CN103311127A - 半导体装置的制造方法 - Google Patents

半导体装置的制造方法 Download PDF

Info

Publication number
CN103311127A
CN103311127A CN2013100751190A CN201310075119A CN103311127A CN 103311127 A CN103311127 A CN 103311127A CN 2013100751190 A CN2013100751190 A CN 2013100751190A CN 201310075119 A CN201310075119 A CN 201310075119A CN 103311127 A CN103311127 A CN 103311127A
Authority
CN
China
Prior art keywords
region
conductivity type
semiconductor device
manufacture method
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013100751190A
Other languages
English (en)
Other versions
CN103311127B (zh
Inventor
斋藤直人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ablic Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Publication of CN103311127A publication Critical patent/CN103311127A/zh
Application granted granted Critical
Publication of CN103311127B publication Critical patent/CN103311127B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41741Source or drain electrodes for field effect devices for vertical or pseudo-vertical devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66727Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the source electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7809Vertical DMOS transistors, i.e. VDMOS transistors having both source and drain contacts on the same surface, i.e. Up-Drain VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Element Separation (AREA)

Abstract

提供半导体装置的制造方法。提供一种使用简单并且控制性良好的工序的沟槽MOSFET的制造方法,所述沟槽MOSFET能够与CMOS晶体管形成在同一衬底上,可以缩小元件面积。是如下所述的沟槽MOSFET的制造方法:通过形成三维的体接触区域,即便采用更小的面积,也具有能够确保与以往同样的接触的结构。

Description

半导体装置的制造方法
技术领域
本发明涉及半导体装置和半导体装置的制造方法,涉及例如在与CMOS相同的衬底上形成的沟槽MOSFET的构造和制造方法。
背景技术
MOS晶体管是在电子技术中发挥核心作用的电子元件,MOS晶体管的小型化和高驱动能力化无论在低耐压领域还是在高耐压领域都是重要的课题。
将载流子移动的方向相对于半导体衬底表面设定为上下(铅直方向)的纵型构造的沟槽MOSFET,能够构成小面积且具有较大的沟槽宽度的晶体管,因此被广泛用于需要高驱动能力的用途。目前为止,作为离散的驱动元件被广泛应用,但近年来,提出了将该高驱动能力的沟槽MOSFET与构成控制电路的通常的CMOS晶体管一体化的工艺。
在从上方观察的情况下,沟槽MOSFET的表面形状被划分为沟槽区域和非沟槽区域。此外,非沟槽区域被划分为高浓度杂质区域即源区域和用于固定体(body)区域的电位的高浓度杂质区域即体接触区域。
此外,由于通常以同电位使用作为非沟槽区域的源区域和体接触区域,因此多数情况下两杂质区域邻接,并同时用相同的金属布线连接。在硅化物形成工艺的情况下,两区域被连续的硅化物覆盖,经由最小限度的接触面积/数量与布线金属连接。
为了提高每单位面积的驱动能力,要求消减上述沟槽区域或非沟槽区域的面积。作为非沟槽区域之一的体接触区域,只要能固定电位即可,在这点上,减小面积是有效的,但如果电位不稳定,则晶体管会阶跃恢复(Snapback),妨碍在期望的动作电压下的正常动作。
此外,由于受到构成源区域的杂质的浓度的偏差和扩散的偏差的影响,因此需要将体接触区域配置成具有更大余量的面积。因此不能容易地缩小面积。
以往,控制杂质浓度和热处理,以使得固定电位并能够尽量缩小面积,从而构成源区域和体接触区域。或者,此外,如下述的专利文献1那样提出如下方案,设置配置体接触区域的部位和不配置体接触区域的部位,在整体上缩小面积。
如图5所示,在专利文献1的技术中,将沟槽区域51和非沟槽区域53配置成条带状,将非沟槽区域53的宽度分为两种,在宽度较大的一方配置体接触区域52,在宽度较小的一方不配置体接触区域52。将该配置在邻接的条带中以彼此不同的方式排列,由此将面积效率最优化,以最小限度的面积构成晶体管,降低每单位面积的晶体管的导通(ON)电阻。
现有技术文献
专利文献
专利文献1:日本特开2002-50760号公报
发明内容
然而,根据专利文献1的技术,必须将体接触区域配置成一定面积以上,该区域依然限制晶体管面积的缩小化。此外,“在将沟槽区域配置为格子状的情况下,将限定为条带状的布局的体接触区域到处配置”这一对策在得到晶体管特性的均匀性上未必是好方法。
因此,本发明的目的在于,提供一种能够不增加工序并且使用控制性优良的工序得到均匀的元件面积较小的沟槽MOSFET的制造方法。
本发明为了达成所述目的,在第1方面的发明中,提供一种半导体装置的制造方法,其特征在于,该半导体装置的制造方法包括以下工序:
在第1导电型的半导体衬底上形成第2导电型的埋层;在所述埋层上形成第2导电型的外延层;从所述第2导电型的外延层的表面到一定的深度,形成第1导电型的体区域;除去构成所述体区域的表面的半导体材料,在凸型触点区域的周围形成浅沟槽;形成从所述浅沟槽的表面的一部分到所述第2导电型的外延层内的深沟槽区域;在所述深沟槽区域的内壁形成栅绝缘膜;与所述栅绝缘膜相接地由多晶硅填充所述深沟槽区域内;在所述体区域表面的所述浅沟槽内形成第2导电型的源区域;在所述体区域表面的所述凸型触点区域形成第1导电型的体接触区域;以及形成连接所述源区域和所述体接触区域的硅化物层,
所述凸型触点区域的表面全部是所述体接触区域,与所述源区域的表面一起被所述硅化物层覆盖。
在第2方面的发明中,提供一种半导体装置的制造方法,其特征在于,该半导体装置的制造方法包括以下工序:
在第1导电型的半导体衬底上形成第2导电型的埋层;在所述埋层上形成第2导电型的外延层;在所述外延层的表面的特定的区域形成用于作为凹型触点区域的浅沟槽;以与所述外延层的表面的距离固定的方式,形成第1导电型的体区域,该第1导电型的体区域在没有所述凹型触点区域的平坦的区域下浅,在所述凹型触点区域下深,并朝向所述埋层突出;在所述平坦的区域形成从所述体区域的表面到所述外延层内的深沟槽;在所述深沟槽区域的内壁形成栅绝缘膜;与所述栅绝缘膜相接地由多晶硅填充所述深沟槽区域内;在所述体区域表面的所述平坦的区域形成第2导电型的源区域;沿着所述体区域表面的所述凹型触点区域形成第1导电型的体接触区域;以及形成连接所述源区域和所述体接触区域的硅化物层,
所述凹型触点区域的表面全部是所述体接触区域,与所述源区域的表面一起被所述硅化物层覆盖。
根据本发明,可以制造出最大限度地发挥元件特性并能够对应精细尺寸的半导体装置,其结果是,可以降低成本。
附图说明
图1是用于说明本发明的第一实施方式的半导体装置的制造方法的工序顺序剖视图。
图2是用于说明本发明的第一实施方式的半导体装置的制造方法的、接着图1的工序顺序剖视图。
图3是用于说明本发明的第二实施方式的半导体装置的制造方法的工序顺序剖视图。
图4是用于说明本发明的第二实施方式的半导体装置的制造方法的、接着图3的工序顺序剖视图。
图5是用说明以往的半导体装置的图。
标号说明
1:P型半导体衬底
2:N型埋层
3:N-epi层
4:P型体区域
5:凸型触点
6:深沟槽
7:栅氧化膜
8:栅电极
9:N型源区域
10、30:P型体接触区域
11:硅化物层
12:浅沟槽
15:凹型触点
16:平坦的区域
具体实施方式
图1是用于说明本实施方式的半导体装置的制造方法的图,是本发明中的沟槽MOSFET的工序顺序剖视图。
如图1的(a)所示,在形成于P型半导体衬底1上的N型埋层2上设置有外延层3(在此称作N-epi层3),在整体上掺杂有N型杂质。N型埋层2具有5×1017/cm3~5×1019/cm3的浓度,成为沟槽MOSFET的漏区域。通过掺杂Sb(锑)、As(砷)或P(磷)而形成。此外,N-epi层3成为低浓度的漏区域或者漂移区域,通过在1×1015/cm3~5×1017/cm3的浓度中掺杂磷而实现。N型埋层2的厚度约为2~10μm厚,N-epi层3厚度约为2~10μm厚。
接着,如图1的(b)所示,在N-epi层3内利用用于隔离元件的STI(Shallow TrenchIsolation:浅沟槽隔离)或者LOCOS(Local Oxidation of Silicon:硅的局部氧化)(未图示),残留一部分而除去表面的半导体材料,形成凸型触点区域5。因此,凸型触点区域5的周围成为浅沟槽12,其表面变低。在使用STI来隔离元件的情况下,在凸型触点区域5以外的部位进行用于STI形成的硅蚀刻,由此能够形成图1的(b)那样的形状。关于CMOS形成区域,将绝缘膜埋入STI中的工序等在此处进行。另一方面,在使用LOCOS来隔离元件的情况下,在凸型触点区域5以外形成50nm~150nm的LOCOS氧化膜,通过除去LOCOS氧化膜,形成图1的(b)所示的凸型触点5。
接着,通过离子注入形成P型的体区域4。以成为5×1016/cm3~1×1018/cm3的浓度的方式在P型的体区域4中注入B(硼)或者BF2(二氟化硼)。此时的注入的加速能量根据沟槽MOSFET需要的耐压而改变,但优选在50~250keV的范围内。另外,P型的体区域4的形成工序也可以在形成凸型触点区域5之前。
接着,如图1(c)所示,在浅沟槽内通过蚀刻形成深沟槽6。深沟槽6的深度是约1~3μm,根据晶体管所要求的期望的漏极耐压而适当地进行设定。
接着,在图2的(a)中,在深沟槽6的内壁上通过热氧化形成栅氧化膜7,在沟槽6内隔着栅氧化膜7填充成为栅电极8的多晶硅。栅电极8通过沿着深沟槽6的侧壁和底面延伸的栅氧化膜7而与N-epi层3和P型的体区域4电隔离。考虑期望的晶体管的栅极击穿电压来设定栅氧化膜7的厚度,约为7nm~20nm。此外,栅氧化膜7的形成温度为800℃到1150℃,但更优选在1000℃~1150℃的范围内。
接着,在图2的(b)中,在P型的体区域4的上侧表面区域进行离子注入,以形成N型的高浓度杂质区域即源区域9。为了降低薄膜电阻,优选例如以5×1014~1×1016atoms/cm2的掺杂剂量用As进行离子注入,以形成N型的源区域9。当然,也可以高浓度地注入P(磷),也可以导入As和P这两者。此外,在包含凸型触点区域5的区域中进行用于形成P型的体接触区域10的离子注入。为了降低薄膜电阻,优选例如以5×1014~1×1016atoms/cm2的掺杂剂量用BF2进行离子注入,以形成P型的体接触区域10。当然,也可以高浓度地注入B(硼),也可以导入BF2和B这两者。
然后,如图2的(c)所示,在源区域9和体接触区域10上形成硅化物层11,使用插头布线(未图示)与布线金属层(未图示)连接。
以上对使用了N-epi层3的情况进行了说明,但也可以是,使用P-epi层,与P型的体区域4同时地以N型杂质进行离子注入,将N型埋层2与P型的体区域4之间设定为N型的漏区域。此外,在此处,以N型的晶体管为前提进行了说明,但是,在将埋层、epi层作为P型,体区域作为N型的P型的晶体管的情况下,也能够同样地进行应用。(当然,也可以将epi层设为N型,通过导入杂质将P型埋层与体区域之间设定为P型的漏区域。)
此外,对与沟槽MOSFET在同一衬底上形成的CMOS未作详细说明,但是,上述中示出的工序在CMOS形成时不存在任何成为障碍的工序,能够容易地将沟槽MOSFET与CMOS形成在同一衬底上。
图3是用于对本实施方式的第2半导体装置的制造方法进行说明的图。
在图3的(a)中,在形成于P型半导体衬底1上的N型埋层2上设置epi层3(此处称作N-epi层3),在整体上掺杂有N型杂质。N型埋层2通过掺杂Sb(锑)或者As(砷)或者P(磷)而形成,具有5×1017/cm3~5×1019/cm3的浓度,此外,N-epi层3通过掺杂磷而实现,具有1×1015/cm3~5×1017/cm3的浓度。N型埋层2的厚度约为2~10μm厚,N-epi层3的厚度约为2~10μm。
接着,在N-epi层3内,为了配置用于隔离元件的STI,对硅进行蚀刻,形成浅沟槽,将绝缘膜埋入浅沟槽内,但将埋入位于沟槽MOSFET的形成予定区域的浅沟槽内的绝缘膜除去。(该绝缘膜的除去也可以在后面的P型的体区域离子注入用的抗蚀图案(Resist pattern)形成后进行。)由此,形成利用了浅沟槽的凹型触点区域15。另外,根据所要求的动作电压适当设定浅沟槽的深度,约是200nm~600nm。
也可以不使用STI而是使用LOCOS来隔离元件,制作上述凹型触点区域15那样的形状。此时,仅在凹型触点区域15部分形成50nm~150nm的LOCOS氧化膜,然后,通过蚀刻除去LOCOS氧化膜,由此能够形成与STI相似的形状的凹型触点区域15。
接着,在图3的(b)中,通过离子注入形成P型的体区域4。在P型的体区域4中,以成为5×1016/cm3~1×1018/cm3的浓度的方式注入B(硼)或BF2(二氟化硼)。此时,无论在形成利用了浅沟槽的凹型触点区域15的区域中,还是在未形成凹型触点区域15的平坦的区域16中,杂质能够从表面到达的距离相同,因而形成体区域4的杂质反映N-epi层3的表面的形状而分布,能够在凹型触点区域15正下方使P型的体区域4的底较深,在其他的区域中使P型的体区域4的底较浅。
接着,如图3的(c)所示,从体区域4的表面到N-epi层3,形成深沟槽6。深沟槽6的深度为约1~3um,根据期望的晶体管所要求的漏极耐压适当地进行设定。另外,在此,重要的是将深沟槽6设定在P型的体区域4的底较浅的区域。
接着,如图4的(a)所示,在深沟槽26的内壁上通过热氧化形成栅氧化膜7,在沟槽6内隔着栅氧化膜7填充作为栅电极8的多晶硅。栅电极8通过沿着深沟槽6的侧壁和底面延伸的栅氧化膜7而与N-epi层3和P型的体区域4电隔离。考虑期望的晶体管的栅极击穿电压来设定栅氧化膜7的厚度,约为7nm~20nm。此外,栅氧化膜7的形成温度为800℃到1150℃,但更优选在1000℃~1150℃的范围内。
接着,如图4的(b)所示,在包含与P型的体区域4的上侧表面和深沟槽6的侧壁邻接的凹型触点区域15的区域中形成P型体接触区域30。此外,以与深沟槽6邻接,并与P型体接触区域30邻接的方式,形成N型源区域9。
然后,如图4的(c)所示,在N型的高浓度杂质区域即源区域9和P型的体接触区域30上形成硅化物层11,使用插头布线(未图示)与布线金属层(未图示)连接。
以上对使用了N-epi层3的情况进行了说明,但也可以是,使用P-epi层,与P型的体区域4同时地用N型杂质进行离子注入,将N型埋层2与P型的体区域4之间设定为N型的漏区域。此外,在此处以N型的晶体管为前提进行了说明,但是,在将埋层、epi层作为P型,体区域作为N型的P型的晶体管的情况下,能够同样地进行应用。(当然,也可以将epi层设为N型,通过导入杂质将P型埋层与体区域之间设定为P型的漏区域。)
此外,没有触及与沟槽MOSFET在同一衬底上形成的CMOS,但是,上述中示出的工序在CMOS形成时不存在任何成为障碍的工序,能够容易地将沟槽MOSFET与CMOS在同一衬底上形成。
根据以上说明的本实施方式能够得到如下效果。
(1)可以较大地取得用于得到体(body)的电位的硅高浓度区域和硅化物层的接触面积,如果接触面积相同,则实质上能够缩小体接触区域的面积、即平面的体接触区域的大小,因此,能够以相同面积形成导通(ON)电阻较低的沟槽MOSFET。
(2)通过利用STI或Locos工艺那样的稳定的工序,能够将偏差抑制在最小限度内,能够制造具有高度的特性的设备。
产业上的可利用性
能够应用于在要求比较高的耐压/驱动能力的、面向汽车的半导体装置、或电视、DVD、生活家电等面向家庭的电器制品中有效的半导体装置中。

Claims (8)

1.一种半导体装置的制造方法,其特征在于,该半导体装置的制造方法包括以下工序:
在第1导电型的半导体衬底上形成第2导电型的埋层;
在所述埋层上形成第2导电型的外延层;
从所述第2导电型的外延层的表面到一定的深度,形成第1导电型的体区域;
除去构成所述体区域的表面的半导体材料,在凸型触点区域的周围形成浅沟槽;
形成从所述浅沟槽的表面的一部分到所述第2导电型的外延层内的深沟槽区域;
在所述深沟槽区域的内壁形成栅绝缘膜;
与所述栅绝缘膜相接地由多晶硅填充所述深沟槽区域内;
在所述体区域的表面的所述浅沟槽内形成第2导电型的源区域;
在所述体区域的表面的所述凸型触点区域形成第1导电型的体接触区域;以及
形成连接所述源区域和所述体接触区域的硅化物层,
所述凸型触点区域的表面全部是所述体接触区域,与所述源区域的表面一起被所述硅化物层覆盖。
2.根据权利要求1所述的半导体装置的制造方法,其特征在于,
所述浅沟槽的深度在200nm~600nm的范围内。
3.根据权利要求1所述的半导体装置的制造方法,其特征在于,
形成所述浅沟槽的工序由形成LOCOS氧化膜的工序和除去该LOCOS氧化膜的工序构成。
4.根据权利要求3所述的半导体装置的制造方法,其特征在于,
所述LOCOS氧化膜的膜厚在50nm~150nm的范围内。
5.一种半导体装置的制造方法,其特征在于,该半导体装置的制造方法包括以下工序:
在第1导电型的半导体衬底上形成第2导电型的埋层;
在所述埋层上形成第2导电型的外延层;
在所述外延层的表面的特定区域形成用于作为凹型触点区域的浅沟槽;
以与所述外延层的表面的距离固定的方式,形成第1导电型的体区域,该第1导电型的体区域在没有所述凹型触点区域的平坦区域下浅,在所述凹型触点区域下深,并朝向所述埋层突出;
在所述平坦区域形成从所述体区域的表面到所述外延层内的深沟槽;
在所述深沟槽区域的内壁形成栅绝缘膜;
与所述栅绝缘膜相接地由多晶硅填充所述深沟槽区域内;
在所述体区域表面的所述平坦区域形成第2导电型的源区域;
沿着所述体区域的表面的所述凹型触点区域形成第1导电型的体接触区域;以及
形成连接所述源区域和所述体接触区域的硅化物层,
所述凹型触点区域的表面全部是所述体接触区域,与所述源区域的表面一起被所述硅化物层覆盖。
6.根据权利要求5所述的半导体装置的制造方法,其特征在于,
所述浅沟槽的深度在200nm~600nm的范围内。
7.根据权利要求5所述的半导体装置的制造方法,其特征在于,
形成所述浅沟槽的工序由形成LOCOS氧化膜的工序和除去该LOCOS氧化膜的工序构成。
8.根据权利要求7所述的半导体装置的制造方法,其特征在于,
所述LOCOS氧化膜的膜厚在50nm~150nm的范围内。
CN201310075119.0A 2012-03-09 2013-03-08 半导体装置的制造方法 Expired - Fee Related CN103311127B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-053555 2012-03-09
JP2012053555A JP5939846B2 (ja) 2012-03-09 2012-03-09 半導体装置の製造方法

Publications (2)

Publication Number Publication Date
CN103311127A true CN103311127A (zh) 2013-09-18
CN103311127B CN103311127B (zh) 2017-04-12

Family

ID=49136204

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310075119.0A Expired - Fee Related CN103311127B (zh) 2012-03-09 2013-03-08 半导体装置的制造方法

Country Status (5)

Country Link
US (1) US9231081B2 (zh)
JP (1) JP5939846B2 (zh)
KR (1) KR101985664B1 (zh)
CN (1) CN103311127B (zh)
TW (1) TWI570811B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108074925A (zh) * 2016-11-15 2018-05-25 瑞萨电子株式会社 半导体器件

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9397040B2 (en) * 2014-03-07 2016-07-19 Taiwan Semiconductor Manufacturing Company Limited Semiconductor device comprising metal plug having substantially convex bottom surface
JP2015210834A (ja) 2014-04-25 2015-11-24 株式会社東芝 パターン形成方法、及び磁気記録媒体の製造方法
JP6830390B2 (ja) * 2017-03-28 2021-02-17 エイブリック株式会社 半導体装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63186476A (ja) * 1987-01-29 1988-08-02 Nissan Motor Co Ltd 縦形mosfet
JPH11145465A (ja) * 1997-11-12 1999-05-28 Nec Corp 縦型電界効果トランジスタ及びその製造方法
JP2000232207A (ja) * 1999-02-10 2000-08-22 Nec Corp 半導体装置およびその製造方法
JP3524850B2 (ja) 2000-08-03 2004-05-10 三洋電機株式会社 絶縁ゲート型電界効果半導体装置
JP3906076B2 (ja) * 2001-01-31 2007-04-18 株式会社東芝 半導体装置
US7229499B2 (en) * 2003-08-22 2007-06-12 Matsushita Electric Industrial Co., Ltd. Manufacturing method for semiconductor device, semiconductor device and semiconductor wafer
JP5132123B2 (ja) * 2006-11-01 2013-01-30 株式会社東芝 電力用半導体素子
JP2009076762A (ja) * 2007-09-21 2009-04-09 Sanyo Electric Co Ltd 半導体装置およびその製造方法
KR100902585B1 (ko) 2007-12-28 2009-06-11 주식회사 동부하이텍 트렌치 게이트형 모스트랜지스터 및 그 제조방법
JP5442951B2 (ja) * 2008-02-26 2014-03-19 セイコーインスツル株式会社 半導体装置の製造方法
US8067798B2 (en) * 2008-03-31 2011-11-29 Rohm Co., Ltd. Semiconductor device
CN101656213B (zh) * 2008-08-19 2012-09-26 尼克森微电子股份有限公司 沟槽栅金属氧化物半导体场效应晶体管及其制作方法
JP2010147219A (ja) * 2008-12-18 2010-07-01 Renesas Electronics Corp 半導体装置及びその製造方法
JP5149922B2 (ja) * 2010-02-23 2013-02-20 富士電機株式会社 半導体素子
JP2011204808A (ja) * 2010-03-25 2011-10-13 Panasonic Corp 半導体装置および半導体装置の製造方法
CN102214691B (zh) * 2010-04-09 2014-03-19 力士科技股份有限公司 一种沟槽金属氧化物半导体场效应管及其制造方法
US8378445B2 (en) * 2010-08-31 2013-02-19 Infineon Technologies Ag Trench structures in direct contact

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108074925A (zh) * 2016-11-15 2018-05-25 瑞萨电子株式会社 半导体器件
CN108074925B (zh) * 2016-11-15 2023-05-05 瑞萨电子株式会社 半导体器件

Also Published As

Publication number Publication date
US9231081B2 (en) 2016-01-05
JP2013187499A (ja) 2013-09-19
JP5939846B2 (ja) 2016-06-22
TW201347047A (zh) 2013-11-16
CN103311127B (zh) 2017-04-12
KR101985664B1 (ko) 2019-06-04
TWI570811B (zh) 2017-02-11
US20130244385A1 (en) 2013-09-19
KR20130103430A (ko) 2013-09-23

Similar Documents

Publication Publication Date Title
US8264038B2 (en) Buried floating layer structure for improved breakdown
US7867854B2 (en) Method of fabricating power semiconductor device
TWI570928B (zh) 包括翼片和汲極延伸區的半導體裝置和製造方法
US8809163B2 (en) Fabricating method of trench-gate metal oxide semiconductor device
CN105322015A (zh) 栅极结构及其制造方法
US8133790B2 (en) Semiconductor device and method for fabricating the same
KR20040009680A (ko) 고전압 종형 디모스 트랜지스터 및 그 제조방법
US20120049274A1 (en) Trench Structures in Direct Contact
TWI503983B (zh) 半導體裝置及其製造方法
CN103311127A (zh) 半导体装置的制造方法
US10217828B1 (en) Transistors with field plates on fully depleted silicon-on-insulator platform and method of making the same
US8673712B2 (en) Power transistor with high voltage counter implant
US9431286B1 (en) Deep trench with self-aligned sinker
US20160155797A1 (en) High voltage device with low rdson
CN102544005A (zh) 降低寄生晶体管导通的功率组件及其制作方法
CN103681850A (zh) 功率mosfet及其形成方法
CN103178115A (zh) 半导体装置及其制造方法
TWI525817B (zh) Semiconductor device and method for manufacturing semiconductor device
US8796130B2 (en) Diffusion barrier for oppositely doped portions of gate conductor
CN109979993B (zh) 高压mos器件及其制作方法、电子装置
CN103295910A (zh) 半导体装置及其制造方法
US9825141B2 (en) Three dimensional monolithic LDMOS transistor
CN103594470A (zh) 具有垂直功率mos晶体管的集成电路
CN103378178A (zh) 一种具有沟槽结构肖特基半导体装置及其制备方法
JP5630939B2 (ja) 半導体装置及びその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20160401

Address after: Chiba County, Japan

Applicant after: SEIKO INSTR INC

Address before: Chiba County, Japan

Applicant before: Seiko Instruments Inc.

GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: Chiba County, Japan

Patentee after: EPPs Lingke Co. Ltd.

Address before: Chiba County, Japan

Patentee before: SEIKO INSTR INC

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170412

Termination date: 20210308