CN103003939A - 改善窄铜填充过孔的导电性的方法及结构 - Google Patents

改善窄铜填充过孔的导电性的方法及结构 Download PDF

Info

Publication number
CN103003939A
CN103003939A CN2011800353154A CN201180035315A CN103003939A CN 103003939 A CN103003939 A CN 103003939A CN 2011800353154 A CN2011800353154 A CN 2011800353154A CN 201180035315 A CN201180035315 A CN 201180035315A CN 103003939 A CN103003939 A CN 103003939A
Authority
CN
China
Prior art keywords
layer
nanometers
via hole
copper
deposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011800353154A
Other languages
English (en)
Inventor
F·R·麦克菲力
杨智超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of CN103003939A publication Critical patent/CN103003939A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • H01L21/76846Layer combinations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76853Barrier, adhesion or liner layers characterized by particular after-treatment steps
    • H01L21/76861Post-treatment or after-treatment not introducing additional chemical elements into the layer
    • H01L21/76864Thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76871Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers
    • H01L21/76873Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers for electroplating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • H01L21/76883Post-treatment or after-treatment of the conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53228Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being copper
    • H01L23/53238Additional layers associated with copper layers, e.g. adhesion, barrier, cladding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/10Applying interconnections to be used for carrying current between separate components within a device
    • H01L2221/1068Formation and after-treatment of conductors
    • H01L2221/1073Barrier, adhesion or liner layers
    • H01L2221/1084Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers
    • H01L2221/1089Stacks of seed layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49126Assembling bases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base
    • Y10T29/49165Manufacturing circuit on or in base by forming conductive walled aperture in base

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

提供了一种改善铜(Cu)填充过孔的导电性的技术。在一方面,提供一种制造Cu填充过孔的方法。该方法包含下列步骤。在电介质中蚀刻过孔。该过孔由扩散阻挡层加衬。薄钌(Ru)层被保形地沉积到该扩散阻挡层上。薄Cu晶种层被沉积在该Ru层上。进行第一退火以增加该Cu晶种层的晶粒尺寸。用附加的Cu填充该过孔。进行第二退火以增加该附加的Cu的晶粒尺寸。

Description

改善窄铜填充过孔的导电性的方法及结构
技术领域
本发明涉及布线结构,更具体地,涉及改善铜(Cu)填充过孔的导电性的技术。
背景技术
在目前高密度布线技术中,窄铜(Cu)填充过孔的导电性会因为在这些尺寸的过孔中Cu的小晶粒尺寸而劣化。常规技术涉及含Cu结构的退火以使晶粒尺寸增大进而改善其导电性。
例如,一般而言,用以制造Cu填充过孔的常规技术典型包含:第一,在线布路结构已嵌入其中的介电基体(matrix)中形成过孔。第二,该过孔以扩散阻挡层加衬,以防止Cu扩散进入电介质中。该扩散阻挡层通常包含直接沉积在该电介质上的氮化钽(TaN)层和沉积在TaN的顶上的钽(Ta)。第三,薄Cu晶种层溅射至该暴露的Ta表面,以便准备电镀敷过孔。第四,利用电镀敷工艺将Cu填充该过孔,第五,所形成的结构被退火,使在过孔的Cu晶粒生长以改善导电性,然而,这些方法被证实对这些Cu过孔结构的导电性增加而言效力有限。
大Cu晶粒生长的限制因素为在Cu晶种层中晶粒的尺寸。这些在Cu晶种层中的晶粒形成的模板,电镀敷的Cu随后沉积在该模板上,且因此初始电镀敷Cu的晶粒尺寸反映由Cu晶种层所展现的小晶粒尺寸。Cu电镀敷后接下来的退火对克服最初的小晶粒结构的效果有限。该Cu晶种层所显现出的小晶粒尺寸绝大部分归因于该层的薄度,以及Cu湿润下方扩散阻挡层表面的程度。无法增加该Cu晶种层厚度以克服此问题,因为由溅射工艺形成的Cu晶种层不能保形地(conformally)沉积,因此,如果将该Cu晶种制造得太厚来试图增加晶粒尺寸,将会使布线结构中的到过孔的开口夹断(pinch off),导致无法进行后续的电镀敷。
因此,迫切需要改善Cu填充过孔导电性的技术。
发明内容
本发明提供改善铜(Cu)填充过孔的导电性的技术。在本发明的一方面,提供一种制造铜填充过孔的方法。该方法包含下列步骤。在电介质中蚀刻过孔。该过孔由扩散阻挡层加衬。薄钌(Ru)层被保形地沉积到该扩散阻挡层上。薄Cu晶种层被沉积在该Ru层上。进行第一退火以增加该Cu晶种层的晶粒尺寸。用附加的Cu填充该过孔。进行第二退火以增加该附加的Cu的晶粒尺寸。
在本发明的另一方面,提供一种在电介质中形成的Cu填充过孔,其包括:过孔;为过孔加衬的扩散阻挡层;薄Ru层,保形地设置在该扩散阻挡层上;薄Cu晶种层,设置在该Ru层上;以及附加的Cu,电镀敷到该薄Cu晶种层上以填充该过孔而形成该Cu填充过孔。该附加的Cu具有的平均晶粒宽度为至少该过孔宽度的0.5倍。该过孔的宽度可约为20纳米至50纳米。
参考下面的详细说明和附图,将获得对本发明及其进一步的特征和优点的更全面理解。
附图说明
现在将参考在附图中示例的优选实施例仅通过实例来解释本发明,其中:
图1为根据本发明的实施例,显示沉积在衬底上的电介质和蚀刻到电介质中的过孔的截面图。
图2为根据本发明的实施例,显示该过孔由扩散阻挡层加衬的截面图。
图3为根据本发明的实施例,显示钌(Ru)层沉积到该扩散阻挡层上的截面图。
图4为根据本发明的实施例,显示铜(Cu)晶种层沉积在该Ru层以准备用于电镀敷的过孔的截面图。
图5为根据本发明的实施例,显示用Cu填充过孔的截面图。
图6为根据本发明的实施例,显示利用本技术所产生的Cu填充过孔的截面图。
具体实施方式
图1至图5示出了制造铜(Cu)填充过孔的示例方法。有利地,利用本发明技术形成的Cu填充过孔与用常规技术所形成的结构相比,显示在电阻上有10-15%的一致减少。开始处理时,在衬底之上形成电介质。
图1为显示电介质120沉积在衬底100之上的截面图。电介质120可包含任何适合的介电材料,包括,但不限于,二氧化硅(SiO2)、硅-碳-氧-氢材料(如:SICOH)和有机聚合物中的至少一种,电介质120可利用任何适合的沉积方法沉积,例如,化学气相沉积(CVD)、原子层沉积(ALD)、蒸发、溅射或基于溶液的技术,例如旋涂,厚度由约10纳米至约1000纳米。衬底100通常表示在单层或多层的布线阵列中任一布线层或接触层。然后,利用任一适合的蚀刻处理,如反应离子蚀刻(RIE),在电介质120中蚀刻窄过孔101。根据图1所示的示例性实施例,形成具有宽度w约20纳米至约50纳米的过孔101。
接着,该过孔以扩散阻挡层加衬。图2显示以扩散阻挡层202加衬的过孔101的截面图。根据示例性实施例,该扩散阻挡层202由二层构成。第一层为氮化钽(TaN)层202a,被沉积在电介质120上,厚度由约5纳米至约15纳米,例如从约8纳米至约12纳米,以作加衬过孔。第二层为钽(Ta)层202b,被沉积在氮化钽(TaN)层202a上,厚度由约5纳米至15纳米,例如由8纳米至12纳米。扩散阻挡层202防止Cu(见下述)扩散进入电介质。
之后,将薄钌(Ru)层保形沉积到扩散阻挡层上。图3为显示Ru层302沉积在扩散阻挡层202(如Ta层202b)上的截面图。根据示例性实施例,以羰基钌(ruthenium carbonyl)为前驱物,利用CVD或ALD,Ru层302被保形沉积搭配扩散阻挡层202上,厚度从约1纳米至约10纳米,例如从约2纳米至约5纳米。CVD或ALD确保Ru均匀保形覆盖在扩散阻挡层上(不希望具有任何来自在后续处理步骤期间暴露的扩散阻挡层的Ta)。选择性地,Ru层302可利用溅射沉积方法沉积在扩散阻挡层202上。
Ru层302用于二个目的。第一,Ru层302作为Cu晶种层的润湿剂(见下述),以有助于较大晶种晶粒的形成。第二,在使用退火步骤以增加Cu晶种层的晶粒尺寸(亦见下述)期间,Ru层302保护下方扩散阻挡层202不被氧化。因此,钌的均匀覆盖是很重要的。
在该Ru层上沉积薄Cu晶种层。图4显示Cu晶种层402沉积在Ru层302上以准备用于电镀敷的过孔的截面图。根据示例性实施例,Cu晶种层402利用溅射沉积制程沉积在Ru层302上,厚度从约20纳米至约100纳米,例如从约25纳米至约35纳米。
之后,进行退火步骤以增加Cu晶种层402的晶粒尺寸。根据示例性实施例,在约摄氏150℃至约350℃,例如约250℃的温度下,在形成气体(例如氢气或氢气与任何不会与衬底反应的气体如氮气或惰性气体的混合物)中进行退火。需注意Cu晶种层的退火步骤在使用电镀敷填充该过孔(见下述)之前进行。这可产生较大的晶种晶粒,这可在电化学Cu填充后,促进过孔中较大晶粒的形成。再者,如果没有Ru层302的引入,该Cu晶种层退火就不会有效,这有二个原因。第一,该Cu晶种层被设置在由Cu很差湿润的钽(Ta)表面(属于扩散阻挡层)上。因此,退火可导致该Cu晶种层起球(ball up),而非形成希望的均匀平坦的晶粒。第二,由于在Ta层(属于扩散阻挡层)上的Cu晶种层缺乏连续性,暴露的Ta会氧化(除非在极高真空环境中进行退火,其费用将会相当昂贵)。Ta的氧化会劣化结构的电迁移性能。由于Ta对氧有高度的化学亲合力,一旦钽被氧化,就无法企图用随后的还原处理将其恢复成金属状态。以均匀保形Ru层,防氧化贵金属,覆盖Ta,可在提议的结构中避免该问题。
之后,以附加的Cu填充该过孔中。图5为已由Cu502填充的过孔101的截面图。根据本发明的示例性实施例,利用电镀敷处理将Cu502镀敷到过孔101中,如图5所示,如果需要的话,将会溢出过孔的Cu502会被研磨到与Cu晶种层402的顶表面共面。另外,可选地,Cu502的溢出可以留下覆盖Cu晶种层402的上表面。例如下面描述的图6。再次进行退火,此次增加Cu502的晶粒尺寸。根据示例性实施例,在约150℃至约350℃(例如,约250℃)的温度下在形成气体中进行退火。
通过增加Cu502的晶粒尺寸,也会增加过孔的导电性。即,在测试中,以本技术所形成的过孔与以公知技术制造的结构相比,显示电阻的10%-15%的一致减少。此外,在该测试中,本结构和传统结构都受到进一步的热循环处理以模拟随后六层布线的制造。经过这样的处理后,本发明结构可维持10%至15%的性能优势。
在电化学Cu填充后,Cu晶种层的晶粒尺寸增加促使过孔中形成较大的晶粒。图6所示本技术优点的示意图。图6显示利用上述制造方法所形成的Cu填充过孔的截面图。Cu602代表填充到过孔中的附加的Cu,例如,依据接合上述图5所描述的步骤。在Cu填充之前沉积的各层,例如,扩散阻挡层、Ru层和Cu晶种层(参见,例如,上述图5),为了使描述更简单清楚,所以并未显示,但是在此实施例中,可以理解的是这些层都存在于结构中。此外,与图5中Cu502相比,图6中的附加的Cu填充,例如Cu602,溢出该过孔。如上文所强调的,如果需要的话,可使用可选的研磨步骤将溢出去除。
图6为用以强调目前技术的有益的晶粒特性。具体来说,利用首先生长大晶粒尺寸的Cu晶种层,如上所述,在附加的Cu填充和最后的退火后,过孔中实现更大、更均匀的晶粒,如上所述。只作为实例,Cu602中获得的晶粒尺寸g至少为特征尺寸的约0.5倍。晶粒尺寸g可量化为量测的直线性尺寸,例如晶粒的截面宽度(见图6)。特征尺寸可量化为特征(范例中的过孔)的截面宽度(见图1)。因此,在这些实例中,平均上,附加的Cu602的晶粒(最终退火后)具有的截面宽度至少为过孔截面宽度的0.5倍。以本技术可以达到在附加的Cu填充中的具有等于过孔的截面宽度的截面宽度的晶粒,见图6。
还应注意的是,本技术结构中的晶粒尺寸相当均匀。只作为实例,贯穿过孔,该晶粒尺寸(如基于上述截面晶粒宽度而所量测)的变化不会超过25%。
相比之下,常规技术会产生贯穿过孔的不均匀晶粒尺寸,顶部产生较大的晶粒,而过孔底部会产生较小的晶粒(其中Cu被空间限制),这些较小晶粒的截面宽度通常约为过孔截面宽度的0.2倍,比本技术提供的小一个数量级。
虽然在本文中已经描述了本发明的示例实施例,但是应理解,本发明不限于这些精确实施例,本领域的技术人员可进行各种其他变化和修改而未背离本发明的范围。

Claims (26)

1.一种制造铜填充过孔的方法,包括以下步骤:
在电介质中蚀刻过孔;
用扩散阻挡层为所述过孔加衬;
将钌层保形沉积到所述扩散阻挡层上;
在所述钌层上沉积铜晶种层;
进行第一退火以增加所述铜晶种层的晶粒尺寸;
用附加的铜填充所述过孔;以及
进行第二退火以增加所述附加的铜的晶粒尺寸。
2.根据权利要求1的方法,其中用所述扩散阻挡层为所述过孔加衬的步骤,包括以下步骤:
将氮化钽层沉积到所述电介质上以为所述过孔加衬;以及
将钽层沉积到所述氮化钽层上。
3.根据权利要求2的方法,其中所述氮化钽层被沉积到从约5纳米至约15纳米的厚度。
4.根据权利要求2或3的方法,其中所述氮化钽层被沉积到从约8纳米至约12纳米的厚度。
5.根据权利要求2到4中任一项的方法,其中所述钽层被沉积到从约5纳米至约15纳米的厚度。
6.根据权利要求2到5中任一项的方法,其中所述钽层被沉积到从约8纳米至约12纳米的厚度。
7.根据上述权利要求中任一项的方法,其中所述钌层被沉积到从约1纳米至约10纳米的厚度。
8.根据上述权利要求中任一项的方法,其中所述钌层被沉积到从约2纳米至约5纳米的厚度。
9.根据上述权利要求中任一项的方法,其中利用化学气相沉积将所述钌层沉积到所述扩散阻挡层上。
10.根据权利要求9的方法,其中使用羰基钌作为用于化学气相沉积的前驱物。
11.根据权利要求1-8中任一项的方法,其中利用原子层沉积将所述钌层沉积到所述扩散阻挡层上。
12.根据权利要求11的方法,其中使用羰基钌作为用于原子层沉积的前驱物。
13.根据权利要求1-8中任一项的方法,其中利用溅射沉积方法将所述钌层沉积到所述扩散阻挡层上。
14.根据上述权利要求中任一项的方法,其中所述铜晶种层被沉积到从约20纳米至约100纳米的厚度。
15.根据上述权利要求中任一项的方法,其中所述铜晶种层被沉积到从约25纳米至约35纳米的厚度。
16.根据上述权利要求中任一项的方法,其中所述铜晶种层通过利用溅射沉积方法而沉积。
17.根据上述权利要求中任一项的方法,其中在从约150℃至约350℃的温度下在形成气体中进行所述第一退火。
18.根据上述权利要求中任一项的方法,还包括以下步骤:
将所述附加的铜镀敷到所述过孔中。
19.根据权利要求18的方法,其中所述附加的铜被电镀敷到所述过孔中。
20.根据上述权利要求中任一项的方法,其中在从约150℃至约350℃的温度下在形成气体中进行所述第二退火。
21.根据上述权利要求中任一项的方法,其中用附加的铜填充所述过孔的步骤响应于进行所述第一退火的所述步骤。
22.一种在电介质中形成的铜填充过孔,包括:
过孔;
扩散阻挡层,为所述过孔加衬;
钌层,保形设置在所述扩散阻挡层上;
铜晶种层,设置在所述钌层上;以及
附加的铜,镀敷到所述铜晶种层上以填充所述过孔而形成所述铜填充过孔,其中所述附加的铜具有至少所述过孔的宽度的0.5倍的平均晶粒宽度。
23.根据权利要求22的铜填充过孔,其中所述过孔具有从约20纳米到约50纳米的宽度。
24.根据权利要求22或23的铜填充过孔,其中所述扩散阻挡层包括:
氮化钽层,为所述过孔加衬;以及
钽层,位于所述氮化钽层上。
25.根据权利要求22到24中任一项的铜填充过孔,其中所述钌层具有从约1纳米至约10纳米的厚度。
26.根据权利要求22到25中任一项的铜填充过孔,其中所述铜晶种层具有从约20纳米至约100纳米的厚度。
CN2011800353154A 2010-07-19 2011-07-13 改善窄铜填充过孔的导电性的方法及结构 Pending CN103003939A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/838,597 US8661664B2 (en) 2010-07-19 2010-07-19 Techniques for forming narrow copper filled vias having improved conductivity
US12/838,597 2010-07-19
PCT/EP2011/061959 WO2012010479A1 (en) 2010-07-19 2011-07-13 Method and structure to improve the conductivity of narrow copper filled vias

Publications (1)

Publication Number Publication Date
CN103003939A true CN103003939A (zh) 2013-03-27

Family

ID=44561392

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011800353154A Pending CN103003939A (zh) 2010-07-19 2011-07-13 改善窄铜填充过孔的导电性的方法及结构

Country Status (7)

Country Link
US (2) US8661664B2 (zh)
JP (1) JP2013535820A (zh)
CN (1) CN103003939A (zh)
DE (1) DE112011101750T5 (zh)
GB (1) GB2495451B (zh)
TW (1) TWI513378B (zh)
WO (1) WO2012010479A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104465507A (zh) * 2014-12-26 2015-03-25 上海集成电路研发中心有限公司 一种铜互连的形成方法
CN106158733A (zh) * 2015-04-22 2016-11-23 中国科学院微电子研究所 一种铜互连结构及其制造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9558997B2 (en) * 2012-12-28 2017-01-31 Globalfoundries Inc. Integration of Ru wet etch and CMP for beol interconnects with Ru layer
CN105518827B (zh) * 2013-09-27 2019-06-14 应用材料公司 实现无缝钴间隙填充的方法
DE112014006897T5 (de) * 2014-08-27 2017-05-11 Ultratech, Inc. Verbessertes Kontaktloch durch Silizium
US10396012B2 (en) 2016-05-27 2019-08-27 International Business Machines Corporation Advanced through substrate via metallization in three dimensional semiconductor integration
US10312181B2 (en) 2016-05-27 2019-06-04 International Business Machines Corporation Advanced through substrate via metallization in three dimensional semiconductor integration

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060113675A1 (en) * 2004-12-01 2006-06-01 Chung-Liang Chang Barrier material and process for Cu interconnect
US20070197012A1 (en) * 2006-02-21 2007-08-23 International Business Machines Corporation Grain growth promotion layer for semiconductor interconnect structures
US20090130843A1 (en) * 2007-09-27 2009-05-21 Tokyo Electron Limited Method of forming low-resistivity recessed features in copper metallization
CN102498560A (zh) * 2009-09-16 2012-06-13 国际商业机器公司 用于窄互连开口的导电结构
CN102859035A (zh) * 2009-09-30 2013-01-02 东京电子株式会社 用于在凹陷特征中的连续钌膜上多步骤镀铜的方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7244677B2 (en) 1998-02-04 2007-07-17 Semitool. Inc. Method for filling recessed micro-structures with metallization in the production of a microelectronic device
KR100404649B1 (ko) 1998-02-23 2003-11-10 가부시끼가이샤 히다치 세이사꾸쇼 반도체장치 및 그 제조방법
US6368967B1 (en) 2000-05-04 2002-04-09 Advanced Micro Devices, Inc. Method to control mechanical stress of copper interconnect line using post-plating copper anneal
US7264846B2 (en) * 2002-06-04 2007-09-04 Applied Materials, Inc. Ruthenium layer formation for copper film deposition
US7074719B2 (en) 2003-11-28 2006-07-11 International Business Machines Corporation ALD deposition of ruthenium
US7265048B2 (en) 2005-03-01 2007-09-04 Applied Materials, Inc. Reduction of copper dewetting by transition metal deposition
JP4540504B2 (ja) * 2005-03-03 2010-09-08 富士通セミコンダクター株式会社 半導体装置の製造方法
US7449409B2 (en) * 2005-03-14 2008-11-11 Infineon Technologies Ag Barrier layer for conductive features
EP1845554A3 (en) 2006-04-10 2011-07-13 Imec A method to create super secondary grain growth in narrow trenches
JP4498391B2 (ja) * 2006-07-21 2010-07-07 株式会社東芝 半導体装置の製造方法
TW200814156A (en) * 2006-07-21 2008-03-16 Toshiba Kk Method for manufacturing semiconductor device and semiconductor device
US20080296768A1 (en) 2006-12-14 2008-12-04 Chebiam Ramanan V Copper nucleation in interconnects having ruthenium layers
US7786006B2 (en) 2007-02-26 2010-08-31 Tokyo Electron Limited Interconnect structures with a metal nitride diffusion barrier containing ruthenium and method of forming
US20080242088A1 (en) 2007-03-29 2008-10-02 Tokyo Electron Limited Method of forming low resistivity copper film structures
JP2009105289A (ja) * 2007-10-24 2009-05-14 Tokyo Electron Ltd Cu配線の形成方法
US7727890B2 (en) * 2007-12-10 2010-06-01 International Business Machines Corporation High aspect ratio electroplated metal feature and method
US8247030B2 (en) 2008-03-07 2012-08-21 Tokyo Electron Limited Void-free copper filling of recessed features using a smooth non-agglomerated copper seed layer
JP2009231497A (ja) * 2008-03-21 2009-10-08 Toshiba Corp 半導体装置及び半導体装置の製造方法
US7964497B2 (en) 2008-06-27 2011-06-21 International Business Machines Corporation Structure to facilitate plating into high aspect ratio vias
US20100084766A1 (en) 2008-10-08 2010-04-08 International Business Machines Corporation Surface repair structure and process for interconnect applications

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060113675A1 (en) * 2004-12-01 2006-06-01 Chung-Liang Chang Barrier material and process for Cu interconnect
US20070197012A1 (en) * 2006-02-21 2007-08-23 International Business Machines Corporation Grain growth promotion layer for semiconductor interconnect structures
US20090130843A1 (en) * 2007-09-27 2009-05-21 Tokyo Electron Limited Method of forming low-resistivity recessed features in copper metallization
CN102498560A (zh) * 2009-09-16 2012-06-13 国际商业机器公司 用于窄互连开口的导电结构
CN102859035A (zh) * 2009-09-30 2013-01-02 东京电子株式会社 用于在凹陷特征中的连续钌膜上多步骤镀铜的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104465507A (zh) * 2014-12-26 2015-03-25 上海集成电路研发中心有限公司 一种铜互连的形成方法
CN106158733A (zh) * 2015-04-22 2016-11-23 中国科学院微电子研究所 一种铜互连结构及其制造方法

Also Published As

Publication number Publication date
TW201223358A (en) 2012-06-01
US9392690B2 (en) 2016-07-12
US20120012372A1 (en) 2012-01-19
US8661664B2 (en) 2014-03-04
GB2495451B (en) 2016-03-02
GB2495451A (en) 2013-04-10
GB201301210D0 (en) 2013-03-06
US20140151097A1 (en) 2014-06-05
JP2013535820A (ja) 2013-09-12
WO2012010479A1 (en) 2012-01-26
TWI513378B (zh) 2015-12-11
DE112011101750T5 (de) 2013-07-18

Similar Documents

Publication Publication Date Title
US9343407B2 (en) Method to fabricate copper wiring structures and structures formed thereby
CN103003939A (zh) 改善窄铜填充过孔的导电性的方法及结构
CN100481380C (zh) 半导体元件中内连线结构的制造方法
JP4591084B2 (ja) 配線用銅合金、半導体装置及び半導体装置の製造方法
US9245798B2 (en) Semiconductor reflow processing for high aspect ratio fill
TWI619171B (zh) 障壁層
US20020024142A1 (en) Semiconductor device and manufacturing method of the same
US8372744B2 (en) Fabricating a contact rhodium structure by electroplating and electroplating composition
TWI260740B (en) Semiconductor device with low-resistance inlaid copper/barrier interconnects and method for manufacturing the same
JPH11274157A (ja) 微細配線形成方法
TW201444021A (zh) 銅/銅錳合金阻障層
US8623759B2 (en) Method for manufacturing semiconductor device
KR102042861B1 (ko) 무전해 구리 퇴적
US7579070B2 (en) Multiple layer deposition for improving adhesion
US8476161B2 (en) Method for forming Cu electrical interconnection film
US20170345766A1 (en) Devices and methods of forming low resistivity noble metal interconnect with improved adhesion
JP2002043247A (ja) 半導体素子の金属薄膜及びその形成方法
JP2000208517A (ja) 半導体装置の製造方法
US20090261477A1 (en) Semiconductor device and method of manufacturing the same
JP2005142330A (ja) 半導体装置の製造方法及び半導体装置
TWI587367B (zh) 用於金屬化之方法及層
CN115295721A (zh) Rram下电极结构及其形成方法
JP2012169480A (ja) 半導体装置及びその製造方法
CN110890317A (zh) 半导体器件及其制备方法
JP2003124216A (ja) 配線用シード膜および半導体装置の配線方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130327