CN108218406A - 低介电常数低损耗的低温共烧陶瓷材料及其制备方法 - Google Patents

低介电常数低损耗的低温共烧陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN108218406A
CN108218406A CN201810053644.5A CN201810053644A CN108218406A CN 108218406 A CN108218406 A CN 108218406A CN 201810053644 A CN201810053644 A CN 201810053644A CN 108218406 A CN108218406 A CN 108218406A
Authority
CN
China
Prior art keywords
powder
low
mass parts
ball
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810053644.5A
Other languages
English (en)
Other versions
CN108218406B (zh
Inventor
齐世顺
程华容
宋蓓蓓
杨魁勇
吕鹏
孙淑英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Yuan Six Hongyuan Electronic Polytron Technologies Inc
Original Assignee
Beijing Yuan Six Hongyuan Electronic Polytron Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Yuan Six Hongyuan Electronic Polytron Technologies Inc filed Critical Beijing Yuan Six Hongyuan Electronic Polytron Technologies Inc
Priority to CN201810053644.5A priority Critical patent/CN108218406B/zh
Publication of CN108218406A publication Critical patent/CN108218406A/zh
Application granted granted Critical
Publication of CN108218406B publication Critical patent/CN108218406B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明公开了低介电常数低损耗的低温共烧陶瓷材料及其制备方法,按质量份计,该材料由10~40份Al2O3、0~40份SiO2、0~60份粉末A、0~60份粉末B和8~30份粉末C组成,粉末A和粉末B至少有一种;粉末A的组分为40~70份Bi2O3,10~30份ZnO,15~45份H3BO3;粉末B的组分为摩尔比1:1:2的BaO前驱体、CuO和H3BO3;粉末C的组分为摩尔比2:1的MgO与SiO2。将原料按比例混合,经球磨、干燥、造粒、压片、排胶和烧结等工序,最终制备出介电常数在5.2~10范围内可调、介电损耗小于0.002、绝缘电阻率高于1×1014Ω·cm的低温共烧陶瓷材料。

Description

低介电常数低损耗的低温共烧陶瓷材料及其制备方法
技术领域
本发明涉及低温共烧陶瓷技术领域,尤其涉及低介电常数低损耗的低温共烧陶瓷材料及其制备方法。
背景技术
低温共烧陶瓷(Low Temperature Co-fired Ceramic,LTCC)是在由低温共烧陶瓷粉料制成的生瓷带上,通过激光打孔、微孔注浆、精密导体印刷等工序制备出所需的电路,再将多个被动组件(如电容、电阻、滤波器、耦合器等)通过生瓷带的叠压埋入基板内部,最后在900℃以下的温度一次烧结,制成具有三维网络结构的无源集成组件,还可以通过在其表面贴装IC和有源器件,制成有源/无源集成的功能模块。由于LTCC的优异性能,已经被广泛应用于制造各种片式电容和电感元件、片式天线、LED基座、集成电路封装、多芯片模块、微电子机械系统等,应用领域涉及LED封装、移动通信、汽车电子、医疗电子、航空航天及军事电子等。
从全球范围来看,欧美和日本等国家在LTCC领域具有很长时间的技术积累,在LTCC技术和产品质量方面领先于我国,特别是在商用LTCC材料上。现今,国际上提供成熟LTCC瓷料的公司主要有Dupont、Ferro和Heraeus三家。但是进口的LTCC材料不仅价格昂贵,而且在生产过程中对材料参数的调整受限,极大地限制了我国电子元件模块化和电子终端产品的发展。因而,开发出具有自主知识产权的LTCC材料及先进的生产工艺对于我国电子材料产业的发展具有重要意义。
目前,能够满足低温烧结的陶瓷材料可以分为三种:①微晶玻璃体系,又称玻璃陶瓷系;②玻璃烧结助剂+陶瓷系;③单相陶瓷系。国内外LTCC瓷料产品主要集中在微晶玻璃体系和玻璃烧结助剂+陶瓷系两种材料体系,单相陶瓷系因其材料成本和与金属电极的共烧匹配性问题,难以应用于实际生产过程。微晶玻璃体系陶瓷,对材料制备过程中的成分均一性和温度控制等要求极高,难以实现材料的系列化。而通过添加低软化点玻璃料、低熔点氧化物或化合物实现液相烧结,能够将性能优异的微波介质材料的烧结温度降至LTCC适用范围,有助于制备出介电性能系列化的LTCC材料。但是,常用的玻璃烧结助剂成分复杂、生产成本高,需要专业的设备进行玻璃的高温熔融炼制,热处理时间长、耗能大且不易放大生产。而且,玻璃的冷淬过程对设备损耗大,淬火后的玻璃渣硬度高,难以进行磨细加工,玻璃的形状差、工艺适应性不好。直接加入过多的低熔点氧化物往往会直接恶化材料性能和工艺适用性,难以达到工业应用的要求,因而选用合适的低烧助剂和与之匹配的微波陶瓷基体材料是开发LTCC瓷料的关键。
发明内容
针对上述问题中存在的不足之处,本发明提供一种不用熔炼玻璃,介电常数在5.2~10范围内可调,介电损耗小于0.002,绝缘电阻率高于1×1014Ω·cm的低介电常数低损耗的低温共烧陶瓷材料及其制备方法。
为实现上述目的,本发明提供一种低介电常数低损耗的低温共烧陶瓷材料,该材料由10~40质量份的Al2O3、0~40质量份的SiO2、0~60质量份的粉末A、0~60质量份的粉末B和8~30质量份的粉末C组成,粉末A和粉末B至少有一种;其中:
所述粉末A为预烧体,其组分为40~70质量份的Bi2O3,10~30质量份的ZnO,15~45质量份的H3BO3;所述粉末B为预烧体,其组分为摩尔比1:1:2的BaO前驱体、CuO和H3BO3;所述粉末C为预烧体,其组分为摩尔比2:1的MgO与SiO2
作为本发明的进一步改进,该材料的介电常数在5.2~10范围内可调,介电损耗小于0.002,绝缘电阻率高于1×1014Ω·cm。
作为本发明的进一步改进,该材料由10~20质量份的Al2O3、25~30质量份的SiO2、35~50质量份的粉末A、10~40质量份的粉末B和10~20质量份的粉末C组成。
作为本发明的进一步改进,粉末A的组分为60质量份的Bi2O3,20质量份的ZnO,20质量份的H3BO3
作为本发明的进一步改进,还包括0~0.5质量份的调色料,所述调色料为Co3O4、MnO2、Cr2O3和SrCO3中的一种或多种。
本发明还提供一种低介电常数低损耗的低温共烧陶瓷材料的制备方法,包括:
步骤1、称取10~40质量份的Al2O3、0~40质量份的SiO2、0~60质量份的粉末A、0~60质量份的粉末B和8~30质量份的粉末C,将配好后的粉料放入球磨机中混料,球/料质量比为2~10,研磨球为氧化锆球,球磨时间为4~8小时,转速为250~450转/分钟,将球磨后的粉料放入烘箱中于120℃烘干,粉体研磨后过100目筛;
步骤2、取2克上述粉体,加入15~20滴PVA水溶液粘合造粒,然后在100~300MPa下压制出圆片;
步骤3、将成型的圆片放入烧结炉中,按升温速率2℃/分升至550℃、保温2小时进行坯体排胶;然后按5℃/分的升温速率升至850~900℃、保温0.5~2小时进行烧结,随炉自然冷却;制得具有低介电常数、低介电损耗低温共烧陶瓷圆片样品。
作为本发明的进一步改进,在步骤1中,向Al2O3、SiO2、粉末A、粉末B和粉末C配好后的粉料中加入0~0.5质量份的调色料,所述调色料为Co3O4、MnO2、Cr2O3和SrCO3中的一种或多种。
作为本发明的进一步改进,粉末A的制备方法包括:
步骤1、称取40~70质量份的Bi2O3,10~30质量份的ZnO,15~45质量份的H3BO3,配好后的粉料放入球磨机中混料,球/料质量比为2~10,研磨球为氧化锆球,球磨时间为4~8小时,转速为250~450转/分钟,将球磨后的粉料放入烘箱中于80℃烘干,粉体研磨后过100目筛;
步骤2、将步骤1所得粉体在500~700℃保温2~6小时,煅烧后的粉料研磨过100目筛,得到粉末A。
作为本发明的进一步改进,粉末B的制备方法包括:
步骤1、称取摩尔比为1:1:2的BaO前驱体、CuO和H3BO3,粉料配好后放入球磨机中混料,球/料质量比为2~10,研磨球为氧化锆球,球磨时间为4~8小时,转速为250~450转/分钟,将球磨后的粉料放入烘箱中于80℃烘干,粉体研磨后过100目筛;
步骤2、将步骤1所得粉体在700~850℃保温4~8小时,煅烧后的粉料研磨过100目筛,然后再次于700~850℃保温4~8小时,煅烧后的粉料研磨过100目筛,得到粉末B。
作为本发明的进一步改进,粉末C的制备方法包括:
步骤1、称取摩尔比为2:1的MgO与SiO2,将配好后的粉料放入球磨机中混料,球/料质量比为2~10,研磨球为氧化锆球,球磨时间为4~8小时,转速为250~450转/分钟,将球磨后粉料放入烘箱中于120℃烘干,粉体研磨过100目筛;
步骤2、将步骤1所得粉体在1150~1250℃保温2~6小时,然后将煅烧后的粉料研磨过100目筛,得到粉末C。
与现有技术相比,本发明的有益效果为:
本发明使用了固相合成方法制备出了具有较为优异微波性能的低熔点化合物,使微波陶瓷基体材料在较低的温度下实现了烧结致密化。因而本发明中制备低熔点陶瓷材料的工艺简单、制造成本低,有利于工业化生产,避免高温熔炼玻璃助烧剂,可广泛应用于低温共烧陶瓷材料体系的开发和应用。
本发明通过材料配方的调整,可以使材料在保持低介电损耗的基础上,介电常数在5.2~10范围内连续可调,同时具有优良的绝缘性能,可应用于多种高频领域。该低温共烧陶瓷材料体系不含铅、镉、汞等有毒元素,符合环保要求。
附图说明
图1为本发明一种实施例公开的粉末A的XRD图谱;
图2为本发明一种实施例公开的粉末B的XRD图谱;
图3为本发明实施例20中粉体在850℃保温0.5小时后的XRD图谱;
图4为本发明实施例20中粉体在850℃保温0.5小时烧结后的表面形貌图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明所选用原料如无特殊说明,均可通过商业渠道采购。
下面结合附图对本发明做进一步的详细描述:
本发明提供一种低介电常数低损耗的低温共烧陶瓷材料,该材料的介电常数在5.2~10范围内可调,介电损耗小于0.002,绝缘电阻率高于1×1014Ω·cm;该材料由10~40质量份的Al2O3、0~40质量份的SiO2、0~60质量份的粉末A、0~60质量份的粉末B和8~30质量份的粉末C组成,粉末A和粉末B至少有一种;其中:粉末A为预烧体,其组分为40~70质量份的Bi2O3,10~30质量份的ZnO,15~45质量份的H3BO3;粉末B为预烧体,其组分为摩尔比1:1:2的BaO前驱体、CuO和H3BO3;粉末C为预烧体,其组分为摩尔比2:1的MgO与SiO2
进一步,该材料由10~20质量份的Al2O3、25~30质量份的SiO2、35~50质量份的粉末A、10~40质量份的粉末B和10~20质量份的粉末C组成。
进一步,粉末A的组分为60质量份的Bi2O3,20质量份的ZnO,20质量份的H3BO3
进一步,上述陶瓷材料还可以通过加入金属氧化物制备出具有特征颜色的低温共烧陶瓷材料,其材料还包括0~0.5质量份的调色料,调色料为Co3O4、MnO2、Cr2O3和SrCO3中的一种或多种。
本发明提供一种低介电常数低损耗的低温共烧陶瓷材料的制备方法,包括:
步骤1、称取10~40质量份的Al2O3、0~40质量份的SiO2、0~60质量份的粉末A、0~60质量份的粉末B、8~30质量份的粉末C和0~0.5质量份的调色料,调色料为Co3O4、MnO2、Cr2O3和SrCO3中的一种或多种,调色料可根据需要选择加或不加,将配好后的粉料放入球磨机中混料,球/料质量比为2~10,研磨球为氧化锆球,球磨时间为4~8小时,转速为250~450转/分钟,将球磨后的粉料放入烘箱中于120℃烘干,粉体研磨后过100目筛;
步骤2、取2克上述粉体,加入15~20滴PVA水溶液(6.5wt%聚乙烯醇)粘合造粒,然后在100~300MPa下压制出圆片;
步骤3、将成型的圆片放入烧结炉中,按升温速率2℃/分升至550℃、保温2小时进行坯体排胶;然后按5℃/分的升温速率升至850~900℃、保温0.5~2小时进行烧结,随炉自然冷却;制得具有低介电常数、低介电损耗低温共烧陶瓷圆片样品。
进一步,粉末A的制备方法包括:
步骤1、称取40~70质量份的Bi2O3,10~30质量份的ZnO,15~45质量份的H3BO3,配好后的粉料放入球磨机中混料,球/料质量比为2~10,研磨球为氧化锆球,球磨时间为4~8小时,转速为250~450转/分钟,将球磨后的粉料放入烘箱中于80℃烘干,粉体研磨后过100目筛;
步骤2、将步骤1所得粉体在500~700℃保温2~6小时,煅烧后的粉料研磨过100目筛,得到粉末A。
进一步,粉末B的制备方法包括:
步骤1、称取摩尔比为1:1:2的BaO前驱体、CuO和H3BO3,粉料配好后放入球磨机中混料,球/料质量比为2~10,研磨球为氧化锆球,球磨时间为4~8小时,转速为250~450转/分钟,将球磨后的粉料放入烘箱中于80℃烘干,粉体研磨后过100目筛;
步骤2、将步骤1所得粉体在700~850℃保温4~8小时,煅烧后的粉料研磨过100目筛,然后再次于700~850℃保温4~8小时,煅烧后的粉料研磨过100目筛,得到粉末B。
进一步,粉末C的制备方法包括:
步骤1、称取摩尔比为2:1的MgO与SiO2,将配好后的粉料放入球磨机中混料,球/料质量比为2~10,研磨球为氧化锆球,球磨时间为4~8小时,转速为250~450转/分钟,将球磨后粉料放入烘箱中于120℃烘干,粉体研磨过100目筛;
步骤2、将步骤1所得粉体在1150~1250℃保温2~6小时,然后将煅烧后的粉料研磨过100目筛,得到粉末C。
实施例:
本发明按照质量份数计算配方,具体实施例如表1所示。使用分析纯的Al2O3、SiO2和固相合成的粉体A、B和C,其中Al2O3的质量份为10~40,SiO2的质量份为0~40,粉末A为预烧体,其质量份为0~60,粉末A的组分为40~70质量份的Bi2O3,10~30质量份的ZnO,15~45质量份的H3BO3;在使用时,其可在Bi2O3、ZnO、H3BO3的质量范围内进行制备粉末A,在表1中粉末A的优选组分为60质量份的Bi2O3,20质量份的ZnO,20质量份的H3BO3,其它组分的Bi2O3、ZnO、H3BO3均可满足要求,故在此不做一一阐述;粉末B为预烧体,其质量份为0~60,其组分为摩尔比1:1:2的BaO前驱体、CuO和H3BO3;粉末C为预烧体,其质量份为8~30,其组分为摩尔比2:1的MgO与SiO2。按照表1配比称取粉料,然后将配好的粉料放入球磨机中,按去离子水:氧化锆球:料=3:3:1的比例、球磨5小时、转速为300转/分,混合好的料经120℃干燥、研磨后过100目筛。取2g粉料,加入15~20滴6.5wt%的PVA(聚乙烯醇)水溶液进行造粒,然后在250MPa压力下制得直径10mm、厚度1.2mm的圆片。将成型的圆片放入烧结炉中,按升温速率2℃/分升至550℃、保温2小时进行坯体排胶;然后按5℃/分的升温速率升至850~900℃、保温0.5~2小时进行烧结,随炉自然冷却,制得陶瓷圆片样品。图3为实施例23在850℃保温0.5小时后的XRD图谱。主料粉体的配方及陶瓷圆片的介电性能如表1所示。
表1低温共烧陶瓷材料的配方及陶瓷圆片的介电性能
通过对表1中实施例进行对比,实施例20中圆片样品具有最优的综合性能,图3和图4分别为该实施例样品的XRD图谱和表面形貌图。可以看到,样品显微结构致密,满足LTCC工艺对材料致密度的要求。
此外,市场上常用的LTCC材料多以是白色或蓝色为主,本发明优选实施例20中材料作为主料,其颜色为白色,通过加入多种氧化物作为着色剂,可以对材料颜色进行调配。所使用着色剂为Co3O4、MnO2、Cr2O3、SrCO3中的一种或几种。通过图3中XRD图谱可以发现存在明显的玻璃峰,在低温条件下(800~900℃),氧化物作为着色剂会与玻璃相发生反应,从而实现对材料颜色的调配。具体的材料制备过程为:在实施例20粉体中加入一种或多种着色氧化物,将配好的粉料放入球磨机中球磨,按去离子水:氧化锆球:料=3:3:1的比例球磨5小时、转速为300转/分,混合好的料经120℃干燥、研磨后过100目筛。取2g粉料,加入15~20滴6.5wt%的PVA(聚乙烯醇)水溶液进行造粒,然后在250MPa压力下制得直径10mm、厚度1.2mm的圆片。将成型的圆片放入烧结炉中,按升温速率2℃/分升至550℃、保温2小时进行坯体排胶;然后按5℃/分的升温速率升至850~900℃、保温0.5~2小时进行烧结,随炉自然冷却,制得陶瓷圆片样品。按照主料(实施例20)为100质量份,加入着色剂的质量份数、材料颜色及相应性能如表2所示。
表2加入着色剂的材料配方、颜色及相应性能
由表1和表2中样品数据可以得知,本发明的实施例均可以在850~900℃实现烧结致密化,并可以通过加入着色剂对材料颜色进行调配。
综上所述,所列举部分实施例的介电常数在5.2~10范围内连续可调,介电损耗低于0.002,绝缘性能极佳,可以满足低温共烧陶瓷技术的应用要求。其中以实施例20的综合性能最好,介电损耗可低至0.001,性能优于大多数商品化LTCC材料。本发明所用原料丰富、成本低廉、合成制备方法简易,适用于低温共烧陶瓷材料体系的工业化生产和应用。
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种低介电常数低损耗的低温共烧陶瓷材料,其特征在于,该材料由10~40质量份的Al2O3、0~40质量份的SiO2、0~60质量份的粉末A、0~60质量份的粉末B和8~30质量份的粉末C组成,粉末A和粉末B至少有一种;其中:
所述粉末A为预烧体,其组分为40~70质量份的Bi2O3,10~30质量份的ZnO,15~45质量份的H3BO3;所述粉末B为预烧体,其组分为摩尔比1:1:2的BaO前驱体、CuO和H3BO3;所述粉末C为预烧体,其组分为摩尔比2:1的MgO与SiO2
2.如权利要求1所述的低介电常数低损耗的低温共烧陶瓷材料,其特征在于,该材料的介电常数在5.2~10范围内可调,介电损耗小于0.002,绝缘电阻率高于1×1014Ω·cm。
3.如权利要求1所述的低介电常数低损耗的低温共烧陶瓷材料,其特征在于,该材料由10~20质量份的Al2O3、25~35质量份的SiO2、35~50质量份的粉末A、10~20质量份的粉末B和10~20质量份的粉末C组成。
4.如权利要求1所述的低介电常数低损耗的低温共烧陶瓷材料,其特征在于,粉末A的组分为60质量份的Bi2O3,20质量份的ZnO,20质量份的H3BO3
5.如权利要求1所述的低介电常数低损耗的低温共烧陶瓷材料,其特征在于,还包括0~0.5质量份的调色料,所述调色料为Co3O4、MnO2、Cr2O3和SrCO3中的一种或多种。
6.一种如权利要求1所述的低介电常数低损耗的低温共烧陶瓷材料的制备方法,其特征在于,包括:
步骤1、称取10~40质量份的Al2O3、0~40质量份的SiO2、0~60质量份的粉末A、0~60质量份的粉末B和8~30质量份的粉末C,将配好后的粉料放入球磨机中混料,球/料质量比为2~10,研磨球为氧化锆球,球磨时间为4~8小时,转速为250~450转/分钟,将球磨后的粉料放入烘箱中于120℃烘干,粉体研磨后过100目筛;
步骤2、取2克上述粉体,加入15~20滴PVA水溶液粘合造粒,然后在100~300MPa下压制出圆片;
步骤3、将成型的圆片放入烧结炉中,按升温速率2℃/分升至550℃、保温2小时进行坯体排胶;然后按5℃/分的升温速率升至850~900℃、保温0.5~2小时进行烧结,随炉自然冷却;制得具有低介电常数、低介电损耗低温共烧陶瓷圆片样品。
7.如权利要求6所述的低介电常数低损耗的低温共烧陶瓷材料的制备方法,其特征在于,在步骤1中,向Al2O3、SiO2、粉末A、粉末B和粉末C配好后的粉料中加入0~0.5质量份的调色料,所述调色料为Co3O4、MnO2、Cr2O3和SrCO3中的一种或多种。
8.如权利要求6所述的低介电常数低损耗的低温共烧陶瓷材料的制备方法,其特征在于,粉末A的制备方法包括:
步骤1、称取40~70质量份的Bi2O3,10~30质量份的ZnO,15~45质量份的H3BO3,配好后的粉料放入球磨机中混料,球/料质量比为2~10,研磨球为氧化锆球,球磨时间为4~8小时,转速为250~450转/分钟,将球磨后的粉料放入烘箱中于80℃烘干,粉体研磨后过100目筛;
步骤2、将步骤1所得粉体在500~700℃保温2~6小时,煅烧后的粉料研磨过100目筛,得到粉末A。
9.如权利要求6所述的低介电常数低损耗的低温共烧陶瓷材料的制备方法,其特征在于,粉末B的制备方法包括:
步骤1、称取摩尔比为1:1:2的BaO前驱体、CuO和H3BO3,粉料配好后放入球磨机中混料,球/料质量比为2~10,研磨球为氧化锆球,球磨时间为4~8小时,转速为250~450转/分钟,将球磨后的粉料放入烘箱中于80℃烘干,粉体研磨后过100目筛;
步骤2、将步骤1所得粉体在700~850℃保温4~8小时,煅烧后的粉料研磨过100目筛,然后再次于700~850℃保温4~8小时,煅烧后的粉料研磨过100目筛,得到粉末B。
10.如权利要求6所述的低介电常数低损耗的低温共烧陶瓷材料的制备方法,其特征在于,粉末C的制备方法包括:
步骤1、称取摩尔比为2:1的MgO与SiO2,将配好后的粉料放入球磨机中混料,球/料质量比为2~10,研磨球为氧化锆球,球磨时间为4~8小时,转速为250~450转/分钟,将球磨后粉料放入烘箱中于120℃烘干,粉体研磨过100目筛;
步骤2、将步骤1所得粉体在1150~1250℃保温2~6小时,然后将煅烧后的粉料研磨过100目筛,得到粉末C。
CN201810053644.5A 2018-01-19 2018-01-19 低介电常数低损耗的低温共烧陶瓷材料及其制备方法 Active CN108218406B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810053644.5A CN108218406B (zh) 2018-01-19 2018-01-19 低介电常数低损耗的低温共烧陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810053644.5A CN108218406B (zh) 2018-01-19 2018-01-19 低介电常数低损耗的低温共烧陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN108218406A true CN108218406A (zh) 2018-06-29
CN108218406B CN108218406B (zh) 2020-12-25

Family

ID=62668001

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810053644.5A Active CN108218406B (zh) 2018-01-19 2018-01-19 低介电常数低损耗的低温共烧陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN108218406B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110304911A (zh) * 2019-05-06 2019-10-08 北京元六鸿远电子科技股份有限公司 热膨胀系数连续可调的低温共烧陶瓷材料和制备方法
CN111302792A (zh) * 2020-03-25 2020-06-19 广东风华高新科技股份有限公司 一种介电常数系列可调的低温共烧电介质材料及其制备方法
CN113235225A (zh) * 2021-04-14 2021-08-10 清华大学深圳国际研究生院 一种基板材料及其制备方法
CN116023123A (zh) * 2023-01-13 2023-04-28 广东风华高新科技股份有限公司 一种低温共烧陶瓷材料及其制备方法与应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101527314A (zh) * 2009-03-19 2009-09-09 电子科技大学 ABO3/MgO/GaN异质结构及其制备方法
CN102173755A (zh) * 2011-01-20 2011-09-07 深圳振华富电子有限公司 一种低温共烧陶瓷材料及其原料与制备工艺
CN102180664A (zh) * 2010-12-24 2011-09-14 费金华 一种掺杂改性的氧化锌避雷器均压用陶瓷电容器材料
CN102617147A (zh) * 2012-04-17 2012-08-01 江苏科技大学 钙钛矿型结构铝酸盐基混合导电陶瓷及其制备方法
CN102863222A (zh) * 2012-06-28 2013-01-09 深圳市固电电子有限公司 陶瓷材料及其与铁氧体材料低温叠层共烧方法
CN102863221A (zh) * 2012-09-20 2013-01-09 广东风华高新科技股份有限公司 低温共烧介质陶瓷的制备方法、烧结助剂及材料和应用
CN103050280A (zh) * 2011-10-12 2013-04-17 李文熙 利用抑制烧结积层陶瓷电容器改善电容温度特性与可靠度
CN104177083A (zh) * 2014-08-07 2014-12-03 北京元六鸿远电子技术有限公司 用于中温烧结具有偏压特性的温度稳定x8r型mlcc介质材料
CN106631005A (zh) * 2017-01-10 2017-05-10 北京元六鸿远电子科技股份有限公司 中温烧结的无铅高压电容器介质瓷料及制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101527314A (zh) * 2009-03-19 2009-09-09 电子科技大学 ABO3/MgO/GaN异质结构及其制备方法
CN102180664A (zh) * 2010-12-24 2011-09-14 费金华 一种掺杂改性的氧化锌避雷器均压用陶瓷电容器材料
CN102173755A (zh) * 2011-01-20 2011-09-07 深圳振华富电子有限公司 一种低温共烧陶瓷材料及其原料与制备工艺
CN103050280A (zh) * 2011-10-12 2013-04-17 李文熙 利用抑制烧结积层陶瓷电容器改善电容温度特性与可靠度
CN102617147A (zh) * 2012-04-17 2012-08-01 江苏科技大学 钙钛矿型结构铝酸盐基混合导电陶瓷及其制备方法
CN102863222A (zh) * 2012-06-28 2013-01-09 深圳市固电电子有限公司 陶瓷材料及其与铁氧体材料低温叠层共烧方法
CN102863221A (zh) * 2012-09-20 2013-01-09 广东风华高新科技股份有限公司 低温共烧介质陶瓷的制备方法、烧结助剂及材料和应用
CN104177083A (zh) * 2014-08-07 2014-12-03 北京元六鸿远电子技术有限公司 用于中温烧结具有偏压特性的温度稳定x8r型mlcc介质材料
CN106631005A (zh) * 2017-01-10 2017-05-10 北京元六鸿远电子科技股份有限公司 中温烧结的无铅高压电容器介质瓷料及制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110304911A (zh) * 2019-05-06 2019-10-08 北京元六鸿远电子科技股份有限公司 热膨胀系数连续可调的低温共烧陶瓷材料和制备方法
CN110304911B (zh) * 2019-05-06 2022-09-06 北京元六鸿远电子科技股份有限公司 热膨胀系数连续可调的低温共烧陶瓷材料和制备方法
CN111302792A (zh) * 2020-03-25 2020-06-19 广东风华高新科技股份有限公司 一种介电常数系列可调的低温共烧电介质材料及其制备方法
CN113235225A (zh) * 2021-04-14 2021-08-10 清华大学深圳国际研究生院 一种基板材料及其制备方法
CN116023123A (zh) * 2023-01-13 2023-04-28 广东风华高新科技股份有限公司 一种低温共烧陶瓷材料及其制备方法与应用
CN116023123B (zh) * 2023-01-13 2023-12-15 广东风华高新科技股份有限公司 一种低温共烧陶瓷材料及其制备方法与应用

Also Published As

Publication number Publication date
CN108218406B (zh) 2020-12-25

Similar Documents

Publication Publication Date Title
CN107602088B (zh) 一种与高温导电银浆高匹配的低温共烧陶瓷材料及其制备方法
JP5073064B2 (ja) 低温同時焼成セラミック粉末及び特別な原料、並びにその使用
CN108218406A (zh) 低介电常数低损耗的低温共烧陶瓷材料及其制备方法
CN102173755B (zh) 一种低温共烧陶瓷材料及其原料与制备工艺
CN107986774B (zh) 低温烧结高介电常数微波介质陶瓷材料及其制备方法
CN109721340A (zh) 一种高强度低损耗ltcc材料及其制备方法
CN109231967B (zh) Bi2O3-B2O3二元体系微波介质陶瓷材料及其制备方法
CN109650871A (zh) 一种ZnAl2O4陶瓷体系材料及其制备方法
CN106083043B (zh) 一种Li基低介低损耗LTCC材料及其制备方法
CN106904953A (zh) 高密度封装用高热膨胀系数陶瓷材料及其制备方法
CN105347781B (zh) 一种陶瓷材料及其制备方法
JP3737773B2 (ja) 誘電体セラミック組成物
CN102898027B (zh) 电子元器件封装材料用陶瓷粉及其生产方法
CN114804897A (zh) 一种陶瓷用烧结助剂及制法、锆酸锌微波介质陶瓷及制法
CN101565302B (zh) 一种led用陶瓷封装材料及其制作方法
CN107056277B (zh) 一种低温烧结中介电常数微波介质材料及其制备方法
KR100842854B1 (ko) 저온 소결용 마이크로파 유전체 세라믹스 및 그 제조방법
CN109305805A (zh) 电子元器件封装材料用陶瓷粉及其生产方法
CN112608144A (zh) 一种锂基微波介质陶瓷材料、其制备方法和锂基微波介质陶瓷
CN105565808A (zh) 一种低温共烧微波介质陶瓷材料及其制备方法
CN104844208A (zh) 一种制备LiZnNbO4低温共烧LTCC微波介质陶瓷材料的方法
CN103896588A (zh) 一种钼酸钙基温度稳定型低温烧结ltcc微波介质陶瓷材料及其制备方法和应用
CN116396074B (zh) 一种低损耗介电材料及其制备方法和应用
CN103896572A (zh) 可低温烧结的温度稳定型微波介电陶瓷Li3PO4及其制备方法
CN103922721A (zh) 可低温烧结微波介电陶瓷Li4P2O7及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant