CN102863221A - 低温共烧介质陶瓷的制备方法、烧结助剂及材料和应用 - Google Patents

低温共烧介质陶瓷的制备方法、烧结助剂及材料和应用 Download PDF

Info

Publication number
CN102863221A
CN102863221A CN2012103562995A CN201210356299A CN102863221A CN 102863221 A CN102863221 A CN 102863221A CN 2012103562995 A CN2012103562995 A CN 2012103562995A CN 201210356299 A CN201210356299 A CN 201210356299A CN 102863221 A CN102863221 A CN 102863221A
Authority
CN
China
Prior art keywords
oxide
low temperature
fired
sintering aid
dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012103562995A
Other languages
English (en)
Other versions
CN102863221B (zh
Inventor
张火光
肖泽棉
唐浩
宋永生
吴海斌
莫方策
叶向红
张彩云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Fenghua Advanced Tech Holding Co Ltd
Original Assignee
Guangdong Fenghua Advanced Tech Holding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Fenghua Advanced Tech Holding Co Ltd filed Critical Guangdong Fenghua Advanced Tech Holding Co Ltd
Priority to CN201210356299.5A priority Critical patent/CN102863221B/zh
Publication of CN102863221A publication Critical patent/CN102863221A/zh
Application granted granted Critical
Publication of CN102863221B publication Critical patent/CN102863221B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

一种低温共烧介质陶瓷材料用烧结助剂,按质量百分比,包括31%~45%的二氧化硅、1%~10%的氧化硼、5.1%~10%的氧化锌、18%~30%的氧化铝、11%~24%碱土金属氧化物及5%~15%的通式为R2O3的氧化物,其中,R为镧、铈、镨、钕、钐、铕及镝中的至少一种;碱土金属氧化物为氧化镁、氧化钙、氧化钡及氧化锶中的至少一种。上述烧结助剂添加到低温共烧介质陶瓷材料中能够使得所制成的低温共烧介质陶瓷具有优良的热机械性能及介电性能。此外,还要提供一种低温共烧介质陶瓷材料及其应用、和低温共烧介质陶瓷的制备方法。

Description

低温共烧介质陶瓷的制备方法、烧结助剂及材料和应用
技术领域
本发明涉及介质陶瓷材料领域,特别涉及一种低温共烧介质陶瓷材料及其烧结助剂和应用,以及采用上述低温共烧介质陶瓷材料制备低温共烧介质陶瓷的制备方法。
背景技术
低温共烧介质陶瓷(Low Temperature Co-fired Ceramics,简称LTCC)技术作为一种整合组件技术,其具体的工艺流程就是将低温烧结陶瓷粉制成生瓷带,作为电路基板材料,在生瓷带上利用打孔、微孔注浆、导体浆料印刷等工艺制出预先设计好的电路图形,并将多个无源元件(如电容、电阻、电感等)埋入其中,然后叠压在一起,在较低温度(通常是小于900℃)下烧结,制成三维电路网络的无源集成组件,也可制成内置无源元件的三维电路基板,在其表面可以贴装IC和有源器件,制成无源/有源集成的功能模块。LTCC技术为信息时代各种电子系统的元器件以及模块小型化、轻量化提供了比较好的解决途径,并以其优异的电子、机械、热力特性而成为未来电子元件集成化、模组化的首选方式,在军事、航天、航空、电子、计算机、汽车电子、医疗电子等领域将获得越来越广泛的应用。
LTCC是近年发展起来的一种无源元件集成技术,与其他集成技术相比,LTCC具有如下特点:1、使用印刷布线及内埋元器件,易于提高组装密度,减少产品体积和重量;2、采取非连续式生产工艺,便于对多层基板中的每一层进行印刷、填孔的质量检查,有利于提高产品的质量及成品率,降低成本;3、具有良好的高频、高速传输特性;4、与薄膜多层布线技术具有良好的兼容性,从而实现更高组装密度和更好性能的混合多层基板和混合型多芯片组件。
尽管LTCC有着诸多独特的优点,但是因为LTCC材料通常含有玻璃相成分较多,使得烧结后的基板容易存在机械强度低且介电性能较低的问题。
发明内容
基于此,有必要提供一种能够提高低温共烧介质陶瓷的介电性能和机械性能的烧结助剂及含有该烧结助剂的低温共烧介质陶瓷材料和应用,以及采用上述低温共烧介质陶瓷材料制备低温共烧介质陶瓷的方法。
一种低温共烧介质陶瓷材料用烧结助剂,按质量百分比,包括31%~45%的二氧化硅、1%~10%的氧化硼、5.1%~10%的氧化锌、18%~30%的氧化铝、11%~24%的碱土金属氧化物及5%~15%的通式为R2O3的氧化物,其中,R为镧、铈、镨、钕、钐、铕及镝中的至少一种;所述碱土金属氧化物为氧化镁、氧化钙、氧化钡及氧化锶中的至少一种。
一种低温共烧介质陶瓷材料,按质量百分比,包括40%~59%的氧化铝、39%~57%的上述的烧结助剂及1.5%~15%的改性剂;
其中,所述改性剂为二氧化钛、二氧化锰、四氧化三钴、三氧化二钇、二氧化锆及三氧化二铋中的至少一种。
在其中一个实施例中,包括:40%~55%的氧化铝、39%~56%的烧结助剂及2%~15%的改性剂。
一种低温共烧介质陶瓷的制备方法,包括如下步骤:
按照质量百分比为40%~59%、39%~57%及1.5%~15%称取氧化铝、上述烧结助剂和改性剂,加入去离子水混合得到混合物料,经球磨、干燥后,得到所述低温共烧介质陶瓷材料;所述改性剂为二氧化钛、二氧化锰、四氧化三钴、三氧化二钇、二氧化锆及三氧化二铋中的至少一种;及
将所述低温共烧介质陶瓷材料成型后,在温度为800℃~900℃中保温15分钟~150分钟进行烧结,得到低温共烧介质陶瓷。
在其中一个实施例中,制备所述烧结助剂包括如下步骤:以氯化铝、碱土金属的氯化物、R的氯化物为原材料,分别配制成水溶液,按所述烧结助剂中所述氧化铝、碱土金属氧化物及通式为R2O3的氧化物的质量百分比进行混合,加入沉淀剂,采用化学共沉淀法生成前躯体沉淀物,经过滤、洗涤后,以二氧化硅、氧化锌、硼酸为原料,按照所述烧结助剂中所述二氧化硅、氧化锌、氧化硼的质量百分比将所述二氧化硅、氧化锌、硼酸与所述前驱体沉淀物混合,搅拌均匀,经干燥、煅烧后,得到所述烧结助剂。
在其中一个实施例中,所述沉淀剂为碳酸氢铵、碳酸钾、氢氧化钾、碳酸氢钾、碳酸钠、氢氧化钠及碳酸氢钠中的一种。
上述低温共烧介质陶瓷材料在滤波器、功率分配器、多层基板及封装基板中的应用。
上述配方的烧结助剂添加到氧化铝(Al2O3)中可以有效地降低烧结温度,使低温共烧介质陶瓷材料能在800℃~900℃的温度下进行烧结;且烧结助剂中各组分的质量百分比配比有利于低温共烧介质陶瓷材料在烧结过程中形成均匀的玻璃-陶瓷结构,使得烧结后的低温共烧介质陶瓷具有高致密度,进一步保证了所制成的低温共烧介质陶瓷具有优良的热机械性能及介电性能。
附图说明
图1为一实施方式的低温共烧介质陶瓷的制备方法的流程图。
具体实施方式
下面主要结合附图及具体实施例对低温共烧介质陶瓷材料及其烧结助剂和应用、以及低温共烧介质陶瓷的制备方法作进一步详细的说明。
一实施方式的低温共烧介质陶瓷材料,按质量百分比,包括40%~59%的氧化铝(Al2O3)、39%~57%的烧结助剂及1.5%~15%的改性剂。优选地,按质量百分比,低温共烧介质陶瓷材料包括40%~55%的氧化铝、39%~56%的烧结助剂及2%~15%的改性剂。
氧化铝(Al2O3)具有良好高频性能、较低的介电常数(小于10)、较低的介电损耗和近乎线性的介电-温度特性,保证了低温共烧介质陶瓷材料制作成低温共烧介质陶瓷具有优良的电性能。但由于氧化铝(Al2O3)的烧结温度较高(一般大于1400℃),不能与银等低熔点金属导体共烧,所以必须通过加入烧结助剂来降低烧结温度,实现与低熔点金属导体共烧的目的。
其中,按质量百分比,烧结助剂包括31%~45%的二氧化硅(SiO2)、1%~10%的氧化硼(B2O3)、5.1%~10%的氧化锌(ZnO)、18%~30%的氧化铝(Al2O3)、11%~24%的碱土金属氧化物及5%~15%的通式为R2O3的氧化物。其中,碱土金属氧化物为氧化镁(MgO)、氧化钙(CaO)、氧化钡(BaO)及氧化锶(SrO)中的至少一种。R为镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钐(Sm)、铕(Eu)及镝(Dy)中的至少一种。上述配方的烧结助剂添加到氧化铝(Al2O3)中可以有效地降低烧结温度,使低温共烧介质陶瓷材料能在800℃~900℃的温度下进行烧结;且烧结助剂中各组分的质量百分比配比有利于低温共烧介质陶瓷材料在烧结过程中形成均匀的玻璃-陶瓷结构,使得烧结后的低温共烧介质陶瓷具有高致密度,进一步保证了所制成的低温共烧介质陶瓷具有优良的热机械性能及介电性能。
其中,改性剂为二氧化钛(TiO2)、二氧化锰(MnO2)、四氧化三钴(Co3O4)、三氧化二钇(Y2O3)、二氧化锆(ZrO2)及三氧化二铋(Bi2O3)中的至少一种。上述改性剂中的二氧化钛、二氧化锆是一类很好的玻璃成核剂,能促进玻璃微晶化,防止玻璃析晶,金红石相的二氧化钛具有较高的介电常数(约100),负的温度特性(-750ppm/℃),二氧化锆介电常数约18,温度特性+100ppm/℃;二氧化锰、四氧化三钴在烧结过程中能促进陶瓷材料中各组分之间的混溶,提高烧结致密度;三氧化二钇、三氧化二铋能与玻璃互溶,能改变烧结过程中液相出现的时间及玻璃的流变性。根据配方组成中烧结助剂的理化特性及介电性能,调整上述改性剂的加入种类及加入量,能够调整本发明低温共烧介质陶瓷材料的介电常数(εr)、介电-温度特性(αε)和降低介电损耗;上述改性剂还可以阻止低温共烧介质陶瓷材料在烧结过程中玻璃的二次析晶,减少低温共烧介质陶瓷的内部缺陷,这对提高低温共烧介质陶瓷材料的耐压强度及绝缘性能也起到很好的作用。
上述低温共烧介质陶瓷材料中的氧化铝(Al2O3)保证了低温共烧介质陶瓷材料制成的低温共烧介质陶瓷具有优良的电性能,上述配方的烧结助剂添加到氧化铝(Al2O3)中可以有效地降低烧结温度,使低温共烧介质陶瓷材料能在800℃~900℃的温度下进行烧结,上述烧结助剂中各组分的质量百分比配比有利于低温共烧介质陶瓷材料在烧结过程中形成均匀的玻璃-陶瓷结构,使得烧结后的低温共烧介质陶瓷具有高致密度,进一步保证了所制成的低温共烧介质陶瓷具有优良的热机械性能及介电性能;上述改性剂能够调整低温共烧介质陶瓷材料的介电常数(εr)、介电-温度特性(αε)和降低介电损耗,阻止低温共烧介质陶瓷材料在烧结过程中玻璃的二次析晶,减少陶瓷内部缺陷;而通过按照质量百分比为40%~59%的氧化铝(Al2O3)、39%~57%的烧结助剂及1.5%~15%的改性剂,使得上述低温共烧介质陶瓷材料制备得到的低温共烧介质陶瓷具有较好的介电性能和热机械性能。
且上述低温共烧介质陶瓷材料不含铅(Pb)、镉(Cd)、汞(Hg)、铬(Cr6+)等不利于环保的有害元素,较为环保。
上述低温共烧介质陶瓷材料可以应用于制作滤波器、功率分配器、多层基板及封装基板中。
如图1所示,一实施方式的低温共烧介质陶瓷的制备方法,包括如下步骤:
步骤S110:按照质量百分比为40%~59%、39%~57%及1.5%~15%称取氧化铝(Al2O3)、烧结助剂及改性剂,加入去离子水混合得到混合物料,经球磨、干燥后,得到低温共烧介质陶瓷材料。其中,改性剂为二氧化钛(TiO2)、二氧化锰(MnO2)、四氧化三钴(Co3O4)、三氧化二钇(Y2O3)、二氧化锆(ZrO2)及三氧化二铋(Bi2O3)中的至少一种。
其中,按质量百分比,烧结助剂包括31%~45%的二氧化硅(SiO2)、1%~10%的氧化硼(B2O3)、5.1%~10%的氧化锌(ZnO)、18%~30%的氧化铝(Al2O3)、11%~24%的碱土金属氧化物及5%~15%的通式为R2O3的氧化物。其中,R为镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钐(Sm)、铕(Eu)及镝(Dy)中的至少一种。碱土金属氧化物为氧化镁(MgO)、氧化钙(CaO)、氧化钡(BaO)及氧化锶(SrO)中的至少一种。制备所述烧结助剂包括如下步骤:以氯化铝、碱土金属的氯化物、R的氯化物为原材料,分别配制成水溶液,按所述烧结助剂中所述氧化铝、碱土金属氧化物及通式为R2O3的氧化物的质量百分比进行混合,加入碳酸钠(NaCO3)作为沉淀剂,采用化学共沉淀法生成前躯体沉淀物,经过滤、洗涤后,以二氧化硅、氧化锌、硼酸为原料,按照所述烧结助剂中所述二氧化硅、氧化锌、氧化硼的质量百分比将所述二氧化硅、氧化锌、硼酸与所述前驱体沉淀物混合,搅拌均匀,经干燥、煅烧后,得到所述烧结助剂。
其中,制备烧结助剂包括如下步骤:以氯化铝(AlCl3)、碱土金属的氯化物、R的氯化物为原材料,分别配制成水溶液,按烧结助剂中氧化铝(Al2O3)、碱土金属氧化物及通式为R2O3的氧化物的质量百分比进行混合,加入沉淀剂,采用化学共沉淀法生成前躯体沉淀物,经过滤、洗涤后,以二氧化硅(SiO2)、氧化锌(ZnO)、硼酸(H3BO3)为原料,按照烧结助剂中二氧化硅(SiO2)、氧化锌(ZnO)、氧化硼(B2O3)的质量百分比将二氧化硅(SiO2)、氧化锌(ZnO)、硼酸(H3BO3)与前驱体沉淀物混合,搅拌均匀,经干燥、煅烧后,得到烧结助剂。其中,煅烧温度为750℃。
其中,沉淀剂为本领域常用的沉淀剂,沉淀剂可以为碳酸氢铵(NH4HCO3)、碳酸钾(K2CO3)、氢氧化钾(KOH)、碳酸氢钾(KHCO3)、碳酸钠(Na2CO3)、氢氧化钠(NaOH)及碳酸氢钠(NaHCO3)中的一种。
步骤S120:将低温共烧介质陶瓷材料成型后,在温度为800℃~900℃中保温15分钟~150分钟进行烧结,得到低温共烧介质陶瓷。
其中,低温共烧介质陶瓷材料成型方法可以为流延成型或干压成型。
其中,干压成型法的步骤包括:在低温共烧介质陶瓷材料中加入聚乙烯醇(PVA)进行造粒,在5MPa~15MPa的压力下干压成型,经350℃~450℃排胶后,进行烧结。
其中,流延成型法的步骤包括:在低温共烧介质陶瓷材料中加入胶粘剂聚乙烯醇缩丁醛(PVB)及溶剂,混磨制成浆料,经流延成型制成生瓷带,得到的生瓷带经叠层、静压及切割后,经350℃~450℃排胶后,进行烧结。其中,溶剂为甲苯与无水乙醇的混合液。
上述低温共烧介质陶瓷的制备方法与现有技术相比,制备方法简单、能耗低。上述低温共烧介质陶瓷的制备方法烧结温度低,在800℃~900℃的温度范围实现烧结,可使用电导率高的金属材料(如银、铜等)作为导体,烧结后的低温共烧介质陶瓷缺陷少、致密,能够生产出电性能优良、可靠性高的低温共烧介质陶瓷产品。且采用上述低温共烧介质陶瓷的制备方法制备的低温共烧介质陶瓷经烧结后具有机械强度高、热导率高,不易翘曲的特点,将被动元件嵌入多层电路基板中,能更好地实现基板的高密度组装。
以下为具体实施例部分:
实施例1
本实施例的低温共烧介质陶瓷材料的组成见表1及表2。
本实施例低温共烧介质陶瓷的制备如下:
(1)制备烧结助剂:以氯化铝(AlCl3)、氯化镁(MgCl2)、氯化钙(CaCl2)、氯化锶(SrCl2)、氯化钡(BaCl2)、氯化镧(LaCl3)、氯化钕(NdCl3)、氯化镝(DyCl3)为原料,将各原材料分别配制成水溶液,并按照烧结助剂中各组份的质量百分比进行混合,然后加入碳酸氢铵(NH4HCO3),采用化学共沉淀法生成各组份的前躯体沉淀物,经过滤、洗涤后,以二氧化硅(SiO2)、氧化锌(ZnO)、硼酸(H3BO3)为原材料,按照烧结助剂中二氧化硅(SiO2)、氧化锌(ZnO)、氧化硼(B2O3)的质量百分比加入二氧化硅(SiO2)、氧化锌(ZnO)、硼酸(H3BO3),搅拌均匀,经干燥、煅烧后,得到烧结助剂。
(2)按照氧化铝、烧结助剂及改性剂的质量百分比分别称取各组分,加入去离子水混合得到混合物料,经球磨、干燥后,得到低温共烧介质陶瓷材料。
(3)在低温共烧介质陶瓷材料中加入聚乙烯醇(PVA)进行造粒,在5MPa的压力下干压成型,经350℃排胶后,在温度为830℃中保温120分钟进行烧结,得到本实施例的低温共烧介质陶瓷。
电性能测试,在本实施例制备的低温共烧介质陶瓷进行涂银、烧银、清洗后,测试其介电性能、抗弯强度及热导率见表3。
实施例2
本实施例的低温共烧介质陶瓷材料的组成见表1及表2。
本实施例低温共烧介质陶瓷的制备如下:
(1)制备烧结助剂:以氯化铝(AlCl3)、氯化镁(MgCl2)、氯化钙(CaCl2)、氯化锶(SrCl2)、氯化钡(BaCl2)、氯化镧(LaCl3)、氯化钕(NdCl3)为原材料,将各原材料分别配制成水溶液,并按照烧结助剂中各组份的质量百分比进行混合,然后加入碳酸钾(K2CO3),采用化学共沉淀法生成各组份的前躯体沉淀物,经过滤、洗涤后,以二氧化硅(SiO2)、氧化锌(ZnO)、硼酸(H3BO3)为原材料,按照烧结助剂中二氧化硅(SiO2)、氧化锌(ZnO)、氧化硼(B2O3)的质量百分比加入二氧化硅(SiO2)、氧化锌(ZnO)、硼酸(H3BO3),搅拌均匀,经干燥、煅烧后,得到烧结助剂。
(2)按照氧化铝、烧结助剂及改性剂的质量百分比分别称取各组分,加入去离子水混合得到混合物料,经球磨、干燥后,得到低温共烧介质陶瓷材料。
(3)在低温共烧介质陶瓷材料中加入聚乙烯醇(PVA)进行造粒,在5MPa的压力下干压成型,经350℃排胶后,在温度为800℃中保温150分钟进行烧结,得到本实施例的低温共烧介质陶瓷。
电性能测试,在本实施例制备的低温共烧介质陶瓷进行涂银、烧银、清洗后,测试其介电性能、抗弯强度及热导率见表3。
实施例3
本实施例的低温共烧介质陶瓷材料的组成见表1及表2。
本实施例低温共烧介质陶瓷的制备如下:
(1)制备烧结助剂:以氯化铝(AlCl3)、氯化镁(MgCl2)、氯化钙(CaCl2)、氯化锶(SrCl2)、氯化钡(BaCl2)、氯化镨(PrCl3)、氯化钕(NdCl3)、氯化镝(DyCl3)为原材料,将各原材料分别配制成水溶液,并按照烧结助剂中各组份的质量百分比进行混合,然后加入氢氧化钾(KOH),采用化学共沉淀法生成各组份的前躯体沉淀物,经过滤、洗涤后,以二氧化硅(SiO2)、氧化锌(ZnO)、硼酸(H3BO3)为原材料,按照烧结助剂中二氧化硅(SiO2)、氧化锌(ZnO)、氧化硼(B2O3)的质量百分比加入二氧化硅(SiO2)、氧化锌(ZnO)、硼酸(H3BO3),搅拌均匀,经干燥、煅烧后,得到烧结助剂。
(2)按照氧化铝、烧结助剂及改性剂的质量百分比分别称取各组分,加入去离子水混合得到混合物料,经球磨、干燥后,得到低温共烧介质陶瓷材料。
(3)在低温共烧介质陶瓷材料中加入聚乙烯醇(PVA)进行造粒,在15MPa的压力下干压成型,经450℃排胶后,在温度为900℃中保温15分钟进行烧结,得到本实施例的低温共烧介质陶瓷。
电性能测试,在本实施例制备的低温共烧介质陶瓷进行涂银、烧银、清洗后,测试其介电性能、抗弯强度及热导率见表3。
实施例4
本实施例的低温共烧介质陶瓷材料的组成见表1及表2。
本实施例低温共烧介质陶瓷的制备如下:
(1)制备烧结助剂:以氯化铝(AlCl3)、氯化镁(MgCl2)、氯化钙(CaCl2)、氯化锶(SrCl2)、氯化钡(BaCl2)、氯化镧(LaCl3)、氯化铈(CeCl3)、氯化镨(PrCl3)、氯化钕(NdCl3)、氯化钐(SmCl3)为原材料,将各原材料分别配制成水溶液,并按照烧结助剂中各组份的质量百分比进行混合,然后加入碳酸氢钾(KHCO3),采用化学共沉淀法生成各组份的前躯体沉淀物,经过滤、洗涤后,以二氧化硅(SiO2)、氧化锌(ZnO)、硼酸(H3BO3)为原材料,按照烧结助剂中二氧化硅(SiO2)、氧化锌(ZnO)、氧化硼(B2O3)的质量百分比加入二氧化硅(SiO2)、氧化锌(ZnO)、硼酸(H3BO3),搅拌均匀,经干燥、煅烧后,得到烧结助剂。
(2)按照氧化铝、烧结助剂及改性剂的质量百分比分别称取各组分,加入去离子水混合得到混合物料,经球磨、干燥后,得到低温共烧介质陶瓷材料。
(3)在低温共烧介质陶瓷材料中加入聚乙烯醇(PVA)进行造粒,在10MPa的压力下干压成型,经400℃排胶后,在温度为850℃中保温120分钟进行烧结,得到本实施例的低温共烧介质陶瓷。
电性能测试,在本实施例制备的低温共烧介质陶瓷进行涂银、烧银、清洗后,测试其介电性能、抗弯强度及热导率见表3。
实施例5
本实施例的低温共烧介质陶瓷材料的组成见表1及表2。
本实施例低温共烧介质陶瓷的制备如下:
(1)制备烧结助剂:以氯化铝(AlCl3)、氯化钙(CaCl2)、氯化钡(BaCl2)、氯化镧(LaCl3)、氯化钕(NdCl3)、氯化钐(SmCl3)、氯化铕(EuCl3)、氯化镝(DyCl3)为原料,将各原材料分别配制成水溶液,并按照烧结助剂中各组份的质量百分比进行混合,然后加入碳酸钠(Na2CO3),采用化学共沉淀法生成各组份的前躯体沉淀物,经过滤、洗涤后,以二氧化硅(SiO2)、氧化锌(ZnO)、硼酸(H3BO3)为原材料,按照烧结助剂中二氧化硅(SiO2)、氧化锌(ZnO)、氧化硼(B2O3)的质量百分比加入二氧化硅(SiO2)、氧化锌(ZnO)、硼酸(H3BO3),搅拌均匀,经干燥、煅烧后,得到烧结助剂。
(2)按照氧化铝、烧结助剂及改性剂的质量百分比分别称取各组分,加入去离子水混合得到混合物料,经球磨、干燥后,得到低温共烧介质陶瓷材料。
(3)在低温共烧介质陶瓷材料中加入聚乙烯醇(PVA)进行造粒,在5MPa的压力下干压成型,经350℃排胶后,在温度为830℃中保温120分钟进行烧结,得到本实施例的低温共烧介质陶瓷。
电性能测试,在本实施例制备的低温共烧介质陶瓷进行涂银、烧银、清洗后,测试其介电性能、抗弯强度及热导率见表3。
实施例6
本实施例的低温共烧介质陶瓷材料的组成见表1及表2。
本实施例低温共烧介质陶瓷的制备如下:
(1)制备烧结助剂:以氯化铝(AlCl3)、氯化锶(SrCl2)、氯化钡(BaCl2)、氯化镧(LaCl3)、氯化铈(CeCl3)、氯化钕(NdCl3)、氯化钐(SmCl3)、氯化镝(DyCl3)为原料,将各原材料分别配制成水溶液,并按照烧结助剂中各组份的质量百分比进行混合,然后加入氢氧化钠(NaOH),采用化学共沉淀法生成各组份的前躯体沉淀物,经过滤、洗涤后,以二氧化硅(SiO2)、氧化锌(ZnO)、硼酸(H3BO3)为原材料,按照烧结助剂中二氧化硅(SiO2)、氧化锌(ZnO)、氧化硼(B2O3)的质量百分比加入二氧化硅(SiO2)、氧化锌(ZnO)、硼酸(H3BO3),搅拌均匀,经干燥、煅烧后,得到烧结助剂。
(2)按照氧化铝、烧结助剂及改性剂的质量百分比分别称取各组分,加入去离子水混合得到混合物料,经球磨、干燥后,得到低温共烧介质陶瓷材料。
(3)在低温共烧介质陶瓷材料中加入聚乙烯醇(PVA)进行造粒,在12MPa的压力下干压成型,经380℃排胶后,在温度为880℃中保温60分钟进行烧结,得到本实施例的低温共烧介质陶瓷。
电性能测试,在本实施例制备的低温共烧介质陶瓷进行涂银、烧银、清洗后,测试其介电性能、抗弯强度及热导率见表3。
实施例7
本实施例的低温共烧介质陶瓷材料的组成见表1及表2。
本实施例低温共烧介质陶瓷的制备如下:
(1)制备烧结助剂:以氯化铝(AlCl3)、氯化钙(CaCl2)、氯化锶(SrCl2)、氯化钡(BaCl2)、氯化钕(NdCl3)、氯化钐(SmCl3)、氯化镝(DyCl3)为原料,将各原材料分别配制成水溶液,并按照烧结助剂中各组份的质量百分比进行混合,然后加入氢氧化钠(NaOH),采用化学共沉淀法生成各组份的前躯体沉淀物,经过滤、洗涤后,以二氧化硅(SiO2)、氧化锌(ZnO)、硼酸(H3BO3)为原材料,按照烧结助剂中二氧化硅(SiO2)、氧化锌(ZnO)、氧化硼(B2O3)的质量百分比加入二氧化硅(SiO2)、氧化锌(ZnO)、硼酸(H3BO3),搅拌均匀,经干燥、煅烧后,得到烧结助剂。
(2)按照氧化铝、烧结助剂及改性剂的质量百分比分别称取各组分,加入去离子水混合得到混合物料,经球磨、干燥后,得到低温共烧介质陶瓷材料。
(3)在低温共烧介质陶瓷材料中加入聚乙烯醇(PVA)进行造粒,在5MPa的压力下干压成型,经350℃排胶后,在温度为840℃中保温50分钟进行烧结,得到本实施例的低温共烧介质陶瓷。
电性能测试,在本实施例制备的低温共烧介质陶瓷进行涂银、烧银、清洗后,测试其介电性能、抗弯强度及热导率见表3。
实施例8
本实施例的低温共烧介质陶瓷材料的组成见表1及表2。
本实施例低温共烧介质陶瓷的制备如下:
(1)制备烧结助剂:以氯化铝(AlCl3)、氯化镁(MgCl2)、氯化钙(CaCl2)、氯化锶(SrCl2)、氯化钡(BaCl2)、氯化镧(LaCl3)、氯化铈(CeCl3)、氯化镨(PrCl3)、氯化钕(NdCl3)、氯化钐(SmCl3)为原料,将各原材料分别配制成水溶液,并按照烧结助剂中各组份的质量百分比进行混合,然后加入碳酸氢钠(NaHCO3),采用化学共沉淀法生成各组份的前躯体沉淀物,经过滤、洗涤后,以二氧化硅(SiO2)、氧化锌(ZnO)、硼酸(H3BO3)为原材料,按照烧结助剂中二氧化硅(SiO2)、氧化锌(ZnO)、氧化硼(B2O3)的质量百分比加入二氧化硅(SiO2)、氧化锌(ZnO)、硼酸(H3BO3),搅拌均匀,经干燥、煅烧后,得到烧结助剂。
(2)按照氧化铝、烧结助剂及改性剂的质量百分比分别为称取各组分,加入去离子水混合得到混合物料,经球磨、干燥后,得到低温共烧介质陶瓷材料。
(3)在低温共烧介质陶瓷材料中加入聚乙烯醇(PVA)进行造粒,在8MPa的压力下干压成型,经420℃排胶后,在温度为860℃中保温90分钟进行烧结,得到本实施例的低温共烧介质陶瓷。
电性能测试,在本实施例制备的低温共烧介质陶瓷进行涂银、烧银、清洗后,测试其介电性能、抗弯强度及热导率见表3。
实施例9
本实施例的低温共烧介质陶瓷材料的组成见表1及表2。
本实施例低温共烧介质陶瓷的制备如下:
(1)制备烧结助剂:以氯化铝(AlCl3)、氯化钡(BaCl2)、氯化镨(PrCl3)、氯化钕(NdCl3)、氯化钐(SmCl3)、氯化铕(EuCl3)、氯化镝(DyCl3)为原料,将各原材料分别配制成水溶液,并按照烧结助剂中各组份的质量百分比进行混合,然后加入碳酸氢铵(NH4HCO3),采用化学共沉淀法生成各组份的前躯体沉淀物,经过滤、洗涤后,以二氧化硅(SiO2)、氧化锌(ZnO)、硼酸(H3BO3)为原材料,按照烧结助剂中二氧化硅(SiO2)、氧化锌(ZnO)、氧化硼(B2O3)的质量百分比加入二氧化硅(SiO2)、氧化锌(ZnO)、硼酸(H3BO3),搅拌均匀,经干燥、煅烧后,得到烧结助剂。
(2)按照氧化铝、烧结助剂及改性剂的质量百分比分别为称取各组分,加入去离子水混合得到混合物料,经球磨、干燥后,得到低温共烧介质陶瓷材料。
(3)在低温共烧介质陶瓷材料中加入聚乙烯醇(PVA)进行造粒,在5MPa的压力下干压成型,经350℃排胶后,在温度为830℃中保温120分钟进行烧结,得到本实施例的低温共烧介质陶瓷。
电性能测试,在本实施例制备的低温共烧介质陶瓷进行涂银、烧银、清洗后,测试其介电性能、抗弯强度及热导率见表3。
实施例10
本实施例的低温共烧介质陶瓷材料的组成见表1及表2。
本实施例低温共烧介质陶瓷的制备如下:
(1)制备烧结助剂:以氯化铝(AlCl3)、氯化镁(MgCl2)、氯化钙(CaCl2)、氯化锶(SrCl2)、氯化钡(BaCl2)、氯化镧(LaCl3)、氯化钕(NdCl3)、氯化钐(SmCl3)、氯化镝(DyCl3)为原料,将各原材料分别配制成水溶液,并按照烧结助剂中各组份的质量百分比进行混合,然后加入碳酸氢钠(NaHCO3),采用化学共沉淀法生成各组份的前躯体沉淀物,经过滤、洗涤后,以二氧化硅(SiO2)、氧化锌(ZnO)、硼酸(H3BO3)为原材料,按照烧结助剂中二氧化硅(SiO2)、氧化锌(ZnO)、氧化硼(B2O3)的质量百分比加入二氧化硅(SiO2)、氧化锌(ZnO)、硼酸(H3BO3),搅拌均匀,经干燥、煅烧后,得到烧结助剂。
(2)按照氧化铝、烧结助剂及改性剂的质量百分比分别为称取各组分,加入去离子水混合得到混合物料,经球磨、干燥后,得到低温共烧介质陶瓷材料。
(3)在低温共烧介质陶瓷材料中加入聚乙烯醇(PVA)进行造粒,在5MPa的压力下干压成型,经350℃排胶后,在温度为800℃中保温150分钟进行烧结,得到本实施例的低温共烧介质陶瓷。
电性能测试,在本实施例制备的低温共烧介质陶瓷进行涂银、烧银、清洗后,测试其介电性能、抗弯强度及热导率见表3。
实施例11
本实施例的低温共烧介质陶瓷材料的组成见表1及表2。
本实施例低温共烧介质陶瓷的制备如下:
(1)制备烧结助剂:以氯化铝(AlCl3)、氯化镁(MgCl2)、氯化钙(CaCl2)、氯化锶(SrCl2)、氯化钡(BaCl2)、氯化镨(PrCl3)、氯化钕(NdCl3)、氯化镝(DyCl3)为原料,将各原材料分别配制成水溶液,并按照烧结助剂中各组份的质量百分比进行混合,然后加入碳酸钾(K2CO3),采用化学共沉淀法生成各组份的前躯体沉淀物,经过滤、洗涤后,以二氧化硅(SiO2)、氧化锌(ZnO)、硼酸(H3BO3)为原材料,按照烧结助剂中二氧化硅(SiO2)、氧化锌(ZnO)、氧化硼(B2O3)的质量百分比加入二氧化硅(SiO2)、氧化锌(ZnO)、硼酸(H3BO3),搅拌均匀,经干燥、煅烧后,得到烧结助剂。
(2)按照氧化铝、烧结助剂及改性剂的质量百分比分别为称取各组分,加入去离子水混合得到混合物料,经球磨、干燥后,得到低温共烧介质陶瓷材料。
(3)在低温共烧介质陶瓷材料中加入聚乙烯醇(PVA)进行造粒,在15MPa的压力下干压成型,经450℃排胶后,在温度为900℃中保温15分钟进行烧结,得到本实施例的低温共烧介质陶瓷。
电性能测试,在本实施例制备的低温共烧介质陶瓷进行涂银、烧银、清洗后,测试其介电性能、抗弯强度及热导率见表3。
实施例12
本实施例的低温共烧介质陶瓷材料的组成见表1及表2。
本实施例低温共烧介质陶瓷的制备如下:
(1)制备烧结助剂:以氯化铝(AlCl3)、氯化镁(MgCl2)、氯化钙(CaCl2)、氯化锶(SrCl2)、氯化钡(BaCl2)、氯化镨(PrCl3)为原料,将各原材料分别配制成水溶液,并按照烧结助剂中各组份的质量百分比进行混合,然后加入氢氧化钾(KOH),采用化学共沉淀法生成各组份的前躯体沉淀物,经过滤、洗涤后,以二氧化硅(SiO2)、氧化锌(ZnO)、硼酸(H3BO3)为原材料,按照烧结助剂中二氧化硅(SiO2)、氧化锌(ZnO)、氧化硼(B2O3)的质量百分比加入二氧化硅(SiO2)、氧化锌(ZnO)、硼酸(H3BO3),搅拌均匀,经干燥、煅烧后,得到烧结助剂。
(2)按照氧化铝、烧结助剂及改性剂的质量百分比分别为称取各组分,加入去离子水混合得到混合物料,经球磨、干燥后,得到低温共烧介质陶瓷材料。
(3)在低温共烧介质陶瓷材料中加入聚乙烯醇(PVA)进行造粒,在10MPa的压力下干压成型,经400℃排胶后,在温度为850℃中保温120分钟进行烧结,得到本实施例的低温共烧介质陶瓷。
电性能测试,在本实施例制备的低温共烧介质陶瓷进行涂银、烧银、清洗后,测试其介电性能、抗弯强度及热导率见表3。
对比例
传统的低温共烧介质陶瓷材料的组成见表1、表2。
传统的低温共烧介质陶瓷的制备如下:
(1)制备烧结助剂:以二氧化硅、硼酸、氧化锌、氧化铝、碳酸钙、碳酸钡为原材料,按照烧结助剂中二氧化硅、氧化鹏、氧化锌、氧化铝、氧化钙、氧化钡的配比称量各物料,经混料、高温熔融(1250℃~1400℃的温度范围)、淬火、超细粉碎后,得到烧结助剂。
(2)按照氧化铝、烧结助剂及改性剂的质量百分比分别为称取各组分,加入去离子水混合得到混合物料,经球磨、干燥后,得到传统的低温共烧介质陶瓷材料。
(3)在传统的低温共烧介质陶瓷材料中加入聚乙烯醇(PVA)进行造粒,在10MPa的压力下干压成型,经400℃排胶后,在温度为850℃中保温60分钟进行烧结,得到传统的低温共烧介质陶瓷。
电性能测试,在对比例制备的传统的低温共烧介质陶瓷进行涂银、烧银、清洗后测试其电性能、抗弯强度及热导率见表3。
表1表示的是实施例1~实施例12的低温共烧介质陶瓷材料的烧结助剂和对比例的传统的低温共烧介质陶瓷材料的烧结助剂的质量百分比的组成。表2表示的是实施例1~实施例12的低温共烧介质陶瓷材料的烧结助剂和对比例的传统的低温共烧介质陶瓷材料的烧结助剂的质量百分比的组成。
表1
Figure BDA00002169058400151
Figure BDA00002169058400161
表2
Figure BDA00002169058400162
表3表示的是实施例1~实施例12的低温共烧介质陶瓷的介电性能抗弯强度及热导率的测试数据与对比例的传统的低温共烧介质陶瓷材料的介电性能抗弯强度及热导率的测试数据。
表3
Figure BDA00002169058400171
由表3中可以得知,实施例1~实施例12的低温共烧介质陶瓷材料制备得到的低温共烧介质陶瓷的介电常数较低,在7~9之间,均低于对比例的传统的低温共烧介质陶瓷材料制备得到的低温共烧介质陶瓷的介电常数(9.7),这主要是因为本发明中的烧结助剂具有较低的介电常数(小于6),在低温共烧介质陶瓷材料的组成中占的比例较大,使得本发明的低温共烧介质陶瓷材料介电常数低。这种组成的其中一个积极效果,就是使得低温共烧介质陶瓷具有更好的高频性能;其介电损耗较低,在5×10-412×10-4之间,温度系数为-21ppm/℃~25ppm/℃,使得上述低温共烧介质陶瓷材料制备的低温共烧介质陶瓷具有较好的介电性能。
且由表3可知,实施例1~实施例12的低温共烧介质陶瓷的介电性能抗弯强度和热导率数据都比对比例要有不同程度的提高。对比例的抗弯强度和热导率较低,很难应用于LTCC多层基板中,这也是目前低温共烧介质陶瓷材料没有广泛使用的原因之一。因为本发明中的烧结助剂引入稀土元素,并采用化学共沉淀法制备纳米/亚微米级前躯体,采用合理的工艺制备一种玻璃烧结助剂,克服了传统玻璃烧结助剂抗弯强度低、传热性低的不足,与氧化铝混合形成一种具有陶瓷/玻璃结构的低温共烧介质陶瓷材料,其良好的热机械性能完全满足LTCC器件的应用要求。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (7)

1.一种低温共烧介质陶瓷材料用烧结助剂,其特征在于,按质量百分比,包括31%~45%的二氧化硅、1%~10%的氧化硼、5.1%~10%的氧化锌、18%~30%的氧化铝、11%~24%的碱土金属氧化物及5%~15%的通式为R2O3的氧化物,其中,R为镧、铈、镨、钕、钐、铕及镝中的至少一种;所述碱土金属氧化物为氧化镁、氧化钙、氧化钡及氧化锶中的至少一种。
2.一种低温共烧介质陶瓷材料,其特征在于,按质量百分比,包括40%~59%的氧化铝、39%~57%的如权利要求1所述的烧结助剂及1.5%~15%的改性剂;
其中,所述改性剂为二氧化钛、二氧化锰、四氧化三钴、三氧化二钇、二氧化锆及三氧化二铋中的至少一种。
3.根据权利要求2所述的低温共烧介质陶瓷材料,其特征在于,包括:40%~55%的氧化铝、39%~56%的烧结助剂及2%~15%的改性剂。
4.一种低温共烧介质陶瓷的制备方法,其特征在于,包括如下步骤:
按照质量百分比为40%~59%、39%~57%及1.5%~15%称取氧化铝、如权利要求1所述的烧结助剂和改性剂,加入去离子水混合得到混合物料,经球磨、干燥后,得到所述低温共烧介质陶瓷材料;所述改性剂为二氧化钛、二氧化锰、四氧化三钴、三氧化二钇、二氧化锆及三氧化二铋中的至少一种;及
将所述低温共烧介质陶瓷材料成型后,在温度为800℃~900℃中保温15分钟~150分钟进行烧结,得到低温共烧介质陶瓷。
5.根据权利要求4所述的低温共烧介质陶瓷的制备方法,其特征在于,制备所述烧结助剂包括如下步骤:以氯化铝、碱土金属的氯化物、R的氯化物为原材料,分别配制成水溶液,按所述烧结助剂中所述氧化铝、碱土金属氧化物及通式为R2O3的氧化物的质量百分比进行混合,加入沉淀剂,采用化学共沉淀法生成前躯体沉淀物,经过滤、洗涤后,以二氧化硅、氧化锌、硼酸为原料,按照所述烧结助剂中所述二氧化硅、氧化锌、氧化硼的质量百分比将所述二氧化硅、氧化锌、硼酸与所述前驱体沉淀物混合,搅拌均匀,经干燥、煅烧后,得到所述烧结助剂。
6.根据权利要求5所述的低温共烧介质陶瓷的制备方法,其特征在于,所 述沉淀剂为碳酸氢铵、碳酸钾、氢氧化钾、碳酸氢钾、碳酸钠、氢氧化钠及碳酸氢钠中的一种。
7.如权利要求2所述的低温共烧介质陶瓷材料在滤波器、功率分配器、多层基板及封装基板中的应用。 
CN201210356299.5A 2012-09-20 2012-09-20 低温共烧介质陶瓷的制备方法、烧结助剂及材料和应用 Active CN102863221B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210356299.5A CN102863221B (zh) 2012-09-20 2012-09-20 低温共烧介质陶瓷的制备方法、烧结助剂及材料和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210356299.5A CN102863221B (zh) 2012-09-20 2012-09-20 低温共烧介质陶瓷的制备方法、烧结助剂及材料和应用

Publications (2)

Publication Number Publication Date
CN102863221A true CN102863221A (zh) 2013-01-09
CN102863221B CN102863221B (zh) 2014-04-16

Family

ID=47442393

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210356299.5A Active CN102863221B (zh) 2012-09-20 2012-09-20 低温共烧介质陶瓷的制备方法、烧结助剂及材料和应用

Country Status (1)

Country Link
CN (1) CN102863221B (zh)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103193489A (zh) * 2013-04-11 2013-07-10 景德镇陶瓷学院 一种可提高微波陶瓷q值的添加剂的制备方法及其使用方法
CN103880415A (zh) * 2014-02-25 2014-06-25 桂林电子科技大学 一种低损耗高介电Sr1-x-y(Ca0.6M0.8/3)y(Na0.5E0.5)xTiO3微波陶瓷及其制备方法
CN104445231A (zh) * 2014-11-27 2015-03-25 中国计量学院 一种具有较低烧结温度的硅酸盐纳米粉体及其制备方法
CN104616891A (zh) * 2015-02-04 2015-05-13 宁波波英电子有限公司 电容器
CN106098897A (zh) * 2016-06-28 2016-11-09 郭舒洋 一种废弃直链硅胶改性制备高散热led基板的方法
CN106699164A (zh) * 2017-01-23 2017-05-24 山东科技大学 微波陶瓷SrO‑ZnO(MgO)‑TiO2及制法
CN107473734A (zh) * 2017-09-19 2017-12-15 中国科学院上海硅酸盐研究所 一种高耐电强度的线性介质陶瓷及其制备方法
CN108218406A (zh) * 2018-01-19 2018-06-29 北京元六鸿远电子科技股份有限公司 低介电常数低损耗的低温共烧陶瓷材料及其制备方法
CN108359073A (zh) * 2018-04-08 2018-08-03 赵建平 一种阻燃稳定型聚氨酯加固材料的制备方法
CN108752015A (zh) * 2018-06-12 2018-11-06 佛山市华强协兴陶瓷有限公司 一种陶瓷材料烧结助剂及其制备方法
CN109320263A (zh) * 2018-11-13 2019-02-12 四川航天机电工程研究所 烧结助剂与石英陶瓷及其制备与应用方法
CN109665823A (zh) * 2019-01-16 2019-04-23 阜阳佳派生产力促进中心有限公司 一种用于贵金属冶炼用的高稳定性耐火材料的制备方法
CN109721340A (zh) * 2019-01-28 2019-05-07 深圳顺络电子股份有限公司 一种高强度低损耗ltcc材料及其制备方法
CN110304911A (zh) * 2019-05-06 2019-10-08 北京元六鸿远电子科技股份有限公司 热膨胀系数连续可调的低温共烧陶瓷材料和制备方法
CN110330317A (zh) * 2019-07-23 2019-10-15 南充三环电子有限公司 一种氧化锆复合氧化铝陶瓷烧结体、其制备方法及应用
CN110357419A (zh) * 2019-07-18 2019-10-22 成都宏科电子科技有限公司 一种玻璃组合物和毫米波低温共烧陶瓷材料及其制备方法
CN110563463A (zh) * 2019-09-27 2019-12-13 华中科技大学 一种低介微波介质陶瓷材料及其ltcc材料
CN110885235A (zh) * 2019-11-26 2020-03-17 深圳市岑科实业有限公司 一种应用于高频电感骨架的陶瓷瓷芯材料及其制备方法
CN111266590A (zh) * 2020-01-21 2020-06-12 中科英冠(厦门)陶瓷科技有限公司 陶瓷金属化原料、陶瓷金属化的方法及金属化陶瓷
CN111384560A (zh) * 2018-12-31 2020-07-07 深圳市大富科技股份有限公司 介质滤波器、通信设备、制备介质块及介质滤波器的方法
CN112299825A (zh) * 2020-10-09 2021-02-02 华中科技大学 一种低介低温共烧陶瓷材料的制备方法
CN112321312A (zh) * 2020-11-18 2021-02-05 南京琅璃材料有限公司 一种玄武岩纤维增强低温共烧陶瓷基复合材料的制备方法
WO2021120020A1 (zh) * 2019-12-17 2021-06-24 深圳市大富科技股份有限公司 一种陶瓷材料及其制备方法
CN113061024A (zh) * 2021-04-08 2021-07-02 山东国瓷功能材料股份有限公司 一种低温共烧材料及制备的用于过流保护的生瓷片、器件
CN113149619A (zh) * 2021-05-14 2021-07-23 景德镇陶瓷大学 一种高强度低介电损耗氧化铝陶瓷基片
CN113354399A (zh) * 2021-07-13 2021-09-07 宜宾红星电子有限公司 低温共烧复合陶瓷材料及制备方法
CN113582672A (zh) * 2021-08-26 2021-11-02 郑州亚纳粉体有限公司 一种低碳酸盐含量的高铝陶瓷造粒粉配方
CN114380579A (zh) * 2022-01-22 2022-04-22 中国振华集团云科电子有限公司 一种低介电常数低温共烧陶瓷材料及其生瓷带制备方法
WO2022188220A1 (zh) * 2021-03-10 2022-09-15 嘉兴佳利电子有限公司 一种SiO2系高频低介低温共烧陶瓷材料及其制备方法
CN115231927A (zh) * 2022-07-29 2022-10-25 湖南荣晟昌新材料科技有限公司 一种高强轻质耐火材料及其制备方法
CN116023123A (zh) * 2023-01-13 2023-04-28 广东风华高新科技股份有限公司 一种低温共烧陶瓷材料及其制备方法与应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1420105A (zh) * 2002-11-08 2003-05-28 广东风华高新科技集团有限公司 陶瓷介质材料及其制备方法和用于生产陶瓷电容器的方法
CN1566020A (zh) * 2003-07-08 2005-01-19 国巨股份有限公司 温度补偿型陶瓷组合物、烧结助剂系统及层压陶瓷组件
CN101092300A (zh) * 2006-06-19 2007-12-26 同济大学 一种介电可调的低温共烧陶瓷材料及其制备方法
CN101367651A (zh) * 2008-09-26 2009-02-18 广东风华高新科技股份有限公司 一种高频低温烧结陶瓷介质材料及所得电容器的制备方法
CN101671165A (zh) * 2009-08-28 2010-03-17 广东风华高新科技股份有限公司 一种低温烧结陶瓷介质材料及所得mlcc电容器的制备方法
CN102173755A (zh) * 2011-01-20 2011-09-07 深圳振华富电子有限公司 一种低温共烧陶瓷材料及其原料与制备工艺

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1420105A (zh) * 2002-11-08 2003-05-28 广东风华高新科技集团有限公司 陶瓷介质材料及其制备方法和用于生产陶瓷电容器的方法
CN1566020A (zh) * 2003-07-08 2005-01-19 国巨股份有限公司 温度补偿型陶瓷组合物、烧结助剂系统及层压陶瓷组件
CN101092300A (zh) * 2006-06-19 2007-12-26 同济大学 一种介电可调的低温共烧陶瓷材料及其制备方法
CN101367651A (zh) * 2008-09-26 2009-02-18 广东风华高新科技股份有限公司 一种高频低温烧结陶瓷介质材料及所得电容器的制备方法
CN101671165A (zh) * 2009-08-28 2010-03-17 广东风华高新科技股份有限公司 一种低温烧结陶瓷介质材料及所得mlcc电容器的制备方法
CN102173755A (zh) * 2011-01-20 2011-09-07 深圳振华富电子有限公司 一种低温共烧陶瓷材料及其原料与制备工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
胡明星等: "低温共烧陶瓷材料工艺研究", 《交通科技与经济》 *

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103193489A (zh) * 2013-04-11 2013-07-10 景德镇陶瓷学院 一种可提高微波陶瓷q值的添加剂的制备方法及其使用方法
CN103880415A (zh) * 2014-02-25 2014-06-25 桂林电子科技大学 一种低损耗高介电Sr1-x-y(Ca0.6M0.8/3)y(Na0.5E0.5)xTiO3微波陶瓷及其制备方法
CN103880415B (zh) * 2014-02-25 2015-11-18 桂林电子科技大学 一种低损耗高介电Sr1-x-y(Ca0.6M0.8/3)y(Na0.5E0.5)xTiO3微波陶瓷及其制备方法
CN104445231A (zh) * 2014-11-27 2015-03-25 中国计量学院 一种具有较低烧结温度的硅酸盐纳米粉体及其制备方法
CN104445231B (zh) * 2014-11-27 2016-06-29 中国计量学院 一种具有较低烧结温度的硅酸盐纳米粉体及其制备方法
CN104616891A (zh) * 2015-02-04 2015-05-13 宁波波英电子有限公司 电容器
CN104616891B (zh) * 2015-02-04 2018-02-16 宁波波英电子有限公司 电容器
CN106098897A (zh) * 2016-06-28 2016-11-09 郭舒洋 一种废弃直链硅胶改性制备高散热led基板的方法
CN106699164A (zh) * 2017-01-23 2017-05-24 山东科技大学 微波陶瓷SrO‑ZnO(MgO)‑TiO2及制法
CN107473734A (zh) * 2017-09-19 2017-12-15 中国科学院上海硅酸盐研究所 一种高耐电强度的线性介质陶瓷及其制备方法
CN108218406A (zh) * 2018-01-19 2018-06-29 北京元六鸿远电子科技股份有限公司 低介电常数低损耗的低温共烧陶瓷材料及其制备方法
CN108359073A (zh) * 2018-04-08 2018-08-03 赵建平 一种阻燃稳定型聚氨酯加固材料的制备方法
CN108752015A (zh) * 2018-06-12 2018-11-06 佛山市华强协兴陶瓷有限公司 一种陶瓷材料烧结助剂及其制备方法
CN109320263A (zh) * 2018-11-13 2019-02-12 四川航天机电工程研究所 烧结助剂与石英陶瓷及其制备与应用方法
CN109320263B (zh) * 2018-11-13 2022-03-22 四川航天机电工程研究所 烧结助剂与石英陶瓷及其制备与应用方法
CN111384560A (zh) * 2018-12-31 2020-07-07 深圳市大富科技股份有限公司 介质滤波器、通信设备、制备介质块及介质滤波器的方法
CN109665823A (zh) * 2019-01-16 2019-04-23 阜阳佳派生产力促进中心有限公司 一种用于贵金属冶炼用的高稳定性耐火材料的制备方法
CN109721340B (zh) * 2019-01-28 2021-04-23 深圳顺络电子股份有限公司 一种高强度低损耗ltcc材料及其制备方法
CN109721340A (zh) * 2019-01-28 2019-05-07 深圳顺络电子股份有限公司 一种高强度低损耗ltcc材料及其制备方法
CN110304911A (zh) * 2019-05-06 2019-10-08 北京元六鸿远电子科技股份有限公司 热膨胀系数连续可调的低温共烧陶瓷材料和制备方法
CN110304911B (zh) * 2019-05-06 2022-09-06 北京元六鸿远电子科技股份有限公司 热膨胀系数连续可调的低温共烧陶瓷材料和制备方法
CN110357419A (zh) * 2019-07-18 2019-10-22 成都宏科电子科技有限公司 一种玻璃组合物和毫米波低温共烧陶瓷材料及其制备方法
CN110357419B (zh) * 2019-07-18 2022-05-06 成都宏科电子科技有限公司 一种玻璃组合物和毫米波低温共烧陶瓷材料及其制备方法
CN110330317A (zh) * 2019-07-23 2019-10-15 南充三环电子有限公司 一种氧化锆复合氧化铝陶瓷烧结体、其制备方法及应用
CN110563463A (zh) * 2019-09-27 2019-12-13 华中科技大学 一种低介微波介质陶瓷材料及其ltcc材料
CN110563463B (zh) * 2019-09-27 2020-09-08 华中科技大学 一种低介微波介质陶瓷材料及其ltcc材料
CN110885235A (zh) * 2019-11-26 2020-03-17 深圳市岑科实业有限公司 一种应用于高频电感骨架的陶瓷瓷芯材料及其制备方法
WO2021120020A1 (zh) * 2019-12-17 2021-06-24 深圳市大富科技股份有限公司 一种陶瓷材料及其制备方法
CN111266590B (zh) * 2020-01-21 2022-02-15 中科英冠(厦门)陶瓷科技有限公司 陶瓷金属化原料、陶瓷金属化的方法及金属化陶瓷
CN111266590A (zh) * 2020-01-21 2020-06-12 中科英冠(厦门)陶瓷科技有限公司 陶瓷金属化原料、陶瓷金属化的方法及金属化陶瓷
CN112299825A (zh) * 2020-10-09 2021-02-02 华中科技大学 一种低介低温共烧陶瓷材料的制备方法
CN112299825B (zh) * 2020-10-09 2021-12-17 华中科技大学 一种低介低温共烧陶瓷材料的制备方法
CN112321312A (zh) * 2020-11-18 2021-02-05 南京琅璃材料有限公司 一种玄武岩纤维增强低温共烧陶瓷基复合材料的制备方法
WO2022188220A1 (zh) * 2021-03-10 2022-09-15 嘉兴佳利电子有限公司 一种SiO2系高频低介低温共烧陶瓷材料及其制备方法
CN113061024A (zh) * 2021-04-08 2021-07-02 山东国瓷功能材料股份有限公司 一种低温共烧材料及制备的用于过流保护的生瓷片、器件
CN113149619A (zh) * 2021-05-14 2021-07-23 景德镇陶瓷大学 一种高强度低介电损耗氧化铝陶瓷基片
CN113354399A (zh) * 2021-07-13 2021-09-07 宜宾红星电子有限公司 低温共烧复合陶瓷材料及制备方法
CN113582672A (zh) * 2021-08-26 2021-11-02 郑州亚纳粉体有限公司 一种低碳酸盐含量的高铝陶瓷造粒粉配方
CN114380579A (zh) * 2022-01-22 2022-04-22 中国振华集团云科电子有限公司 一种低介电常数低温共烧陶瓷材料及其生瓷带制备方法
CN115231927A (zh) * 2022-07-29 2022-10-25 湖南荣晟昌新材料科技有限公司 一种高强轻质耐火材料及其制备方法
CN116023123A (zh) * 2023-01-13 2023-04-28 广东风华高新科技股份有限公司 一种低温共烧陶瓷材料及其制备方法与应用
CN116023123B (zh) * 2023-01-13 2023-12-15 广东风华高新科技股份有限公司 一种低温共烧陶瓷材料及其制备方法与应用

Also Published As

Publication number Publication date
CN102863221B (zh) 2014-04-16

Similar Documents

Publication Publication Date Title
CN102863221B (zh) 低温共烧介质陶瓷的制备方法、烧结助剂及材料和应用
CN102875159B (zh) 低温共烧介质陶瓷制备方法及其材料和烧结助剂
CN100583326C (zh) 用于电容器的含有无铅无镉玻璃的铜端电极油墨
US7704477B2 (en) Method for producing powder forsterite powder, forsterite powder, sintered forsterite, insulating ceramic composition, and multilayer ceramic electronic component
US20060052231A1 (en) Non-lead glass for forming dielectric, glass ceramic composition for forming dielectric, dielectric, and process for producing laminated dielectric
CN101786875A (zh) 低温烧结尖晶石结构微波介质陶瓷材料及制备方法
CN103221355A (zh) 结晶性玻璃粉末
KR20110095402A (ko) 저온 소결 세라믹 재료 및 세라믹 기판
CN103011810A (zh) 可低温烧结含锂石榴石结构微波介电陶瓷Li2Ca2BiV3O12及其制备方法
JP5533674B2 (ja) 低温焼結セラミック材料およびセラミック基板
KR101086804B1 (ko) 저온 소성 세라믹 회로 기판
CN114716238A (zh) 一种硅酸盐系低温烧结微波介质陶瓷材料及其制备方法
CN103113100A (zh) 一种高温度稳定陶瓷电容器介质
Sebastian et al. High temperature cofired ceramic (HTCC), low temperature cofired ceramic (LTCC), and ultralow temperature cofired ceramic (ULTCC) materials
JP2004339049A (ja) 誘電体形成用無鉛ガラス、誘電体形成用ガラスセラミックス組成物、誘電体および積層誘電体製造方法
JP2003095746A (ja) ガラスセラミック組成物、焼結体およびそれを用いた配線基板
JP2005527118A (ja) 低温共焼成セラミックltccテープを含んでなるハイブリッド電子デバイス
JP2003342064A (ja) ガラスセラミック焼結体および多層配線基板
JP2005217170A (ja) 複合積層セラミック電子部品
CN115490511B (zh) 一种近零温度系数的低温共烧材料及其制备方法
CN115557788B (zh) 一种BSZT/BBSMZ/片状Al2O3低温共烧材料及其制备方法
CN113683405A (zh) 一种低温共烧纳米陶瓷材料和生瓷带及制备方法
JP2000063182A (ja) 低温焼結可能なセラミック原材料の製造方法
JP5566764B2 (ja) 低温焼成高強度低熱膨張性磁器及びその製造方法
JP4057853B2 (ja) ガラスセラミック焼結体および多層配線基板

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant