CN103339763B - 固态电池电极 - Google Patents

固态电池电极 Download PDF

Info

Publication number
CN103339763B
CN103339763B CN201280006128.8A CN201280006128A CN103339763B CN 103339763 B CN103339763 B CN 103339763B CN 201280006128 A CN201280006128 A CN 201280006128A CN 103339763 B CN103339763 B CN 103339763B
Authority
CN
China
Prior art keywords
solid
granule
active substance
lithium ion
state battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201280006128.8A
Other languages
English (en)
Other versions
CN103339763A (zh
Inventor
三木成章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of CN103339763A publication Critical patent/CN103339763A/zh
Application granted granted Critical
Publication of CN103339763B publication Critical patent/CN103339763B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明提供了由锂离子导体、活性物质、和固体电解质形成的固态电池电极,其包括含有多个锂离子导体和多个活性物质的颗粒体,以及提供了制造固态电池电极的方法,该方法具有制备含有多个锂离子导体和多个活性物质的颗粒体的步骤和将所述颗粒体和固体电解质均匀混合的步骤。

Description

固态电池电极
发明背景
1.技术领域
本发明涉及新的固态电池电极和制造该电极的方法。本发明更具体地涉及由各自均具有特定结构的锂离子导体、活性物质、和固体电解质形成并由此用于固态电池时可以提供高输出的固态电池电极,以及涉及制造该固态电池电极的方法。
2.背景
近年来,锂电池作为高电压和高能量密度的电池已经进入实际使用。由于对于更高的性能水平的要求和希望增加锂电池在更广泛的领域中的应用,因而各种研究正在追求锂电池性能的额外改善。在这些研究中,期望实现实用固体锂电池,因为其能够提供许多优于以往使用的基于非水电解质的锂电池的优点,即,更好的安全性、由于单电池形状方面更大的灵活性所致的更大的结构灵活性、以及减少辅助元件。
然而,这样的固体锂电池迄今仍未实现。为了获得可以呈现出如上所述特性特征的固体锂电池,每一个电极,即正电极和负电极,以及固体电解质必须均由可以提供安全与高输出结合的材料构成。然而,可以提供高输出的电极和/或可以提供高输出的固体电解质也尚未得到。
关于电极,已经研究了用于基于非水电解质锂电池的电极和用于固态锂电池的电极。例如,日本专利申请公开号5-290849(JP-A-5-290849)描述了一种用于基于非水电解质二次电池的正电极。该正电极使用具有大的粒径的正电极活性物质并通过混合、造粒、和焙烧起始无机化合物粉末获得。作为其中的一个具体实例,给出了通过将碳酸锂和氧化钴的混合物进行搅拌、混合、和造粒来制造LiCoO2(其为正电极活性物质的一个实例)的实例。
另外,日本专利申请公开号2008-004459(JP-A-2008-004459)描述了平均粒径为0.1至10μm并且可以降低固体电解质/电极界面电阻的硫化物电解质粒子。该硫化物电解质粒子通过使硫化物固体电解质粒子在非水媒介物中进行多级研磨或者进行使用气流磨的干磨而获得。然而,JP-A-2008-004459并没有提供其中电池正电极是由硫化物电解质粒子、导体和活性物质得到的具体实例,并且也没有提及电池的输出。
因此,虽然现有技术具有经由混合、造粒和焙烧得到的正电极活性物质粒子和经由干磨得到的电解质粒子,但是使用这些常规材料来得到可以提供高输出的固态电池电极是相当困难的。
发明内容
本发明提供一种用于固态电池时可提供高输出的固态电池电极。本发明还提供一种用于固态电池时可提供高输出的这种固态电池电极的制造方法。
作为为实现上述目的而进行的深入研究的结果,本发明人发现没有获得能够高输出的固态电池电极的原因在于电解质是固体,因此电解质与活性物质之间没有形成足够的界面,这具有非常低的锂离子传导性。作为进一步研究的结果,实现了本发明。
本发明的第一方面涉及一种由锂离子导体、活性物质和固体电解质形成的固态电池电极,其中所述电极包括含有多个锂离子导体和多个活性物质的颗粒体。本发明的第二方面涉及一种制造固态电池电极的方法,该方法包括制备含有多个锂离子导体和多个活性物质的颗粒体的步骤和将颗粒体和固体电解质均匀混合的步骤。
用于固态电池时可以提供高输出的固态电池电极可以根据本发明得到。另外,用于固态电池时能够提供高输出的固态电池电极可以根据本发明容易地得到。
附图说明
以下将参照附图说明本发明的示例性实例的特征、优点、以及技术和工业重要性,在附图中,相同的附图标记代表相同的元件,其中:
图1是根据本发明的一个实施方案的固态电池电极的局部放大示意图;
图2是根据现有技术之固态电池电极的表面的扫描电镜(SEM)照片的复制品;
图3是示出了根据本发明的一个实施方案的固态电池电极的制造方法的示意图;
图4是根据本发明的一个实施方案的包含锂离子导体和活性物质的颗粒体的电子显微照片的复制品;
图5是用于制造本发明的一个实例中的颗粒体的转动流化床造粒机的示意图;
图6是比较使用在本发明的一个实例中得到的固态电池电极的固态电池的放电曲线和使用在本发明的范围外的固态电池电极的固态电池的放电曲线的图;和
图7是比较使用在本发明的一个实例中得到的固态电池电极的固态电池的输出和使用在本发明的范围外的固态电池电极的固态电池的输出的图。
具体实施方式
通过下面实施方案说明本发明。1)其中活性物质是正电极材料的固态电池电极。2)其中制备上述颗粒体的步骤包括制备包含锂离子导体原料和活性物质的颗粒体的步骤和焙烧所获得的颗粒体的步骤的制造方法。3)其中制备上述颗粒体的步骤是用转动流化床造粒机进行的步骤的制造方法。
因为含有锂离子导体、活性物质和固体电解质的固态电池电极包含含有多个锂离子导体和多个活性物质的颗粒体,所以锂离子可以在电极内移动,并因而可得到能够高输出的固态电池电极。另外,制造固态电池电极的所述方法-因为其包括制备含有锂离子导体和活性物质的颗粒体的步骤和将颗粒体与固体电解质均匀混合的步骤-可以很容易地提供能够高输出的固态电池电极。
以下参见图1至6说明本发明的实施方案。如图1所示,本发明的固态电池电极包含锂离子导体、活性物质和固体电解质并且包含作为复合材料粒子的颗粒体,所述复合材料粒子含有多个锂离子导体和多个活性物质。虽然没有对提高的固态电池输出提供理论分析,但是以下被认为发生。通过具有上述结构,形成其中具有所述锂离子储存功能、但具有非常低的锂离子传输性的活性物质与锂离子导体形成复合材料的颗粒体,这于是使颗粒体内的锂离子传导成为可能。在电极内沿着固体电解质→锂离子导体→活性物质的路径的锂离子传递利用固体电解质成为可能,所述固体电解质具有锂离子传输能力,和颗粒体一起存在于电极中。
与此相反,在如图2所示的常规固态电池电极的情况下,所述活性物质已呈现团聚构造并且许多活性物质以孤立和不可利用的状态存在。这被认为阻碍了固体电解质/活性物质界面的形成。作为解决该问题的手段,可以考虑将活性物质粒子和固体电解质粒子的尺寸减小到相同的均匀水平。然而,当这样做时,微粒团聚的倾向变得更强,因此难以在工业情况中实现固体电解质/活性物质界面的增加。
如图3所示,根据本发明的一个实施方案的制造固态电池电极的方法具有以下步骤:制备充当锂离子导体原料的起始溶液的步骤、制造含有锂离子导体原料和活性物质的颗粒体的步骤、焙烧所得到的颗粒体的步骤、以及将所得到的颗粒体与固体电解质均匀混合的步骤。这些步骤提供例如,如图4中所示的颗粒体,其具有约10至1000μm的粒径和在粒子中含有多个(例如,2至100个)锂离子导体和多个(例如,2至100个)活性物质。与此相反,常规颗粒体是由锂离子导体的薄膜涂覆的单个活性物质粒子。
例如,如图5所示,制造所述颗粒体的上述步骤可以使用转动流化床造粒机来进行,所述转动流化床造粒机在其底部具有转子(rotor)并且通过进给气体的进入可以使粒子在该装置中成流化状态。在该实施方案中,例如,通过将含有锂导体原料的有机溶剂例如醇溶液,如乙醇、甲醇或异丙醇溶液,优选乙醇溶液,喷射于在转动流化床造粒机中以流化状态停留的活性物质粉末上并干燥,形成所述颗粒体。然后通过在空气或在惰性气氛中焙烧所得到的颗粒体来继续制造。在该实施方案中的锂离子导体和活性物质之间的比例是锂离子导体∶活性物质(质量比)=1∶1至67000∶1,例如,优选5∶1至25∶1。在该方法中用于实现粒子流化的进气流适合地为约0.05至2m3/小时。
将在上述制造颗粒体的步骤中在转动流化床造粒机中的进气温度设定在例如从至少室温至不超过50℃。当这样做时,认为前述颗粒体的制造如下实现。将含有锂导体原料的醇涂覆于颗粒活性物质的表面并且表面呈现湿的状态。因而,当另一个经涂布的活性物质粒子与颗粒活性物质粒子接触时生长进行。该接触生长接连进行以得到含有多个活性物质和多个颗粒锂导体原料的颗粒体。干燥所得到的颗粒体从而实现上述颗粒体的制造。由所述锂离子导体原料和活性物质组成的颗粒体的焙烧通过在惰性气氛中或空气中在100至350℃下加热约1至10小时进行。在其中锂离子导体是氧化物的具体情况下,焙烧可以通过使用马弗炉在空气中在100至350℃、特别是在300至350℃下加热约1至10小时进行。
在本发明实施方案中,上述颗粒体必须与固体电解质均匀混合。通常可以通过干混例如使用混合器,以分散颗粒体∶固体电解质的比例(质量比)为从1∶10至10∶1、理想的为从3∶7至7∶3、例如从4∶6至6∶4来将焙烧过的颗粒体和固体电解质均匀混合。该混合还可以通过湿法进行。该颗粒体与固体电解质的均匀混合提供了构成固态电池电极的粉末电极混合物,例如粉末正电极混合物或粉末负电极混合物,有利的是粉末正电极混合物。
本发明实施方案中的锂离子导体必须是不与存在于颗粒体中的活性物质或作为电极中另一组分的固体电解质起反应的物质。在锂二次电池中用作固体电解质材料的材料可以示例性地包括氧化物型非结晶固体电解质如LiTi2(PO4)3、Li2O-B2O3-P2O5、Li2O-SiO2、Li2O-B2O3、和Li2O-B2O3-ZnO;硫化物型非结晶固体电解质如LiI-Li2S-P2S5、LiI-Li2S-B2S3、Li3PO4-Li2S-Si2S、Li3PO4-Li2S-SiS2、LiPO4-Li2S-SiS、LiI-Li2S-P2O5、LiI-Li3PO4-P2S5、Li3PS4和Li2S-P2S5;含有锂和至少一种选自铌、钽、硅、磷和硼中的元素的含锂化合物,如结晶氧化物和氧氮化物如LiNbO3、Li1.3Al0.3Ti0.7(PO4)3、Li1+x+yAxTi2-xSiyP3-yO12(A=Al或Ga,0≤x≤0.4,0<y≤0.6)、[(B1/2Li1/2)1-zCz]TiO3(B=La、Pr、Nd、Sm,C=Sr或Ba,0≤x≤0.5)、Li5La3Ta2O12、Li7La3Zr2O12、Li6BaLa2Ta2O12、Li3PO(4-3/2w)Nw(w<1)和Li3.6Si0.6P0.4O4;以及LiI、LiI-Al2O3、LiN3和Li3N-LiI-LiOH。以上提及的锂离子导体原料可以示例性地包括,存在于锂离子导体化合物中的金属元素的醇盐,例如乙醇盐。相应地,单种金属元素的醇盐可用于含有两种或更多种金属元素的锂离子导体原料,例如可以使用乙醇盐的组合。
在该实施方案中的活性物质可以示例性地包括钴酸锂(LixCoO2)、镍酸锂(LixNiO2)、镍锰钴酸锂(Li1+xNi1/3Mn1/3Co1/3O2)、镍钴酸锂(LiCO0.3Ni0.7O2)、锰酸锂(LixMn2O4)、钛酸锂(Li4/3Ti5/3O4)、锰酸锂化合物(Li1+xMyMn2-x-yO4,M=Al、Mg、Fe、Cr、Co、Ni、Zn)、钛酸锂(LixTiOy)、锂金属磷酸盐(LiMPO4,M=Fe、Mn、Co、Ni)、氧化钒(V2O5)、氧化钼(MoO3)、硫化钛(TiS2)、锂钴氮化物(LiCoN)、锂硅氮化物(LiSi2N3)、锂金属、锂合金(LiM,M=Sn、Si、Al、Ge、Sb、P)、储锂金属间化合物(MgxM,M=Sn、Ge、Sb或XySb,X=In、Cu、Mn)、及前述的衍生物,以及示例性地包括碳材料(C)如石墨和硬碳。这里没有明确区分为正电极活性物质和负电极活性物质,具有自由选定电压的电极可以通过以下构建:比较两种化合物的充放电电位,将具有较高电位的一个作为正电极并且将较低电位的一个作为负电极。正电极活性物质的具体实例为LixCoO2、LixNiO2、LixMn2O4、LixNi1/2Mn1/2O2、LixNi1/3Co1/3Mn1/3O2、Lix[NiyLi1/3-2y/3]O3(0≤x≤1,0<y<1/2)、和如通过用其他元素来替代前面锂过渡金属氧化物中的锂或过渡金属而提供的锂过渡金属氧化物例如LiNiMnCoO2。另外,负电极活性物质的特别有利的实例是碳材料(C)如石墨或硬碳。
在该实施方案中的固体电解质可以为,例如可以在锂二次电池中用作固体电解质材料的材料。这里的实例有氧化物型非结晶固体电解质如Li2O-B2O3-P2O5、Li2O-SiO2、Li2O-B2O3和Li2O-B2O3-ZnO;硫化物型非结晶固体电解质如Li2S-SiS2、LiI-Li2S-SiS2、LiI-Li2S-P2S5、LiI-Li2S-B2S3、Li3PO4-Li2S-Si2S、Li3PO4-Li2S-SiS2、LiPO4-Li2S-SiS、LiI-Li2S-P2O5、LiI-Li3PO4-P2S5、Li3PS4和Li2S-P2S5;以及结晶氧化物和氧氮化物如Lil、Lil-Al2O3、Li3N、Li3N-LiI-LiOH、Li1.3Al0.3Ti0.7(PO4)3、Li1+x+yAxTi2-xSiyP3-yO12(A=Al或Ga,0≤x≤0.4,0<y≤0.6)、[(B1/2Li1/2)1-zCz]TiO3(B=La、Pr、Nd、Sm,C=Sr或Ba,0≤x≤0.5)、Li5La3Ta2O12、Li7La3Zr2O12、Li6BaLa2Ta2O12、Li3PO(4-3/2w)Nw(w<1)和Li3.6Si0.6P0.4O4
在该实施方案中的颗粒体必须包含前述活性物质和前述锂离子导体作为必要组分,但为了提高电子电导率,除了这些组分之外还可以包含导电材料。导电材料在颗粒体中的比例可以不超过5质量%。该导电材料可以示例性地包括乙炔黑、科琴导电黑(Ketjenblack)、细分散球形碳粒子、碳纳米管和碳纳米纤维。该实施方案的电极包含锂离子导体、活性物质和固体电解质作为必要组分,但为了提高所述电子电导率,除了所述其他组分之外,还可以含有不超过10质量%、优选不超过5质量%的诸如导电材料的组分。
当在该实施方案中要得到用于固态电池的正电极时,在前述步骤中使用以下正电极材料作为活性物质:例如LixCoO2、LixNiO2、LixMn2O4、LixNi1/2Mn1/2O2、LixNi1/3Co1/3Mn1/3O2、Lix[NiyLi1/3-2y/3]O3(0≤x≤1,0<y<1/2)、和如通过用其他元素来替代前面锂过渡金属氧化物中的锂或过渡金属而提供的锂过渡金属氧化物例如LiNiMnCoO2。当在该实施方案中要得到用于固态电池的负电极时,负电极活性物质,例如,诸如石墨或硬碳的碳材料(C)用于活性物质。
当使用该实施方案的固态电池电极要得到固态电池时,根据该实施方案得到的电极可以用于正电极和负电极二者、或可以用于正电极或负电极并且有利地用于正电极。不同于本发明的电极的电极可以用于另一电极,例如负电极。为了制造固态电池,例如,将合适的固体电解质引入单电池中并压制以制造作为丸粒的固体电解质层;然后将粉末正电极混合物和粉末负电极混合物在固体电解质层的两侧引入;并进行压制。固态电池还可以如下制造:首先压制粉末正电极混合物和粉末负电极混合物以进行丸化并形成正电极和负电极,然后在两个电极之间形成电解质层。或者,例如,可以通过如下进行制造:将前述粉末正电极混合物分散在溶剂中;然后将其涂覆在金属箔集电体上以形成电极;然后类似地通过涂覆形成电解质层;之后使用粉末负电极混合物形成负电极;最后层压金属箔集电体。
下面给出了本发明的实施例。提供该实施例只是为了解释目的,而非限制本发明。在下面的说明中份是指质量份。对于造粒机或涂布装置,在下面的每个实施例中使用由图5中示意图所示的转动流化床造粒机(来自PowrexCorporation的MP-01)。下面的每个实施例中颗粒体的粒径通过电子显微镜观察来确定。颗粒体的电子显微镜观察使用以下仪器进行。该电子显微镜来自JEOLLtd。
(实施例1)
颗粒体中的锂离子导体是通过溶胶-凝胶法合成的。通过将五乙氧基铌和乙醇锂(均来自KojundoChemicalLaboratoryCo.,Ltd.)溶解在乙醇中并调整到固体部分含量为6质量%,来制备充当LiNbO3锂离子导体原料的醇盐溶液。将这些醇盐的1600g乙醇溶液喷射到1kg作为活性物质的LiNil/3Mnl/3Col/3O2(来自NichiaCorporation)上。在此时使用以下条件形成颗粒体∶进气温度=50℃、进气流速=0.2m3/小时、转子rpm=300rpm、喷射速度=5g/分钟。为了将颗粒体中的LiNbO3前体转化成氧化物,用马弗炉在350℃下进行焙烧5小时。然后以质量比5∶5将焙烧过的颗粒体用试管混合器与硫化物型固体电解质Li3PS4混合并分散均匀以制造正电极混合物。将颗粒体进行电子显微镜观察。电子显微照片的复制品示于图4。
通过以质量比5∶5混合层状碳负电极活性物质(MitsubishiChemicalCorporation)和前述固体电解质,如对于正电极那样通过混合和分散制备负电极混合物。将前述固体电解质引入单电池中并压制以制造呈丸粒形式的电解质层。然后将正电极混合物和负电极混合物引入在电解质层的两侧上并压制以制造压粉(pressed-powder)电池。
为了评估所得到的固态电池,将电池在4.2V下通过恒电流/恒电压(CCCV)充电、然后以1C倍率从4.2V放电至2.0V。所得到的放电曲线的结果与对比例的结果一起示于图6中。输出的测量结果与对比例的结果一起示于图7中。
(对比例1)
在活性物质LiNil/3Mnl/3Col/3O2的粒子的表面上形成锂离子导体LiNbO3的均匀薄膜层。此时示于图5中的转动流化床造粒机的操作条件如下:进气温度=80℃,进气流速=0.3m3/小时,转子rpm=300rpm,喷射速率=4g/分钟。焙烧条件为350℃下进行5小时。然后,正电极混合物、负电极混合物和压粉电池如实施例1进行制造。对所得到的电极的表面进行SEM测量。所得到的SEM照片的复制品示于图2中。该电池也如实施例1进行评估。所得到的结果连同实施例的结果一起示于图6和图7中。
图7中的结果确认了根据实施例的固态电池相较于对比例的固态电池具有更高输出,其中所述实施例的固态电池包含锂离子导体、活性物质和固体电解质并且使用包含含有多个锂离子导体和多个活性物质的颗粒体的固态电池正电极,而所述对比例的固态电池包含锂离子导体、活性物质和固体电解质并使用包含其中在活性物质粒子上形成锂离子导体的薄膜的粒子的固态电池正电极。
本发明可提供可以提供高输出固态电池的固态电池电极,本发明还使得能够容易地得到可以提供高输出固态电池的固态电池电极。

Claims (4)

1.一种固态电池电极,包括:
颗粒体,所述颗粒体含有多个锂离子导体和多个活性物质,其中所述多个活性物质散布在所述锂离子导体中,以及所述颗粒体是通过多个活性物质形成的复合材料粒子;
固体电解质。
2.根据权利要求1所述的固态电池电极,其中所述活性物质为正电极活性物质。
3.一种制造根据权利要求1或2的固态电池电极的方法,所述方法的特征在于包括:
制备含有多个锂离子导体和多个活性物质的颗粒体,其中所述多个活性物质散布在所述锂离子导体中;
其中颗粒体制备包括:制备含有所述锂离子导体的原料和所述活性物质的前体颗粒体,
其中所述前体颗粒体的制备是使用转动流化床造粒机进行的,
其中制备所述锂离子导体的原料的有机溶液,所述前体颗粒体通过在所述转动流化床造粒机中用所述有机溶液涂覆所述活性物质来制备,并且在制备所述前体颗粒体时将在所述转动流化床造粒机的进气温度调节在其中所述活性物质的表面呈现湿的状态的温度;以及
将所述颗粒体与固体电解质均匀混合。
4.根据权利要求3所述的制造固态电池电极的方法,其中颗粒体制备包括:
焙烧所得到的前体颗粒体。
CN201280006128.8A 2011-01-26 2012-01-25 固态电池电极 Active CN103339763B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011-013964 2011-01-26
JP2011013964A JP2012155994A (ja) 2011-01-26 2011-01-26 固体電池用電極
PCT/IB2012/000098 WO2012101501A1 (en) 2011-01-26 2012-01-25 Solid-state battery electrode

Publications (2)

Publication Number Publication Date
CN103339763A CN103339763A (zh) 2013-10-02
CN103339763B true CN103339763B (zh) 2016-06-29

Family

ID=45688912

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280006128.8A Active CN103339763B (zh) 2011-01-26 2012-01-25 固态电池电极

Country Status (6)

Country Link
US (1) US9362548B2 (zh)
JP (3) JP2012155994A (zh)
KR (1) KR101599593B1 (zh)
CN (1) CN103339763B (zh)
DE (1) DE112012000580B4 (zh)
WO (1) WO2012101501A1 (zh)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11631841B2 (en) * 2019-12-20 2023-04-18 Enevate Corporation Methods of preparing an electrode material with metal alkoxide or metal aryloxide
JP6243103B2 (ja) * 2012-06-29 2017-12-06 出光興産株式会社 正極合材
JP5852529B2 (ja) * 2012-09-06 2016-02-03 国立大学法人信州大学 電極合材の製造方法
FR3000616B1 (fr) * 2012-12-31 2015-01-02 I Ten Procede de fabrication de batteries tout solide en structure multicouches
JP6089823B2 (ja) * 2013-03-14 2017-03-08 株式会社豊田中央研究所 電極材料およびそれを備える電池
KR102527820B1 (ko) 2014-06-04 2023-05-02 퀀텀스케이프 배터리, 인코포레이티드 혼합 입자 크기를 가진 전극 물질
JP6269597B2 (ja) * 2015-06-29 2018-01-31 トヨタ自動車株式会社 正極活物質層、全固体リチウム電池および正極活物質層の製造方法
CN105870441B (zh) * 2016-06-01 2018-07-31 湖南杉杉能源科技股份有限公司 一种高倍率型钴酸锂正极材料及其制备方法
CN106785015A (zh) * 2017-02-13 2017-05-31 桂林电器科学研究院有限公司 一种添加锂硅合金和溴化银的硫化锂系固体电解质材料及其制备方法
JP6825978B2 (ja) * 2017-04-28 2021-02-03 トヨタ自動車株式会社 リチウムイオン二次電池用正極およびその製造方法
DE102018200977A1 (de) 2018-01-23 2019-07-25 Robert Bosch Gmbh Verfahren zur Herstellung eines Elektrodenmaterials
CN111656574A (zh) 2018-02-02 2020-09-11 本田技研工业株式会社 固体电池用正极电极、固体电池及固体电池的制造方法
FR3080957B1 (fr) 2018-05-07 2020-07-10 I-Ten Electrodes mesoporeuses pour dispositifs electrochimiques en couches minces
JP7074027B2 (ja) * 2018-11-12 2022-05-24 トヨタ自動車株式会社 負極
DE102018221017A1 (de) 2018-12-05 2020-06-10 Robert Bosch Gmbh Verfahren zum Herstellen eines Präkursormaterials für eine elektrochemische Zelle
CN111370751B (zh) * 2018-12-25 2021-12-07 深圳市比亚迪锂电池有限公司 固态电池及其制备方法和电动汽车
JP7159902B2 (ja) * 2019-02-18 2022-10-25 トヨタ自動車株式会社 電極の製造方法
WO2020170135A1 (en) * 2019-02-20 2020-08-27 Umicore Powderous solid electrolyte compound for solid-state rechargeable lithium ion battery
DE102020111658A1 (de) * 2020-04-29 2021-11-04 Schott Ag Festkörper-Lithiumionenleiter
EP4144701A4 (en) * 2020-04-30 2023-12-27 Panasonic Intellectual Property Management Co., Ltd. PROCESS FOR PRODUCING OXYHALIDES
JPWO2022264554A1 (zh) * 2021-06-18 2022-12-22
KR20230096459A (ko) 2021-12-23 2023-06-30 주식회사 엘지에너지솔루션 전고체 전지용 전극의 제조방법 및 이에 의해 제조된 전극
KR20230108922A (ko) * 2022-01-12 2023-07-19 주식회사 엘지에너지솔루션 전고체 전지용 전극의 제조방법 및 이에 의해 제조된 전극
EP4439688A1 (en) * 2022-01-27 2024-10-02 LG Energy Solution, Ltd. Method for manufacturing electrode for all-solid-state battery, and electrode for all-solid-state battery
DE102022105410B3 (de) 2022-03-08 2023-07-27 Maik Vieluf Vorrichtung und Verfahren zur Beschichtung von Partikeln
KR20240031624A (ko) * 2022-09-01 2024-03-08 주식회사 엘지에너지솔루션 전고체 전지용 전극

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101569035A (zh) * 2006-10-25 2009-10-28 住友化学株式会社 锂二次电池

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4925751A (en) * 1989-04-26 1990-05-15 Shackle Dale R High power solid state electrochemical laminar cell
JP3355644B2 (ja) 1992-04-03 2002-12-09 ソニー株式会社 非水電解液二次電池
JPH11111266A (ja) * 1997-09-30 1999-04-23 Yuasa Corp 高分子電解質二次電池
JP4077432B2 (ja) * 2003-07-07 2008-04-16 Tdk株式会社 電気化学素子
US7993782B2 (en) * 2005-07-01 2011-08-09 National Institute For Materials Science All-solid lithium battery
JP5070686B2 (ja) * 2005-08-08 2012-11-14 日産自動車株式会社 非水電解質リチウムイオン電池用正極材料およびこれを用いた電池
JP2008004459A (ja) 2006-06-26 2008-01-10 Idemitsu Kosan Co Ltd 固体電解質微粒子及びその製造方法
JP2007059409A (ja) 2006-10-11 2007-03-08 Central Res Inst Of Electric Power Ind 全固体型電池
JP2008135379A (ja) * 2006-10-25 2008-06-12 Sumitomo Chemical Co Ltd リチウム二次電池
KR20110053958A (ko) * 2008-09-03 2011-05-24 스미토모 오사카 세멘토 가부시키가이샤 전극 재료의 제조 방법, 전극 재료, 전극 및 전지
JP2010225309A (ja) 2009-03-19 2010-10-07 Toyota Motor Corp 正極活物質材料の製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101569035A (zh) * 2006-10-25 2009-10-28 住友化学株式会社 锂二次电池

Also Published As

Publication number Publication date
US9362548B2 (en) 2016-06-07
DE112012000580T5 (de) 2013-11-28
WO2012101501A1 (en) 2012-08-02
JP2014503956A (ja) 2014-02-13
JP2015062186A (ja) 2015-04-02
DE112012000580B4 (de) 2016-09-01
KR20130107352A (ko) 2013-10-01
JP6098612B2 (ja) 2017-03-22
CN103339763A (zh) 2013-10-02
KR101599593B1 (ko) 2016-03-03
JP2012155994A (ja) 2012-08-16
US20130295451A1 (en) 2013-11-07
WO2012101501A8 (en) 2012-10-11

Similar Documents

Publication Publication Date Title
CN103339763B (zh) 固态电池电极
US11101461B2 (en) Composite cathode active material, method of preparing the composite cathode active material, and cathode and lithium battery each including the composite cathode active material
CN106575761B (zh) 非水系电解质二次电池用正极活性物质及其制造方法
WO2017025007A1 (zh) 锂离子二次电池的正极活性材料及其制备方法和应用
US20030180615A1 (en) Protective coating on positive lithium-metal-oxide electrodes for lithium batteries
WO2007034823A1 (ja) 正極活物質の製造方法およびそれを用いた非水電解質電池
JP2012099482A (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極活物質の製造方法、リチウム二次電池用正極及びリチウム二次電池
KR20140048456A (ko) 양극 활물질, 그 제조방법, 및 이를 포함하는 리튬 전지
JP2017531911A (ja) リチウム二次電池用正極活物質、その製造方法およびこれを含むリチウム二次電池
JP6762377B2 (ja) リチウムイオン二次電池
JP2020177860A (ja) ニッケルマンガンコバルト含有複合水酸化物およびその製造方法、リチウムニッケルマンガンコバルト含有複合酸化物およびその製造方法、リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池
JP7121165B1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP2006261061A (ja) 電極材料及びそれを用いた電極並びにリチウム電池と電極材料の製造方法
CN116157936A (zh) 全固体锂离子二次电池用正极活性物质及其制造方法
JP7172301B2 (ja) 遷移金属複合水酸化物、遷移金属複合水酸化物の製造方法、リチウム遷移金属複合酸化物活物質及びリチウムイオン二次電池
Kozawa et al. Fabrication of an LiMn2O4@ LiMnPO4 composite cathode for improved cycling performance at high temperatures
Yu et al. Stabilizing high-voltage cathodes via ball-mill coating with flame-made nanopowder electrolytes
JP6139573B2 (ja) リチウム二次電池用正極活物質の製造方法、及びそれを含むリチウム二次電池
JP7403289B2 (ja) リチウムイオン二次電池用正極活物質複合体及びその製造方法
JP2004175609A (ja) リチウムイオン電池の正極に用いるコバルト酸リチウム、その製造方法およびリチウムイオン電池
US20220311000A1 (en) Anode material for secondary battery, anode for secondary battery and secondary battery
JP2023025112A (ja) 二次電池用アノード材料、二次電池用アノード、及び二次電池
Jena et al. Wet-chemical synthesis of spinel Li4Ti5O12 as a negative electrode
JP2021005548A (ja) リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池
CN105374993B (zh) 正极活性物质、其制备方法和包括其的可再充电锂电池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant