CN109461772A - 一种基于石墨的隧穿晶体管的反相器及其制备方法 - Google Patents

一种基于石墨的隧穿晶体管的反相器及其制备方法 Download PDF

Info

Publication number
CN109461772A
CN109461772A CN201811123546.0A CN201811123546A CN109461772A CN 109461772 A CN109461772 A CN 109461772A CN 201811123546 A CN201811123546 A CN 201811123546A CN 109461772 A CN109461772 A CN 109461772A
Authority
CN
China
Prior art keywords
layer
drain
substrate
electrode
graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811123546.0A
Other languages
English (en)
Other versions
CN109461772B (zh
Inventor
王琦龙
杨文鑫
徐季
翟雨生
张晓兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201811123546.0A priority Critical patent/CN109461772B/zh
Publication of CN109461772A publication Critical patent/CN109461772A/zh
Application granted granted Critical
Publication of CN109461772B publication Critical patent/CN109461772B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7391Gated diode structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8222Bipolar technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/082Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including bipolar components only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1606Graphene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66356Gated diodes, e.g. field controlled diodes [FCD], static induction thyristors [SITh], field controlled thyristors [FCTh]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

本发明公开了一种基于石墨的隧穿晶体管的反相器及其制备方法,石墨烯隧穿晶体管包括源极、栅极、漏极、石墨烯薄膜、半导体或金属衬底、隧穿层、漏极绝缘层、栅极绝缘层、石墨烯钝化层以及直流偏置电压源;源电极和硅衬底相连,漏电极与石墨烯薄膜相连,石墨烯和衬底之间有一层隧穿层,栅极在电子隧穿部分的顶部。若半导体或金属衬底的功函数较小,漏极选择功函数较大的金属,器件为n型,反之漏极则采用功函数较大的金属,器件为p型。p型管漏极连接高电位,n型管源极连接低电位,两根管的共有栅极作为电路的输入端,p型管源极和n型管漏极相连,作为电路的输出端。新型石墨烯隧穿晶体管结构实现高响应速率、低静态功耗的数字逻辑反相器。

Description

一种基于石墨的隧穿晶体管的反相器及其制备方法
技术领域
本发明涉及一种反相器及其制备方法,特别涉及一种基于石墨的隧穿晶体管的反相器及其制备方法,属于电子器件制备技术领域。
背景技术
反相器是一种可将输入信号相位反转的电子器件,广泛应用于模拟电路,例如音响放大电路、时钟振荡器等。现有的CMOS反相器电路由两个增强型MOS场效应管组成,如图1所示,由于硅中电子的饱和运动速度不高,使其难以满足数字逻辑电路对在高频工作模式下对响应速度的要求。
发明内容
针对上述问题,本发明提供一种响应速度快、增益高的基于石墨的隧穿晶体管的反相器及其制备方法。
本发明为解决上述技术问题采用以下技术方案:
本发明提供一种基于石墨的隧穿晶体管,包括源极、漏极、栅极、石墨烯薄膜、衬底、栅极绝缘层兼石墨烯钝化层、漏极绝缘层、隧穿层、硅基底,其中,硅基底的上表面设置衬底,衬底的上表面间隔设置源极和隧穿层,隧穿层一侧的上表面设置漏极绝缘层,漏极绝缘层的上表面设置漏极,隧穿层另一侧的上表面、漏极的上表面以及漏极绝缘层未设置漏极的上表面依次向上设置石墨烯薄膜、栅极绝缘层兼石墨烯钝化层,栅极绝缘层兼石墨烯钝化层的上表面设置栅极,栅极和隧穿层之间仅存在石墨烯薄膜和栅极绝缘层兼石墨烯钝化层。
作为本发明的进一步技术方案,衬底为半导体或金属衬底。
作为本发明的进一步技术方案,若衬底材料的功函数大于5.4eV,则漏极电极选用功函数小于4.9eV的金属;若衬底材料的功函数小于4.9eV,则漏极电极选用功函数大于5.4eV的金属。
作为本发明的进一步技术方案,隧穿层的厚度小于20nm。
本发明还提供一种基于石墨的隧穿晶体管的制备方法,具体步骤如下:
步骤1,在硅基底上制备衬底作为晶体管的有源层;
步骤2,在衬底上的源极区域沉淀电极作为源极、隧穿层区域制备隧穿层;
步骤3,在隧穿层上的漏极绝缘层区域制备漏极绝缘层,在漏极绝缘层上的漏极区域制备电极作为漏极;
步骤4,在隧穿层上非漏极绝缘层区域以及漏极绝缘层与漏极堆叠部分的上表面设置一层石墨烯薄膜,再在石墨烯薄膜的上表面设置制备一层绝缘层薄膜作为栅极绝缘层兼石墨烯钝化层;
步骤5,在隧穿层、石墨烯薄膜以及栅极绝缘层兼石墨烯钝化层堆叠部分的上表面制备电极作为栅极。
本发明还提供一种反相器,由两个如上任一所述的一种基于石墨的隧穿晶体管构成,该两个隧穿晶体管中的一个为p型管、另一个为n型管,其中,p型管的源极与n型管的漏极连接,作为反相器的输出端;n型管的栅极与p型管的栅极连接,作为反相器的输入端;p型管的漏极连接高电位,n型管的源极连接低电位。。
本发明还提供一种上述反相器的制备方法,具体步骤如下:
步骤1,采用如上所述的基于石墨的隧穿晶体管的制备方法分别制备p型管和n型管:若衬底材料的功函数大于5.4eV,则漏极电极选用功函数小于4.9eV的金属,以制备n型管;若衬底材料的功函数小于4.9eV,则漏极电极选用功函数大于5.4eV的金属,以制备p型管;
步骤2,p型管的源极与n型管的漏极连接,作为反相器的输出端;n型管的栅极与p型管的栅极连接,作为反相器的输入端;
步骤3,p型管的漏极连接高电位,n型管的源极连接低电位。
作为本发明的进一步技术方案,若制备的是p型管则通过在硅基底进行n型重掺杂制备衬底,若制备的是n型管则通过在硅基底上蒸镀金属制备衬底。
本发明采用以上技术方案与现有技术相比,具有以下技术效果:
1)本发明采用石墨烯作为有源层沟道,利用石墨烯材料的高载流子迁移率实现器件的高速响应;
2)本发明中的漏极绝缘层引导源漏电流经过顶栅的有效控制区,因此可以显著提高栅极对源漏电流的调控能力。从而提高反相器的整体增益;
3)本发明中石墨烯钝化层可以对石墨烯起到有效的保护作用。石墨烯薄膜作为一种二维纳米材料,其电学特性会受到表面特性的显著影响。薄膜的污染、氧化和破损会造成石墨烯的掺杂和载流子散射,从而造成器件的性能退化。而加入石墨烯钝化层之后可以保护石墨烯的质量,延长器件的工作寿命。此外,石墨烯钝化层可以和栅极绝缘层一同制备,无需增加额外的工艺步骤。
附图说明
图1是现有的CMOS反相器电路;
图2是本发明的结构剖面示意图;
图3是本发明实施例整体结构剖面示意图;
图4是本发明实施例整体结构俯视示意图;
其中,1为源极;2为漏极;3为栅极;4为石墨烯薄膜;5为衬底;6为栅极绝缘层兼石墨烯钝化层;7为漏极绝缘层;8为隧穿层;25为硅基底;17为n型管源极;18为n型管漏极;19为n型管栅极;20为n型管石墨烯薄膜;21为n型管衬底;22为n型管栅极绝缘层兼石墨烯钝化层;23为n型管漏极绝缘层;24为n型管隧穿层;9为p型管源极;10为p型管漏极;11为p型管栅极;12为p型管石墨烯薄膜;13为p型管衬底;14为p型管栅极绝缘层兼石墨烯钝化层;15为p型管漏极绝缘层;16为p型管隧穿层。
具体实施方式
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。
本技术领域技术人员可以理解的是,除非特意声明,这里使用的单数形式“一”、“一个”、“所述”和“该”也可包括复数形式。应该进一步理解的是,本发明的说明书中使用的措辞“包括”是指存在所述特征、整数、步骤、操作、元件和/或组件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件、组件和/或它们的组。应该理解,当我们称元件被“连接”或“耦接”到另一元件时,它可以直接连接或耦接到其他元件,或者也可以存在中间元件。此外,这里使用的“连接”或“耦接”可以包括无线连接或耦接。这里使用的措辞“和/或”包括一个或更多个相关联的列出项的任一单元和全部组合。
本技术领域技术人员可以理解的是,除非另外定义,这里使用的所有术语(包括技术术语和科学术语)具有与本发明所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样定义,不会用理想化或过于正式的含义来解释。
下面结合附图对本发明的技术方案做进一步的详细说明:
本发明提出一种基于石墨的隧穿晶体管,以石墨烯薄膜作为主要的隧穿沟道,衬底和漏极电极采用功函数不同的半导体或金属材料,形成反偏的p-n结构。在石墨烯和衬底之间制备有隧穿层,漏极底部制备有漏极绝缘层,石墨烯薄膜和顶栅电极之间制备有栅极绝缘层。石墨烯薄膜表面制备一层钝化层,该钝化层可以和栅极绝缘层一同制备。
本发明中的基于石墨的隧穿晶体管的结构,如图2所示,包括源极1、漏极2、栅极3、石墨烯薄膜4、衬底5、栅极绝缘层兼石墨烯钝化层6、漏极绝缘层7、隧穿层8、硅基底25,其中,硅基底25的上表面设置衬底5,衬底5的上表面间隔设置源极1和隧穿层8,隧穿层8一侧的上表面设置漏极绝缘层7,漏极绝缘层7的上表面设置漏极2,隧穿层8另一侧的上表面、漏极2的上表面以及漏极绝缘层7未设置漏极2的上表面依次向上设置石墨烯薄膜4、栅极绝缘层兼石墨烯钝化层6,栅极绝缘层兼石墨烯钝化层6的上表面设置栅极3,栅极3和隧穿层8之间仅存在石墨烯薄膜4和栅极绝缘层兼石墨烯钝化层6。
本发明的基于石墨的隧穿晶体管中,衬底可根据器件需求选择金属或半导体衬底,;源极、漏极、栅极电极可采用热蒸发方法沉淀;石墨烯薄膜可采用机械剥离法、化学气相沉积法、氧化还原法等方法制备或转移;栅极绝缘层、漏极绝缘层、隧穿层和钝化层可以用化学气相沉积法、磁控溅射或原子层沉积等方法制备。所有电极都可以通过金属导线与外接电路相连。
本发明提出一种反相器,以基于石墨的隧穿晶体管取代CMOS管。基于石墨的隧穿晶体管中:若衬底5材料的功函数大于5.4eV,则漏极2电极选用功函数小于4.9eV的金属,以制备n型管;若衬底5材料的功函数小于4.9eV,则漏极2电极选用功函数大于5.4eV的金属,以制备p型管。p型管的漏极连接高电位,n型管的源极连接低电位,两根管的共有栅极作为电路的输入端,p型管的源极和n型管的漏极相连作为电路的输出端。
本发明的反相器的制备方法具体为:
如图3和图4所示,在硅基底25上,p型管区域部分进行n型重掺杂,功函数小于4.9eV(一般可选用n型重掺杂硅的功函数典型值4.5),以制备p型管衬底13;在n型管区域部分蒸镀一层金属铂,其功函数为5.65eV,以制备n型管衬底21。在p型管衬底13和n型管衬底21上的源极区域分别热蒸镀铝电极作为源极9、17。在p型管衬底13和n型管衬底21上的隧穿层区域,使用化学气相沉积法制备厚度为5nm的二氧化硅隧穿层16、24,并采用同样方法在隧穿层16、24上分别制备厚度为100nm的氮化硅漏极绝缘层15、23。在漏极绝缘层23上热蒸镀铝电极作为n型管漏极18,铝的功函数为4.26eV;在漏极绝缘层15上热蒸镀铂电极作为p型管漏极10,金的功函数为5.65eV。将通过气相化学沉积法制备在铜箔上的石墨烯薄膜12、20通过湿法转移的方式转移到当前制备完成的硅基底上,要求石墨烯薄膜12、20同时与隧穿层16、24和漏极10、18有交叠。使用原子层沉积法制备20nm三氧化二铝薄膜,作为兼顾栅极绝缘和石墨烯钝化的两用层14、22。在石墨烯薄膜12、20和隧穿层16、24的交叠部分上方制备金电极作为栅极11、19。
源极9、17通过金属引线与外电路相连,p型管源极9和n型管漏极18相连,n型管栅极19和p型管栅极11相连。将制备好的p型管漏极10连接高电位,n型管源极17连接低电位,n型管栅极19和p型管栅极11的公共端作为反相器的输入端,p型管源极9和n型管的漏极18相连,作为反相器的输出端。
以上所述,仅为本发明中的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉该技术的人在本发明所揭露的技术范围内,可理解想到的变换或替换,都应涵盖在本发明的包含范围之内,因此,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (8)

1.一种基于石墨的隧穿晶体管,其特征在于,包括源极(1)、漏极(2)、栅极(3)、石墨烯薄膜(4)、衬底(5)、栅极绝缘层兼石墨烯钝化层(6)、漏极绝缘层(7)、隧穿层(8)、硅基底(25),其中,硅基底(25)的上表面设置衬底(5),衬底(5)的上表面间隔设置源极(1)和隧穿层(8),隧穿层(8)一侧的上表面设置漏极绝缘层(7),漏极绝缘层(7)的上表面设置漏极(2),隧穿层(8)另一侧的上表面、漏极(2)的上表面以及漏极绝缘层(7)未设置漏极(2)的上表面依次向上设置石墨烯薄膜(4)、栅极绝缘层兼石墨烯钝化层(6),栅极绝缘层兼石墨烯钝化层(6)的上表面设置栅极(3),栅极(3)和隧穿层(8)之间仅存在石墨烯薄膜(4)和栅极绝缘层兼石墨烯钝化层(6)。
2.根据权利要求1所述的一种基于石墨的隧穿晶体管,其特征在于,衬底(5)为半导体或金属衬底。
3.根据权利要求1所述的一种基于石墨的隧穿晶体管,其特征在于,若衬底(5)材料的功函数大于5.4eV,则漏极(2)电极选用功函数小于4.9eV的金属;若衬底(5)材料的功函数小于4.9eV,则漏极(2)电极选用功函数大于5.4eV的金属。
4.根据权利要求1所述的一种基于石墨的隧穿晶体管,其特征在于,隧穿层(8)的厚度小于20nm。
5.如权利要求1至4中任一所述的一种基于石墨的隧穿晶体管的制备方法,其特征在于,该制备方法的具体步骤如下:
步骤1,在硅基底(25)上制备衬底(5)作为晶体管的有源层;
步骤2,在衬底(5)上的源极区域沉淀电极作为源极(1)、隧穿层区域制备隧穿层(8);
步骤3,在隧穿层(8)上的漏极绝缘层区域制备漏极绝缘层(7),在漏极绝缘层(7)上的漏极区域制备电极作为漏极(2);
步骤4,在隧穿层(8)上非漏极绝缘层区域以及漏极绝缘层(7)与漏极(2)堆叠部分的上表面设置一层石墨烯薄膜(4),再在石墨烯薄膜(4)的上表面设置制备一层绝缘层薄膜作为栅极绝缘层兼石墨烯钝化层(6);
步骤5,在隧穿层(8)、石墨烯薄膜(4)以及栅极绝缘层兼石墨烯钝化层(6)堆叠部分的上表面制备电极作为栅极(3)。
6.一种反相器,其特征在于,由两个如权利要求1至4中任一所述的一种基于石墨的隧穿晶体管构成,该两个隧穿晶体管中的一个为p型管、另一个为n型管,其中,p型管的源极与n型管的漏极连接,作为反相器的输出端;n型管的栅极与p型管的栅极连接,作为反相器的输入端;p型管的漏极连接高电位,n型管的源极连接低电位。
7.如权利要求6所述的一种反相器的制备方法,其特征在于,具体步骤如下:
步骤1,采用如权利要求5所述的方法分别制备p型管和n型管:若衬底(5)材料的功函数大于5.4eV,则漏极(2)电极选用功函数小于4.9eV的金属,以制备n型管;若衬底(5)材料的功函数小于4.9eV,则漏极(2)电极选用功函数大于5.4eV的金属,以制备p型管;
步骤2,p型管的源极与n型管的漏极连接,作为反相器的输出端;n型管的栅极与p型管的栅极连接,作为反相器的输入端;
步骤3,p型管的漏极连接高电位,n型管的源极连接低电位。
8.根据权利要求7所述的一种反相器的制备方法,其特征在于,其中,若制备的是p型管则通过在硅基底(25)进行n型重掺杂制备衬底(5),若制备的是n型管则通过在硅基底(25)上蒸镀金属制备衬底(5)。
CN201811123546.0A 2018-09-26 2018-09-26 一种基于石墨烯的隧穿晶体管、反相器及其制备方法 Active CN109461772B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811123546.0A CN109461772B (zh) 2018-09-26 2018-09-26 一种基于石墨烯的隧穿晶体管、反相器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811123546.0A CN109461772B (zh) 2018-09-26 2018-09-26 一种基于石墨烯的隧穿晶体管、反相器及其制备方法

Publications (2)

Publication Number Publication Date
CN109461772A true CN109461772A (zh) 2019-03-12
CN109461772B CN109461772B (zh) 2021-09-28

Family

ID=65606931

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811123546.0A Active CN109461772B (zh) 2018-09-26 2018-09-26 一种基于石墨烯的隧穿晶体管、反相器及其制备方法

Country Status (1)

Country Link
CN (1) CN109461772B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114023844A (zh) * 2021-10-15 2022-02-08 华南师范大学 一种自驱动光电探测器及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000174256A (ja) * 1998-12-01 2000-06-23 Nec Corp トンネルトランジスタとその製造方法
US20040079989A1 (en) * 2002-10-11 2004-04-29 Nissan Motor Co., Ltd. Insulated gate tunnel-injection device having heterojunction and method for manufacturing the same
US20070023814A1 (en) * 2005-07-28 2007-02-01 Nec Electronics Corporation Nonvolatile memory semiconductor device and method for manufacturing same
CN102610647A (zh) * 2012-03-14 2012-07-25 清华大学 具有异质栅介质的隧穿晶体管及其形成方法
CN103715259A (zh) * 2012-10-09 2014-04-09 三星电子株式会社 包括石墨烯沟道的隧穿场效应晶体管
CN104218089A (zh) * 2014-09-10 2014-12-17 北京大学 阶梯栅介质双层石墨烯场效应晶体管及其制备方法
US20160163840A1 (en) * 2011-10-14 2016-06-09 The Board Of Regents Of The University Of Texas System Tunnel field effect transistor (tfet) with lateral oxidation
CN106098765A (zh) * 2016-07-26 2016-11-09 电子科技大学 一种增加电流开关比的隧穿场效应晶体管
US20160343860A1 (en) * 2014-06-23 2016-11-24 International Business Machines Corporation Silicon-containing, tunneling field-effect transistor including iii-n source
CN106356405A (zh) * 2016-09-06 2017-01-25 北京华碳元芯电子科技有限责任公司 一种异质结碳纳米管场效应晶体管及其制备方法
US20170229576A1 (en) * 2016-02-04 2017-08-10 Board Of Regents, The University Of Texas System Ionic barristor

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000174256A (ja) * 1998-12-01 2000-06-23 Nec Corp トンネルトランジスタとその製造方法
US20040079989A1 (en) * 2002-10-11 2004-04-29 Nissan Motor Co., Ltd. Insulated gate tunnel-injection device having heterojunction and method for manufacturing the same
US20070023814A1 (en) * 2005-07-28 2007-02-01 Nec Electronics Corporation Nonvolatile memory semiconductor device and method for manufacturing same
US20160163840A1 (en) * 2011-10-14 2016-06-09 The Board Of Regents Of The University Of Texas System Tunnel field effect transistor (tfet) with lateral oxidation
CN102610647A (zh) * 2012-03-14 2012-07-25 清华大学 具有异质栅介质的隧穿晶体管及其形成方法
CN103715259A (zh) * 2012-10-09 2014-04-09 三星电子株式会社 包括石墨烯沟道的隧穿场效应晶体管
US20160343860A1 (en) * 2014-06-23 2016-11-24 International Business Machines Corporation Silicon-containing, tunneling field-effect transistor including iii-n source
CN104218089A (zh) * 2014-09-10 2014-12-17 北京大学 阶梯栅介质双层石墨烯场效应晶体管及其制备方法
US20170229576A1 (en) * 2016-02-04 2017-08-10 Board Of Regents, The University Of Texas System Ionic barristor
CN106098765A (zh) * 2016-07-26 2016-11-09 电子科技大学 一种增加电流开关比的隧穿场效应晶体管
CN106356405A (zh) * 2016-09-06 2017-01-25 北京华碳元芯电子科技有限责任公司 一种异质结碳纳米管场效应晶体管及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114023844A (zh) * 2021-10-15 2022-02-08 华南师范大学 一种自驱动光电探测器及其制备方法

Also Published As

Publication number Publication date
CN109461772B (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
Zan et al. Dual gate indium-gallium-zinc-oxide thin film transistor with an unisolated floating metal gate for threshold voltage modulation and mobility enhancement
Xu et al. High performance indium-zinc-oxide thin-film transistors fabricated with a back-channel-etch-technique
Xuan et al. Capacitance-voltage studies on enhancement-mode InGaAs metal-oxide-semiconductor field-effect transistor using atomic-layer-deposited Al2O3 gate dielectric
Kim et al. Enhanced carrier mobility of multilayer MoS2 thin-film transistors by Al2O3 encapsulation
Ikeda et al. Modulation of NiGe∕ Ge Schottky barrier height by sulfur segregation during Ni germanidation
Ma et al. 2 kV slanted tri-gate GaN-on-Si Schottky barrier diodes with ultra-low leakage current
CN101542740B (zh) 半导体装置及其制造方法
CN101578705A (zh) 碳化硅半导体装置及其制造方法
Avasthi et al. Silicon surface passivation by an organic overlayer of 9, 10-phenanthrenequinone
CN104201175B (zh) 一种基于薄膜晶体管的反相器
Dang et al. Zinc tin oxide metal semiconductor field effect transistors and their improvement under negative bias (illumination) temperature stress
Mi et al. 90 nm gate length enhancement-mode AlGaN/GaN HEMTs with plasma oxidation technology for high-frequency application
CN104966735A (zh) 一种碳化硅mosfet器件及其制备方法
Pavan Kishore et al. Nanocrystal-based Ohmic contacts on n and p-type germanium
Xu et al. Significant roles of low-temperature post-metallization annealing in solution-processed oxide thin-film transistors
Gao et al. Improved linearity in AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors with nonlinear polarization dielectric
Lichtenwalner et al. High-mobility enhancement-mode 4H-SiC lateral field-effect transistors utilizing atomic layer deposited Al2O3 gate dielectric
CN104218089A (zh) 阶梯栅介质双层石墨烯场效应晶体管及其制备方法
CN108321197A (zh) 一种遂穿场效应晶体管及其制造方法
CN109461772A (zh) 一种基于石墨的隧穿晶体管的反相器及其制备方法
Basu et al. AlGaN/GaN metal-oxide-semiconductor high electron mobility transistor with liquid phase deposited Al2O3 as gate dielectric
JPH07131007A (ja) 半導体装置
Ho et al. Investigation of an anomalous hump in gate current after negative-bias temperature-instability in HfO2/metal gate p-channel metal-oxide-semiconductor field-effect transistors
US7018883B2 (en) Dual work function gate electrodes
Kao et al. Transconductance sensitivity enhancement in gated-MIS (p) tunnel diode by self-protective effective local thinning mechanism

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant