CN102859035A - 用于在凹陷特征中的连续钌膜上多步骤镀铜的方法 - Google Patents
用于在凹陷特征中的连续钌膜上多步骤镀铜的方法 Download PDFInfo
- Publication number
- CN102859035A CN102859035A CN2010800536818A CN201080053681A CN102859035A CN 102859035 A CN102859035 A CN 102859035A CN 2010800536818 A CN2010800536818 A CN 2010800536818A CN 201080053681 A CN201080053681 A CN 201080053681A CN 102859035 A CN102859035 A CN 102859035A
- Authority
- CN
- China
- Prior art keywords
- continuous
- copper
- recessed feature
- depth
- volume
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1633—Process of electroless plating
- C23C18/1646—Characteristics of the product obtained
- C23C18/165—Multilayered product
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/06—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
- C23C16/16—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal carbonyl compounds
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1603—Process or apparatus coating on selected surface areas
- C23C18/1607—Process or apparatus coating on selected surface areas by direct patterning
- C23C18/161—Process or apparatus coating on selected surface areas by direct patterning from plating step, e.g. inkjet
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1633—Process of electroless plating
- C23C18/1646—Characteristics of the product obtained
- C23C18/165—Multilayered product
- C23C18/1651—Two or more layers only obtained by electroless plating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1633—Process of electroless plating
- C23C18/1689—After-treatment
- C23C18/1692—Heat-treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/31—Coating with metals
- C23C18/38—Coating with copper
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/02—Electroplating of selected surface areas
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/10—Electroplating with more than one layer of the same or of different metals
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/48—After-treatment of electroplated surfaces
- C25D5/50—After-treatment of electroplated surfaces by heat-treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/285—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
- H01L21/28506—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
- H01L21/28512—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
- H01L21/28556—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/288—Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
- H01L21/2885—Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition using an external electrical current, i.e. electro-deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76841—Barrier, adhesion or liner layers
- H01L21/76843—Barrier, adhesion or liner layers formed in openings in a dielectric
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76877—Filling of holes, grooves or trenches, e.g. vias, with conductive material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76877—Filling of holes, grooves or trenches, e.g. vias, with conductive material
- H01L21/76883—Post-treatment or after-treatment of the conductive material
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/34—Pretreatment of metallic surfaces to be electroplated
- C25D5/38—Pretreatment of metallic surfaces to be electroplated of refractory metals or nickel
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Electrochemistry (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Electrodes Of Semiconductors (AREA)
- Chemically Coating (AREA)
- Electroplating Methods And Accessories (AREA)
- Chemical Vapour Deposition (AREA)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US12/571,162 US8076241B2 (en) | 2009-09-30 | 2009-09-30 | Methods for multi-step copper plating on a continuous ruthenium film in recessed features |
| US12/571,162 | 2009-09-30 | ||
| PCT/US2010/050878 WO2011041522A2 (en) | 2009-09-30 | 2010-09-30 | Methods for multi-step copper plating on a continuous ruthenium film in recessed features |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN102859035A true CN102859035A (zh) | 2013-01-02 |
Family
ID=43743696
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN2010800536818A Pending CN102859035A (zh) | 2009-09-30 | 2010-09-30 | 用于在凹陷特征中的连续钌膜上多步骤镀铜的方法 |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US8076241B2 (enExample) |
| JP (1) | JP2013507008A (enExample) |
| KR (1) | KR20120082901A (enExample) |
| CN (1) | CN102859035A (enExample) |
| TW (1) | TW201113934A (enExample) |
| WO (1) | WO2011041522A2 (enExample) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103003939A (zh) * | 2010-07-19 | 2013-03-27 | 国际商业机器公司 | 改善窄铜填充过孔的导电性的方法及结构 |
| CN107731703A (zh) * | 2017-08-31 | 2018-02-23 | 长江存储科技有限责任公司 | 一种互连结构及其制作方法和半导体器件的制作方法 |
| CN109075059A (zh) * | 2016-06-15 | 2018-12-21 | 应用材料公司 | 用于高功率等离子体蚀刻处理的气体分配板组件 |
Families Citing this family (33)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2010067778A1 (ja) * | 2008-12-09 | 2010-06-17 | 株式会社アルバック | 窒化タンタル膜の形成方法及びその成膜装置 |
| US20110204518A1 (en) * | 2010-02-23 | 2011-08-25 | Globalfoundries Inc. | Scalability with reduced contact resistance |
| US8637411B2 (en) | 2010-04-15 | 2014-01-28 | Novellus Systems, Inc. | Plasma activated conformal dielectric film deposition |
| US9257274B2 (en) | 2010-04-15 | 2016-02-09 | Lam Research Corporation | Gapfill of variable aspect ratio features with a composite PEALD and PECVD method |
| US9997357B2 (en) | 2010-04-15 | 2018-06-12 | Lam Research Corporation | Capped ALD films for doping fin-shaped channel regions of 3-D IC transistors |
| KR101780050B1 (ko) * | 2011-02-28 | 2017-09-20 | 삼성전자주식회사 | 반도체 기억 소자 및 반도체 기억 소자의 형성 방법 |
| JP5862353B2 (ja) * | 2011-08-05 | 2016-02-16 | 東京エレクトロン株式会社 | 半導体装置の製造方法 |
| US8518818B2 (en) * | 2011-09-16 | 2013-08-27 | Taiwan Semiconductor Manufacturing Co., Ltd. | Reverse damascene process |
| SG2013083654A (en) | 2012-11-08 | 2014-06-27 | Novellus Systems Inc | Methods for depositing films on sensitive substrates |
| US9214383B2 (en) * | 2013-01-18 | 2015-12-15 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of semiconductor integrated circuit fabrication |
| US9171801B2 (en) * | 2013-05-09 | 2015-10-27 | Globalfoundries U.S. 2 Llc | E-fuse with hybrid metallization |
| US9536830B2 (en) | 2013-05-09 | 2017-01-03 | Globalfoundries Inc. | High performance refractory metal / copper interconnects to eliminate electromigration |
| US10487404B2 (en) * | 2013-09-26 | 2019-11-26 | Atotech Deutschland Gmbh | Adhesion promoting process for metallisation of substrate surfaces |
| JP2015160963A (ja) * | 2014-02-26 | 2015-09-07 | 東京エレクトロン株式会社 | ルテニウム膜の成膜方法および成膜装置、ならびに半導体装置の製造方法 |
| FR3017993B1 (fr) * | 2014-02-27 | 2017-08-11 | Commissariat Energie Atomique | Procede de realisation d'une structure par assemblage d'au moins deux elements par collage direct |
| US9564312B2 (en) | 2014-11-24 | 2017-02-07 | Lam Research Corporation | Selective inhibition in atomic layer deposition of silicon-containing films |
| US10566187B2 (en) | 2015-03-20 | 2020-02-18 | Lam Research Corporation | Ultrathin atomic layer deposition film accuracy thickness control |
| US9875890B2 (en) * | 2015-03-24 | 2018-01-23 | Lam Research Corporation | Deposition of metal dielectric film for hardmasks |
| JP6329199B2 (ja) * | 2016-03-30 | 2018-05-23 | 株式会社日立国際電気 | 半導体装置の製造方法、基板処理装置およびプログラム |
| US9773643B1 (en) | 2016-06-30 | 2017-09-26 | Lam Research Corporation | Apparatus and method for deposition and etch in gap fill |
| US10062563B2 (en) | 2016-07-01 | 2018-08-28 | Lam Research Corporation | Selective atomic layer deposition with post-dose treatment |
| US10037884B2 (en) | 2016-08-31 | 2018-07-31 | Lam Research Corporation | Selective atomic layer deposition for gapfill using sacrificial underlayer |
| US11315943B2 (en) * | 2017-09-05 | 2022-04-26 | Applied Materials, Inc. | Bottom-up approach to high aspect ratio hole formation in 3D memory structures |
| US10269559B2 (en) | 2017-09-13 | 2019-04-23 | Lam Research Corporation | Dielectric gapfill of high aspect ratio features utilizing a sacrificial etch cap layer |
| WO2019079199A1 (en) * | 2017-10-19 | 2019-04-25 | Lam Research Corporation | MULTIBANIC PLACING OF A SINGLE METAL |
| US11284510B2 (en) | 2018-04-17 | 2022-03-22 | Board Of Trustees Of Michigan State University | Controlled wetting and spreading of metals on substrates using porous interlayers and related articles |
| US11631680B2 (en) * | 2018-10-18 | 2023-04-18 | Applied Materials, Inc. | Methods and apparatus for smoothing dynamic random access memory bit line metal |
| JP7494209B2 (ja) | 2019-05-01 | 2024-06-03 | ラム リサーチ コーポレーション | 調整された原子層堆積 |
| KR20220006663A (ko) | 2019-06-07 | 2022-01-17 | 램 리써치 코포레이션 | 원자 층 증착 동안 막 특성들의 인-시츄 (in-situ) 제어 |
| JP7713456B2 (ja) | 2020-01-10 | 2025-07-25 | ラム リサーチ コーポレーション | Tsv処理窓ならびに長いパルス出力および傾斜部形成による充填性能強化 |
| JP7206355B2 (ja) * | 2020-11-12 | 2023-01-17 | アプライド マテリアルズ インコーポレイテッド | ダイナミックランダムアクセスメモリビット線金属を滑らかにするための方法及び装置 |
| US20220415651A1 (en) * | 2021-06-29 | 2022-12-29 | Applied Materials, Inc. | Methods Of Forming Memory Device With Reduced Resistivity |
| US20230197620A1 (en) * | 2021-12-21 | 2023-06-22 | Intel Corporation | Methods, systems, apparatus, and articles of manufacture for integrated circuit package substrates with high aspect ratio through glass vias |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6506668B1 (en) * | 2001-06-22 | 2003-01-14 | Advanced Micro Devices, Inc. | Utilization of annealing enhanced or repaired seed layer to improve copper interconnect reliability |
| CN1965110A (zh) * | 2004-06-10 | 2007-05-16 | 应用材料公司 | 能够在阻挡金属上直接镀铜的阻挡层表面处理的方法 |
| CN101124352A (zh) * | 2004-11-23 | 2008-02-13 | 东京毅力科创株式会社 | 用于增大由羰基金属前驱体沉积金属层的速率的方法 |
| CN101246875A (zh) * | 2007-02-15 | 2008-08-20 | 富士通株式会社 | 半导体器件及其制造方法 |
| US7442267B1 (en) * | 2004-11-29 | 2008-10-28 | Novellus Systems, Inc. | Anneal of ruthenium seed layer to improve copper plating |
Family Cites Families (52)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0524931A (ja) | 1991-07-16 | 1993-02-02 | Hitachi Metals Ltd | 窒化アルミニウム焼結体 |
| US5888870A (en) | 1997-10-22 | 1999-03-30 | Advanced Micro Devices, Inc. | Memory cell fabrication employing an interpoly gate dielectric arranged upon a polished floating gate |
| JPH11168096A (ja) | 1997-12-04 | 1999-06-22 | Sony Corp | 高誘電酸化膜の形成方法 |
| US6200898B1 (en) | 1999-10-25 | 2001-03-13 | Vanguard International Semiconductor Corporation | Global planarization process for high step DRAM devices via use of HF vapor etching |
| US8877000B2 (en) | 2001-03-02 | 2014-11-04 | Tokyo Electron Limited | Shower head gas injection apparatus with secondary high pressure pulsed gas injection |
| JP4895430B2 (ja) | 2001-03-22 | 2012-03-14 | ルネサスエレクトロニクス株式会社 | 半導体装置及び半導体装置の製造方法 |
| JP4921652B2 (ja) | 2001-08-03 | 2012-04-25 | エイエスエム インターナショナル エヌ.ヴェー. | イットリウム酸化物およびランタン酸化物薄膜を堆積する方法 |
| US6797599B2 (en) | 2001-08-31 | 2004-09-28 | Texas Instruments Incorporated | Gate structure and method |
| EP1294021A1 (de) | 2001-08-31 | 2003-03-19 | Infineon Technologies AG | Kondensatoreinrichtung für eine Halbleiterschaltungsanordnung und Verfahren zu deren Herstellung |
| JP3611545B2 (ja) * | 2001-12-20 | 2005-01-19 | 株式会社荏原製作所 | めっき装置 |
| JP3756456B2 (ja) | 2002-03-07 | 2006-03-15 | 富士通株式会社 | 半導体装置の製造方法 |
| JP3588607B2 (ja) | 2002-03-29 | 2004-11-17 | 株式会社東芝 | 電界効果トランジスタ |
| US6680130B2 (en) | 2002-05-28 | 2004-01-20 | Agere Systems, Inc. | High K dielectric material and method of making a high K dielectric material |
| US6794284B2 (en) | 2002-08-28 | 2004-09-21 | Micron Technology, Inc. | Systems and methods for forming refractory metal nitride layers using disilazanes |
| US6730164B2 (en) | 2002-08-28 | 2004-05-04 | Micron Technology, Inc. | Systems and methods for forming strontium- and/or barium-containing layers |
| US20040051126A1 (en) | 2002-09-16 | 2004-03-18 | Structured Materials Inc. | Compositionally engineered CexMnyO3 and semiconductor devices based thereon |
| US6858524B2 (en) | 2002-12-03 | 2005-02-22 | Asm International, Nv | Method of depositing barrier layer for metal gates |
| EP1570525B1 (en) | 2002-12-09 | 2015-12-02 | Imec | Method for forming a dielectric stack |
| US6828200B2 (en) | 2003-01-03 | 2004-12-07 | Texas Instruments Incorporated | Multistage deposition that incorporates nitrogen via an intermediate step |
| US7071519B2 (en) | 2003-01-08 | 2006-07-04 | Texas Instruments Incorporated | Control of high-k gate dielectric film composition profile for property optimization |
| US6974768B1 (en) | 2003-01-15 | 2005-12-13 | Novellus Systems, Inc. | Methods of providing an adhesion layer for adhesion of barrier and/or seed layers to dielectric films |
| JP3920235B2 (ja) | 2003-03-24 | 2007-05-30 | 株式会社ルネサステクノロジ | 半導体装置の製造方法 |
| TW200506093A (en) | 2003-04-21 | 2005-02-16 | Aviza Tech Inc | System and method for forming multi-component films |
| US20050274621A1 (en) * | 2004-06-10 | 2005-12-15 | Zhi-Wen Sun | Method of barrier layer surface treatment to enable direct copper plating on barrier metal |
| US7378129B2 (en) | 2003-08-18 | 2008-05-27 | Micron Technology, Inc. | Atomic layer deposition methods of forming conductive metal nitride comprising layers |
| US7135361B2 (en) | 2003-12-11 | 2006-11-14 | Texas Instruments Incorporated | Method for fabricating transistor gate structures and gate dielectrics thereof |
| US6979623B2 (en) | 2003-12-17 | 2005-12-27 | Texas Instruments Incorporated | Method for fabricating split gate transistor device having high-k dielectrics |
| JP2005191482A (ja) | 2003-12-26 | 2005-07-14 | Semiconductor Leading Edge Technologies Inc | 半導体装置及びその製造方法 |
| WO2005065357A2 (en) | 2003-12-29 | 2005-07-21 | Translucent, Inc. | Rare earth-oxides, rare-earth-nitrides, rare earth-phosphides and ternary alloys with silicon |
| JP2005340721A (ja) | 2004-05-31 | 2005-12-08 | Anelva Corp | 高誘電率誘電体膜を堆積する方法 |
| KR100589040B1 (ko) | 2004-08-05 | 2006-06-14 | 삼성전자주식회사 | 막 형성방법 및 이를 이용한 반도체 장치의 커패시터제조방법 |
| US7138680B2 (en) | 2004-09-14 | 2006-11-21 | Infineon Technologies Ag | Memory device with floating gate stack |
| US7279421B2 (en) | 2004-11-23 | 2007-10-09 | Tokyo Electron Limited | Method and deposition system for increasing deposition rates of metal layers from metal-carbonyl precursors |
| US7064043B1 (en) | 2004-12-09 | 2006-06-20 | Texas Instruments Incorporated | Wafer bonded MOS decoupling capacitor |
| US7312139B2 (en) | 2005-01-03 | 2007-12-25 | United Microelectronics Corp. | Method of fabricating nitrogen-containing gate dielectric layer and semiconductor device |
| US7316962B2 (en) | 2005-01-07 | 2008-01-08 | Infineon Technologies Ag | High dielectric constant materials |
| WO2006081234A2 (en) * | 2005-01-27 | 2006-08-03 | Applied Materials, Inc. | Ruthenium layer deposition apparatus and method |
| JP2006245558A (ja) * | 2005-02-04 | 2006-09-14 | Advanced Lcd Technologies Development Center Co Ltd | 銅配線層、銅配線層の形成方法、半導体装置、及び半導体装置の製造方法 |
| US7498247B2 (en) | 2005-02-23 | 2009-03-03 | Micron Technology, Inc. | Atomic layer deposition of Hf3N4/HfO2 films as gate dielectrics |
| US7432139B2 (en) | 2005-06-29 | 2008-10-07 | Amberwave Systems Corp. | Methods for forming dielectrics and metal electrodes |
| US20070077750A1 (en) | 2005-09-06 | 2007-04-05 | Paul Ma | Atomic layer deposition processes for ruthenium materials |
| US7456102B1 (en) | 2005-10-11 | 2008-11-25 | Novellus Systems, Inc. | Electroless copper fill process |
| WO2008049019A2 (en) * | 2006-10-17 | 2008-04-24 | Enthone Inc. | Copper deposition for filling features in manufacture of microelectronic devices |
| US20080296768A1 (en) | 2006-12-14 | 2008-12-04 | Chebiam Ramanan V | Copper nucleation in interconnects having ruthenium layers |
| US7470617B2 (en) * | 2007-03-01 | 2008-12-30 | Intel Corporation | Treating a liner layer to reduce surface oxides |
| US7799684B1 (en) | 2007-03-05 | 2010-09-21 | Novellus Systems, Inc. | Two step process for uniform across wafer deposition and void free filling on ruthenium coated wafers |
| US20080242088A1 (en) * | 2007-03-29 | 2008-10-02 | Tokyo Electron Limited | Method of forming low resistivity copper film structures |
| US8058164B2 (en) | 2007-06-04 | 2011-11-15 | Lam Research Corporation | Methods of fabricating electronic devices using direct copper plating |
| US20090020434A1 (en) * | 2007-07-02 | 2009-01-22 | Akira Susaki | Substrate processing method and substrate processing apparatus |
| JP2009099585A (ja) * | 2007-10-12 | 2009-05-07 | Panasonic Corp | 埋め込み配線の形成方法 |
| US7964506B1 (en) | 2008-03-06 | 2011-06-21 | Novellus Systems, Inc. | Two step copper electroplating process with anneal for uniform across wafer deposition and void free filling on ruthenium coated wafers |
| US8247030B2 (en) * | 2008-03-07 | 2012-08-21 | Tokyo Electron Limited | Void-free copper filling of recessed features using a smooth non-agglomerated copper seed layer |
-
2009
- 2009-09-30 US US12/571,162 patent/US8076241B2/en active Active
-
2010
- 2010-09-29 TW TW099133025A patent/TW201113934A/zh unknown
- 2010-09-30 CN CN2010800536818A patent/CN102859035A/zh active Pending
- 2010-09-30 JP JP2012532310A patent/JP2013507008A/ja active Pending
- 2010-09-30 KR KR1020127010660A patent/KR20120082901A/ko not_active Ceased
- 2010-09-30 WO PCT/US2010/050878 patent/WO2011041522A2/en not_active Ceased
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6506668B1 (en) * | 2001-06-22 | 2003-01-14 | Advanced Micro Devices, Inc. | Utilization of annealing enhanced or repaired seed layer to improve copper interconnect reliability |
| CN1965110A (zh) * | 2004-06-10 | 2007-05-16 | 应用材料公司 | 能够在阻挡金属上直接镀铜的阻挡层表面处理的方法 |
| CN101124352A (zh) * | 2004-11-23 | 2008-02-13 | 东京毅力科创株式会社 | 用于增大由羰基金属前驱体沉积金属层的速率的方法 |
| US7442267B1 (en) * | 2004-11-29 | 2008-10-28 | Novellus Systems, Inc. | Anneal of ruthenium seed layer to improve copper plating |
| CN101246875A (zh) * | 2007-02-15 | 2008-08-20 | 富士通株式会社 | 半导体器件及其制造方法 |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103003939A (zh) * | 2010-07-19 | 2013-03-27 | 国际商业机器公司 | 改善窄铜填充过孔的导电性的方法及结构 |
| CN109075059A (zh) * | 2016-06-15 | 2018-12-21 | 应用材料公司 | 用于高功率等离子体蚀刻处理的气体分配板组件 |
| CN109075059B (zh) * | 2016-06-15 | 2023-12-01 | 应用材料公司 | 用于高功率等离子体蚀刻处理的气体分配板组件 |
| CN107731703A (zh) * | 2017-08-31 | 2018-02-23 | 长江存储科技有限责任公司 | 一种互连结构及其制作方法和半导体器件的制作方法 |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2011041522A3 (en) | 2012-01-05 |
| TW201113934A (en) | 2011-04-16 |
| WO2011041522A2 (en) | 2011-04-07 |
| JP2013507008A (ja) | 2013-02-28 |
| US8076241B2 (en) | 2011-12-13 |
| US20110076390A1 (en) | 2011-03-31 |
| KR20120082901A (ko) | 2012-07-24 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN102859035A (zh) | 用于在凹陷特征中的连续钌膜上多步骤镀铜的方法 | |
| CN101981686B (zh) | 用于将选择性的低温钌沉积集成到半导体器件的铜金属化中的方法 | |
| CN102165573B (zh) | 用于形成钌金属覆盖层的方法 | |
| TWI545653B (zh) | 利用平滑的未凝聚之銅晶種層對於凹陷特徵部施行之無孔隙銅填充 | |
| CN101965635B (zh) | 将选择性钌沉积集成到半导体器件的制造中的方法 | |
| JP2013507008A5 (enExample) | ||
| TWI633624B (zh) | 用於銅阻障層應用之摻雜的氮化鉭 | |
| US20120252210A1 (en) | Method for modifying metal cap layers in semiconductor devices | |
| US20100151676A1 (en) | Densification process for titanium nitride layer for submicron applications | |
| US7704879B2 (en) | Method of forming low-resistivity recessed features in copper metallization | |
| US7473634B2 (en) | Method for integrated substrate processing in copper metallization | |
| WO2007117802A2 (en) | Method for integrating a conformal ruthenium layer into copper metallization of high aspect ratio features |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
| WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20130102 |