CN102834955A - 用于电化学储存的复合材料 - Google Patents

用于电化学储存的复合材料 Download PDF

Info

Publication number
CN102834955A
CN102834955A CN2011800120741A CN201180012074A CN102834955A CN 102834955 A CN102834955 A CN 102834955A CN 2011800120741 A CN2011800120741 A CN 2011800120741A CN 201180012074 A CN201180012074 A CN 201180012074A CN 102834955 A CN102834955 A CN 102834955A
Authority
CN
China
Prior art keywords
composite material
carbon
arbitrary
weight ratio
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011800120741A
Other languages
English (en)
Other versions
CN102834955B (zh
Inventor
本杰明·帕克
亚历山大·高克温阔
拉比·匝欧克
威廉·斯堪克
吉尼斯·图龙·泰克西德尔
劳萨·斯蒂芬斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Enevate Corp
Original Assignee
Enevate Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enevate Corp filed Critical Enevate Corp
Publication of CN102834955A publication Critical patent/CN102834955A/zh
Application granted granted Critical
Publication of CN102834955B publication Critical patent/CN102834955B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/522Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/524Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from polymer precursors, e.g. glass-like carbon material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/528Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
    • C04B35/532Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components containing a carbonisable binder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/62635Mixing details
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6269Curing of mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/83Carbon fibres in a carbon matrix
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5284Hollow fibers, e.g. nanotubes
    • C04B2235/5288Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

提供了复合材料和形成复合材料的方法。本文描述的复合材料能用作电池的电极材料。在某些实施方案中,复合材料包含大于0%重量比且小于约90%重量比的硅颗粒,以及大于0%重量比且小于约90%重量比的一种或多种类型的碳相。一种或多种类型的碳相中的至少一种能为基本上连续的相。形成复合材料的方法包括提供包含前体和硅颗粒的混合物,并热解前体以将前体转化为一种或多种类型的碳相从而形成复合材料。

Description

用于电化学储存的复合材料
相关申请的交叉引用
本申请要求2010年1月18日提交的第61/295,993号美国临时申请和2010年3月19日提交的第61/315,845号美国临时申请的权益,通过引用方式将其整体内容并入本文。
背景
发明领域
本发明涉及包含硅和碳的复合材料。具体地,本发明涉及用于电池电极的复合材料。
相关技术描述
锂离子电池通常包含隔板和/或位于阳极和阴极之间的电解质。在一种类型的电池中,将隔板、阴极和阳极材料单独地形成片或膜。随后,将阴极片、隔板片和阳极片与分隔阴极和阳极(例如,电极)的隔板相继地堆叠或轧制以形成电池。对于待轧制的阴极、隔板和阳极,各个片必须足够可变形或有弹性以被轧制而不损坏,例如裂纹、破碎、机械损坏等。典型的电极包括导电金属(例如,铝和铜)上的电化学活性材料层。膜能被轧制或切割为片,然后将这些片分层堆积为堆。所述堆具有与在它们之间的隔板交替的电化学活性材料。
发明概述
在某些实施方案中,提供了复合材料。复合材料能包含大于0%重量比且小于约90%重量比的硅颗粒和大于0%重量比且小于约90%重量比的一种或多种类型的碳相(carbon phase)。此外,一种或多种类型的碳相中的至少一种为基本上连续的相。
硅颗粒可具有小于约1μm的平均最大尺寸。在一些实施方案中,硅颗粒包含复合材料的约20%重量比至约80%重量比。
为基本上连续的相的一种或多种类型的碳相中的至少一种能为电化学活性的和导电性的。在一些实施方案中,为基本上连续的相的一种或多种类型的碳相中的至少一种包含硬碳。
复合材料还可包含其它颗粒。例如,一种或多种类型的碳相能包含石墨颗粒。复合材料可包含导电颗粒、金属颗粒等。
复合材料能基本上为电化学活性的。此外,复合材料可为自支撑的。在某些实施方案中,提供了包含本文描述的复合材料的电池电极。
在某些实施方案中,提供了使用本文描述的复合材料的方法。所述方法包括仅在重量容量小于所述复合材料的约70%的最大重量容量下使用所述复合材料。
在某些实施方案中,提供了形成复合材料的方法。所述方法包括提供包含前体和硅颗粒的混合物,并热解所述前体以将所述前体转化为一种或多种类型的碳相从而形成该复合材料。
在热解所述前体后,混合物可形成自支撑的复合结构。一种或多种类型的碳相中的至少一种能为基本上连续的相。为基本上连续的相的一种或多种类型的碳相中的至少一种包含硬碳。在一些实施方案中,硅颗粒包含复合材料的约20%重量比至约80%重量比。在其它实施方案中,在所述混合物中硅颗粒包括大于0%重量比且小于约80%重量比,并且在所述混合物中所述前体包括约5%重量比且小于约80%重量比。
混合物还可包括溶剂。所述前体能包括烃化合物、聚酰亚胺、酚醛树脂等。所述方法还能包括在基板上浇铸所述混合物,干燥所述混合物以形成膜,从基板上除去所述膜,以及在热压机中固化所述膜。所述方法还可包括由所述复合材料形成电池电极。
附图简述
图1例示了形成复合材料的方法的实施方案,其包括形成包含前体的混合物,浇铸所述混合物,干燥所述混合物,固化所述混合物以及热解所述前体;
图2是平均速率为C/2.6的放电容量图;
图3是平均速率为C/3的放电容量图;
图4是平均速率为C/3.3的放电容量图;
图5是平均速率为C/5的放电容量图;
图6是平均速率为C/9的放电容量图;
图7是放电容量图;
图8是平均速率为C/9的放电容量图;
图9A和9B是对于20wt.%Si的固定百分比,作为来自2611c的PI衍生的碳和石墨颗粒的各个重量百分比的函数的可逆容量和不可逆容量的绘图;
图10是作为碳的重量百分比的函数的第一循环放电容量的绘图;
图11是作为热解温度的函数的可逆(放电)和不可逆容量的绘图;
图12是4.3cm×4.3cm的不含金属箔支撑层的复合阳极膜的照片;
图13是进行循环之前的复合阳极膜的扫描电子显微镜(SEM)显微照片(焦点未对准的部分是阳极的底部部分以及焦点对准的部分是复合膜的裂开的边缘);
图14是进行循环之前的复合阳极膜的另一SEM显微照片;
图15是被循环10次循环后的复合阳极膜的SEM显微照片;
图16是被循环10次循环后的复合阳极膜的另一SEM显微照片;
图17是被循环300次循环后的复合阳极膜的SEM显微照片;以及
图18包括复合阳极膜横截面的SEM显微照片。
详细描述
典型的碳阳极电极包括集电器,例如铜片。将碳连同惰性粘合材料一起沉积在集电器上。常使用碳,因为其具有优异的电化学性质并且还是导电的。如果除去集电器层(例如,铜层),则碳不能自我机械支撑。因此,常规电极需要诸如集电器等支撑结构以能够用作电极。本申请描述的电极(例如,阳极或阴极)组合物能产生自支撑的电极。消除或最小化对金属箔集电器的需要,因为导电的碳化聚合物用于阳极结构中的电流收集以及用于机械支撑。与一类常规的锂离子电池电极中悬浮于非导电性粘合剂的微粒碳相反,碳化聚合物能在整个电极中形成基本上连续的导电碳相。使用碳化聚合物的碳复合混合物的优点包括例如,1)较高的容量,2)增强的过充电/放电保护,3)归因于消除(或最小化)金属箔集电器的较低的不可逆容量,以及4)归因于制造简单的潜在成本节约。
目前用于可再充电锂离子电池的阳极电极通常具有约200毫安小时每克的比容量(包括金属箔集电器、导电添加剂和粘合材料)。石墨,即用于大多数锂离子电池阳极的活性材料,具有372毫安小时每克(mAh/g)的理论能量密度。相比之下,硅具有4200mAh/g的高理论容量。然而,锂插入时,硅膨胀超过300%。由于该膨胀,包含硅的阳极应能因为硅而膨胀以保持与硅的电接触。
本申请还描述了使用碳化聚合物制造单片的、自支撑阳极的新方法。由于将聚合物转化为导电的电化学活性基质,因此产生的电极为足够导电的而能省略或最小化金属箔或网状集电器。转化的聚合物还充当循环过程中硅颗粒的膨胀缓冲以使得能实现高的循环寿命。在某些实施方案中,所产生的电极为基本上由活性材料组成的电极。在其它实施方案中,所产生的电极基本上为活性材料。电极能具有约500mAh/g至约1200mAh/g的高能量密度,其可能原因在于例如,1)使用硅,2)消除或显著减少金属集电器以及3)完全(或几乎完全)由活性材料组成。
本文描述的复合材料能用作大多数常规锂离子电池中的阳极;它们还能在一些电化学电偶(electrochemical couples)中与其它添加剂一起用作阴极。复合材料还能用于二次电池(例如,可再充电的)或原电池(例如,不可再充电的)。在某些实施方案中,复合材料为自支撑的结构。在其它实施方案中,复合材料为自支撑的单片结构。例如,在由复合材料组成的电极中可能不包含集电器。在某些实施方案中,复合材料能用于形成第12/838,368号美国专利申请中讨论的碳结构,发明名称为“Carbon Electrode Structures for Batteries(电池的碳电极结构)”,其整体内容通过引用方式并入本文。此外,本文描述的复合材料能为例如,硅复合材料、碳复合材料和/或硅-碳复合材料。
图1例示了形成复合材料100的方法的一个实施方案。例如,形成复合材料的方法包括形成包含前体的混合物,模块101。所述方法还能包括热解所述前体以将所述前体转化为碳相。所述前体混合物可包含碳添加剂,例如石墨活性材料、短切的或磨碎的碳纤维、碳纳米纤维、碳纳米管和/或其它碳。在将所述前体热解后,所产生的碳材料能为自支撑的单片结构。在某些实施方案中,将一种或多种材料加入至混合物以形成复合材料。例如,能将硅颗粒加入至混合物。碳化的前体产生使复合材料保持在一起的电化学活性结构。例如,碳化的前体能为基本上连续的相。硅颗粒可遍及复合材料中分布。有利地,碳化的前体为结构材料以及电化学活性和导电性材料。在某些实施方案中,加入至混合物的材料颗粒遍及复合材料中均匀分布以形成均匀的复合物。
混合物能包含多种不同的组分。混合物能包含一种或多种前体。在某些实施方案中,所述前体为烃化合物。例如,所述前体能包括聚酰胺酸、聚酰亚胺等。其它前体包括酚醛树脂、环氧树脂和其它聚合物。混合物还能包含溶剂。例如,溶剂能为N-甲基-吡咯烷酮(NMP)。其它可能的溶剂包括丙酮、乙醚、γ-丁内酯、异丙醇、碳酸二甲酯、碳酸乙酯、二甲氧基乙烷等。前体和溶剂溶液的实例包括PI-2611(HDMicrosystems)、PI-5878G(HD Microsystems)和VTEC PI-1388(RBI,Inc.)。PI-2611由>60%的n-甲基-2-吡咯烷酮和10%-30%的s-联苯二酐/对苯二胺组成。PI-5878G由>60%的n-甲基吡咯烷酮、10%-30%的均苯四甲酸二酐/二氨基二苯醚的聚酰胺酸、包含5%-10%的1,2,4-三甲苯的10%-30%的芳香烃(石油馏分)组成。在某些实施方案中,溶剂中前体的量为约10wt.%至约30wt.%。混合物中还能包含附加材料。例如,如前面所述,能将硅颗粒或包括石墨活性材料、短切的或磨碎的碳纤维、碳纳米纤维、碳纳米管和其它导电碳在内的碳颗粒加入至混合物。此外,能将混合物混合以使混合物均匀。
在某些实施方案中,将混合物浇铸在基板上,图1中的模块102。在一些实施方案中,浇铸包括使用间隙挤出(gap extrusion)或刮片浇铸技术。所述刮片浇铸技术能包括通过使用被控制在基板上方一定距离的平面(例如,刮片)将涂层涂覆于基板。能将液体或浆液涂覆于基板,并使刮片在液体上通过以将该液体在基板上面铺展开。通过刮片和基板之间的间隙控制涂层的厚度,因为液体经过该间隙。当液体经过所述间隙时,还能刮除过量的液体。例如,能在聚合物片、聚合物卷或者由玻璃或金属制成的箔或卷上浇铸混合物。然后,将混合物干燥以去除溶剂,模块103。例如,在约110℃下将聚酰胺酸和NMP溶液干燥约2小时以去除NMP溶液。然后从基板上去除干燥的混合物。例如,能使用HCl蚀刻掉铝基板。或者,通过剥离从基板上去除干燥的混合物或从基板上机械地去除干燥的混合物。在某些实施方案中,干燥的混合物为膜或片。在一些实施方案中,将干燥的混合物固化,模块104。能使用热压机以固化并使干燥的混合物保持平整。例如,能在约200℃下将源自聚酰胺酸和NMP溶液的干燥的混合物热压约8小时至16小时。或者,使用标准的膜处理设备以卷对卷制程的形式实施包括浇铸和干燥在内的整个过程。能将干燥的混合物漂洗以去除任何溶剂或可能残留的蚀刻剂。例如,能使用去离子(DI)水漂洗干燥的混合物。在某些实施方案中,能将流延浇铸技术用于浇铸。在其它实施方案中,没有用于浇铸的基板并且不需要从任何基板上去除阳极膜。可将干燥的混合物切割或机械切片为较小的片。
混合物还经历热解以将所述前体转化为碳,模块105。在某些实施方案中,在还原气氛中将混合物热解。例如,能使用惰性气氛、真空和/或流动的氩气、氮气或氦气。在一些实施方案中,将混合物加热至约900℃至约1350℃。例如,在约1175℃下将由聚酰胺酸形成的聚酰亚胺碳化约1小时。在某些实施方案中,混合物的加热速率和/或冷却速率为约10℃/min。可使用支撑物以使混合物保持特定的几何形状。支撑物能为石墨、金属等。在某些实施方案中,将混合物保持平整。在将混合物热解后,能将标签(tabs)与热解的材料连接以形成电接触。例如,镍、铜或其合金能用于所述标签(tabs)。
在某些实施方案中,一种或多种本文描述的方法为连续过程。例如,能以连续过程的形式进行浇铸、干燥、固化和热解;例如,能将混合物涂覆在玻璃或金属圆柱体上。干燥混合物同时旋转圆柱体产生膜。能以卷的形式将膜转移或将其剥离并送入至另一个机器进行进一步加工。在热解步骤之前还能使用工业上已知的挤出和其它膜制造技术。
所述前体的热解产生碳材料(例如,至少一种碳相)。在某些实施方案中,碳材料为硬碳。在一些实施方案中,所述前体为能被热解以形成硬碳的任何材料。除碳化前体以外,当混合物还包含的一种或多种另外的材料或相时,能产生复合材料。特别地,混合物能包含产生硅-碳复合材料(例如,至少一种第一相包含硅和至少一种第二相包含碳)或硅-碳-碳复合材料(例如,至少一种第一相包含硅、至少一种第二相包含碳,和至少一种第三相包含碳)的硅颗粒。硅颗粒能增加复合材料的具体的锂嵌入容量。当硅吸收锂离子时,其经历大约300+体积百分比的大体积增加,这能导致电极结构完整性问题。除体积膨胀相关的问题之外,硅还不是固有导电的,但当将其与锂形成合金时(例如,锂化)则变为导电的。当硅脱锂时,硅的表面失去导电性。此外,当硅脱锂时,体积减小,这导致硅颗粒可能失去与基质的接触。体积的显著变化还导致硅颗粒结构的机械破坏,进而,导致其粉碎。粉碎和失去电接触使得在锂离子电池中使用硅作为活性材料成为挑战。降低硅颗粒的初始大小能阻止硅粉末的进一步粉碎以及最小化表面导电性的损失。此外,将能随硅颗粒的体积变化而弹性变形的材料加入至复合物中,能确保不损失与硅表面的电接触。例如,复合材料能包含诸如石墨的碳,石墨有助于复合材料吸收膨胀的能力并且还能够插入增加电极的储存容量(例如,化学活性)的锂离子。因此,复合材料可包含一种或多种类型的碳相。
硅颗粒最大尺寸的实施方案包括小于约40μm、小于约1μm、约10nm至40μm、约10nm至1μm、小于约500nm、小于约100nm和约100nm。全部、基本上全部或至少一部分的硅颗粒可包括上述最大尺寸。例如,硅颗粒的平均或中值的最大尺寸包括小于约40μm、小于约1μm、约10nm至40μm、约10nm至1μm、小于约500nm、小于约100nm和约100nm。以混合物和复合材料的重量计算,复合材料中硅的量能大于0百分比。在某些实施方案中,以混合物的重量计算,混合物中硅的量大于0%且小于约90%、或为约30%至约80%。复合材料中硅的量的实施方案包括大于0%重量比且小于约35%重量比、大于0%重量比且小于约25%重量比、约10%重量比至约35%重量比和约20%重量比。在其它某些实施方案中,混合物中硅的量为至少约30%重量比。复合材料中硅的量的另外实施方案包括大于约50%重量比、约30%重量比至约80%重量比、约50%重量比至约70%重量比和约60%重量比至约80%重量比。此外,硅颗粒可以是纯硅或可以不是纯硅。例如,硅颗粒可基本上是硅或可以是硅合金。在一个实施方案中,硅合金包含作为主要组分的硅以及一种或多种其它元素。
从所述前体中获得的碳的量能为来自聚酰胺酸的约50重量百分比。在某些实施方案中,复合材料中源自所述前体的碳的量为约10%重量比至25%重量比。源自所述前体的碳能为硬碳。硬碳为即使在超过2800摄氏度下加热仍不转化为石墨的碳。在热解过程中熔化或流动的前体随着足够的温度和/或压力转化为软碳和/或石墨。可选择硬碳,因为软碳前体可流动且软碳和石墨机械上比硬碳脆弱。其它可能的硬碳前体包括酚醛树脂、环氧树脂和具有非常高的熔点或是交联的其它聚合物。复合材料中硬碳的量的实施方案包括约10%重量比至约25%重量比、约20%重量比和大于约50%重量比。在某些实施方案中,硬碳相基本上为无定形的。在其它实施方案中,硬碳相基本上为结晶的。在其它实施方案中,硬碳相包括无定形碳和结晶碳。硬碳相能为复合材料中的基质相。还能将硬碳嵌入包含硅的添加剂的孔中。硬碳可与一些添加剂反应以在界面处产生一些材料。例如,在硅颗粒和硬碳之间可能有碳化硅层。
在某些实施方案中,将石墨颗粒加入至混合物。有利地,石墨为电池中的电化学活性材料以及是能响应硅颗粒体积变化的弹性可变形材料。对于目前市场上一些种类的锂离子电池而言,石墨是优选的活性阳极材料,因为其具有低的不可逆容量。此外,石墨比硬碳软并能更好地吸收硅添加剂的体积膨胀。在某些实施方案中,石墨颗粒的最大尺寸为约0.5微米至约20微米。全部,基本上全部或至少一部分的石墨颗粒可包括本文描述的最大尺寸。在其它实施方案中,石墨颗粒的平均的或中值的最大尺寸为约0.5微米至约20微米。在某些实施方案中,混合物包含大于0%重量比且小于约80%重量比的石墨颗粒。在其它实施方案中,复合材料包含约40%重量比至约75%重量比的石墨颗粒。
在某些实施方案中,将还可为电化学活性的导电颗粒加入至混合物。这种颗粒提供更导电的复合物以及能够吸收在锂化和脱锂过程中发生的大的体积变化的更机械可变形的复合物。在某些实施方案中,导电颗粒的最大尺寸为约10纳米至约7毫米。全部,基本上全部或至少一部分的导电颗粒可包括本文描述的最大尺寸。在其它实施方案中,导电颗粒的平均或中值的最大尺寸为约10nm至约7毫米。在某些实施方案中,混合物包含大于0至高达约80%重量比的导电颗粒。在其它实施方案中,复合材料包含约45%重量比至约80%重量比的导电颗粒。导电颗粒能为导电碳,其包括碳黑、碳纤维、碳纳米纤维、碳纳米管等。被看作非电化学活性的导电添加剂的许多碳一旦在聚合物基质中被热解就变为活性的。或者,导电颗粒能为金属或包括铜、镍或不锈钢在内的合金。
在某些实施方案中,电极能包含本文描述的复合材料。例如,复合材料能形成自支撑的单片电极。复合材料的热解的碳相(例如,硬碳相)能保持在一起并结构上支撑加入至混合物的颗粒。在某些实施方案中,自支撑的单片电极不包含单独的集电器层和/或其它支撑结构。在一些实施方案中,复合材料和/或电极不包含超过在热解所述前体后残留的痕量的聚合物。在其它实施方案中,复合材料和/或电极不包含非导电的粘合剂。复合材料还可包括孔隙率。例如,以体积孔隙度计,孔隙率能为约5%至约40%。
还能将复合材料制成粉末。例如,能将复合材料研磨成粉末。能将复合材料粉末用作电极的活性材料。例如,能以与工业上已知的制造常规电极结构相似的方式将复合材料粉末沉积在集电器上。
在某些实施方案中,电池或电化学电池中的电极能包含本文描述的复合材料。例如,复合材料能用于阳极和/或阴极。在某些实施方案中,电池为锂离子电池。在其它实施方案中,电池为二次电池,或者在其它实施方案中,电池为原电池。
此外,在使用电池的过程中,可能不使用复合材料的全容量以提高电池寿命(例如,在电池失效或电池的性能降低至低于可用性水平之前的充电和放电循环数量)。例如,具有约70%重量比的硅颗粒、约20%重量比的源自前体的碳和约10%重量比的石墨的复合材料可能具有约2000mAh/g的最大重量容量,然而复合材料可能仅被使用高达约550mAh/g至约850mAh/g的重量容量。尽管可能未使用复合材料的最大重量容量,但在较低容量下使用复合材料仍能达到比某些锂离子电池更高的容量。在某些实施方案中,在重量容量低于复合材料的约70%最大重量容量下使用复合材料或只在该范围下使用复合材料。例如,不在重量容量高于复合材料的约70%最大重量容量下使用复合材料。在其它实施方案中,在重量容量低于复合材料的约50%最大重量容量或低于复合材料的约30%最大重量容量下使用复合材料或只在上述范围下使用复合材料。
实施例
下列用于阳极制造的实施例方法通常包括将组分混合在一起,将那些组分浇铸在可除去的基板上,干燥、固化、除去基板,然后热解所产生的样品。通常,将N-甲基-2-吡咯烷酮(NMP)用作溶剂以改变任何混合物的粘度并使其可使用刮刀法(doctor blade approach)浇铸。
实施例1
在实施例1中,使用Spex 8000D机器,将重量比为200:55:5:20的聚酰亚胺液态前体(来自HD Microsystems corp.的PI 2611)、石墨颗粒(来自Timcal corp.的SLP30)、导电碳颗粒(来自Timcal corp.的SuperP)和硅颗粒(来自Alfa Aesar corp.)混合在一起,时间为5分钟。然后,将混合物浇铸在铝箔上并使其在90℃的烘箱中干燥以驱除溶剂,例如,NMP。这随后是在可忽略的压力下,在热压机中在200℃下的固化步骤,时间为至少12小时。然后,通过在12.5%的HCl溶液中蚀刻去除铝箔衬垫(backing)。然后,在DI水中漂洗剩余的膜、干燥,然后在氩气流下在1175℃下热解约1小时。以重量计,所述方法产生15.8%的PI 2611衍生的碳、57.9%的石墨颗粒、5.3%的来源于Super P的碳和21.1%的硅的组合物。
然后,相对锂NMC氧化物阴极,在袋装电池(pouch cell)配置中测试所产生的电极。典型循环图在图2中示出。
实施例2
在实施例2中,使用Turbula混合器将1:9重量比的硅颗粒(来自EVNANO Advanced Chemical Materials Co.,Ltd.)与NMP首先混合1小时。然后,以200:55:5:200的重量比将聚酰亚胺液态前体(来自HDMicrosystems corp.的PI 2611)、石墨颗粒(来自Timcal corp.的SLP30)和碳纳米纤维(来自Pyrograf corp.的CNF)加入至Si:NMP混合物中并涡旋约2分钟。然后,将混合物浇铸在覆盖有21μm厚的铜网的铝箔上。然后,使样品在90℃的烘箱中干燥以驱除溶剂,例如,NMP。这随后是在可忽略的压力下,在热压机中在200℃下的固化步骤,时间为至少12小时。然后,通过在12.5%的HCl溶液中蚀刻去除铝箔衬垫(backing)。然后,在DI水中漂洗剩余的膜、干燥,然后在氩气下在1000℃下热解约1小时。以重量计,所述方法产生15.8%的PI 2611衍生的碳、57.9%的石墨颗粒、5.3%的CNF和21.1%的硅的组合物。
然后,相对锂NMC氧化物阴极,在袋装电池配置中测试所产生的电极。典型循环图在图3中示出。
实施例3
在实施例3中,使用Turbula混合器将重量比为40:1的聚酰亚胺液态前体(来自HD Microsystems corp.的PI 2611)和325目的硅颗粒(来自Alfa Aesar corp.)混合在一起,时间为1小时。然后,将混合物浇铸在铝箔上并使其在90℃的烘箱中干燥以驱除溶剂,例如,NMP。这随后是在可忽略的压力下,在热压机中在200℃下的固化步骤,时间为至少12小时。然后,通过在12.5%的HCl溶液中蚀刻去除铝箔衬垫(backing)。然后,在DI水中漂洗剩余的膜、干燥,然后在氩气流下在1175℃下热解约1小时。以重量计,所述方法产生75%的PI 2611衍生的碳和25%的硅的组合物。
然后,相对锂NMC氧化物阴极,在袋装电池配置中测试所产生的电极。典型循环图在图4中示出。
实施例4
在实施例4中,使用涡旋仪,将重量比为20:200:30:8:4:2:1:15的硅微粒(来自Alfa Aesar corp.)、聚酰亚胺液态前体(来自HDMicrosystems corp.的PI 2611)、石墨颗粒(来自Timcal corp.的SLP30)、磨碎的碳纤维(来自Fibre Glast Developments corp.)、碳纳米纤维(来自Pyrograf corp.的CNF)、碳纳米管(来自CNANO Technology Limited)、导电碳颗粒(来自Timcal corp.的Super P)、导电石墨颗粒(来自Timcacorp.的KS6)混合5分钟。然后,将混合物浇铸在铝箔上。然后使样品在90℃的烘箱中干燥以驱除溶剂,例如,NMP。这随后是在可忽略的压力下,在热压机中在200℃下的固化步骤,时间为至少12小时。然后,通过在12.5%的HCl溶液中蚀刻去除铝箔衬垫(backing)。然后,在DI水中漂洗剩余的膜、干燥,然后在氩气下在1175℃下热解约1小时。所述方法产生与初始混合物相似的组合物但具有为7.5%的聚酰亚胺前体初始重量的PI 2611衍生的碳部分。
然后,相对锂NMC氧化物阴极,在袋装电池配置中测试所产生的电极。典型循环图在图5中示出。
实施例5
在实施例5中,使用Turbula混合器,将重量比为4:1的聚酰亚胺液态前体(来自HD Microsystems corp.的PI 2611)和硅微粒(来自AlfaAesar corp.)混合在一起,时间为1小时。然后,将混合物浇铸在覆盖有碳遮盖物(carbon veil)(来自Fibre Glast Developments Corporation)的铝箔上并使其在90℃的烘箱中干燥以驱除溶剂,例如,NMP。这随后是在可忽略的压力下,在热压机中在200℃下的固化步骤,时间为至少12小时。然后,通过在12.5%的HCl溶液中蚀刻去除铝箔衬垫(backing)。然后,在DI水中漂洗剩余的膜、干燥,然后在氩气流下在1175℃下热解约1小时。以重量计,所述方法产生约23%的PI 2611衍生的碳、76%的硅的组合物,并且遮盖物的重量为可忽略的。
然后,相对锂镍锰钴氧化物(NMC)阴极,在袋装电池配置中所测试产生的电极。典型循环图在图6中示出。
实施例6
在实施例6中,使用Spex 8000D机器将重量比为200:10:70的聚酰亚胺液态前体(来自HD Microsystems corp.的PI 2611)、石墨颗粒(来自Timcal corp.的SLP30)和硅微粒(来自Alfa Aesar corp.)混合在一起,时间为5分钟。然后,将混合物浇铸在铝箔上并使其在90℃的烘箱中干燥以驱除溶剂(例如,NMP)。在可忽略的压力下,在热压机中,在200℃下固化干燥的混合物,时间为至少12小时。然后,通过在12.5%的HCl溶液中蚀刻去除铝箔衬垫(backing)。然后,在DI水中漂洗剩余的膜、干燥,然后在氩气流下在1175℃下热解约1小时。以重量计,所述方法产生15.8%的PI 2611衍生的碳、10.5%的石墨颗粒、73.7%的硅的组合物。
然后,相对锂NMC氧化物阴极,在袋装电池配置中测试所产生的电极。各个循环中阳极被充电至600mAh/g并记录每一循环的放电容量。典型循环图在图7中示出。
实施例7
在实施例7中,将重量比为5:20:1:4:70:95的PVDF和硅颗粒(来自EVNANO Advanced Chemical Materials Co)、导电碳颗粒(来自Timcal corp.的Super P)、导电石墨颗粒(来自Timcal corp.的KS6)、石墨颗粒(来自Timcal corp.的SLP30)和NMP混合。然后,将混合物浇铸在铜基板上,然后放置于90℃的烘箱中以驱除溶剂,例如,NMP。然后,相对锂NMC氧化物阴极,在袋装电池配置中测试所产生的电极。典型循环图在图8中示出。
实施例8
进行多个实验以获得改变聚酰亚胺衍生的碳(例如,2611c)的百分比同时降低石墨颗粒(来自Timcal corp.的SLP30)的百分比并保持硅微粒(来自Alfa Aesar corp.)的百分比为20wt.%的影响。
如图9A和9B所示,结果显示通过提高比容量同时降低不可逆容量,较多的石墨和较少的2611c对电池性能有利。最小化2611c不利地影响所产生的阳极的强度,因此作为一个实施方案的折衷,接近20wt.%的值能为优选的。
实施例9
与实施例8相似,如果保持2611c为20wt.%并且以石墨颗粒为代价而增加Si百分比,则所产生的电极的第一循环放电容量增加。图10显示更高的硅含量能制造性能更好的阳极。
实施例10
根据实施例1中的步骤,热解并测试1密耳厚的聚酰亚胺片。以热解温度函数的形式绘制可逆容量和不可逆容量的图。图11表明在一个实施方案中,优选在约1175℃下热解聚酰亚胺片(UBE corp的Upilex)。
附加实施例
图12为4.3cm×4.3cm的不含金属箔支撑层的复合阳极膜的照片。复合阳极膜具有约30微米的厚度并具有以重量计约15.8%的PI2611衍生的碳、约10.5%的石墨颗粒和约73.7%的硅的组合物。
图13-18为复合阳极膜的扫描电子显微镜(SEM)显微照片。复合阳极膜的组合物为以重量计约15.8%的PI 2611衍生的碳、约10.5%的石墨颗粒和约73.7%的硅。图13和14显示在进行循环前(焦点未对准的部分为阳极的底部部分且焦点对准的部分为复合膜的裂开的边缘)。图15、16和17分别为在被循环10次循环、10次循环和300次循环后复合阳极膜的SEM显微照片。SEM显微照片显示硅没有任何显著的粉碎并且阳极在循环后不具有在其上部建立的固体电解质界面/相间(SEI)的过度层。图18为复合阳极膜横截面的SEM显微照片。
上文描述了各个实施方案。尽管参照这些具体的实施方案描述了本发明,但该描述仅意图为示例性的并且不意图为限制性的。在不违背所附加的权利要求中定义的本发明的真实实质和范围的前提下本领域技术人员可以想到各种修改和应用。

Claims (24)

1.复合材料,其包含:
大于0%重量比且小于约90%重量比的硅颗粒;
大于0%重量比且小于约90%重量比的一种或多种类型的碳相,其中所述一种或多种类型的碳相中的至少一种为基本上连续的相。
2.如权利要求1所述的复合材料,其中所述硅颗粒具有小于约1μm的平均最大尺寸。
3.如权利要求1或2所述的复合材料,其中所述硅颗粒包含所述复合材料的约20%重量比至约80%重量比。
4.如权利要求1-3中任一权利要求所述的复合材料,其中为基本上连续的相的所述一种或多种类型的碳相中的至少一种为电化学活性的和导电性的。
5.如权利要求1-4中任一权利要求所述的复合材料,其中为基本上连续的相的所述一种或多种类型的碳相中的至少一种包含硬碳。
6.如权利要求1-5中任一权利要求所述的复合材料,其中所述一种或多种类型的碳相包含石墨颗粒。
7.如权利要求1-6中任一权利要求所述的复合材料,其还包含导电颗粒。
8.如权利要求1-7中任一权利要求所述的复合材料,其还包含金属颗粒。
9.如权利要求1-8中任一权利要求所述的复合材料,其中所述复合材料基本上为电化学活性的。
10.如权利要求1-9中任一权利要求所述的复合材料,其中所述复合材料为自支撑的。
11.包含权利要求1-10中任一权利要求所述的复合材料的电池电极。
12.使用权利要求1-11中任一权利要求所述的复合材料的方法,其包括仅在重量容量小于所述复合材料的约70%的最大重量容量下使用所述复合材料。
13.形成复合材料的方法,其包括:
提供包含前体和硅颗粒的混合物;以及
热解所述前体以将所述前体转化为一种或多种类型的碳相从而形成所述复合材料。
14.如权利要求13所述的方法,其中在热解所述前体后,所述混合物形成自支撑的复合结构。
15.如权利要求13或14所述的方法,其中所述一种或多种类型的碳相中的至少一种为基本上连续的相。
16.如权利要求15所述的方法,其中为基本上连续的相的所述一种或多种类型的碳相中的至少一种包含硬碳。
17.如权利要求13-16中任一权利要求所述的方法,其中所述硅颗粒包含所述复合材料的约20%重量比至约80%重量比。
18.如权利要求13-17中任一权利要求所述的方法,其中所述混合物还包含溶剂。
19.如权利要求13-18中任一权利要求所述的方法,其中所述前体包含聚酰亚胺。
20.如权利要求13-19中任一权利要求所述的方法,其中所述前体包含酚醛树脂。
21.如权利要求13-20中任一权利要求所述的方法,其中所述前体包含烃化合物。
22.如权利要求13-21中任一权利要求所述的方法,其中在所述混合物中所述硅颗粒包含大于0%重量比且小于约80%重量比,以及在所述混合物中所述前体包含约5%重量比至约80%重量比。
23.如权利要求13-22中任一权利要求所述的方法,其还包括:
在基板上浇铸所述混合物;
干燥所述混合物以形成膜;
从所述基板上除去所述膜;以及
在热压机中固化所述膜。
24.如权利要求13-23中任一权利要求所述的方法,其还包括由所述复合材料形成电池电极。
CN201180012074.1A 2010-01-18 2011-01-18 用于电化学储存的复合材料 Active CN102834955B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US29599310P 2010-01-18 2010-01-18
US61/295,993 2010-01-18
US31584510P 2010-03-19 2010-03-19
US61/315,845 2010-03-19
PCT/US2011/021585 WO2011088472A2 (en) 2010-01-18 2011-01-18 Composite materials for electrochemical storage

Publications (2)

Publication Number Publication Date
CN102834955A true CN102834955A (zh) 2012-12-19
CN102834955B CN102834955B (zh) 2016-01-20

Family

ID=43711704

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180012074.1A Active CN102834955B (zh) 2010-01-18 2011-01-18 用于电化学储存的复合材料

Country Status (8)

Country Link
US (1) US9178208B2 (zh)
EP (2) EP2526581B1 (zh)
JP (6) JP6148012B2 (zh)
KR (6) KR102098957B1 (zh)
CN (1) CN102834955B (zh)
HU (1) HUE042715T2 (zh)
PL (1) PL2526581T3 (zh)
WO (1) WO2011088472A2 (zh)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105190948A (zh) * 2013-03-14 2015-12-23 艾纳G2技术公司 包含锂合金化的电化学改性剂的复合碳材料
CN105359304A (zh) * 2013-03-13 2016-02-24 新强能电池公司 用于电池电极的硅颗粒
CN105378978A (zh) * 2013-03-12 2016-03-02 新强能电池公司 电极、电化学电池及形成电极和电化学电池的方法
CN105829243A (zh) * 2013-09-30 2016-08-03 雷诺两合公司 包含石墨/硅/碳纤维复合材料的用于电能储存电池组的电极
US9806328B2 (en) 2010-12-22 2017-10-31 Enevate Corporation Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells
US9941509B2 (en) 2010-01-18 2018-04-10 Enevate Corporation Silicon particles for battery electrodes
US9985289B2 (en) 2010-09-30 2018-05-29 Basf Se Enhanced packing of energy storage particles
US10141122B2 (en) 2006-11-15 2018-11-27 Energ2, Inc. Electric double layer capacitance device
US10147950B2 (en) 2015-08-28 2018-12-04 Group 14 Technologies, Inc. Materials with extremely durable intercalation of lithium and manufacturing methods thereof
US10195583B2 (en) 2013-11-05 2019-02-05 Group 14 Technologies, Inc. Carbon-based compositions with highly efficient volumetric gas sorption
US10287170B2 (en) 2009-07-01 2019-05-14 Basf Se Ultrapure synthetic carbon materials
US10388943B2 (en) 2010-12-22 2019-08-20 Enevate Corporation Methods of reducing occurrences of short circuits and/or lithium plating in batteries
US10461366B1 (en) 2010-01-18 2019-10-29 Enevate Corporation Electrolyte compositions for batteries
US10490358B2 (en) 2011-04-15 2019-11-26 Basf Se Flow ultracapacitor
US10522836B2 (en) 2011-06-03 2019-12-31 Basf Se Carbon-lead blends for use in hybrid energy storage devices
US10541412B2 (en) 2015-08-07 2020-01-21 Enevate Corporation Surface modification of silicon particles for electrochemical storage
US10590277B2 (en) 2014-03-14 2020-03-17 Group14 Technologies, Inc. Methods for sol-gel polymerization in absence of solvent and creation of tunable carbon structure from same
US10686214B2 (en) 2017-12-07 2020-06-16 Enevate Corporation Sandwich electrodes and methods of making the same
US10707478B2 (en) 2017-12-07 2020-07-07 Enevate Corporation Silicon particles for battery electrodes
US10763501B2 (en) 2015-08-14 2020-09-01 Group14 Technologies, Inc. Nano-featured porous silicon materials
CN112993247A (zh) * 2019-12-13 2021-06-18 中国科学院大连化学物理研究所 一种高面容量的自支撑硬碳负极及其制备和应用
US11133498B2 (en) 2017-12-07 2021-09-28 Enevate Corporation Binding agents for electrochemically active materials and methods of forming the same
US11380890B2 (en) 2010-01-18 2022-07-05 Enevate Corporation Surface modification of silicon particles for electrochemical storage
US11387443B1 (en) 2021-11-22 2022-07-12 Enevate Corporation Silicon based lithium ion battery and improved cycle life of same
US11401363B2 (en) 2012-02-09 2022-08-02 Basf Se Preparation of polymeric resins and carbon materials

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110020701A1 (en) * 2009-07-16 2011-01-27 Carbon Micro Battery Corporation Carbon electrode structures for batteries
US9373838B2 (en) 2009-09-29 2016-06-21 Georgia Tech Research Corporation Electrodes, lithium-ion batteries, and methods of making and using same
WO2011088472A2 (en) * 2010-01-18 2011-07-21 Enevate Corporation Composite materials for electrochemical storage
US10811727B2 (en) 2017-12-07 2020-10-20 Enevate Corporation Silicon-based energy storage devices with ether containing electrolyte additives
US10978739B2 (en) 2017-12-07 2021-04-13 Enevate Corporation Silicon-based energy storage devices with carboxylic ether, carboxylic acid based salt, or acrylate electrolyte containing electrolyte additives
US11075408B2 (en) 2017-12-07 2021-07-27 Enevate Corporation Silicon-based energy storage devices with fluorinated polymer containing electrolyte additives
US10957898B2 (en) 2018-12-21 2021-03-23 Enevate Corporation Silicon-based energy storage devices with anhydride containing electrolyte additives
US9397338B2 (en) 2010-12-22 2016-07-19 Enevate Corporation Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells
US10840512B1 (en) * 2019-12-18 2020-11-17 Enevate Corporation Method and system for multiple carbon precursors for enhanced battery electrode robustness
US11152604B2 (en) 2019-06-03 2021-10-19 Enevate Corporation Sacrificial substrates for silicon-carbon composite materials
US11616235B2 (en) * 2020-04-27 2023-03-28 Enevate Corporation Functional lithiated agent-containing additives in Li-ion battery electrodes
US10603867B1 (en) 2011-05-24 2020-03-31 Enevate Corporation Carbon fibers and methods of producing the same
US8574295B2 (en) 2012-01-17 2013-11-05 Vista Ocular, Llc Accommodating intra-ocular lens system
US10374221B2 (en) * 2012-08-24 2019-08-06 Sila Nanotechnologies, Inc. Scaffolding matrix with internal nanoparticles
WO2014065842A1 (en) * 2012-08-27 2014-05-01 National Institute Of Aerospace Associates Polyaniline/carbon nanotube sheet nancomposites
JP6524053B2 (ja) 2013-03-14 2019-06-05 エネヴェート・コーポレーション 電気化学セルスタックのためのクランプ装置
CN105359310B (zh) * 2013-09-30 2017-11-17 Tdk株式会社 负极活性物质、使用其的负极和锂离子二次电池
DE102014202156A1 (de) * 2014-02-06 2015-08-06 Wacker Chemie Ag Si/G/C-Komposite für Lithium-Ionen-Batterien
US20180287129A1 (en) * 2017-03-28 2018-10-04 Enevate Corporation Methods of forming carbon-silicon composite material on a current collector
JP6184385B2 (ja) 2014-09-19 2017-08-23 株式会社東芝 非水電解質二次電池用負極材料、非水電解質二次電池用負極、非水電解質二次電池および電池パック
US10707526B2 (en) 2015-03-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
JP6968702B2 (ja) 2015-05-15 2021-11-17 コンポジット マテリアルズ テクノロジー インコーポレイテッドComposite Materials Technology, Inc. 改良型高容量再充電可能電池用電極
US10702375B2 (en) 2015-09-18 2020-07-07 Vista Ocular, Llc Electromyographic sensing and vision modification
US11383213B2 (en) 2016-03-15 2022-07-12 Honda Motor Co., Ltd. System and method of producing a composite product
US11171324B2 (en) * 2016-03-15 2021-11-09 Honda Motor Co., Ltd. System and method of producing a composite product
US11171375B2 (en) 2016-03-25 2021-11-09 Enevate Corporation Stepped electrochemical cells with folded sealed portion
WO2018045339A1 (en) 2016-09-01 2018-03-08 Composite Materials Technology, Inc. Nano-scale/nanostructured si coating on valve metal substrate for lib anodes
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
KR20230128140A (ko) 2017-03-09 2023-09-01 그룹14 테크놀로지스, 인코포레이티드 다공성 스캐폴드 재료 상의 실리콘 함유 전구체의 분해
NO345463B1 (en) 2017-04-06 2021-02-15 Elkem Materials Silicon powder for use in anodes for lithium-ion batteries and method for production of silicon powder
CN108878947B (zh) 2017-05-16 2023-11-07 新强能电池公司 降低电池组中发生短路和/或锂析出的方法
US11081684B2 (en) 2017-05-24 2021-08-03 Honda Motor Co., Ltd. Production of carbon nanotube modified battery electrode powders via single step dispersion
US10658651B2 (en) 2017-07-31 2020-05-19 Honda Motor Co., Ltd. Self standing electrodes and methods for making thereof
US20190036102A1 (en) 2017-07-31 2019-01-31 Honda Motor Co., Ltd. Continuous production of binder and collector-less self-standing electrodes for li-ion batteries by using carbon nanotubes as an additive
US11201318B2 (en) 2017-09-15 2021-12-14 Honda Motor Co., Ltd. Method for battery tab attachment to a self-standing electrode
US11121358B2 (en) 2017-09-15 2021-09-14 Honda Motor Co., Ltd. Method for embedding a battery tab attachment in a self-standing electrode without current collector or binder
US10763538B2 (en) 2017-12-07 2020-09-01 Enevate Corporation Methods of forming electrochemical cells
US20190181431A1 (en) 2017-12-07 2019-06-13 Enevate Corporation Solid film as binder for battery electrodes
WO2019113532A1 (en) 2017-12-07 2019-06-13 Enevate Corporation Silicon-based energy storage devices with fluorinated cyclic compound containing electrolyte additives
US11411249B2 (en) 2017-12-07 2022-08-09 Enevate Corporation Silicon-based energy storage devices with cyclic carbonate containing electrolyte additives
US20190178944A1 (en) 2017-12-07 2019-06-13 Enevate Corporation Battery fuel gauges, battery management systems, and methods of managing battery life cycle
US10847792B2 (en) 2017-12-07 2020-11-24 Enevate Corporation Prelithiated and methods for prelithiating an energy storage device
US11349119B2 (en) 2018-10-15 2022-05-31 GM Global Technology Operations LLC Method for making silicon-containing composite electrodes for lithium-based batteries
US10854882B2 (en) 2018-10-19 2020-12-01 GM Global Technology Operations LLC Negative electrode for a lithium-ion electrochemical cell and method of forming same
US11165099B2 (en) 2018-12-21 2021-11-02 Enevate Corporation Silicon-based energy storage devices with cyclic organosilicon containing electrolyte additives
US10985363B2 (en) 2019-01-03 2021-04-20 GM Global Technology Operations LLC Electrodes and methods of fabricating electrodes for electrochemical cells by continuous localized pyrolysis
US10950846B2 (en) 2019-01-03 2021-03-16 GM Global Technology Operations LLC Method for in situ growth of axial geometry carbon structures in electrodes
US11535517B2 (en) 2019-01-24 2022-12-27 Honda Motor Co., Ltd. Method of making self-standing electrodes supported by carbon nanostructured filaments
MX2021010330A (es) * 2019-02-27 2021-11-04 Aspen Aerogels Inc Materiales de electrodo a base de aerogel de carbono y metodos para fabricar los mismos.
US11352258B2 (en) 2019-03-04 2022-06-07 Honda Motor Co., Ltd. Multifunctional conductive wire and method of making
US11325833B2 (en) 2019-03-04 2022-05-10 Honda Motor Co., Ltd. Composite yarn and method of making a carbon nanotube composite yarn
CN113711422A (zh) 2019-03-22 2021-11-26 思攀气凝胶公司 用于锂-空气电池的基于碳气凝胶的正极
WO2020198095A1 (en) 2019-03-22 2020-10-01 Aspen Aerogels, Inc. Carbon aerogel-based cathodes for lithium-sulfur batteries
US10622632B1 (en) * 2019-05-13 2020-04-14 Nanostar Inc. Silicon-carbide reinforced secondary batteries
US10608256B1 (en) 2019-05-13 2020-03-31 Nanostar Inc. Silicon-carbide reinforced solid-state electrolytes
US10461320B1 (en) * 2019-05-13 2019-10-29 Nanostar, Inc. Formation of silicon-carbide reinforced carbon-silicon composites
US10608240B1 (en) 2019-05-13 2020-03-31 Nanostar Inc. Silicon-carbide reinforced carbon-silicon composites
US11398641B2 (en) 2019-06-05 2022-07-26 Enevate Corporation Silicon-based energy storage devices with silicon containing electrolyte additives
US11539042B2 (en) 2019-07-19 2022-12-27 Honda Motor Co., Ltd. Flexible packaging with embedded electrode and method of making
US11316142B2 (en) 2019-09-17 2022-04-26 GM Global Technology Operations LLC Methods for fabricating silicon-based electrodes comprising naturally occurring carbonaceous filaments and battery cells utilizing the same
US10964935B1 (en) 2020-04-28 2021-03-30 Nanostar, Inc. Amorphous silicon-carbon composites and improved first coulombic efficiency
WO2022027550A1 (zh) * 2020-08-07 2022-02-10 宁德时代新能源科技股份有限公司 聚合物集流体、其制备方法及其相关的二次电池、电池模块、电池包和装置
US11639292B2 (en) 2020-08-18 2023-05-02 Group14 Technologies, Inc. Particulate composite materials
US11174167B1 (en) 2020-08-18 2021-11-16 Group14 Technologies, Inc. Silicon carbon composites comprising ultra low Z
US11335903B2 (en) 2020-08-18 2022-05-17 Group14 Technologies, Inc. Highly efficient manufacturing of silicon-carbon composites materials comprising ultra low z
US20230387395A1 (en) * 2020-10-21 2023-11-30 Sicona Battery Technologies Pty Ltd Silicon carbon composite materials and method for making same
DE102021114593A1 (de) 2020-12-02 2022-06-02 GM Global Technology Operations LLC Fertigungsverfahren zur herstellung von elektroden durch walzen
US11978880B2 (en) 2021-06-01 2024-05-07 GM Global Technology Operations LLC Electrochemical exchange for the fabrication of a layered anode material
WO2023150822A1 (en) * 2022-02-09 2023-08-17 Sicona Battery Technologies Pty Ltd Silicon composite materials

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6413672B1 (en) * 1998-12-03 2002-07-02 Kao Corporation Lithium secondary cell and method for manufacturing the same
CN1667855A (zh) * 2004-03-08 2005-09-14 三星Sdi株式会社 可充电锂电池的负极活性物质及其制法以及包含它的可充电锂电池

Family Cites Families (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3990098A (en) * 1972-12-22 1976-11-02 E. I. Du Pont De Nemours And Co. Structure capable of forming a diode and associated conductive path
CA2122770C (en) 1994-05-03 2000-10-03 Moli Energy (1990) Limited Carbonaceous host compounds and use as anodes in rechargeable batteries
US6171725B1 (en) * 1996-11-26 2001-01-09 Kao Corporation Negative electrode material for non-aqueous secondary battery
JP3431081B2 (ja) * 1996-12-24 2003-07-28 花王株式会社 非水電解質二次電池
JPH10217522A (ja) * 1997-02-07 1998-08-18 Fuji Photo Film Co Ltd サーマルヘッドおよびサーマルヘッドの製造方法
JPH11238527A (ja) * 1998-02-20 1999-08-31 Kao Corp 非水系二次電池
JP2948205B1 (ja) 1998-05-25 1999-09-13 花王株式会社 二次電池用負極の製造方法
JPH11339778A (ja) * 1998-05-25 1999-12-10 Kao Corp 二次電池用負極の製造方法
JP3078800B1 (ja) 1999-06-23 2000-08-21 花王株式会社 非水系二次電池用負極の製造方法
JP3291260B2 (ja) * 1998-12-03 2002-06-10 花王株式会社 リチウム二次電池
JP3361069B2 (ja) 1998-12-25 2003-01-07 花王株式会社 二次電池用負極の製造方法
JP4281099B2 (ja) * 1999-03-24 2009-06-17 日立化成工業株式会社 金属炭素複合体粒子
CA2305837C (en) 1999-04-14 2011-05-31 Sony Corporation Material for negative electrode and nonaqueous-electrolyte battery incorporating the same
JP3268770B2 (ja) 1999-11-17 2002-03-25 花王株式会社 非水系二次電池
JP3124272B1 (ja) 1999-12-01 2001-01-15 花王株式会社 非水系二次電池
US6436576B1 (en) 2000-05-24 2002-08-20 Litech, L.L.C. Carbon-carbon composite as an anode for lithium secondary non-aqueous electrochemical cells
US6489061B1 (en) 2000-05-24 2002-12-03 Litech, L.L.C. Secondary non-aquenous electrochemical cell configured to improve overcharge and overdischarge acceptance ability
JP4137350B2 (ja) 2000-06-16 2008-08-20 三星エスディアイ株式会社 リチウム二次電池用の負極材料及びリチウム二次電池用の電極及びリチウム二次電池並びにリチウム二次電池用の負極材料の製造方法
JP3466576B2 (ja) 2000-11-14 2003-11-10 三井鉱山株式会社 リチウム二次電池負極用複合材料及びリチウム二次電池
JP4415241B2 (ja) 2001-07-31 2010-02-17 日本電気株式会社 二次電池用負極およびそれを用いた二次電池、および負極の製造方法
EP1313158A3 (en) 2001-11-20 2004-09-08 Canon Kabushiki Kaisha Electrode material for rechargeable lithium battery, electrode comprising said electrode material, rechargeable lithium battery having said electrode , and process for the production thereof
JP4189569B2 (ja) * 2001-11-29 2008-12-03 東レ・デュポン株式会社 炭素フィルムの製造方法
JP4225727B2 (ja) 2001-12-28 2009-02-18 三洋電機株式会社 リチウム二次電池用負極及びリチウム二次電池
TWI278429B (en) 2002-05-17 2007-04-11 Shinetsu Chemical Co Conductive silicon composite, preparation thereof, and negative electrode material for non-aqueous electrolyte secondary cell
JP4033720B2 (ja) 2002-06-19 2008-01-16 三洋電機株式会社 リチウム二次電池用負極及びリチウム二次電池
US6949314B1 (en) 2002-08-19 2005-09-27 Litech, L.L.C. Carbon-carbon composite anode for secondary non-aqueous electrochemical cells
JP2004103405A (ja) * 2002-09-10 2004-04-02 Sumitomo Bakelite Co Ltd 炭素材用原料とこれを用いたケイ素含有炭素材、二次電池負極材、及びリチウム二次電池
JP2004119176A (ja) 2002-09-26 2004-04-15 Toshiba Corp 非水電解質二次電池用負極活物質及び非水電解質二次電池
WO2004049473A2 (en) 2002-11-26 2004-06-10 Showa Denko K.K. Electrode material comprising silicon and/or tin particles and production method and use thereof
WO2004051768A1 (ja) 2002-11-29 2004-06-17 Mitsui Mining & Smelting Co., Ltd. 非水電解液二次電池用負極及びその製造方法並びに非水電解液二次電池
US20040137327A1 (en) 2003-01-13 2004-07-15 Gross Karl J. Synthesis of carbon/silicon composites
CN100382362C (zh) 2003-03-26 2008-04-16 佳能株式会社 用于锂二次电池的电极材料和具有该电极材料的电极结构
JPWO2005036690A1 (ja) 2003-10-07 2006-12-28 株式会社ジーエス・ユアサコーポレーション 非水電解質二次電池
TWI261639B (en) * 2003-12-03 2006-09-11 Univ Feng Chia Method for making carbon fiber fabric and product thereof
JP4474184B2 (ja) 2004-03-26 2010-06-02 トヨタ自動車株式会社 リチウム二次電池用活物質の製造方法及びリチウム二次電池の製造方法
US7651817B2 (en) 2004-03-30 2010-01-26 Kureha Corporation Process for producing spherical carbon material
DE102004016766A1 (de) 2004-04-01 2005-10-20 Degussa Nanoskalige Siliziumpartikel in negativen Elektrodenmaterialien für Lithium-Ionen-Batterien
WO2006022254A1 (ja) 2004-08-26 2006-03-02 Matsushita Electric Industrial Co., Ltd. 電極用複合粒子およびその製造法、ならびに二次電池
US20060051670A1 (en) 2004-09-03 2006-03-09 Shin-Etsu Chemical Co., Ltd. Non-aqueous electrolyte secondary cell negative electrode material and metallic silicon power therefor
JP5094013B2 (ja) * 2004-12-10 2012-12-12 キヤノン株式会社 リチウム二次電池用の電極構造体及び該電極構造体を有する二次電池
US7615314B2 (en) 2004-12-10 2009-11-10 Canon Kabushiki Kaisha Electrode structure for lithium secondary battery and secondary battery having such electrode structure
KR100738054B1 (ko) 2004-12-18 2007-07-12 삼성에스디아이 주식회사 음극 활물질, 그 제조 방법 및 이를 채용한 음극과 리튬전지
US20060147802A1 (en) 2005-01-05 2006-07-06 Kiyotaka Yasuda Anode for nonaqueous secondary battery, process of producing the anode, and nonaqueous secondary battery
DE102005011940A1 (de) 2005-03-14 2006-09-21 Degussa Ag Verfahren zur Herstellung von beschichteten Kohlenstoffpartikel und deren Verwendung in Anodenmaterialien für Lithium-Ionenbatterien
FR2885734B1 (fr) 2005-05-13 2013-07-05 Accumulateurs Fixes Materiau nanocomposite pour anode d'accumulateur au lithium
WO2006123601A1 (ja) 2005-05-16 2006-11-23 Mitsubishi Chemical Corporation 非水電解質二次電池、その負極、及びその材料
JP4942319B2 (ja) * 2005-09-07 2012-05-30 三洋電機株式会社 リチウム二次電池
KR100745733B1 (ko) 2005-09-23 2007-08-02 삼성에스디아이 주식회사 음극 활물질, 그의 제조방법 및 이를 채용한 리튬 전지
JP5364230B2 (ja) * 2005-10-31 2013-12-11 ソニー株式会社 負極および電池
JP5162825B2 (ja) 2005-12-13 2013-03-13 パナソニック株式会社 非水電解質二次電池用負極とそれを用いた非水電解質二次電池
FR2895572B1 (fr) 2005-12-23 2008-02-15 Commissariat Energie Atomique Materiau a base de nanotubes de carbone et de silicium utilisable dans des electrodes negatives pour accumulateur au lithium
KR100784589B1 (ko) 2006-01-04 2007-12-10 엘에스전선 주식회사 2차 전지용 탄소질 전극재 및 그 제조방법과, 이를 이용한2차 전지
KR101328982B1 (ko) * 2006-04-17 2013-11-13 삼성에스디아이 주식회사 음극 활물질 및 그 제조 방법
EP1879247B1 (en) 2006-07-14 2011-09-21 Korea Kumho Petrochemical Co. Ltd. Anode active material for lithium secondary battery hybridized with carbon nano fibres
JP5131429B2 (ja) 2006-12-15 2013-01-30 信越化学工業株式会社 非水電解質二次電池用負極及びその製造方法
KR100818263B1 (ko) 2006-12-19 2008-03-31 삼성에스디아이 주식회사 다공성 음극 활물질, 그 제조 방법 및 이를 채용한 음극과리튬 전지
US20080286657A1 (en) 2007-05-16 2008-11-20 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery
KR100998618B1 (ko) 2007-06-29 2010-12-07 (주)넥센나노텍 탄소 나노 섬유를 혼성화시킨 실리콘계 리튬 이차전지용음극 활물질
KR101386163B1 (ko) * 2007-07-19 2014-04-17 삼성에스디아이 주식회사 복합 음극활물질, 이를 채용한 음극 및 리튬 전지
KR101375328B1 (ko) * 2007-07-27 2014-03-19 삼성에스디아이 주식회사 Si/C 복합물, 이를 포함하는 음극활물질 및 리튬전지
JP5358905B2 (ja) * 2007-08-01 2013-12-04 ソニー株式会社 二次電池用負極、二次電池およびそれらの製造方法
KR101440883B1 (ko) 2007-10-02 2014-09-18 삼성에스디아이 주식회사 전극, 이의 제조 방법 및 이를 구비한 리튬 전지
KR100903503B1 (ko) 2007-11-02 2009-06-17 삼성에스디아이 주식회사 음극활물질, 그 제조방법 및 그 음극활물질을 구비한 리튬이차전지
US7745047B2 (en) 2007-11-05 2010-06-29 Nanotek Instruments, Inc. Nano graphene platelet-base composite anode compositions for lithium ion batteries
CN101919090B (zh) 2007-11-12 2014-04-16 三洋电机株式会社 用于非水电解质二次电池的负极材料,用于非水电解质二次电池的负极,非水电解质二次电池,以及用作非水电解质二次电池负极材料的活性物质的多晶硅颗粒的制造方法
JP5406447B2 (ja) 2007-12-11 2014-02-05 大阪ガスケミカル株式会社 リチウムイオン二次電池用負極活物質シートの製造方法
JP5196149B2 (ja) 2008-02-07 2013-05-15 信越化学工業株式会社 非水電解質二次電池用負極材及びその製造方法並びにリチウムイオン二次電池及び電気化学キャパシタ
US8105718B2 (en) 2008-03-17 2012-01-31 Shin-Etsu Chemical Co., Ltd. Non-aqueous electrolyte secondary battery, negative electrode material, and making method
KR100981909B1 (ko) * 2008-04-15 2010-09-13 애경유화 주식회사 리튬 이차 전지용 음극 활물질, 그의 제조 방법 및 그를포함하는 리튬 이차 전지
KR101002539B1 (ko) 2008-04-29 2010-12-17 삼성에스디아이 주식회사 리튬이차전지용 음극활물질 및 이를 포함하는 리튬이차전지
FR2931297B1 (fr) * 2008-05-16 2010-08-27 Commissariat Energie Atomique Film autosupporte et plaquette en silicium obtenue par frittage
JP5320847B2 (ja) 2008-06-23 2013-10-23 信越化学工業株式会社 31p変換多結晶珪素粒子の製造方法
WO2010036648A1 (en) * 2008-09-26 2010-04-01 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Nanoscale silicon-based compositions and methods of preparation
US8580432B2 (en) * 2008-12-04 2013-11-12 Nanotek Instruments, Inc. Nano graphene reinforced nanocomposite particles for lithium battery electrodes
US20110020701A1 (en) * 2009-07-16 2011-01-27 Carbon Micro Battery Corporation Carbon electrode structures for batteries
WO2011088472A2 (en) * 2010-01-18 2011-07-21 Enevate Corporation Composite materials for electrochemical storage
JP6164162B2 (ja) * 2014-06-11 2017-07-19 株式会社三洋物産 遊技機

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6413672B1 (en) * 1998-12-03 2002-07-02 Kao Corporation Lithium secondary cell and method for manufacturing the same
CN1667855A (zh) * 2004-03-08 2005-09-14 三星Sdi株式会社 可充电锂电池的负极活性物质及其制法以及包含它的可充电锂电池

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10600581B2 (en) 2006-11-15 2020-03-24 Basf Se Electric double layer capacitance device
US10141122B2 (en) 2006-11-15 2018-11-27 Energ2, Inc. Electric double layer capacitance device
US10287170B2 (en) 2009-07-01 2019-05-14 Basf Se Ultrapure synthetic carbon materials
US10461366B1 (en) 2010-01-18 2019-10-29 Enevate Corporation Electrolyte compositions for batteries
US11196037B2 (en) 2010-01-18 2021-12-07 Enevate Corporation Silicon particles for battery electrodes
US9941509B2 (en) 2010-01-18 2018-04-10 Enevate Corporation Silicon particles for battery electrodes
US11183712B2 (en) 2010-01-18 2021-11-23 Enevate Corporation Electrolyte compositions for batteries
US11380890B2 (en) 2010-01-18 2022-07-05 Enevate Corporation Surface modification of silicon particles for electrochemical storage
US11728476B2 (en) 2010-01-18 2023-08-15 Enevate Corporation Surface modification of silicon particles for electrochemical storage
US10103378B2 (en) 2010-01-18 2018-10-16 Enevate Corporation Methods of forming composite material films
US10622620B2 (en) 2010-01-18 2020-04-14 Enevate Corporation Methods of forming composite material films
US11955623B2 (en) 2010-01-18 2024-04-09 Enevate Corporation Silicon particles for battery electrodes
US9985289B2 (en) 2010-09-30 2018-05-29 Basf Se Enhanced packing of energy storage particles
US9997765B2 (en) 2010-12-22 2018-06-12 Enevate Corporation Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells
US10985361B2 (en) 2010-12-22 2021-04-20 Enevate Corporation Electrodes configured to reduce occurrences of short circuits and/or lithium plating in batteries
US11784298B2 (en) 2010-12-22 2023-10-10 Enevate Corporation Methods of reducing occurrences of short circuits and/or lithium plating in batteries
US10388943B2 (en) 2010-12-22 2019-08-20 Enevate Corporation Methods of reducing occurrences of short circuits and/or lithium plating in batteries
US10431808B2 (en) 2010-12-22 2019-10-01 Enevate Corporation Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells
US11177467B2 (en) 2010-12-22 2021-11-16 Enevate Corporation Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells
US11837710B2 (en) 2010-12-22 2023-12-05 Enevate Corporation Methods of reducing occurrences of short circuits and/or lithium plating in batteries
US10516155B2 (en) 2010-12-22 2019-12-24 Enevate Corporation Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells
US9806328B2 (en) 2010-12-22 2017-10-31 Enevate Corporation Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells
US10490358B2 (en) 2011-04-15 2019-11-26 Basf Se Flow ultracapacitor
US10522836B2 (en) 2011-06-03 2019-12-31 Basf Se Carbon-lead blends for use in hybrid energy storage devices
US11725074B2 (en) 2012-02-09 2023-08-15 Group 14 Technologies, Inc. Preparation of polymeric resins and carbon materials
US11401363B2 (en) 2012-02-09 2022-08-02 Basf Se Preparation of polymeric resins and carbon materials
CN108666527B (zh) * 2013-03-12 2022-03-04 新强能电池公司 形成电极的方法
CN108666528A (zh) * 2013-03-12 2018-10-16 新强能电池公司 电极、电化学电池及形成电极和电化学电池的方法
CN108666527A (zh) * 2013-03-12 2018-10-16 新强能电池公司 电极、电化学电池及形成电极和电化学电池的方法
CN105378978A (zh) * 2013-03-12 2016-03-02 新强能电池公司 电极、电化学电池及形成电极和电化学电池的方法
CN105359304B (zh) * 2013-03-13 2020-04-07 新强能电池公司 用于电池电极的硅颗粒
CN111370660B (zh) * 2013-03-13 2023-07-14 新强能电池公司 用于电池电极的硅颗粒
CN111370660A (zh) * 2013-03-13 2020-07-03 新强能电池公司 用于电池电极的硅颗粒
CN105359304A (zh) * 2013-03-13 2016-02-24 新强能电池公司 用于电池电极的硅颗粒
CN105190948A (zh) * 2013-03-14 2015-12-23 艾纳G2技术公司 包含锂合金化的电化学改性剂的复合碳材料
US10714744B2 (en) 2013-03-14 2020-07-14 Group14 Technologies, Inc. Composite carbon materials comprising lithium alloying electrochemical modifiers
US10454103B2 (en) 2013-03-14 2019-10-22 Group14 Technologies, Inc. Composite carbon materials comprising lithium alloying electrochemical modifiers
CN105190948B (zh) * 2013-03-14 2019-04-26 14族科技公司 包含锂合金化的电化学改性剂的复合碳材料
CN105829243A (zh) * 2013-09-30 2016-08-03 雷诺两合公司 包含石墨/硅/碳纤维复合材料的用于电能储存电池组的电极
US10195583B2 (en) 2013-11-05 2019-02-05 Group 14 Technologies, Inc. Carbon-based compositions with highly efficient volumetric gas sorption
US10814304B2 (en) 2013-11-05 2020-10-27 Group14 Technologies, Inc. Carbon-based compositions with highly efficient volumetric gas sorption
US10590277B2 (en) 2014-03-14 2020-03-17 Group14 Technologies, Inc. Methods for sol-gel polymerization in absence of solvent and creation of tunable carbon structure from same
US10541412B2 (en) 2015-08-07 2020-01-21 Enevate Corporation Surface modification of silicon particles for electrochemical storage
US10763501B2 (en) 2015-08-14 2020-09-01 Group14 Technologies, Inc. Nano-featured porous silicon materials
US10147950B2 (en) 2015-08-28 2018-12-04 Group 14 Technologies, Inc. Materials with extremely durable intercalation of lithium and manufacturing methods thereof
US10608254B2 (en) 2015-08-28 2020-03-31 Group14 Technologies, Inc. Materials with extremely durable intercalation of lithium and manufacturing methods thereof
US10756347B2 (en) 2015-08-28 2020-08-25 Group14 Technologies, Inc. Materials with extremely durable intercalation of lithium and manufacturing methods thereof
US11309536B2 (en) 2017-12-07 2022-04-19 Enevate Corporation Silicon particles for battery electrodes
US11539041B2 (en) 2017-12-07 2022-12-27 Enevate Corporation Silicon particles for battery electrodes
US10707478B2 (en) 2017-12-07 2020-07-07 Enevate Corporation Silicon particles for battery electrodes
US11777077B2 (en) 2017-12-07 2023-10-03 Enevate Corporation Silicon particles for battery electrodes
US10686214B2 (en) 2017-12-07 2020-06-16 Enevate Corporation Sandwich electrodes and methods of making the same
US11133498B2 (en) 2017-12-07 2021-09-28 Enevate Corporation Binding agents for electrochemically active materials and methods of forming the same
US11916228B2 (en) 2017-12-07 2024-02-27 Enevate Corporation Binding agents for electrochemically active materials and methods of forming the same
CN112993247A (zh) * 2019-12-13 2021-06-18 中国科学院大连化学物理研究所 一种高面容量的自支撑硬碳负极及其制备和应用
US11387443B1 (en) 2021-11-22 2022-07-12 Enevate Corporation Silicon based lithium ion battery and improved cycle life of same

Also Published As

Publication number Publication date
JP6554508B2 (ja) 2019-07-31
EP2526581B1 (en) 2018-11-28
KR20130001223A (ko) 2013-01-03
KR20180094129A (ko) 2018-08-22
PL2526581T3 (pl) 2019-05-31
JP2015144141A (ja) 2015-08-06
HUE042715T2 (hu) 2019-07-29
KR102065283B1 (ko) 2020-01-10
KR102098547B1 (ko) 2020-04-08
JP2022031371A (ja) 2022-02-18
JP2019054010A (ja) 2019-04-04
US20110177393A1 (en) 2011-07-21
WO2011088472A3 (en) 2011-09-22
KR101823672B1 (ko) 2018-03-14
US9178208B2 (en) 2015-11-03
JP2024014999A (ja) 2024-02-01
JP6144298B2 (ja) 2017-06-07
KR102098957B1 (ko) 2020-04-09
KR20200039807A (ko) 2020-04-16
JP2013517615A (ja) 2013-05-16
EP2526581A2 (en) 2012-11-28
EP3467910A1 (en) 2019-04-10
KR20170010905A (ko) 2017-02-01
JP6148012B2 (ja) 2017-06-14
JP2017143081A (ja) 2017-08-17
WO2011088472A8 (en) 2012-10-04
CN102834955B (zh) 2016-01-20
KR20180014178A (ko) 2018-02-07
WO2011088472A2 (en) 2011-07-21
KR101700432B1 (ko) 2017-01-26
JP7042759B2 (ja) 2022-03-28
KR20190039341A (ko) 2019-04-10
KR102184848B1 (ko) 2020-12-02

Similar Documents

Publication Publication Date Title
CN102834955B (zh) 用于电化学储存的复合材料
CN111433947B (zh) 用于电化学活性材料的粘合剂及形成电化学活性材料的方法
KR102551495B1 (ko) 집전체 상에 탄소-규소 복합체 재료를 형성하는 방법
KR102184847B1 (ko) 배터리 전극용 실리콘 입자
US20140170498A1 (en) Silicon particles for battery electrodes
CN108878947B (zh) 降低电池组中发生短路和/或锂析出的方法
CN113906163B (zh) 用于硅-碳复合材料的牺牲衬底
US20240145686A1 (en) Binding agents for electrochemically active materials and methods of forming the same
US20200303717A1 (en) Methods of forming carbon-silicon composite material on a current collector
WO2021252167A1 (en) Methods of forming carbon-silicon composite material on a current collector

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant