形成在基板110上,该栅绝缘层170覆盖一部分第一电极120和一部分石墨烯沟道150以及一部分第二电极160。栅电极180形成在栅绝缘层170上。栅电极180形成为与石墨烯沟道150相应。
第一绝缘层130可以由硅氧化物或硅氮化物形成。
基板110可以由玻璃、塑料、半导体等形成。
半导体层140可以由镓铟锌氧化物(GIZO)、非晶Si、Si、HIZO、MoS2、CdSe、ZnO、AlP、InP、SrTiO3、Ge、GaAs、SiC、AlAs、GaN、CdTe、CuO、NiO、GaMnAs等形成。半导体层140在与第一电极120或石墨烯沟道150的一个界面处形成第一能量势垒,并且在与石墨烯沟道150或第一电极120的另一界面处不形成能量势垒或者形成比第一能量势垒低的第二能量势垒。第二能量势垒可以小于或等于0.3eV。
半导体层140可以形成为载流子可以隧穿通过的厚度,例如在大约1nm到大约30nm范围内的厚度。
半导体层140用n型杂质或p型杂质中的任一种掺杂。如图1所示,半导体层140被设置为面对栅电极180,其中石墨烯沟道150在半导体层140与栅电极180之间。因此,半导体层140的能带会受栅电压影响。
第一电极120可以由与半导体层140形成能量势垒的材料形成。第一电极120可以由铂(Pt)、镍(Ni)、金(Au)钯(Pd)、钴(Co)、铍(Be)、铼(Re)、钌(Ru)、铁(Fe)、钨(W)、锑(Sb)、钼(Mo)、银(Ag)、铬(Cr)等形成。
石墨烯沟道150可以使用通过化学气相沉积(CVD)制造的石墨烯形成。石墨烯沟道150可以由1至4层石墨烯组成。石墨烯沟道150是载流子移动通过的通道,石墨烯沟道150的带隙可以是零或者小于或等于30meV。
第二电极160可以由一般金属或多晶硅等形成。第二电极160可以由与第一电极120相同的金属形成。
栅绝缘层170可以由硅氧化物或硅氮化物形成。
栅电极180可以由一般金属或多晶硅形成。此外,栅电极180可以由透明导电材料,例如金属氧化物诸如ITO形成。
由于发生载流子迁移的区域增加,其中半导体层140和石墨烯沟道150顺序地形成在第一电极120的延伸部分124上的垂直结构具有载流子沿着其移动的增加的通道。因此,载流子的迁移率可以被改善,而且载流子的移动量也被提高。
第一绝缘层130被设计为防止载流子从第二电极160流到基板110,在基板110由绝缘材料形成时,可以从该结构省略第一绝缘层130。
包括石墨烯沟道150的TFET100可以是根据半导体层140的极性是n型晶体管或者是p型晶体管的单极性晶体管。也就是说,当半导体层140用n型杂质掺杂时,TFET100变成n型晶体管,当半导体层140用p型杂质掺杂时,TFET100变成p型晶体管。
图2A至图2C是描述TFET100的操作的能带图。这里,第一电极120由Pt形成,半导体层140由GIZO形成。半导体层140用n型杂质掺杂,因此,场效应晶体管是n型晶体管。氢(H)被用作n型杂质,但是空隙可以被用来代替氢。GIZO的厚度大约是20nm,Ga:In:Zn的原子比是0.391:0.176:0.433。
图2A是施加电压和栅电压之前的能带图。在半导体层140的相反两侧,石墨烯沟道150和第一电极120的能带结构被设置为分别与其功函数相应。在下文中,将描述包括用n型杂质掺杂的半导体层140的n型TFET100。场效应晶体管的多数载流子是电子。
在石墨烯沟道150和半导体层140之间没有能量势垒。代替地,具有1.0eV的高度(H1)的能量势垒(Eb)形成在石墨烯沟道150和第一电极120之间。第一电极120可以用作源电极。在图中示出的EF指的是石墨烯沟道150的费米能级。
图2B是当负电压被施加到第一电极120时的能带图。在负电压被施加到第一电极120时,第一电极120的费米能级如虚线所示出地相对增加。虽然能量势垒(Eb)的高度(H1)未改变,但是半导体层140的能带的隧穿厚度减小。在此,电子没有从第一电极120隧穿通过半导体层140的能带。
图2C是正栅电压被施加到栅电极180时的能带图。由于正栅电压的施加,石墨烯沟道150的费米能级增加。如图2C中的虚线所示出的,半导体层140的能级与石墨烯沟道150相比相对较低。因此,半导体层140的能带的隧穿厚度减少,因此电子通过从第一电极120隧穿通过半导体层140而移到石墨烯沟道150。
在正电压渐增地施加到栅电极180时,电子容易移动,因而,TFET100中的电流也增加。
图3是示出包括石墨烯沟道的TFET的I-V特性的曲线图。第一电极由Pt形成,半导体层由GIZO形成。半导体层用n型杂质掺杂,因此,场效应晶体管是n型晶体管。
参考图3,-9V到9V范围内的栅电压被施加到晶体管。如图3所示,当栅电压增加时,漏电流(Id)增加。此外,如图3所示,漏电流(Id)可以基于施加到第一电极120的电压Vd(V)的大小而增加。
以上已经描述了n型TFET100的操作,但是在p型TFET中,载流子可以是空穴并且施加负栅电压以导通晶体管。此处将省略其详细说明。
此外,当在石墨烯沟道和半导体层之间的界面处的能量势垒大于在半导体层和第一电极之间的界面处的能量势垒时,源漏电压相反地施加并且载流子从第二电极移到第一电极。在此将省略其详细说明。
如上所述,根据本发明的一个或多个实施方式,包括石墨烯沟道的TFET可以将亚阈值摆幅降至小于60mV/dec,因此具有低驱动电压,因而,可以通过使用石墨烯的高迁移率而改善驱动速度。
应该理解,在此描述的示例性实施方式仅应该以说明性含义被理解,而不是用于限制目的。在每个实施方式内的特征或方面的描述通常应被理解为可用于其它实施方式中的其它类似特征或方面。
本申请要求于2012年10月9日在韩国知识产权局提交的韩国专利申请No.10-2012-0112087的优先权,其公开通过引用整体结合在此。

Claims (13)

1.一种隧穿场效应晶体管,包括:
在基板上的第一电极;
在所述第一电极上的半导体层;
在所述半导体层上的石墨烯沟道,所述石墨烯沟道延伸到所述基板上的与所述第一电极间隔开的第一区域;
在所述石墨烯沟道上的第二电极,所述第二电极设置在所述第一区域上;
覆盖所述石墨烯沟道的栅绝缘层;以及
在所述栅绝缘层上的栅电极,
其中所述第一电极的一部分和所述石墨烯沟道设置为彼此面对,所述半导体层设置在其间。
2.根据权利要求1所述的隧穿场效应晶体管,还包括在所述第一区域上位于所述石墨烯沟道和所述基板之间的第一绝缘层。
3.根据权利要求1所述的隧穿场效应晶体管,其中所述第一电极包括主体部分和从所述主体部分朝向所述第一区域在所述半导体层下面延伸的延伸部分,所述第一电极的所述部分是延伸部分。
4.根据权利要求3所述的隧穿场效应晶体管,其中所述延伸部分的厚度比所述主体部分的厚度薄。
5.根据权利要求1所述的隧穿场效应晶体管,其中所述半导体层包括从由镓铟锌氧化物(GIZO)、a-Si、Si、HIZO、MoS2、CdSe、ZnO、AlP、InP、SrTiO3、Ge、GaAs、SiC、AlAs、GaN、CdTe、CuO、NiO和GaMnAs组成的组中选出的至少一种。
6.根据权利要求1所述的隧穿场效应晶体管,其中所述半导体层的厚度在大约1nm到大约30nm的范围内。
7.根据权利要求1所述的隧穿场效应晶体管,其中所述第一电极包括从由Pt、Ni、Au、Pd、Co、Be、Cu、Re、Ru、Fe、W、Sb、Mo、Ag和Cr组成的组中选出的至少一种。
8.根据权利要求1所述的隧穿场效应晶体管,其中所述晶体管是具有与所述半导体层的杂质的极性相同的极性的单极性晶体管。
9.根据权利要求1所述的隧穿场效应晶体管,其中根据施加到所述栅电极的栅电压,在所述第一电极和所述石墨烯沟道之间的所述半导体层的能带的隧穿厚度是可变的。
10.根据权利要求1所述的隧穿场效应晶体管,所述石墨烯沟道由1至4层石墨烯组成。
11.根据权利要求1所述的隧穿场效应晶体管,其中第一能量势垒形成在所述半导体层与所述第一电极之间的界面和所述半导体层与所述石墨烯沟道之间的界面两者之一处。
12.根据权利要求11所述的隧穿场效应晶体管,其中在所述半导体层与所述第一电极之间的所述界面处和所述半导体层与所述石墨烯之间的所述界面两者中的另一个处,形成比所述第一能量势垒低的第二能量势垒。
13.根据权利要求12所述的隧穿场效应晶体管,其中所述第二能量势垒小于或等于0.3eV。
CN201310221610.XA 2012-10-09 2013-06-05 包括石墨烯沟道的隧穿场效应晶体管 Active CN103715259B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0112087 2012-10-09
KR1020120112087A KR101919425B1 (ko) 2012-10-09 2012-10-09 그래핀 채널을 포함한 터널링 전계효과 트랜지스터

Publications (2)

Publication Number Publication Date
CN103715259A true CN103715259A (zh) 2014-04-09
CN103715259B CN103715259B (zh) 2017-12-29

Family

ID=49263216

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310221610.XA Active CN103715259B (zh) 2012-10-09 2013-06-05 包括石墨烯沟道的隧穿场效应晶体管

Country Status (4)

Country Link
US (1) US9105556B2 (zh)
EP (1) EP2720273B1 (zh)
KR (1) KR101919425B1 (zh)
CN (1) CN103715259B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104332500A (zh) * 2014-09-04 2015-02-04 北京大学 一种阻变栅隧穿场效应晶体管及制备方法
CN104347692A (zh) * 2014-09-04 2015-02-11 北京大学 抑制输出非线性开启的隧穿场效应晶体管及其制备方法
CN106356405A (zh) * 2016-09-06 2017-01-25 北京华碳元芯电子科技有限责任公司 一种异质结碳纳米管场效应晶体管及其制备方法
CN107229167A (zh) * 2016-03-24 2017-10-03 上海新昇半导体科技有限公司 液晶显示器面板及其像素单元的制备方法
CN109155333A (zh) * 2016-11-23 2019-01-04 华为技术有限公司 一种隧穿晶体管及其制备方法
WO2019033393A1 (zh) * 2017-08-18 2019-02-21 华为技术有限公司 异质结遂穿场效应晶体管及其制备方法
CN109461772A (zh) * 2018-09-26 2019-03-12 东南大学 一种基于石墨的隧穿晶体管的反相器及其制备方法
CN109698240A (zh) * 2017-10-24 2019-04-30 乐金显示有限公司 包括二维半导体的薄膜晶体管以及包括其的显示设备
CN112292762A (zh) * 2017-11-29 2021-01-29 国立研究开发法人科学技术振兴机构 隧穿场效应晶体管
WO2023226043A1 (zh) * 2022-05-27 2023-11-30 京东方科技集团股份有限公司 隧穿场效应晶体管及其制备方法、显示面板、显示装置

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2768039B1 (en) 2013-02-15 2021-01-13 Samsung Electronics Co., Ltd. Graphene device and electronic apparatus
KR102100415B1 (ko) * 2013-07-15 2020-04-14 삼성전자주식회사 터널링 소자 및 그 제조방법
KR102128526B1 (ko) * 2013-11-15 2020-06-30 삼성전자주식회사 분리된 정션 컨택을 갖는 그래핀 소자 및 그 제조 방법
KR102156320B1 (ko) 2013-11-21 2020-09-15 삼성전자주식회사 이차원 물질을 포함하는 인버터와 그 제조방법 및 인버터를 포함하는 논리소자
KR102140148B1 (ko) 2013-11-29 2020-07-31 삼성전자주식회사 이차원 물질을 포함하는 메모리소자와 그 제조방법 및 동작방법
US9741832B2 (en) * 2014-03-28 2017-08-22 Intel Corporation Tunneling field effect transistors with a variable bandgap channel
KR102214833B1 (ko) 2014-06-17 2021-02-10 삼성전자주식회사 그래핀과 양자점을 포함하는 전자 소자
KR102237826B1 (ko) 2014-07-18 2021-04-08 삼성전자주식회사 그래핀 소자와 그 제조 및 동작방법과 그래핀 소자를 포함하는 전자장치
US9431529B2 (en) * 2014-09-08 2016-08-30 Samsung Electronics Co., Ltd. Confined semi-metal field effect transistor
CN104766888A (zh) * 2015-03-26 2015-07-08 清华大学 高介电常数栅介质复合沟道场效应晶体管及其制备方法
KR102335772B1 (ko) 2015-04-07 2021-12-06 삼성전자주식회사 측면 게이트와 2차원 물질 채널을 포함하는 전자소자와 그 제조방법
KR101693663B1 (ko) * 2015-05-15 2017-01-17 성균관대학교산학협력단 인버터 소자 및 이의 제조 방법
KR102395776B1 (ko) 2015-05-18 2022-05-09 삼성전자주식회사 이차원 물질을 포함하는 반도체소자 및 그 제조방법
KR102434697B1 (ko) 2015-06-02 2022-08-22 삼성전자주식회사 2d 물질을 포함하는 광학소자 및 그 제조방법
KR102402547B1 (ko) 2015-08-18 2022-05-26 삼성전자주식회사 그래핀 아일랜드들을 포함하는 채널층을 구비한 그래핀 전자소자 및 그 제조방법
KR102459948B1 (ko) * 2015-12-28 2022-10-31 엘지디스플레이 주식회사 액티브층, 이를 포함하는 박막트랜지스터 어레이 기판 및 표시장치
KR102460937B1 (ko) 2015-12-31 2022-10-31 엘지디스플레이 주식회사 액티브층, 이를 포함하는 박막트랜지스터 어레이 기판 및 표시장치
KR101792953B1 (ko) * 2016-07-01 2017-11-20 건국대학교 산학협력단 2차원 반도체, 이의 제조 방법, 및 이를 포함하는 반도체 소자
KR102651544B1 (ko) 2016-11-21 2024-03-28 삼성전자주식회사 광대역 다기능 광학소자와 그 제조 및 동작방법
JP2018098338A (ja) * 2016-12-13 2018-06-21 ソニーセミコンダクタソリューションズ株式会社 トンネル電界効果トランジスタ
US11404562B2 (en) * 2017-08-18 2022-08-02 Intel Corporation Tunneling field effect transistors
KR101978944B1 (ko) * 2017-10-30 2019-05-15 성균관대학교 산학협력단 트랜지스터 및 이의 제조 방법
KR20210094332A (ko) 2020-01-21 2021-07-29 삼성전자주식회사 2d 채널을 포함하는 트랜지스터

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100258787A1 (en) * 2009-04-08 2010-10-14 Electronics And Telecommunications Research Institute Field effect transistor having graphene channel layer
JP2011192667A (ja) * 2010-03-11 2011-09-29 Toshiba Corp トランジスタおよびその製造方法
US20120032227A1 (en) * 2010-08-09 2012-02-09 University Of Notre Dame Du Lac Low voltage tunnel field-effect transistor (tfet) and method of making same

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100085713A1 (en) 2008-10-03 2010-04-08 Balandin Alexander A Lateral graphene heat spreaders for electronic and optoelectronic devices and circuits
KR101007424B1 (ko) 2008-12-24 2011-01-12 경희대학교 산학협력단 그래핀을 이용한 가변 에너지 가시광 방출 투과 광소자 및 그 제조방법
EP2416365A4 (en) * 2009-04-01 2014-07-30 Univ Hokkaido Nat Univ Corp FIELD EFFECT TRANSISTOR
KR101117775B1 (ko) 2009-04-15 2012-03-21 연세대학교 산학협력단 전자 받개 화합물, 이의 제조 방법, 이를 포함하는 광전 필름 및 이를 포함하는 광전 소자
KR101154347B1 (ko) 2009-08-24 2012-06-13 한양대학교 산학협력단 그래핀 박막과 나노 입자를 이용한 광검출기 및 그 제조 방법
US8053782B2 (en) 2009-08-24 2011-11-08 International Business Machines Corporation Single and few-layer graphene based photodetecting devices
KR101251020B1 (ko) 2010-03-09 2013-04-03 국립대학법인 울산과학기술대학교 산학협력단 그라펜의 제조 방법, 이를 포함하는 투명 전극, 활성층, 이를 구비한 표시소자, 전자소자, 광전소자, 태양전지 및 염료감응 태양전지
US8421165B2 (en) * 2010-05-11 2013-04-16 Sematech, Inc. Apparatus, system, and method for tunneling MOSFETs using self-aligned heterostructure source and isolated drain
US8258031B2 (en) * 2010-06-15 2012-09-04 International Business Machines Corporation Fabrication of a vertical heterojunction tunnel-FET
US20120001761A1 (en) 2010-07-01 2012-01-05 Nokia Corporation Apparatus and method for detecting radiation
US9029836B2 (en) * 2010-09-08 2015-05-12 President And Fellows Of Harvard College Controlled synthesis of monolithically-integrated graphene structure
US9166172B2 (en) 2010-10-11 2015-10-20 The University Of Kansas Multiwall carbon nanotube opto-electronic devices
JP5627390B2 (ja) 2010-10-22 2014-11-19 株式会社東芝 光電変換素子およびその製造方法
CN102468333B (zh) * 2010-10-29 2014-05-28 中国科学院微电子研究所 一种石墨烯器件及其制造方法
US20120305891A1 (en) * 2011-06-03 2012-12-06 Nayfeh Osama M Graphene channel transistors and method for producing same
KR101920712B1 (ko) 2011-08-26 2018-11-22 삼성전자주식회사 튜너블 배리어를 구비한 그래핀 스위칭 소자

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100258787A1 (en) * 2009-04-08 2010-10-14 Electronics And Telecommunications Research Institute Field effect transistor having graphene channel layer
JP2011192667A (ja) * 2010-03-11 2011-09-29 Toshiba Corp トランジスタおよびその製造方法
US20120032227A1 (en) * 2010-08-09 2012-02-09 University Of Notre Dame Du Lac Low voltage tunnel field-effect transistor (tfet) and method of making same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104332500A (zh) * 2014-09-04 2015-02-04 北京大学 一种阻变栅隧穿场效应晶体管及制备方法
CN104347692A (zh) * 2014-09-04 2015-02-11 北京大学 抑制输出非线性开启的隧穿场效应晶体管及其制备方法
CN104347692B (zh) * 2014-09-04 2017-06-06 北京大学 抑制输出非线性开启的隧穿场效应晶体管及其制备方法
CN107229167A (zh) * 2016-03-24 2017-10-03 上海新昇半导体科技有限公司 液晶显示器面板及其像素单元的制备方法
CN107229167B (zh) * 2016-03-24 2021-01-29 上海新昇半导体科技有限公司 液晶显示器面板及其像素单元的制备方法
CN106356405A (zh) * 2016-09-06 2017-01-25 北京华碳元芯电子科技有限责任公司 一种异质结碳纳米管场效应晶体管及其制备方法
CN106356405B (zh) * 2016-09-06 2020-10-09 北京华碳元芯电子科技有限责任公司 异质结碳纳米管场效应晶体管及其制备方法
CN109155333A (zh) * 2016-11-23 2019-01-04 华为技术有限公司 一种隧穿晶体管及其制备方法
CN109690786A (zh) * 2017-08-18 2019-04-26 华为技术有限公司 异质结遂穿场效应晶体管及其制备方法
WO2019033393A1 (zh) * 2017-08-18 2019-02-21 华为技术有限公司 异质结遂穿场效应晶体管及其制备方法
CN109690786B (zh) * 2017-08-18 2021-05-18 华为技术有限公司 异质结遂穿场效应晶体管及其制备方法
CN109698240A (zh) * 2017-10-24 2019-04-30 乐金显示有限公司 包括二维半导体的薄膜晶体管以及包括其的显示设备
CN109698240B (zh) * 2017-10-24 2022-06-14 乐金显示有限公司 包括二维半导体的薄膜晶体管以及包括其的显示设备
CN112292762A (zh) * 2017-11-29 2021-01-29 国立研究开发法人科学技术振兴机构 隧穿场效应晶体管
CN112292762B (zh) * 2017-11-29 2023-11-03 国立研究开发法人科学技术振兴机构 隧穿场效应晶体管
CN109461772A (zh) * 2018-09-26 2019-03-12 东南大学 一种基于石墨的隧穿晶体管的反相器及其制备方法
CN109461772B (zh) * 2018-09-26 2021-09-28 东南大学 一种基于石墨烯的隧穿晶体管、反相器及其制备方法
WO2023226043A1 (zh) * 2022-05-27 2023-11-30 京东方科技集团股份有限公司 隧穿场效应晶体管及其制备方法、显示面板、显示装置

Also Published As

Publication number Publication date
KR20140045841A (ko) 2014-04-17
US20140097403A1 (en) 2014-04-10
EP2720273B1 (en) 2017-03-29
US9105556B2 (en) 2015-08-11
CN103715259B (zh) 2017-12-29
EP2720273A1 (en) 2014-04-16
KR101919425B1 (ko) 2018-11-19

Similar Documents

Publication Publication Date Title
CN103715259A (zh) 包括石墨烯沟道的隧穿场效应晶体管
KR101920712B1 (ko) 튜너블 배리어를 구비한 그래핀 스위칭 소자
US9741848B2 (en) Multi-gate tunnel field-effect transistor (TFET)
KR101156620B1 (ko) 그라핀 채널층을 가지는 전계 효과 트랜지스터
EP2887398B1 (en) A bilayer graphene tunneling field effect transistor
KR101830782B1 (ko) 그래핀을 포함하는 전극 구조체 및 전계효과 트랜지스터
KR101813181B1 (ko) 튜너블 배리어를 포함하는 그래핀 전계효과 트랜지스터를 구비한 인버터 논리소자
US20140158989A1 (en) Electronic device including graphene
KR101368191B1 (ko) 수직 구조를 갖는 독립적 및 대칭적인 이중 게이트 구조를 이용한 전자-정공 이중층 터널 전계 효과 트랜지스터 및 그 제조 방법
KR101906972B1 (ko) 튜너블 배리어를 구비한 그래핀 스위칭 소자
US9318556B2 (en) Graphene transistor having tunable barrier
US20150137074A1 (en) Graphene device including separated junction contacts and method of manufacturing the same
KR101910579B1 (ko) 튜너블 배리어를 구비한 그래핀 스위칭 소자
US8878251B2 (en) Silicon-compatible compound junctionless field effect transistor
CN105870182B (zh) 一种三明治结构双栅垂直隧穿场效应晶体管
WO2019107411A1 (ja) トンネル電界効果トランジスタ
CN105118858A (zh) 纵向隧穿场效应晶体管
Park et al. A novel design of quasi-lightly doped drain poly-Si thin-film transistors for suppression of kink and gate-induced drain leakage current
KR20150054549A (ko) 플렉서블 그래핀 스위칭 소자
CN106876474A (zh) 具有金属氧化物通道层之增强型场效晶体管
Knoch et al. Semiconductor nanostructures and devices
CN102593177B (zh) 具有水平准同轴电缆结构的隧穿晶体管及其形成方法
CN102544069B (zh) 具有水平准同轴电缆结构的隧穿晶体管及其形成方法
Yeo Junction technologies for devices with steep subthreshold swing
Ha et al. Improvement of field effect mobility with dual-work function gate in n-LDMOST by using ni-silicidation of poly-Si gate

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant