CN102647058A - 电力设备 - Google Patents
电力设备 Download PDFInfo
- Publication number
- CN102647058A CN102647058A CN2012101139953A CN201210113995A CN102647058A CN 102647058 A CN102647058 A CN 102647058A CN 2012101139953 A CN2012101139953 A CN 2012101139953A CN 201210113995 A CN201210113995 A CN 201210113995A CN 102647058 A CN102647058 A CN 102647058A
- Authority
- CN
- China
- Prior art keywords
- rotor
- stator
- array
- magnet
- generator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 208000004350 Strabismus Diseases 0.000 claims description 8
- 238000003491 array Methods 0.000 claims description 8
- 230000002146 bilateral effect Effects 0.000 claims description 4
- 230000005291 magnetic effect Effects 0.000 description 147
- 230000006698 induction Effects 0.000 description 121
- 230000004907 flux Effects 0.000 description 45
- 238000000034 method Methods 0.000 description 41
- 238000013461 design Methods 0.000 description 35
- 230000008569 process Effects 0.000 description 28
- 238000004804 winding Methods 0.000 description 24
- 230000001965 increasing effect Effects 0.000 description 19
- 239000000463 material Substances 0.000 description 18
- 210000000529 third trochanter Anatomy 0.000 description 18
- 230000007246 mechanism Effects 0.000 description 15
- 230000000694 effects Effects 0.000 description 14
- 230000008901 benefit Effects 0.000 description 13
- 238000007789 sealing Methods 0.000 description 13
- 238000005516 engineering process Methods 0.000 description 12
- 238000009434 installation Methods 0.000 description 12
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 10
- 230000008859 change Effects 0.000 description 10
- 239000004020 conductor Substances 0.000 description 9
- 238000010168 coupling process Methods 0.000 description 8
- 238000005859 coupling reaction Methods 0.000 description 8
- 230000008878 coupling Effects 0.000 description 7
- 230000005611 electricity Effects 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000012544 monitoring process Methods 0.000 description 7
- 230000035699 permeability Effects 0.000 description 7
- 238000002955 isolation Methods 0.000 description 6
- 230000001105 regulatory effect Effects 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 6
- 230000001360 synchronised effect Effects 0.000 description 5
- 244000208734 Pisonia aculeata Species 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 230000005284 excitation Effects 0.000 description 4
- 239000000446 fuel Substances 0.000 description 4
- 230000001976 improved effect Effects 0.000 description 4
- 230000033001 locomotion Effects 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 4
- 230000001276 controlling effect Effects 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 230000002349 favourable effect Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 230000000750 progressive effect Effects 0.000 description 3
- 230000009183 running Effects 0.000 description 3
- 238000007493 shaping process Methods 0.000 description 3
- 230000008093 supporting effect Effects 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 235000009508 confectionery Nutrition 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 230000009931 harmful effect Effects 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 230000013011 mating Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000004886 process control Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000012958 reprocessing Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 208000033999 Device damage Diseases 0.000 description 1
- 101150034459 Parpbp gene Proteins 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 230000005307 ferromagnetism Effects 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 210000002414 leg Anatomy 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 230000005405 multipole Effects 0.000 description 1
- 229910001172 neodymium magnet Inorganic materials 0.000 description 1
- 239000012811 non-conductive material Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000005381 potential energy Methods 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000009291 secondary effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000002910 structure generation Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000013024 troubleshooting Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P9/00—Arrangements for controlling electric generators for the purpose of obtaining a desired output
- H02P9/48—Arrangements for obtaining a constant output value at varying speed of the generator, e.g. on vehicle
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K16/00—Machines with more than one rotor or stator
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K19/00—Synchronous motors or generators
- H02K19/16—Synchronous generators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K21/00—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
- H02K21/12—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K21/00—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
- H02K21/12—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
- H02K21/24—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K3/00—Details of windings
- H02K3/04—Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
- H02K3/28—Layout of windings or of connections between windings
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P9/00—Arrangements for controlling electric generators for the purpose of obtaining a desired output
- H02P9/02—Details of the control
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Permanent Magnet Type Synchronous Machine (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
- Control Of Eletrric Generators (AREA)
Abstract
本发明提供一种电力设备,包括:驱动轴;转子,能随驱动轴转动,所述转子包括耦接至其第一侧的径向间隔开的磁体的第一阵列;定子,包括耦接至其第一侧的径向间隔开的导电线圈的第一阵列,驱动轴穿过定子,所述定子的第一侧邻近所述转子的第一侧,并且转子和定子设置于平行的平面中,其中,每个导电线圈与驱动轴间隔的距离不同于邻近转子上的磁体,且每个导电线圈缠绕在芯周围,芯排列在从驱动轴径向向外延伸的径向轴线上,其中,所述转子和所述定子中之一包括与所述第一侧相对的第二侧,并且是双边的以包括以下之一:耦接至转子的第二侧的径向间隔开的磁体的第二阵列;耦接至定子的第二侧的径向间隔开的导电线圈的第二阵列。
Description
本申请是国际申请日为2007年6月8日、申请号为200780029454.X、名称为“多相多线圈发电机”的发明专利的分案申请。
技术领域
本发明涉及电力设备领域,具体地,涉及发电机领域,更具体地,涉及具有处于分级交错阵列(staged staggered arrays)中的多相多线圈的发电机。
背景技术
传统的电动机利用磁力产生转动或线性运动。电动机工作是基于这样的原理,即,当携带电流的导体位于磁场之中时,磁力施加在导体上,导致运动。传统的发电机通过磁场的运动来运行,从而在位于磁场内的导体中产生电流。由于传统的电动机与发电机之间的关系,传统的发电机技术主要集中于例如通过使电动机的运行逆转而改进电动机设计。
在电动机的传统设计中,通过磁场与导线的相互作用,向感应系统的线圈施加电流产生了力。该力使轴转动。传统的发电机设计是相反的。通过使轴转动,在导体线圈中产生电流。然而,电流将持续地对抗使轴转动的力。随着轴的速度增加这种阻力将继续增强,因此降低了发电机的效率。在导线缠绕在软铁芯(铁磁体)周围的发电机中,磁体可以由线圈吸引并且将在线圈导线中产生电流。然而,由于这样的物理事实导致这种系统将不能形成高效的发电机,所述物理事实即,将磁体拉离线圈的软铁芯所耗费的能量要比借助磁体的穿过而产生的电力形式的能量更多。
因此,需要一种发电机,其中可以显著地减少磁阻,以使得在将磁体拉离线圈时具有小的阻力。进一步,需要一种能使产生的磁阻对发电机的冲击最小化的发电机。在现有技术中,申请人知道1989年11月7日授权给Huss的名称为“Alternating CurrentGenerator and Method of Angularly Adj usting the Relative Positions ofRotors Thereof(有角度地调节其转子的相对位置的交流发电机及方法)”的美国专利第4,879,484号。Huss描述了一种致动器,该致动器用于关于一共用轴线相对于彼此有角度地调节一对转子,该发明被描述为解决发电机负荷变化时的电压控制的问题,其中描述了通过同相和异相(in and out of phase)改变两个转子来控制双永磁体发电机的输出电压。
申请人还知道1985年8月13日授权给Avery的名称为“ElectricD.C.Motors with a Plurality of Units,Each including a PermanentMagnet F ield Device and a Wound Armature for Producing Poles(具有多个单元的直流电动机,每个单元均包括永磁体场装置和产生磁极的缠绕电枢)”的美国专利第4,535,263号。在该专利文献中,Avery公开了一种具有间隔开的定子的电动机,这些定子包围一共用轴上的相应转子,其中沿圆周方向的、间隔开的永磁体被安装在这些转子上,且定子绕组相对于相邻的定子槽有角度地偏置,以使得在磁体通过定子槽时而发生的嵌齿(cogging)是异相位的(out ofphase),并因此基本上被抵消。
申请人还知道1984年10月16日授权给Lux的名称为“DiscRotor Permanent Magnet Generator(盘转子永磁体发电机)”的美国专利第4,477,745号。Lux公开了在转子上安装一个阵列的磁体,以使磁体在内定子线圈与外定子线圈之间通过。内定子和外定子各自具有多个线圈,以使得与标准的现有技术发电机(其仅仅具有一个外部的带有线圈的定子,该定子带有更少数的且间隔更大的磁体)相比较,对于转子的每次回转而言,更多的磁体经过更多的线圈。
申请人还知道1981年12月8日授权给Wharton的名称为“Rotary Electrical Machine(旋转的电动机械)”的美国专利第4,305,031号。Wharton的目的在于解决这样的技术问题,其中,使用永磁体转子的发电机在外部负荷和轴速变化的情况下会导致调节输出电压方面的困难,因此其描述了通过提供转子和围绕转子的定子绕组而对永磁体相对位置的伺服控制,所述转子具有多个第一周向上间隔的永磁体极片和多个第二周向上间隔的永磁体极片,其中伺服引起第一极片与第二极片之间的相对运动。
而且,尽管现有的发电机系统在将机械能转换成电能时相对高效,然而对于许多应用来说,这些现有的系统具有狭窄的“高效”操作范围,并且缺乏使有用性最大化所要求的单位功率密度(specific power density)。现有的系统具有仅一个“最佳运行点(sweet spot)”或一个高效的操作模式。因此,当原动机的能量源不断地改变时,这些技术在将机械能转换成电能时受到了挑战。
对于许多典型的系统而言,“最佳运行点”大约是1800rpm。在这个速度下,发电机能够高效地将动能转换成电,但是在这个优选范围之外的速度下,这些系统不能适用,因此或者是能量收集系统(即,涡轮)或者是信号处理电路必须进行补偿。用于补偿的方法有许多种,并且简单地可以是,将涡轮叶片转动离开风向(收叠或倾斜)以使转子减慢,或者当风速低于发电机优选的操作范围时传动机构进行补偿。所有这些方法都耗费能量,以努力使不断地改变的能量源与探寻可预测和恒定原动机的发电机匹配。
因此,这些传统的发电机由于有限的操作范围而不具有保持高性能系数的能力。已经作了极大的努力来扩展涡轮的能力,以通过能量的机械散失(即,浪费的输出)来应付过量的能量(当风能超出了临界值时)。相反地,在输入能量低于临界值的情形下,现有的发电机或者不能运行或者它们低效地运行(即,浪费的输入)。至今大部分的努力都集中在机械输入缓冲器(变速箱,gearbox)或电子输出缓冲器(控制器)上,但是,成本较高,无论是在开发费用和复杂性上、还是在低效且增加的操作费用方面都很高。
因此,需要一种可适用的具有多于单个的‘最佳运行点(sweetspot)’的发电机系统。这种系统能够匹配原动机和负荷,以便在能源改变或者负荷要求改变的环境中增加发电的效率。
申请人知道工业上试图创造具有多于一个“最佳运行点”的发电机。例如,WindMatic 系统(http://www.solardyne.com/win15swinfar.html)利用两个独立的发电机以试图捕获更宽范围的风速(wind speeds)。当这种双发电机设计证明确实可以拓宽操作范围时,对于给定重量的全部输出将比公开的多相多线圈的发电机(PPMCG)低。PPMCG实质上将许多台发电机(例如18台)组合在一个单元中,而不是要求两个独立的发电机以允许仅仅两个独立的最佳运行点。此外,对于WindMatic系统,这两个发电机系统是通过另外的传动装置和硬件装置而组合和控制的。因此,相对于PPMCG设计,采用两个独立发电机的设计将具有额外的结构/材料费用和额外的维修费用。
对于许多应用,发电机的重量输出比是最重要的。增加发电机的单位功率密度(Specific Power Density)已经日益成为了发电机设计者主要关注的中心。提出的发电机通过称为“封闭的磁通路径感应(Closed Flux Path Induction)”的独特设计特征来致力于解决这个问题。
由于相对于磁影响和感应线圈的独特内部几何形状,封闭的磁通路径感应(CFPI)技术有可能应用在多相多线圈的发电机(PPMCG)设计中。相对于传统的系统而言,采用封闭的磁通路径感应(CFPI)技术的结果是减少了磁通泄漏和具有更高效的感应过程。
众所周知,发电机系统中的磁场强度(磁通密度)确定了电输出强度。因此,优化的系统将确保在感应线圈磁极处具有最强的磁场密度,同时使杂散磁场(磁通泄漏)最小,该杂散磁场在各种发电机部件中产生不需要的电流,这种电流消耗热形式的能量并分散电流。这些问题针对所公开的发电机系统而被提出,由于这种发电机系统要在减少不需要的磁通泄漏的同时使需要之处的磁通密度最大。
封闭的磁通路径感应提供了用于磁力线通过的高磁导率的路径。封闭磁通路径的常见的例子是带有衔铁(keeper)的简单的马蹄形磁体。当所述衔铁从一个磁极移动至另一个磁极时,它用来封闭磁场的路径。
磁体具有穿透其紧邻周围区域的扩散磁场。离开一个极的磁力线必然返回到相对的极。由磁力线感生的有效磁场取决于它遵循的路径。如果必须通过低磁通率的介质(空气)来覆盖大的距离,则它将是相对较弱的磁场。如果磁力线能够穿过高磁通率的材料(铁磁性材料),则会产生更强的磁场并发生更少的泄漏。
例如,如果将小的钮扣磁体靠近曲别针时,则它能够容易地吸起曲别针,但是,如果它被保持在等于曲别针长度的距离处,则不会有什么效果,这是由于空气的磁导率是很低的。如果将曲别针放置在磁体与另一个曲别针之间,则两个曲别针都可以被吸起。第一曲别针作为使磁体在一段距离处有效地增大磁场强度的高磁导率的路径。
马蹄形磁体的强度从这种效果产生。当用马蹄形磁体吸起一段金属时,它通过采用高磁导率的材料将南极与北极相连接而完成磁路径。提供高磁导率路径的次要效果在于减少了磁通泄漏。
将磁通泄漏定义成不合乎要求的磁场。即,没有集中在期望目标(发电机的感应线圈)上的磁场。磁通泄漏对于发电机而言是个问题,因为它导致在需要磁场的地方(在感应线圈的两极处)的磁场较小,并且它产生了例如旋涡电流(其使系统效率降低)的有害效果。
传统的发电机试图利用高磁导率的材料作为壳体或端帽去解决上述技术问题,以使得可以更有效地利用已产生的大的磁场。遗憾的是,具有高磁导率的材料也是相当重的,并且显著地降低了发电机的功率与重量的比率。此外,这些系统还没有成功地实现完全地隔离和受控的感应过程,这与PPMCG的情况是一样的。
由于需要电流去激励电磁体以产生需要的磁场,因此许多传统的电磁感应发电机系统都采用激励系统。这通常通过将附于相同转子的另一个较小发电机用作主系统而实现,从而当转子转动时,在主系统的电磁体中产生电流。存在利用电储存系统以产生最初需要电荷的其他系统。这些系统不像永磁体系统那样有效,这是由于由发电机产生的一定量的输出功率需要反馈到它本身的电磁体之中以发挥作用,因而降低了效率。此外,PM系统提供比电磁系统更高的单位重量的磁场强度。遗憾地,随着发电机变得更大,永磁体更难与这些发电机共同工作,而且百万瓦特范围的较大系统几乎都是电磁感应系统。通过使用混合磁系统,PPMCG系统提供了PM机器和电磁激励“感应”发电机两者的优势。
混合磁体也可以用于PPMCG系统中,以进一步使磁场强度提高得超过仅使用永磁体的强度。混合磁体是一种带有埋置在其中的永磁体的电磁体,以这样的方式使磁场强度以及对磁场的控制能力最大化。
因为电压取决于穿过磁场的导体的长度,所以选择了每个相的总导体长度就选择了电压。采用独特的PPMCG设计,可以容易地将发电机改造成具有不同电压输出的各种系统。可以绕着壳体以这样的方式设置引线或其他电触点,即,允许使用者或制造者通过以相对于彼此处于选定角度方向的方式连接相邻层来选择电动机或发电机的工作电压。可以将方向选择为,诸如允许操作者确定所产生的电压(如果它作为发电机的话),或确定合适的输入电压(如果它作为电动机的话)。例如,同样的机器可以在120伏、240伏或480伏下运转。
传统的发电机系统采用后处理电力电子系统,该电力电子系统产生副标准功率信号,然后试图通过操控其他参数(例如修改涡轮叶片距,或者改变用于驱动转子的传动比)来将该“信号”固定。在信号产生之后试图固定该信号的这种后置处理的操作缺乏效率,并且经常导致需要异步功能,其中输出被转换成直流然后再被转换回交流以便与栅极同步。这是一种效率低的过程,这种情况下在转换过程中招致了实质性的损失。
因此,需要一种更实用的处理系统。PPMCG “预处理”电力电子装置PPMCG的关键元件。它具有显著的优点,即,它产生原始形式的期望输出信号而不是产生一个不适当的信号,然后试图采用传统的“后处理”电子装置来固定该信号。通过“预信号”处理电路监测PPMCG发电机级(stage),该处理电路通过增加和去除独立的发电机级来同时地允许该装置使输出电压和系统电阻与栅极要求协调一致。在分级系统提供过程控制的同时,电子系统提供了所需的精细控制,以确保满足栅极容限并且获得无间断的结合(seamless integration)。可以采用各种机构以确保在将级增加至系统或者从系统去除级时平稳的精细控制。一种这样的机构会是脉冲波调制器,该脉冲波调制器在维持期望的发电机运行的同时在这些级中以及在这些级外产生脉冲。
通过预信号处理电路监测来自系统的每个级的电流,该预信号处理电路根据即时可得的信息确定什么系统结构最有益。当涡轮(原动机)达到足够的动量时,预信号处理电路将接合第一级。根据能量源的可用性和目前已接合的级的当前操作条件,通过控制系统监测每个级并增加或移除辅助级。
对于电气工程师而言,另一个主要挑战在于怎样消除对传统变速箱的需求。许多现有的发电机在高速下运转很好并要求递升的变速箱(step-up gearboxes)。这种变速箱昂贵,容易遭受振动、噪音和疲劳,并且要求不间断地维护和润滑。这种变速箱的负面影响相当大。或许更显著地,变速箱允许发电机在低的风速下工作,但是当风速度低时,该系统能够提供最少作用,从而浪费宝贵的风能(wind energy)。
直接连接的(direct-coupled)变速箱的优势是明显的。许多传统系统具有高达总输出5%的变速箱损失。此外,变速箱表现为一种昂贵且需要高度维护的部件,其通常具有与发电机部件相当的重量。变速箱在发电机系统中是一个薄弱的环节,其增加了不需要的重量、成本,并且减少了系统的总体效率。
与传统的设计相反,PPMCG技术是很适合于“直接连接”的构造,该技术摒除了变速箱和妨碍性能的附带损失。PPMCG不是通过机械传动起作用,而是通过对转子施加阻力以维持适当的速度从而有效地充当它自身的变速箱而起作用。通过系统电子装置确定转子处所需的阻力,并且通过接合全部的发电机级中适当数量的发电机级来产生转子处所需的阻力。在本质上,转子速度是通过产生电力的过程中产生的阻力来控制的(达到预定的临界值),不像机械系统那样消耗有用的能量去控制转子转动。
PPMCG技术的多极定子场将允许慢速运行,以使该系统在没有传统变速箱(传统变速箱妨碍整个系统的性能)的情况下也能够有效地发挥作用。随着转子的每次转动,每个线圈就感应18次(假定每个定子有18个线圈)。因此,不管在定子上是有1个或100个线圈,每个线圈都将产生与相同定子上的所有其他线圈相同频率的电流。当每增加一个新的线圈之后,对于每个定子上的所有线圈就会产生一致的输出信号。由于三个定子阵列被适当地偏置(即,120度地偏置),则机械构造就确定了输出信号是同步的三相信号。
近年来,已经提出了许多替代的概念,即取消对变速箱的需求并将涡轮与发电机转子“直接连接”。对于这些系统的挑战在于发电机仍然要求恒定的且可预测的原动机以有效地发挥作用。由于用于控制发电机速度的补偿方法不够充分,因此这些直接连接的发电机的作用被折衷。可以通过改变流经转子线圈的电流来控制感应发电机的输出。感应发电机通过利用一部分输出功率激励转子线圈来产生电力。通过改变穿过转子线圈的电流可以控制发电机的输出。这样的控制方法称为“双反馈”,并且该控制方法允许感应发电机像异步可变速机器那样运转。尽管提供了优于恒速系统的一些益处,然而这种类型的发电机是昂贵的,并且在调节输出的过程中招致明显的损失。
现有的“可变速”发电机的主要限制在于附加的成本和复杂的电力电子装置。需要电力电子装置来调节输出以使它与栅极相容,并且确保发电机在它的最高效率状态下运转。这些可变速发电机通过将发电机的可变交流输出整流成直流输出,然后将它转换回栅极同步的交流来工作。这种方法要求使用大功率硅(昂贵的)并且在转换和倒转输出电流(即,交流转换成直流,直流倒转成交流)的过程中会招致损失。
PPMCG技术与输入源一起转变,在更宽的范围内获得更多能量,并且减少了对机械干扰的需求以及由其产生的能量消耗。当输入能量和负荷变化时,就增加或减小级,这种自适应单元减少了对复杂、昂贵的变速箱和电力控制装置的需求。
对于现有系统的另一挑战是故障控制系统。对于现有系统而言,系统的总输出必须始终由电力电子装置进行管理,并且当发生故障时,由于电力电子转换器的有限过载容量,因而故障电流是非常难对付的问题。对于传统的系统,当故障发生时,系统必须立即关闭,否则将可能对发电机造成明显损坏。
这里将故障限定为短路。当发生短路时,由于阻抗减少,同步发电机的输出电流明显增加。大的电流可以使装置损坏,因此应当从系统中除去有故障的部件以尽快降低电流,因而消除低阻抗电流路径。然而,大的电流也是发生短路的明显指示。因此,一方面,不期望产生故障电流,因为它会导致装置损坏,而另一方面,故障电流是区别故障和正常状态的重要标志。
PPMCG使用了独特的且有益的故障控制机构。当在PM发电机中发生内部故障时,故障绕组将不断地汲取能量直至发电机停止。对于高速发电机,这可能表示一个足够长的时期,从而导致对电气的和机械的部件的进一步损坏。它也可能意味着对在附近工作的人员的安全造成危害。另一方面,感应发电机在几毫秒内通过去激励(de-excitation)来安全关闭,从而防止有害情况的产生和对单元的潜在损害。在任一情况中,该系统都必须完全关闭直至它被修理,这在可能非常不适宜的时期(在最需要电力的时候)导致了不希望的停机时间。
采用PPMCG技术,将输出电流划分成更小的可处理的部分,这明显地降低了定子绕组中的故障的消极影响。由于单个的三线圈副系统(three-coil sub-system)或分级元件产生很少的电流,因而系统故障是局部的。尽管它们仍需要被处理,但是可以避免损害并减少了安全问题。提出的‘预处理’电路的优点之一是:具有可简单地避免利用来自故障线圈的电流的能力,同时允许剩余的线圈继续工作(事实上,如果在三相系统中存在故障,将需要关闭三个线圈)。
对于许多现存系统的另一个挑战在于它们不能产生原始信号,原始信号不需要有效地处理成正弦-波形以匹配栅极结合所需的输出频率。对于许多传统的系统,磁场芯极的“成形”完全不是一种可利用的选择,因此不得不调节功率,以使功率与期望的波形对准。
相反地,PPMCG系统将产生精确的正弦曲线正弦波作为直接来自场线圈的原始信号。可以通过独特的设计特征来处理系统产生的正弦波,该设计特征通过内部的几何形状允许由发电机产生的波形的成形。这是特别适当的,因为对于大多数传统系统来说都要求对正弦波进行较多的调节,以使它能够与栅极系统充分地同步。典型地,这些系统必须起着不太理想的“异步”机器的作用。
PPMCG的另一个独特和优越的因素在于电枢盘的大部分平衡级转动并起到飞轮的作用。这可以使转速中的突然和不期望的变化得到稳定,并且使系统的运行变得平稳。
除了对利用变化的能量源进行工作的可更新能量系统具有有利影响之外,已公开的发电机也将证明对于传统的不可更新系统提供重要的价值。例如,具有一种有效工作状态的许多传统系统利用更多燃料,这些燃料远多于满足消费者的电力需求所需的燃料。采用所公开的发电机系统,发电机将重新变换它本身的结构,以便成为具有适当的尺寸的发电机,从而仅仅满足消费者现有的需求,由于电力需求比传统系统的额定速度低,因此节省了燃料。
发明内容
根据本发明,提供了一种电力设备,包括:驱动轴;转子,能够随所述驱动轴转动,所述转子包括耦接至所述转子的第一侧的径向间隔开的磁体的第一阵列;定子,包括耦接至所述定子的第一侧的径向间隔开的导电线圈的第一阵列,所述驱动轴穿过所述定子,所述定子的所述第一侧邻近所述转子的所述第一侧,并且所述转子和所述定子设置于平行的平面中,其中,每个所述导电线圈与所述驱动轴间隔的距离不同于所述邻近转子上的所述磁体,并且每个所述导电线圈缠绕在芯周围,所述芯排列在从所述驱动轴径向向外延伸的径向轴线上,其中,所述转子和所述定子中之一包括与所述第一侧相对的第二侧,并且是双边的以包括以下之一:耦接至所述转子的第二侧的径向间隔开的磁体的第二阵列;耦接至所述定子的第二侧的径向间隔开的导电线圈的第二阵列。
进一步地,根据本发明的电力设备,其中,所述转子和所述定子两者都是双边的,所述转子包括耦接至所述转子的所述第二侧的径向间隔开的磁体的第二阵列;所述定子包括耦接至所述定子的所述第二侧的径向间隔开的导电线圈的第二阵列。
进一步地,根据本发明的电力设备,其中,径向间隔开的磁体的所述第二阵列沿驱动轴旋转方向从径向间隔开的磁体的所述第一阵列有角度地偏移一偏置角。
进一步地,根据本发明的电力设备,其中所述第一阵列的所述导电线圈安装成从所述定子的所述第一侧轴向突出,从而使得当所述第一转子阵列旋转经过所述第一定子阵列时所述第一转子阵列的所述磁体与所述第一定子阵列的所述线圈至少部分地共面。
进一步地,根据本发明的电力设备,其中,第一数量的所述导电线圈耦接至所述定子的第一侧,第二数量的所述磁体耦接至所述转子的第一侧,所述第一数量不等于所述第二数量。
进一步地,根据本发明的电力设备,其中,所述电力设备是多相多线圈发电机装置。
进一步地,根据本发明的电力设备,其中,所述电力设备是可变输入电动机。
本发明还提供了一种电力设备,包括:驱动轴;多个转子,所述转子具有第一侧和与第一侧相对的第二侧,所述转子能够随所述驱动轴转动,并且每个转子包括耦接至所述转子的所述第一侧的径向间隔开的磁体的第一阵列以及耦接至所述转子的所述第二侧的径向间隔开的磁体的第二阵列,磁体的所述第二阵列沿驱动轴旋转方向从磁体的所述第一阵列有角度地偏移一偏置角;以及多个定子,具有第一侧和与第一侧相对的第二侧,所述定子与所述转子之间相互交错,每个所述定子包括耦接至所述定子的所述第一侧的径向间隔开的导电线圈的第一阵列和耦接至所述定子的所述第二侧的径向间隔开的导电线圈的第二阵列,所述驱动轴穿过所述定子,并且所述转子和所述定子设置于平行的平面中。
进一步地,根据本发明的电力设备,其中,每个所述导电线圈与所述驱动轴间隔的距离不同于邻近转子上的所述磁体,且每个所述导电线圈缠绕在芯周围,所述芯排列在从所述驱动轴径向向外延伸的径向轴线上。
进一步地,根据本发明的电力设备,其中,所述第一和第二阵列的所述导电线圈安装成分别从所述定子的所述第一和第二侧轴向突出,从而使得当所述多个转子旋转经过与之交错的定子时所述第一和第二阵列的所述导电线圈与相邻转子上的所述阵列中的磁体至少部分地共面。
进一步地,根据本发明的电力设备,其中,所述电力设备是多相多线圈发电机装置。
进一步地,根据本发明的电力设备,其中,所述电力设备是可变输入电动机。
概括而言,本发明的多相多线圈的发电机包括:驱动轴;至少第一转子、第二转子和第三转子,这些转子刚性地安装在驱动轴上以便随着驱动轴的转动而同时同步地转动;以及至少一个定子,夹在第一转子与第二转子之间。该定子具有孔,驱动轴穿过该孔可转动地被支撑。该定子上的定子阵列具有径向间隔开的导电线圈阵列,所述导电线圈阵列关于驱动轴在第一角度方向上安装于定子。该定子阵列关于驱动轴径向间隔开,并且可以沿径向等间隔地分开(不旨在是限制性的)。转子和定子位于基本上平行的平面中。第一、第二和第三转子分别具有第一、第二和第三转子阵列。第一转子阵列具有第一径向间隔分开的磁体阵列,这些磁体相对于驱动轴在第一角度方向上绕着驱动轴径向分开。第二转子阵列具有相对于驱动轴在第二角度方向上的第二等间隔分开的磁体阵列。第三转子阵列具有相对于驱动轴在第三角度方向上的第三等间隔分开的磁体阵列。不旨在是限制性地,这些转子阵列可以沿径向等间隔分开。第一角度方向与第二角度方向偏置了一个角度偏置量,从而第一转子阵列与第二转子阵列相互偏置。可以将径向间隔分开的定子和转子阵列构造成不具有径向等间隔分开的对称性,且仍然可以发挥功用。
上述的角度偏置量是这样的,当驱动轴和这些转子沿转子的转动方向转动从而相对于定子转动时,第一转子阵列的磁体的磁性吸引力将第一转子阵列的磁体朝向定子阵列中的对应的下个紧邻的线圈(该线圈位于转子的转动方向上)吸引,以便基本上与之平衡并提供一个回拉力,该回拉力施加到第二转子阵列的磁体上以将第二转子阵列的磁体拉离定子阵列中的对应的刚经过的相邻线圈,此时第二转子阵列的磁体沿转子的转动方向被拉离刚经过的相邻线圈。相类似地,当驱动轴和转子沿转子的转动方向转动时,第二转子阵列的磁体的磁性吸引力将第二转子阵列的磁体朝向定子阵列中对应的下个紧邻的线圈(该线圈位于转子的转动方向上)吸引,以便基本上与之平衡并提供回拉力,该回拉力施加到第一转子阵列的磁体上以将第一转子阵列的磁体拉离定子阵列中的对应的刚经过的相邻线圈,此时第一转子阵列的磁体沿转子的转动方向被拉离刚经过的相邻线圈。第三转子进一步增强了上述效果。
在一个实施例中,另外的定子安装在驱动轴上,以使驱动轴穿过该另外的定子中的驱动轴孔可转动地被支承。另外的定子阵列安装在该另外的定子上。另外的定子阵列具有关于驱动轴的一个角度方向,该角度方向可以与第一定子的定子阵列的第一角度方向相同(不是限制性的)。第三转子安装在驱动轴上以便随第一和第二转子的转动同时同步地转动。第三转子阵列安装在第三转子上。第三转子阵列具有第三径向等间隔分开的磁体阵列,这些磁体在相对于驱动轴的第三角度方向上绕着驱动轴径向间隔开。第三角度方向有角度地偏置了例如第一转子阵列与第二转子阵列的角度偏置量,从而第三转子阵列相对于第二转子阵列偏置的角度偏置量同第一转子阵列与第二转子阵列之间的角度偏置量相同。另外的定子和第三转子位于基本上与第一定子以及第一和第二转子所处的基本上平行的平面相平行的平面中。有利地,第三转子阵列从第二转子阵列偏置的角度偏置量同第一转子阵列与第二转子阵列之间的角度偏置量相同,而第三转子阵列从第一转子阵列偏置的角度偏置量是第一转子阵列与第二转子阵列之间的角度偏置量的两倍,即它们的角度偏置量乘以2。因此,第一、第二和第三转子阵列关于驱动轴而相继成角度地交错。
相继成角度地交错的第一、第二和第三转子、第一定子和另外的定子可以被认为一起形成了第一发电机级。多个这样的级(即基本上与第一发电机级相同)可以安装在驱动轴上。取决于预期的应用,另外的多个级可以与第一级对准也可以不与第一级对准。
转子阵列中的磁体可以是多个磁体对,每对磁体可以有利地采用如下方式布置:该对中的一个磁体相对于驱动轴沿径向在内而该对中的另一个磁体相对于驱动轴沿径向在外。磁体的这种布置,并且根据对应定子上的对应线圈的相对位置,提供了径向磁通转子或轴向磁通转子。例如,每对磁体可以沿着一根共同的径向轴线(即,用于每对磁体的一根共同的轴线)排列,其中每个径向轴线从驱动轴径向向外延伸,并且定子阵列中的每个线圈可以排列成使每个线圈基本上对称地绕着对应的径向轴线而缠绕。因此,有利地,当每对磁体转动通过对应的线圈时,这对磁体的磁通量与对应的线圈正交地端-耦合(即,成90度地耦合)。在转子阵列上使用耦合的内部磁体和外部磁体大大增强了磁场密度,并且因此增加了每个线圈的功率输出。
在一个非限制性的实施例中,当第一转子阵列转动通过定子阵列时,第一转子阵列与对应的定子阵列至少部分共面,并且当第二转子转动通过定子阵列时,第二转子阵列与对应的定子阵列至少部分共面。当第三转子转动通过定子阵列时,第三转子阵列与对应的定子阵列至少部分共面。
转子可以包括转子板,其中转子阵列安装于转子板,并且其中转子板垂直地安装到驱动轴上。定子可以包括定子板,定子阵列安装于定子板,其中,定子板是与驱动轴垂直的。
转子可以通过安装装置安装在驱动轴上,该安装装置可以包括安装在第一转子和第二转子的每一个与驱动轴之间的离合器。在这样一种实施例中,驱动轴包括用于沿着驱动轴顺序地选择性接合每个离合器的装置,利用选择性移动装置来选择性地轴向平移驱动轴而实现上述选择性接合。这些离合器可以是离心式离合器,当选择性移动装置使驱动轴纵向平移进入第一位置以便首先与例如第一转子上的第一离合器(尽管不是必然的)匹配接合,接着依次进入第二位置以便与例如第二转子上的又一个第二离合器匹配接合(依此类推)以便例如在起动期间相继地对驱动轴增加负荷时,离心式离合器适于与驱动轴匹配接合。因此,在三转子级中,一些或所有转子可以在转子与驱动轴之间具有离合器。如上所述,这些级沿着驱动轴可以重复。
在一个可替换的实施例中,安装装置可以是一种安装在第三转子、第一转子和第二转子的每一个与驱动轴之间的刚性安装物。作为使用离合器的一种替换,可以选择地为连续的多个级中的转子阵列上的电绕组通电,即在选择性绕组的断开电路与闭合电路之间,其中,当电路断开时,转动驱动轴的转动阻力减少,而当电路闭合时,阻力增加。连续定子阵列的电路的闭合分级(即在连续的多个级中)实现了发电机的选择性逐渐加载。通过使用激励和去激励各个线圈的控制电子装置,可以使发电机的输出从0变化至标定功率。因此,发电机能够以固定的频率产生可变化的功率输出。控制电子装置也能够用于使发电机输出的电压变化。通过将线圈以串联或并联的方式连接,能够即刻改变电压。
已公开的发明具有许多其他的独特的和新颖的特征,并且相对于现有技术提供了许多期望的优点。其中一些包括封闭磁通路径磁性元件、混合磁性元件、预处理电子装置、机械的正弦波控制、和独特的故障控制系统。
当电性地增加另外的级时,由于增加的负荷以及由此产生的附加阻力的影响,增加的机械阻力将使转子的转动变慢。这种过程将控制电流,同时产生具有可用动能的其他能量,这些可用动能可能以其他方式被浪费。当输入源或者要求的能量较低时,可以只接合这些系统级中的一个或两个级。当传统系统由于原动机能量不足或由于过大尺寸的发电机系统产生的过大阻力而关闭时,这允许可变输入系统工作。不像传统系统那样,PPMCG输出能够被调整以适应不断改变的源能量或不断改变的能量消耗,例如,当能量需求在夜间较低的时候,PPMCG系统将仅仅脱开不需要的级。这对于液压系统(Hydro Systems)将特别有利,液压系统在适应变化的能量需求方面受到了挑战。
PPMCG系统随着对最佳输出的需求而改变级接合。现有的PPMCG设计将发电机划分成18个独立的3线圈(三相)级,这些独立的级被一起捆扎在单个发电机中。这三个线圈(每一个分别来自三定子系统中的三个定子的每一个)可以根据期望的应用以串联或并联的方式相互连接。PPMCG的独特分级内部结构和预处理电子装置将允许系统作为它自己的电子变速箱(例如具有18个级),其对感应过程提供了更大的控制,因此提供了更高质量的电力输出。作为电力电子装置的部分,PWM(脉冲波调节器)能够用来确保从一个分级结构至下一个分级结构的平稳过渡。
发电机区段通过“预信号”处理电路同时通过增加和除去独立的发电机级被监控,“预信号”处理电路允许该装置使输出电压和系统阻力与栅极要求相协调。
对于PPMCG,来自系统的每个级的电流由“预信号”处理电路监控,“预信号”处理电路根据方便可用的信息来确定最有益的系统结构。当涡轮机(原动机)达到足够动量时,预信号处理电路将接合第一级。根据能量源的可利用性和现有已接合级的当前操作状态,通过控制系统监控每个级以及增加或除去其他的级。由于捕获了风或其他瞬态能量源的更多势能,这种过程的结果是使整个能量输出更大。
PPMCG系统利用了完全封闭的磁场路径。已公开的发电机系统被划分成磁体对,这些磁体对布置成以下形状,即,类似于两个相对的马蹄,两个线圈芯位于中间以使电路完整,从而直接将磁通量导入隔离电磁体的任一端,其中该隔离电磁体的一端上具有北极磁场方向而另一端上具有南极磁场方向。由于感应过程更直接(其中允许磁通量自由地移动通过线圈芯并在完整的磁场路径中移动),因此这种凸极对凸极(salient-pole-to-salient-pole)的结构为增加电流创造了机会。这样布置的几何形状以如下方式隔离了感应过程,所述方式即,增大了感应线圈磁极处的磁场强度,同时很大程度地减少了不希望的磁通泄漏。
由于在低效率系统中可以使用更小的磁体来产生与大磁体同样的输出,因此感应线圈和磁体的这种结构将增大功率与重量的比率。将证明这种设计对于感应型发电机(所述感应型发电机增大需要之处的磁通密度并减少不期望的磁通泄漏)具有同等益处。
这种隔离的感应过程的另一个重要好处在于有更大的机会在发电机结构中采用各种有利的材料。对于传统系统,发电机的许多部件必须由特定的材料制造。这种情况的一个例子是,许多现有系统的壳体需要是导电金属的(即,接地)。对于PPMCG来说,可以使用更轻、更便宜的材料,在某些情况下,可能根本不需要有某种部件(如壳体),从而使发电机的总体重量和制造成本降低。
对于PPMCG,线圈绕着用于两个永磁体的背板而缠绕。当适当的电流通过所述线圈时,它充当磁场放大器。研究显示能够使磁场强度增加为这些独立磁场(永磁体和电磁体)的总和的两倍。由于磁场强度的增加增大了发电机线圈中产生的电流,因而这种技术显示了提高发电机和电动机的功率与输出的比率的令人鼓舞的良机。
线圈将必须绕着用于这些永磁体的背板缠绕,以产生通过电磁体增大的一个永磁体。这样一种设计可以提供更强大的PPMCG,还提供了对于PPMCG的输出的更大的控制,这是由于混合线圈将壳用来精细控制磁场进而控制PPMCG的输出。
PPMCG预处理算法微处理器将使用半导体切换系统来匹配源与负荷,从而接合或脱开用于三电枢/三定子系统的每个感应线圈的电路。半导体切换系统与栅极之间的合适的调节电子装置(即滤波器)将确保连续的(seamless)且无故障的栅极结合。
所述系统将监测有关的状态,例如负荷、原动机状态和已接合级的汇流状态,以精确地确定接合或脱开下一个发电机级的最佳时间。
对于PPMCG,电力电子装置将不会受到故障电流的显著影响,故障电流是指由于整个系统中独立线圈的隔离而导致的整个发电机的输出。将PPMCG系统中的输出电流划分成更小的可管理部分将明显地减少定子线圈中故障的负面影响。每个三线圈副系统或分级元件产生很少的电流,因此负面的系统故障影响将局部化并最小化。例如,如果在具有9个完整定子组件的三相系统中使用18个线圈定子,则发电机将具有18×3或54个独立的三相子级(162个线圈被划分成3相子级)。每个三相子级将由简单的半导体开关机构管理以隔离故障。可以将微处理器设计成在接合每个三线圈级之前评定每个三线圈级的状态,如果事实上该级发生故障,则该系统将自动地跳过这个级元件,以使发电机继续工作,然而传统系统将要求并立即修理。发电机区段的这种分割在控制该系统以及在减少有关于系统损坏和安全性问题方面提供了许多优点。
PPMCG设计提供的另一个的独特之处在于对由发电机产生的输出正弦波形状的控制。通过使场线圈磁极成形,可以以将期望波形形成为原始输出信号的方式操纵感应过程。当磁体从场线圈磁极的旁边通过时,通过线圈芯的磁场强度将同磁影响与感应线圈磁极之间的气隙相关。因此,通过控制磁极的成形,可以产生作为原始未处理输出的期望正弦式波形。这种设计的结果可以实现更高质量的原始输出信号并减少对昂贵的电力调节装置的需求。
附图说明
在不对本发明的全部范围构成限制的情况下,本发明的优选方式在如下的附图中示出:
图1a是多相多线圈发电机的一个实施例的局部切割立体图,其中显示了夹在相对面对的转子之间的单个定子;
图1是根据本发明的多相多线圈发电机的另一个实施例的主视立体图,其以举例的方式显示了九个转子和定子对,其中这九对分组而成为三个级,每个级中均具有三个转子和定子对,单个级内的每个接连转子上的径向间隔的磁体阵列是交错的,以便相对彼此有角度地偏移;
图2是图1所示的发电机的主视立体分解图;
图3是图2发电机的后视立体分解图;
图4是图1发电机的局部分解图,其显示了将转子和定子对分组成每级三个转子和定子对;
图4a是图1发电机的主视图,其中前转子板被移除,以便显示径向间隔开的磁体和线圈布置;
图5是壳体内的图1发电机的立体图;
图6是沿着图1的线6-6的剖视图;
图7是图1发电机的单个转子和定子对的主视立体分解图;
图8是图7的转子和定子对的后视立体分解图;
图9是单个转子和定子对的替换实施例的横截面图,其显示了在转子与驱动轴之间使用了离心式离合器;
图9a是穿过图9的转子和定子对的分解主视立体图截取的横解面图;
图10是本发明的一个替换实施例的局部切开的主视图,其显示了交替地径向间隔开布置的转子和定子阵列;
图11a是根据本发明的另一个替换实施例的侧视图,其中多个定子线圈平行于单个级上的驱动轴;
图11b是根据图11a的设计的两个级的侧视图;
图11c是又一个替换实施例的三个级的侧视图,其中多个定子线圈相对于驱动轴倾斜;
图12是图1发电机的替换实施例的主视图,其中前转子板被移除,以便显示线圈芯相对于磁体的非对称布置,这里可以仅用一个定子来实现三个或更多个相位;
图13是示出了由两个磁体和两个场线圈构成的单个级的一个实施例的主视图;
图14是图16发电机的单个转子的主视立体图;
图15是图16发电机的单个定子的主视立体图;
图16是在图1采用多个双边转子和定子的情况下,发电机的替换实施例的主视立体图的局部横截面图;以及
图17是也将充当电磁体的单个混合永磁体的一个实施例的主视立体图。
具体实施方式
以下的描述是示范性的并且不旨在对本发明的范围或它的应用构成限制。
在本发明中结合了许多重要的设计特征和改进。
本发明的装置是分级交错阵列中的多相多线圈发电机。
申请人于2004年8月12日提交的、申请号为60/600,723、题目为“Polyphasic Stationary Multi-Coil Generator(多相固定的多线圈发电机)”的美国临时专利申请整体结合于此作为参考。这里,这些文件与本发明说明书之间存在的任何不一致,例如术语的定义,均以本发明的说明书为准。
在图1a中,其中相同附图标记在每个视图中表示对应的部件,根据本发明的多相多线圈发电机的一个级10包括一对转子12和14,这对转子12和14位于平行平面中并且在它们之间夹有定子16,以使该定子插在与转子的平面平行且位于转子平面之间的平面中。转子12和14刚性地安装于驱动轴18,以便当原动机(图中未示)使驱动轴18例如在A方向上转动时,转子12和14围绕着转动轴线B以相同的速度同时地转动。设置多个支脚(foot)32以将定子16向下安装到底座或底部表面上。转子12和14均具有中心毂(central hub)19,磁体对22a和22b被安装在所述中心毂上并绕着驱动轴18以等间距径向间隔阵列延伸。尽管只示出了一对磁体(即仅示出了两个独立磁体),并且示出两个磁体之间具有衔铁(keeper)以提高磁通,然而可以使用任一端均具有用于诱发线圈的的极性的单个磁体,并具有基本上相同的效果。每对磁体均安装在对应的刚性臂24上,该刚性臂从毂19径向向外悬臂式地延伸。每对磁体22a和22b沿着其对应刚性臂24的长度间隔开,以便在这对磁体之间限定一个通道或路径26。
导电线圈28绕着高价铁(iron-ferrite)(或其他有利的可透磁的材料)芯30被缠绕。将芯30和线圈28安装成从定子16的两个侧面16a和16b突出。将线圈28的尺寸确定成使其在磁体22的末端22a和22b之间紧贴地通过(即通过通道26),以便将磁体的磁通量的端部与线圈端部进行端-耦合。在图1a所示的实施例中(再次强调它不是限制性的),8个线圈28和对应的芯30围绕着定子16等间距地径向间隔开安装,以使相等数量的线圈和芯从定子16的相对侧面延伸,它们排列成使得侧面16a上的每个线圈和芯部分在定子16的相对侧面上(即在侧面16b上)具有紧邻其后的对应的线圈和芯。可以理解,尽管这个实施例采用了8个线圈阵列,然而,可以采用具有对应磁体组件的任何数量的线圈。例如,在一个实施例中,这样的设计使用了16个线圈和两组电枢(即转子),每组电枢均带有12组磁体。这个实施例不旨在建议采用单个级。在同样的驱动轴上可以使用任何数目的级。
转子14是转子12的镜像。转子12和14以相对面对的关系安装在定子16的相对侧上。转子12和14围绕驱动轴18的角度方向在两个转子之间存在差别。这就是,转子14上的磁体22关于旋转轴线B相对于安装在转子12上的磁体有角度地偏移。例如,转子14上的每对磁体可以相对于转子12上的多对磁体的角度方向有角地偏移(例如)一个偏置角α(将在下面更好地限定),该偏置角为5度或10度或15度。因此,当转子12和14通过轴18的转动同时被驱动时,当转子12上的磁体22朝向定子的侧面16a上的下个相邻铁芯30部分被磁性地吸引时,则吸引力有助于推动转子14上的对应磁体经过定子16的侧面16b上的对应芯部或将上述对应磁体拖离上述的对应芯部。因此,一个转子上引入的磁体(相对于芯引入)的吸引力基本上与推动另一个转子上的对应磁体离开线圈/芯所需的力平衡。因此,仅仅依靠施加到驱动轴18上的转动力并不能使在两个转子中任一个上的任何一个磁体转动经过芯,从而使得相对于定子转动转子所需的力的量级减少了。因此,发电机的效率由于在定子的相对侧面上的磁体对的有角度的偏置而提高了,这起着平衡或有效地消除经过芯的磁体的吸引影响的作用。
可以将其他的级安装到驱动轴18上,例如,其他的相对面对的、其间插入有定子16的多对转子12和14。在这样一个实施例中,通过磁体的渐进的有角度偏置以使每个连续转子的磁体阵列相对于相邻转子上的磁体的角度方位有角地交错,可以使发电机获得更高的效率。因此,采用足够数量的多个级,可以相对无间断地(seamlessly)平衡磁力,以便在驱动轴18转动期间的任何点处,在转动方向上靠近于下一个相邻芯的磁体的吸引力与推动或吸引其他转子上的磁铁对离开芯的力相平衡,因此减少了转动驱动轴18所寓的力。
本发明的另一实施例如图1~9中所示,其中在每个视图中,相类似特征的附图标记表示了相应的部件。在图示的实施例中转子34的9个层(bank)各自具有磁体对36a和36b的等间隔径向隔开的阵列,其中这些阵列相对于相邻转子上的相邻阵列有角地放置或交错。因此,绕着转动轴线B径向间隔的磁体对36a和36b的等间距径向间隔开的阵列中的每个磁体对36a和36b在相邻的转子之间有角度地偏移相同的偏置角α,例如5度、10度或15度。因此,转子的接连层在每个连续转子之间以相同的有角度位移而累积地交错,以便使转子相对于定子38(具体地,相对于安装在定子38上的线圈40和芯42)实现更加无间断的磁性平衡的转动。
磁体36a和36b安装在托板44上。用于每个转子34的托板44刚性地安装在驱动轴18上。线圈40和它们相应的芯42安装到定子板48上。定子板48刚性地安装至外壳56,该外壳本身可以通过刚性支承装置(图中未示)向下安装到底座(base)或底板(floor)上。
在非限制性的一个替换实施例中,除原动机(图中未示)之外,还可以使用一个小的电动机54以接合其他的级或层,这些级或层具有另外的渐进地、有角度地移置或交错的磁体对的级或层,这些磁体对位于连续转子上的径向间隔开的阵列中。例如,电动机54可以选择性地驱动移动器杆,以便如下所述地连续接合每个转子上的离心式离合器机构。
可以提供外壳56以装入定子38和电枢或转子34。外壳56可以安装在支承架(图中未示)上,并且两者都可以由非磁性且非导电的材料制成,以消除涡电流。在本发明的一个实施例中(不旨在为限制性的),发电机的单个级58包括与三个转子34相互交错的三个定子38。发电机沿着驱动轴可以包括多个级58以通过抵销发电机内产生的任何阻力来减少磁阻力。
定子38可以包括由导电材料(如铜线)制成的多个感应线圈40。每个感应线圈40可以绕着如软铁芯42的高铁磁性芯缠绕。可替换地,感应线圈40可以是空心线圈(即,没有绕着任何芯缠绕),这种感应线圈应用于需要较小的输出电流的情况,或可用来施加至定子38的机械力较小的情况。在本发明图示的实施例中,定子是盘形的。图1a的实施例包括8个感应线圈28,这些感应线圈在由非磁性且非导电材料制造的板或盘上等距离地安装且等间距地径向互相隔开。在其余图的实施例中,定子38在每个定子盘或板48上包括16个感应线圈40。感应线圈40的数量可以根据发电机的应用改变,并且可以仅仅受定子板上可用的物理空间的限制。
可以将感应线圈40构造成使得第一组感应线圈40产生第一独立相位信号,而第二组感应线圈40产生具有相对波信号的第二独立相位信号。感应线圈40交替地定向,以使产生第一独立相位信号的感应线圈40位于产生第二独立相位信号的感应线圈40之间。在这种双相位设计中,两个独立的相位实际是可互换的,其中一个独立相位可以反相(invert)以将两个相位的电位电流(potentialcurrent)结合成具有同步波形的一个相位。优选地,第一组和第二组感应线圈40的每一组均具有沿第一方向绕着它们的芯42缠绕的相等数量的感应线圈40和沿相对的第二方向绕着它们的芯42缠绕的相等数量的感应线圈40,以调准两个相位的电流。例如在其中定子38包括16个(即两组各8个)感应线圈40(交替的多个相位)这样的实施例中,第一组8个感应线圈40的每个均将产生一个第一独立相位信号,而第二组8个感应线圈40均将产生一个第二独立的相位信号。
转子34可以具有由任何磁性材料(如钕磁体)形成的磁体36。转子34各自包括等间距地隔开的磁体对36a和36b的阵列,这些磁体对36a和36b安装在由非磁性材料且非导电材料制成的转子板上,从而阻止杂散的磁力线或涡电流。在每个定子上具有16个感应线圈40的实施例中,磁体的转子阵列(“转子阵列”)在每个转子34上包括8个‘U’形的相对面对的多对磁体36。当这些磁体的端部紧密地转动经过线圈的相对端部时,每个‘U’形磁体36的每个端部(径向外环上的所有16个端部和内环上的16个端部)各自与相应的16个线圈配对。
在图1所示的实施例中,级58中的连续转子34之间的转子阵列绕着驱动轴的转动轴线B有角度地偏置了一个偏置角α,例如15度。应理解,15度的偏置仅仅是一种优选的偏置,它可以是任何度数的偏置。如图4a中最佳地示出,偏置角α为连续转子34的磁体36a和36a′的径向轴线60与60′之间的角度。
当外部动力(如风或水或其他原动力)驱动转子绕着驱动轴转动时,磁体36由于磁体对芯42的吸引而朝向感应线圈40移动。由于将感应线圈设计成吸引来自磁体36的磁力线,因此在定子上的所有感应线圈中都产生交流脉冲。在图1a所示的实施例中,每个转子之间的磁体的相对的极性和转子阵列相对于彼此的有角度的偏置对准允许将磁体从一个芯处拉离并拉向下一个芯。例如,第一转子12上的这些磁体的北极、南极(N,S)结构被第二转子14上的磁体的相对南极、北极(S,N)结构吸引,其中第一转子阵列相对于第二转子阵列偏置了15度,从而第一转子上的磁体与第二转子上的磁体之间的磁性吸引力将磁体吸引离开芯。转子上的磁体之间的磁性力的平衡减少了驱动轴所需的用以将磁体吸引离开感应线圈的功(work),从而增加了发电机的效率。
由在转子之间具有交替磁性方向的磁体结构产生的转动磁场以及感应线圈的交替多相位结构产生了多个可互换(reciprocal)的交流相位信号。由于感应线圈是固定的,交流电力可以直接从感应线圈产生而不需要电刷(brushes)。可以通过现有技术的方法实现这些电流的调节和衰减。当磁体通过感应线圈时,它们引起了在方向上交变的电流。可以将磁体构造成例如与通过S,N磁极影响第二组感应线圈的磁体的数目相等数目的磁体通过N,S磁极影响第一组感应线圈。转子的配置在附图1a的单个级实施例中的两个相位的每个相位中均产生交变电流。磁性力的结构考虑到了发电机内的阻力的平衡。
在一个可替换的实施例中,如图1~9所示,在驱动轴上增加多个级具有显著的优点。通过增加多个级58可以进一步减少转动驱动轴所需的功。多个级的对准可以是偏置的,以使得增加的级通过实现比采用单个级的设计所能实现的力平衡更大的力平衡来进一步减少发电机中的阻力。线圈的定子阵列的排列(定子阵列)可以是偏置的,或可替换地,转子阵列的排列可以是偏置的,从而减少阻力。因此,增加附加级可以增加电输出而不会按比例地增加发电机内的阻力。尽管附加的感应线圈将增加磁性阻力,然而借助附加级的定子阵列和转子阵列的定向实现的更大的力平衡抵销了阻力增加,并进一步增加了发电机的总体效率。可以接合附加的级,以便通过任意数目的机构使附加的转子转动,所述机构诸如使用螺线管的电流驱动感应器,或如图7~9、9a所示的诸如离心力驱动的离合器机构的离合器,当后续级的转子达到了预定的速度时,可以用这种离合器来接合下一个级。图中显示了离合器的一个例子。离合器62安装在每个转子34的毂内。一旦该离合器被驱动轴18的花键部分18b上的花键(与臂毂66内的匹配花键接合)接合,则离合器臂64的转动驱动所述臂并使其抵靠着止动件68。这径向朝外驱动离合器滑块(clutch shoes)70,以便使滑块的外周顶着转子承载板毂44a的内表面而接合。例如电动机54的线性致动器在D方向上驱动位移器杆72,以便首先将花键部分18b与臂毂66内的花键接合。然后,一旦离合器接合并且转子达到几乎匹配驱动轴的转动速度的状态时,花键部分进一步位移以便接合转子毂74内的花键74a。通过使移动器杆进一步移动到后续离合器的花键及其相应转子毂内,则可以增加后续转子/定子对或后续级(如级58)。在这一过程的反过程中,通过撤回移动器杆来移除这些级。转子毂由定子毂38a内的滚针轴承76支承。在进一步的可替换实例中,可以使用线性电动机驱动机构或花键与弹簧机构。图10是又一个替换实施例,其中线圈在绕着驱动轴的同心圆中偏置,以实现磁力平衡。在图11a-11c所示的又一替换实施例中,线圈在绕着驱动轴的同心圆中端对端地排列。感应线圈40相对于驱动轴平行地安装,或如图11c所示的稍微倾斜地安装,以减少由于紧密的接近以及磁体的强度而引起的来自转子之间的磁通量的吸引。将感应线圈设置成平行于驱动轴的又一个优点在于,吸引磁体使其直接通过每个感应线圈的端部而不是从侧面吸引磁体可以更有效地在感应线圈中感生出电流。感应线圈的水平定向还可以允许发电机中感应线圈的数量加倍,从而产生更大的输出。在图11b的实施例中,两个定子阵列80和80’相对彼此具有角度偏置,这个角度偏置是期望的总角度偏置值(提供了最佳平衡的排列)的一半。然后下一个连续定子阵列可以具有与定子阵列80与80’之间的角度偏置一样的角度偏置。如在其他实施例中,对于任何数目的级,角度偏置可以适当地偏移。这个实施例显示了在使电枢/转子中的磁体阵列排列的同时线圈可以偏置,即,连续转子阵列之间没有角度偏置,并且依然实现了平衡的效果。
如上所述,当每加入一个级时,这多个级就减少了阻力。例如,在具有三个转子/定子对的级之内,与借助具有相反磁极的两个磁体被感应的单个感应线圈不同,这种实施例允许两个感应线圈在转子阵列的磁性感应之间有效地排列。除了增加感应线圈的数量之外,转子阵列的间隔更大,因此明显地减少了横穿转子之间空间的杂散磁通量的发生。
为了针对分级应用适当地定向附加的级,如上所述,转子阵列可以适当地有角度地偏置。可替换地,如图11c所示,感应线圈可以是成角度的,以使转子阵列并不完全相互平行地排列。由于感应线圈40和它们的相应芯42稍微成一角度,因此优选地,定子阵列80的两侧上的转子78上的磁体也是不对准的,这是因为来自磁体的磁性感应同时从两端感应每个感应线圈以获得最佳的功能。在本发明的一个实施例中,转子阵列的偏差(misalignment)将逐渐变小,当加入更多的级时这种偏差将变成可以忽略不计的。随着附加的级的增加,具有这些级的连续转子阵列之间存在的角度偏置变小。根据期望的功能,可以将任意数目的级增加到驱动轴上,且附加的级可以与发电机内的其他级对准或不对准。
可以通过每个级相对于前一个极的偏置角度来确定级的最佳数量。定子阵列中感应线圈的数量不需要根据转子阵列中的磁体的相应数量而确定。定子阵列可以包括任意数目的感应线圈,并且它们相对于定子的布置可以是对称的或可以是不对称的。
根据本发明的发电机有许多应用。例如,与具有风力涡轮机(风力涡轮机要求大量的能量以使驱动轴开始转动,并且当施加太多的风力时该风力涡轮机可能过载)的发电机不同,本发明的发电机可以重新构造以产生最大的电流,无论多大的风正在驱动该发电机。这可以通过以下方式实现:当风力增加时,接合更多数量的级(例如级58),而当风力减小时则减少级的接合以减少已接合的级的数量。而且,发电机的第一个级可以包括空心线圈,从而只要求非常小的风能以使驱动轴开始转动,后续的多个级可以包括具有铁芯的感应线圈,以便当存在更大风能时可产生更大的电流。进一步,附加的级可以增加尺寸和直径,以便当存在更大的风能时产生更大的物理阻力,但是同时,当输入能量高的时候也可以从系统产生更多的电输出。因此,当风能是最小的时候,发电机还可以让转子30转动,此时转子将仅仅接合一个级,即发电机的第一级。当风能增加时,发电机可以接合更多的级,因此提高输出电流。当风能继续增加时,可以接合或增加更多的级以允许从发电机引出最大的电流。当风能在强度上减少时,发电机可以脱开附加的分级,因此减少了机械阻力,从而允许风力涡轮机或其他风力驱动机构的叶片继续转动,而不管多少风力存在于下限之上。这样的发电机结构允许最大的能量收集。
这种可变负荷的发电机的应用是很广泛的,由于这种发电机不仅能够适应于可变化的能量源(如风),而且当源能量可以被控制时还可以适用于服务于特别的动力需要。一种例子是水动力发电机(这种发电机不是在晚上关闭且在白天需要再次预热以服务于更大的电力需求),这种水动力发电机可以简单地改变它的输出以适应于晚上的循环并因此在那段时间使用更少的源能量去工作。
在可替换的设计中,所有级中的所有转子都刚性地安装到驱动轴上,因此所有转子同时转动。代替离合器,至少在起初时使许多或大部分级上的绕组电路断开,以减少转动阻力,并仅仅使待接合的级上那些绕组是闭合的,即被激励。当更少数量的级被电接合时可使驱动轴上的阻力整体减少。由于附加的电路闭合并使更多的绕组加入到系统中,这就导致发电机的负荷增加,因此将增加驱动轴上的阻力。由于不需要离合器机构,因此在没有关于任何离合器机构的维修问题的情况下,发电机的制造和维护的成本可以更低廉。这种“电气”分级系统可以被应用于根据本发明的磁性平衡发电机设计或可应用于分级应用的其他传统设计。
还应注意到,带有离合器的机械式分级应用或通过接合和脱开线圈阵列电路的电气式分级应用可以应用于现有的发电机设计,将这些发电机适当地构造成短的、结实的区段以容纳上述的分级应用。
一种实施例会具有被设计成用来评定关于装置的有关信息(如负荷信息)的电路,以确定和使用多级发电机设备的最佳数量的级。上述装置可具有被设计用于评定相关原动机的信息的电路,以确定和使用发电机设备的最佳数量的级并;或具有一种被设计成用于评定相关原动机和负荷信息的信息,以确定和使用发电机的最佳数量的级;或具有这样一种电路,其中对每个级进行监控,并且当认为合适时,通过控制系统加入或移除附加的级,这里这些多个级的接合或脱开是由能量源和/或现有发电机级的当前操作状态或作为级的一部分的多个独立线圈的可用性来确定的。
发电机设备也可以具有包括连接到高速半导体切换系统的算法微处理器(algorithmic microprocessor)的装置,该高速半导体切换系统被设计成通过接合或断开电路来将能量源与负荷匹配。当发电机的多个级电连接入系统或从系统电性脱开时,为了在使发电机级平稳过渡方面提供精细的控制,该发电机可以利用脉冲波调节器或相类似的装置。上面所述的装置在半导体切换系统与栅极之间结合有合适的监测电子装置(如滤波器)以确保信号对于栅极组合是合适的。
发电机将具有这样一种系统,其中该系统的电子装置能够在级的接合完成之前通过该系统产生的故障电流来检查各个线圈或一系列线圈(代表单个级)的完整性,该系统进行检查以在每个级接合之前保证其完整性。该系统可以具有处理电路,其中当在一个线圈绕组中发生故障时,处理电路将这种故障作为隔离的故障处理。发电机通过各种故障监测装置进行检查,同时系统通过让它的电路断开并因此脱离收集的输出信号,从而隔离并避免所述故障的发生。
图12是图1发电机的可替换实施例的主视图,其前面的转子板被除去以便显示线圈芯相对于磁体的非对称布置,其中仅通过一个定子就可以获得三个或更多个相位。与具有对称间隔的磁体和场线圈的图4a不同,这个图显示了可以利用各种不同尺寸的线圈芯42,并且可以随着感应过程改变线圈绕组以实现不同的结果。在这个图中可以看到线圈绕组40比线圈绕组40a大。在某一情形下并针对选择的级,理想的是对轴的旋转产生更少的阻力(如在发电机起动期间)以减少阻力。同样地,图12显示了能够采用仅一个定子和电枢组件而实现完全三相系统,或实际上任何数量的相位。可以看到,相对于磁体和感应线圈具有三个不同的机械位置,并且在图中,它们彼此适当地偏置,因此它们将产生适合于大多数栅极系统的理想的三相输出。
在一个定子和电枢组件中,级可以代表单个的线圈或多个线圈,这由期望的输出确定。这些线圈可以并联或串联地连接,因此在输出信号中产生如期望数量的相位。采用单个盘的在径向间隔的阵列中等间距隔开的线圈,或,采用如图12中所示的其中多个级在空间中是非对称的装置可以完成分级。
通过使用非对称的阵列,可以从单个定子和电枢组件中产生多于一个的相位。可以采用如图12中所示的具有各种尺寸的凸极感应线圈的系统,以产生预期的系统性能。该发电机可以具有划分成多个独立感应线圈的三个定子阵列的结构,并且其中每个定子阵列以产生三相输出信号的方式机械地偏置。并且,来自三个定子阵列中每个的至少一个线圈可以串联或并联地连接在一起,以便产生多个小的独立感应级,每个感应级具有适合于栅极组合的完整的三相正弦波,并且其中,由于相对于磁性感应与感应线圈的关系导致这些多个级的每一个均具有相同的机械几何形状,因此这些多个级的每一个均产生与所有其他的级相同的输出特性。
如图12中所示,该发电机也可以具有这样的结构,即,使单个盘上的磁体和线圈以产生平衡的多相输出的方式偏置,并且其中定子可以具有多于一种尺寸的感应线圈,或感应线圈芯,在一个或更多级中使用这些感应线圈或感应线圈芯,从而增大对阻力和输出的控制。
图13是一个实施例的主视图,其示出了包括两个磁体和两个感应线圈的单个级。这个单独的感应元件或级具有许多独特的用途,最显著地是它提供了隔离的感应过程,这提高了磁通密度并减少有害的磁通泄漏。内部磁体36a和外部磁体36b将产生强且集中的磁场,该磁场将在从北磁极至南磁极穿过感应线圈40和它们的铁芯42的闭合通道中感生出,从而以这样的方式实现一个用于磁通的隔离通道。
另外,图13显示了定子与电枢之间的关系是如何“凸极对凸极”的。该设计的这个特征考虑到了对磁体端极或感应线圈铁芯端极的物理特性的控制。通过控制极性端部的形状,正弦-波将具有不同的形状。如果由于磁体的突然靠近感应线圈而使产生的波形具有尖锐的转角,则感应芯42的端部会被削去,这如图中以附图标记82所指的线示出。另外地,如果需要产生更渐进、更平滑的感应过程,并因此产生更圆润的正弦波,则可以利用由线82a所示的更弯曲形状的感应线圈芯42。
可以将发电机构造成当磁体从感应线圈的旁边经过时机械地控制感应过程从而控制所产生的输出信号,并且通过改变在这些磁极的特别区域处的磁性感应与感应线圈磁极之间的空气间隙来控制穿过线圈芯的磁场强度。这可如图13中所示的,其中控制磁体磁极与感应线圈磁极的关系,以产生期望的输出正弦波形,并且可以对磁体的磁极或感应线圈的磁极进行改进,或者是同时对两者进行改进,并且其中磁极的端部形状允许磁场更渐进、不那么突然的接近,因此使系统的操作更平稳,借此进一步减少了啮合转矩,并且如为了结合到大部分栅极系统中所期望的那样,产生更接近正弦式的波形。还允许调整外部和/或内部磁体,从而允许增加或减少空气间隙,进而允许对影响感应线圈的磁通密度以及感应过程的特性(特别是影响生成的正弦波的形状的那些特性)进行更大的控制。
图14至16显示了另外的替换设计实施例的部分,其专注于降低制造成本,这通过利用定子板38和电枢承载板44的两侧来将感应线圈和磁体保持在适当位置中来实现。可以看出除了发电机两端的任一端处的电枢组件之外,这个设计使用定子和电枢这两者的两侧来容纳磁体和感应线圈,因此减少了制造成本。同样地,这样的设计将有助于平衡电枢和定子板上的弯曲力,这通过利用板的另一侧上产生的力来抵销板的一侧上的力来实现。
该装置的多个底部支脚32将该系统固定到一基点上,并且可以制造成单独的板,该板同样将定子线圈固定地保持在适当位置中。图16显示了具有4个定子阵列的发电机截面,其除去了右上部四分之一的横截面。在这个设计中感应线圈芯42安装在定子板38上并且紧密地组装在电枢板44之间。来自每个线圈的导线将穿过定子板38中的孔并且可以容纳在该板外边缘上的一个通道之中。导线可以在控制器安装支架85处汇集在一起,该支架将引导导线进入电路箱。
图17显示了可以应用在发电机中的混合磁性装置。在这个设计中的磁体可以仅是位于每个磁极处的两个磁体,其中适当的铁磁材料充当两个磁体之间的外壳,因此允许两个磁体作为一个大的磁体。这个永磁体可以在中部装配有线圈,以便让磁体也作为一个电磁体而发挥作用。该电磁体可以利用也可以不利用绕线管84来将导线线圈83保持在适当位置中。用于这种混合磁体的可替换设计可以将仅仅一个磁体(而不是两个磁体)装入到壳体材料之中。这可以通过简单地将永磁体装入壳体材料的中部来完成,在这个图示的实例中,永磁体在导线线圈83的下面。这个混合磁体能够在同时用作电磁体时充当具有用于更大控制能力的永磁体。另外,这样的磁性布置在封闭的磁通路径环境下是特别有利的。研究显示,当应用在封闭路径布置中时,组合的磁体和电磁体的集合磁通密度超出了两个力简单地相加而产生的磁通密度。
另外的实施例是如图17所示的,磁性装置包括了两个较小的磁体,这两个磁体位于每一磁极处,其间具有铁磁性材料,其中这些磁体的极性是相反的;也就是,一个是向外的北极,另一个是向外的南极,并且在这两个磁体之间有合适的铁磁性材料作为壳体,因此允许这两个磁体有效地作为一个更大的磁体发挥作用。
上述的磁性装置在中部(两个磁极之间)装配有磁体导线线圈,以便当电流施加到该线圈时让磁体作为电磁体而发挥作用,并且其中电磁体可以利用也可以不利用绕线管84来将导线线圈83保持在适当位置中。
这种装置的替换设计是仅使用一个磁体(而不是两个),该单个磁体装在壳体材料之中或绕着壳体材料被包装,以便利用它的磁性感应来产生的更大的磁体,并且其中磁体导线线圈绕着中间部分缠绕,比如缠绕在铁磁性壳体材料的中间区域中的磁体的顶上,这就像图17中所示的磁体放置在导线线圈83之下的情形那样。
在另外的可替换实施例中,它是一种封闭的磁通路径感应,发电机具有处于封闭的环形结构中的两个磁体和两个场线圈,因此允许形成用于磁通量的闭合路径。存在这样一个封闭的磁通路径,其中磁体是呈马蹄形的,两个磁体的磁极是相互面对的,并且其中具有数个感应芯,当这些感应铁芯与磁体的磁极对准时,它们将产生用于通过两个磁体和两个线圈的磁通量的封闭环形磁通通道。具有这样一个电枢盘,该电枢盘具有许多沿径向的内部磁感应和外部磁感应,这些磁感应与定子的感应线圈一起在单个电枢和定子组件之内产生许多封闭的磁通路径感应级。该电枢具有非对称形式的内部磁性组件和外部磁性组件,从而允许从与单个定子阵列相互作用的单个电枢中产生多个相位,而且,仍可以获得期望的磁力平衡效果,这与使三个电枢或定子偏置以平衡磁力所实现的效果是一样的。在这个实施例中,发电机将具有内部磁体和外部磁体,这些内部磁体和外部磁体可以是也可以不是相似尺寸的,并且可以用铁磁性材料或电磁体,而不是利用永磁体来替换内部磁体或外部磁体。上述将电磁体用于内部磁体或外部磁体或用于两者的封闭磁通路径装置,也可以将混合的磁体用于内部磁体或外部磁体或用于两者。在本实施例中,可以使用永磁体、电磁体或铁磁性材料的任何组合来完成磁通路径。
在一个实施例中,发电机将充当它自己的变速箱,这里发电机本身既是发电机又是电子变速箱,同时它还提供了方便和集成的电制动系统。这种结构将具有控制转子转动速度的方法,从而以这样一种方式避免能量散失,其中发电机本身通过增加或减少系统中接合的独立线圈的数目而允许系统起着变速箱系统的作用,该变速箱系统控制涡轮的转动速度,不需要传统的去除技术(sheddingtechniques)。当附加的多个级被接合时,发电机可以通过感应过程来增加对转子转动的阻力,从而使转子速度减慢,以及通过将这些级从系统中电性去除的过程而除去对转子转动的阻力。由于多个定子磁极以及由多个发电机级的接合和脱开提供的阻力控制系统,本发明发电机也能允许与原动机转子的直接耦合(单嵌齿)连接。发电机也可包括独特的分级内部发电机,该发电机与预处理电子装置结合,从而允许发电机用作它自身的电子变速箱,因此提供了一种更高效的能量接收系统。
发电机可以使用飞轮效应,其中,在同一时间任一数量的感应线圈被使用而其他感应线圈(具有断开的电路)没有被使用,且转子包括绕着定子转动的一个或更多个电枢板,而不管在系统中多少级或线圈具有闭合的电路且因此被接合,电枢盘的多个平衡级转动并起着飞轮的作用,这将在转速发生突然和不期望的变化时稳定系统,因此使系统的工作平稳,所述的飞轮将储存动能并将提供用于调节涡轮机转速的机构,因而使源能量和负荷的突然变化平稳。
可以将发电机构造成能够选择各种线圈组合以产生各种输出电压,这里插头或其他电触点可以绕着壳体以如下方式布置,当装置作为电动机或发电机运行时(通过将选择的方位中的相邻终端层相互连接来实现),允许针对应用来选择各种不同的操作电压,线圈的触点可以选择为允许操作者确定将产生的电压(如果它作为发电机),或者确定适当的输入电压(如果它作为电动机)(例如,机器可以在120伏、240伏或480伏下运转或提供120伏,240伏或480伏的输出)。
发电机也可以具有并联-串联的线圈布置。在现有技术中,当使用永磁体时,输出电压直接与发电机的每分钟转速(rpm)成比例。因此,被设计在可变速度下工作的发电机必须克服似导致的变化的电压输出。发电机动态地控制线圈的布置,以便在低的速度(低的电压输出)下这些线圈串联,因此它们的电压被累加以获得目标电压。当速度增加时,这些线圈在两个串联组(series bank)中连接,而这些组并联。当速度再增加时,这些线圈连接成四个串联组,这些组并联,依此类推。直至在最大操作速度(来自每个线圈的最大电压输出)下,所有的线圈都并联连接。此时,一个单独的线圈将获得与串联的所有线圈的低速电压相等的电压。
例如:理论的期望输出为1000伏。理论上发电机具有10个线圈。根据发电机的每分钟转速,每个线圈在从100伏(100rpm)至1000伏(1000rpm)的范围内运转。当发电机在100rpm运转时,所有的线圈都串联连接以获得期望的1000伏的输出。随着发电机的每分钟转速的增加,电压将超过1000伏。在200rpm时,这些线圈划分成两个串联组(两者都产生1000伏),而这些组并联。(每个线圈产生200伏×5线圈=1000伏)。在500rpm时,这些线圈将会在2个并联组中连接(每个线圈产生500伏×2线圈=1000伏)。在1000rpm时,所有线圈将并联连接,由此每个线圈将会产生期望的输出电压。
在优选实施例中,发电机能够用作为高输出可变化输入的电动机,其被分成独立的电动机级。这种电动机结构包括多个级,其中一些级可以作为电动机,同时使其他的级脱开从而暂时停用。当用作为具有内建飞轮效应的电动机时,所有转子可以一直转动,而不管实际上有多少级是接合的并具有闭合电路,其中一些级可以用作发电机同时一些交替的级可以用作电动机,因此允许系统将它的状态从电动机迅速且方便地改变成发电机,对于某些应用,使一些级用作电动机的同时使其他一些级用作为发电机是可行的。
具有封闭的磁通路径感应处理装置的发电机的好处在于,在选择用于构造发电机系统的材料时,其具有更大的灵活性和选择余地。发电机可以具有许多隔离的感应过程,从而允许选择更多的用来制造发电机系统的材料,其允许使用更轻的非金属材料以用于壳体和其他部件,从而减少了系统的重量。
所述的独特的公开的发电机提供了多级电力发电机系统,将该发电机设计成随着输入能量和负荷的变化而电性地增加、或减少发电机级,从而使发电机阻力与源能量匹配。在一个实施例中,单个的级可以仅仅是一个线圈,或者对于三相输出而言为三个线圈;例如,每一个线圈来自三定子阵列布置中的每个阵列。对于所提出的发电机系统,其他的好处还有许多,包括减少了机械能量损失并消除了对传统信号处理电子装置的需求。
尽管已经参照某些优选的实施方式十分详细地描述了本发明,但是还有其他可能的实施方式。因此,附加的权利要求的要点和范围不应当受限于包含在本说明书中的优选实施方式的描述。
至于对本发明的使用和操作方式的进一步讨论,从上面的描述中这些方式应该是显而易见的。因此,不需要提供有关使用和操作方式的进一步讨论。
关于上述描述,应当认识到,本发明的部件的最佳尺寸关系(包括尺寸、材料、形状、构成、功能以及操作、组装和使用状态),对于本领域的技术人员是可以直接得到且显而易见的,图中所示和说明书中已经描述的那些关系的等同关系都旨在被本发明所包含。
因此,上述内容被认为仅仅是本发明的原理的说明。而且,由于许多改进和变化将容易被本领域的技术人员所考虑到,因此,不期望将本发明限制到如图所示和已描述的确切的结构上,因此,所有适当的改进和等同的结构都可以采用,并且都落入到本发明的保护范围之内。
Claims (12)
1.一种电力设备,包括:
马区动轴;
转子,能够随所述驱动轴转动,所述转子包括耦接至所述转子的第一侧的径向间隔开的磁体的第一阵列;
定子,包括耦接至所述定子的第一侧的径向间隔开的导电线圈的第一阵列,所述驱动轴穿过所述定子,所述定子的所述第一侧邻近所述转子的所述第一侧,并且所述转子和所述定子设置于平行的平面中,
其中,每个所述导电线圈与所述驱动轴间隔的距离不同于所述邻近转子上的所述磁体,并且每个所述导电线圈缠绕在芯周围,所述芯排列在从所述驱动轴径向向外延伸的径向轴线上,
其中,所述转子和所述定子中之一包括与所述第一侧相对的第二侧,并且是双边的以包括以下之一:耦接至所述转子的第二侧的径向间隔开的磁体的第二阵列;耦接至所述定子的第二侧的径向间隔开的导电线圈的第二阵列。
2.根据权利要求1所述的电力设备,其中,所述转子和所述定子两者都是双边的,所述转子包括耦接至所述转子的所述第二侧的径向间隔开的磁体的第二阵列;所述定子包括耦接至所述定子的所述第二侧的径向间隔开的导电线圈的第二阵列。
3.根据权利要求2所述的电力设备,其中,径向间隔开的磁体的所述第二阵列沿驱动轴旋转方向从径向间隔开的磁体的所述第一阵列有角度地偏移一偏置角。
4.根据权利要求3所述的电力设备,其中,所述第一阵列的所述导电线圈安装成从所述定子的所述第一侧轴向突出,从而使得当所述第一转子阵列旋转经过所述第一定子阵列时所述第一转子阵列的所述磁体与所述第一定子阵列的所述线圈至少部分地共面。
5.根据权利要求1所述的电力设备,其中,第一数量的所述导电线圈耦接至所述定子的第一侧,第二数量的所述磁体耦接至所述转子的第一侧,所述第一数量不等于所述第二数量。
6.根据权利要求1所述的电力设备,其中,所述电力设备是多相多线圈发电机装置。
7.根据权利要求1所述的电力设备,其中,所述电力设备是可变输入电动机。
8.一种电力设备,包括:
马区动轴;
多个转子,所述转子具有第一侧和与第一侧相对的第二侧,所述转子能够随所述驱动轴转动,并且每个转子包括耦接至所述转子的所述第一侧的径向间隔开的磁体的第一阵列以及耦接至所述转子的所述第二侧的径向间隔开的磁体的第二阵列,磁体的所述第二阵列沿驱动轴旋转方向从磁体的所述第一阵列有角度地偏移一偏置角;以及
多个定子,具有第一侧和与第一侧相对的第二侧,所述定子与所述转子之间相互交错,每个所述定子包括耦接至所述定子的所述第一侧的径向间隔开的导电线圈的第一阵列和耦接至所述定子的所述第二侧的径向间隔开的导电线圈的第二阵列,所述驱动轴穿过所述定子,并且所述转子和所述定子设置于平行的平面中。
9.根据权利要求8所述的电力设备,其中,每个所述导电线圈与所述驱动轴间隔的距离不同于邻近转子上的所述磁体,且每个所述导电线圈缠绕在芯周围,所述芯排列在从所述驱动轴径向向外延伸的径向轴线上。
10.根据权利要求8所述的电力设备,其中,所述第一和第二阵列的所述导电线圈安装成分别从所述定子的所述第一和第二侧轴向突出,从而使得当所述多个转子旋转经过与之交错的定子时所述第一和第二阵列的所述导电线圈与相邻转子上的所述阵列中的磁体至少部分地共面。
11.根据权利要求8所述的电力设备,其中,所述电力设备是多相多线圈发电机装置。
12.根据权利要求8所述的电力设备,其中,所述电力设备是可变输入电动机。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US80427906P | 2006-06-08 | 2006-06-08 | |
US60/804,279 | 2006-06-08 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200780029454XA Division CN101501963B (zh) | 2006-06-08 | 2007-06-08 | 多相多线圈发电机 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102647058A true CN102647058A (zh) | 2012-08-22 |
Family
ID=38801028
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200780029454XA Expired - Fee Related CN101501963B (zh) | 2006-06-08 | 2007-06-08 | 多相多线圈发电机 |
CN2012101139953A Pending CN102647058A (zh) | 2006-06-08 | 2007-06-08 | 电力设备 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200780029454XA Expired - Fee Related CN101501963B (zh) | 2006-06-08 | 2007-06-08 | 多相多线圈发电机 |
Country Status (10)
Country | Link |
---|---|
US (5) | US20080088200A1 (zh) |
EP (1) | EP2033299A4 (zh) |
JP (1) | JP2009540776A (zh) |
KR (1) | KR101484980B1 (zh) |
CN (2) | CN101501963B (zh) |
AU (1) | AU2007257187A1 (zh) |
BR (1) | BRPI0713121A2 (zh) |
CA (1) | CA2654462A1 (zh) |
EA (2) | EA201200033A1 (zh) |
WO (1) | WO2007140624A1 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109314482A (zh) * | 2016-04-13 | 2019-02-05 | 福尔肯电力有限责任公司 | 可变转矩马达/发电机/传动装置 |
CN110945764A (zh) * | 2017-06-21 | 2020-03-31 | 英泰利泰克私人有限公司 | 改进的磁性离合器组件 |
US11296638B2 (en) | 2014-08-01 | 2022-04-05 | Falcon Power, LLC | Variable torque motor/generator/transmission |
CN114556753A (zh) * | 2019-08-09 | 2022-05-27 | 维也纳科技大学 | 耦合的电机系统 |
US11362611B2 (en) | 2014-08-01 | 2022-06-14 | Falcon Power, LLC | Variable torque motor/generator/transmission |
Families Citing this family (155)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5990968A (ja) * | 1982-11-17 | 1984-05-25 | Fuji Electric Co Ltd | 発受光一体化素子 |
US7081696B2 (en) | 2004-08-12 | 2006-07-25 | Exro Technologies Inc. | Polyphasic multi-coil generator |
WO2007092621A2 (en) * | 2006-02-09 | 2007-08-16 | Windera Power Systems, Inc. | Turbine with constant voltage and frequency output |
JP2009540776A (ja) * | 2006-06-08 | 2009-11-19 | エクスロ テクノロジーズ インコーポレイテッド | 多相複数コイル発電機 |
US7719147B2 (en) | 2006-07-26 | 2010-05-18 | Millennial Research Corporation | Electric motor |
US8803354B2 (en) * | 2006-12-20 | 2014-08-12 | Unimodal Systems Llc | Modular electric generator for variable speed turbines |
WO2008134796A1 (en) | 2007-05-03 | 2008-11-13 | In Motion Technologies Pty Ltd | Rotor magnet positioning device |
EA017646B1 (ru) | 2007-07-09 | 2013-02-28 | Клеаруотер Холдингс, Лтд. | Электромагнитное устройство модульной конструкции с изолированными съёмными обмотками и самоудерживающимися инерционными магнитными подшипниками |
JP5092784B2 (ja) * | 2007-09-11 | 2012-12-05 | ダイキン工業株式会社 | アキシャルギャップ型回転電機 |
DE102007048642A1 (de) * | 2007-10-10 | 2009-04-16 | Mtu Aero Engines Gmbh | Elektrischer Antrieb, insbesondere für eine Kraftstoffzumesseinheit für ein Flugzeugtriebwerk |
NL2001190C1 (nl) * | 2008-01-16 | 2009-07-20 | Lagerwey Wind B V | Generator voor een direct aangedreven windturbine. |
EP2081276A1 (en) * | 2008-01-21 | 2009-07-22 | Marco Cipriani | Electro-magnetical device with reversible generator-motor operation |
KR100943701B1 (ko) * | 2008-02-05 | 2010-02-25 | 성삼경 | 전기모터 |
NL1035278C2 (nl) * | 2008-04-10 | 2009-10-13 | Friend Investements Sorl | Inrichting voor het genereren van vermogen. |
WO2009137623A2 (en) * | 2008-05-06 | 2009-11-12 | Millenial Research Corporation | Apparatus and system for efficiently controlling a hub motor |
US8142318B2 (en) | 2008-08-13 | 2012-03-27 | Palmer Denis L | Apparatus, system, and method for a variable ratio transmission |
US10038349B2 (en) | 2008-08-15 | 2018-07-31 | Millennial Research Corporation | Multi-phase modular coil element for electric motor and generator |
PL2327137T3 (pl) | 2008-08-15 | 2020-06-15 | Millennial Research Corporation | Silnik regeneracyjny i cewka |
EP2329581A4 (en) * | 2008-09-03 | 2013-12-04 | Exro Technologies Inc | POWER CONVERSION SYSTEM FOR A MULTI-STAGE GENERATOR |
WO2010036221A1 (en) | 2008-09-26 | 2010-04-01 | Clearwater Holdings, Ltd. | Permanent magnet operating machine |
CN103997137B (zh) | 2009-01-16 | 2017-04-12 | 巨石风力股份有限公司 | 用于轴向场装置的扇块式定子 |
KR101065613B1 (ko) * | 2009-04-13 | 2011-09-20 | 한국전기연구원 | 선형 및 회전형 전기기기 구조 |
US20100283347A1 (en) * | 2009-05-07 | 2010-11-11 | Clynton Caines | Novel ganged alternating current generator |
CN101572463A (zh) * | 2009-05-21 | 2009-11-04 | 苏州博尊科技有限公司 | 一种组合动力电动机 |
US8487470B2 (en) * | 2009-05-22 | 2013-07-16 | Derek Grassman | Vertical axis wind turbine and generator therefore |
US20120229060A1 (en) | 2009-09-03 | 2012-09-13 | Exro Technologies Inc. | Variable coil configuration system, apparatus and method |
WO2011031686A1 (en) * | 2009-09-08 | 2011-03-17 | Green Ray Technologies Llc | Electric machines including stator modules |
US8198743B2 (en) * | 2009-09-11 | 2012-06-12 | Honeywell International, Inc. | Multi-stage controlled frequency generator for direct-drive wind power |
KR101092334B1 (ko) * | 2009-09-21 | 2011-12-15 | 우경식 | 영구자석 바이패스 디스크 모터. |
EP2499017A2 (en) * | 2009-11-13 | 2012-09-19 | Dresser, Inc. | Recharging electric vehicles |
NO331113B1 (no) * | 2010-03-23 | 2011-10-10 | Norwegian Ocean Power As | Variabel elektrisk generator |
US9154024B2 (en) | 2010-06-02 | 2015-10-06 | Boulder Wind Power, Inc. | Systems and methods for improved direct drive generators |
KR101732636B1 (ko) * | 2010-08-23 | 2017-05-24 | 주식회사 코베리 | 선형 전동기 |
US8803353B2 (en) * | 2010-11-24 | 2014-08-12 | Joseph Sajan Jacob | Turbine-generator driven by compressed air and magnet motor |
WO2012074482A1 (en) * | 2010-11-29 | 2012-06-07 | Agency For Science, Technology And Research | Cylindrical electromagnetic actuator |
JP5460566B2 (ja) * | 2010-12-13 | 2014-04-02 | 株式会社日立製作所 | アキシャルギャップ型回転電機 |
JP5635921B2 (ja) * | 2011-01-26 | 2014-12-03 | 株式会社日立産機システム | モータユニットおよびこれを用いた回転電機、回転電機装置 |
FR2979614B1 (fr) * | 2011-09-04 | 2013-09-20 | Eric Chantriaux | Transmission electromagnetique de puissance pour aeronef a voilure tournante ou fixe. |
CN202395533U (zh) * | 2011-06-16 | 2012-08-22 | 尤里·拉波波特 | 发电机 |
CN202395532U (zh) * | 2011-06-16 | 2012-08-22 | 尤里·拉波波特 | 一种电动机 |
KR101803102B1 (ko) * | 2011-07-05 | 2017-11-29 | 김두리 | 자가발전장치 결합체 및 이를 이용한 발전시스템 |
US20130020192A1 (en) * | 2011-07-18 | 2013-01-24 | Larry Carpenter | Wind Turbine Fuel Generation System |
US20130049512A1 (en) * | 2011-08-26 | 2013-02-28 | Undustry-Academic Cooperation Foundation Of Kyungnam University | Axial flux permanent magnet synchronous generator and motor |
KR101230054B1 (ko) * | 2011-08-26 | 2013-02-05 | 경남대학교 산학협력단 | 슬롯이 있는 소형 풍력발전기용 종축자속형 영구자석 동기발전기 |
WO2013052516A1 (en) * | 2011-10-03 | 2013-04-11 | University Of North Carolina At Charlotte | Flux focusing magnetic gear assembly using ferrite magnets or the like |
JP2013106392A (ja) * | 2011-11-11 | 2013-05-30 | Taketsune Nakamura | 発電機 |
US8917004B2 (en) * | 2011-12-07 | 2014-12-23 | Rotonix Hong Kong Limited | Homopolar motor-generator |
AU2012213927B2 (en) * | 2011-11-22 | 2014-11-27 | Beijing Xiangtian Huachuang Aerodynamic Force Technology Research Institute Company Limited | Air-powered generator system with electromagnetic auxiliary power unit |
US9339691B2 (en) | 2012-01-05 | 2016-05-17 | Icon Health & Fitness, Inc. | System and method for controlling an exercise device |
TW201330458A (zh) * | 2012-01-10 | 2013-07-16 | Hui-Lin Chen | 盤式磁能發電機 |
US8865356B2 (en) * | 2012-01-11 | 2014-10-21 | Fuelcell Energy, Inc. | Electrical generation system and method for a hybrid fuel cell power plant |
US11146123B2 (en) * | 2012-02-03 | 2021-10-12 | Green Ray Technologies, Llc | Electric machines with energizable and non-energizerable U-shaped stator segments |
KR101175609B1 (ko) * | 2012-02-24 | 2012-08-21 | 윤재만 | 정전기장 또는 정자기장에 포함된 에너지를 추출하는 정전자기장 에너지 추출장치 |
CN102624172B (zh) * | 2012-03-09 | 2015-04-15 | 东南大学 | 一种飞轮脉冲永磁电机及工作方法 |
US10263480B2 (en) | 2012-03-20 | 2019-04-16 | Linear Labs, LLC | Brushless electric motor/generator |
US10284029B2 (en) | 2012-03-20 | 2019-05-07 | Linear Labs, LLC | Brushed electric motor/generator |
WO2013142629A2 (en) | 2012-03-20 | 2013-09-26 | Linear Labs, Inc. | An improved dc electric motor/generator with enhanced permanent magnet flux densities |
US9729016B1 (en) | 2012-03-20 | 2017-08-08 | Linear Labs, Inc. | Multi-tunnel electric motor/generator |
CN102624177A (zh) * | 2012-04-09 | 2012-08-01 | 李文圣 | 多层盘式飞轮储能器 |
US9461508B2 (en) | 2012-05-30 | 2016-10-04 | Prototus, Ltd. | Electromagnetic generator transformer |
CN108768120A (zh) * | 2012-05-30 | 2018-11-06 | 普罗图特斯有限公司 | 电磁发电机变换器 |
US8339019B1 (en) | 2012-07-30 | 2012-12-25 | Boulder Wind Power, Inc. | Structure for an electromagnetic machine having compression and tension members |
ITMI20121982A1 (it) * | 2012-11-21 | 2014-05-22 | Maurizio Cassano | Dispositivo per la generazione di energia elettrica a rotori combinati con statori |
US10505412B2 (en) | 2013-01-24 | 2019-12-10 | Clearwater Holdings, Ltd. | Flux machine |
WO2014153158A1 (en) | 2013-03-14 | 2014-09-25 | Icon Health & Fitness, Inc. | Strength training apparatus with flywheel and related methods |
US8736133B1 (en) | 2013-03-14 | 2014-05-27 | Boulder Wind Power, Inc. | Methods and apparatus for overlapping windings |
US9366313B2 (en) | 2013-03-15 | 2016-06-14 | General Electric Company | Torsional resonance frequency adjustor |
US9551398B2 (en) * | 2013-03-15 | 2017-01-24 | General Electric Company | Torsional mode shifting |
JP6116298B2 (ja) * | 2013-03-15 | 2017-04-19 | 本田技研工業株式会社 | 回転電機ユニットの配置構造 |
US10181768B2 (en) * | 2013-05-16 | 2019-01-15 | Honeywell International Inc. | Energy harvester and rotating shaft vibration sensor |
US10541593B2 (en) * | 2013-11-20 | 2020-01-21 | Shanshan Dai | AC permanent-magnet switched reluctance motor |
US9403047B2 (en) | 2013-12-26 | 2016-08-02 | Icon Health & Fitness, Inc. | Magnetic resistance mechanism in a cable machine |
TW201532370A (zh) * | 2014-02-14 | 2015-08-16 | Wang Wen Liang | 複合式雙線定子及其繞線方法 |
US9738150B2 (en) * | 2014-02-18 | 2017-08-22 | Richard Chi-Hsueh | Energy efficient vehicle and disc-type dynamic motor thereof |
CN104868668A (zh) * | 2014-02-21 | 2015-08-26 | 郭洁敏 | 电机装置 |
US9641059B2 (en) * | 2014-02-21 | 2017-05-02 | The University Of North Carolina At Charlotte | Flux focusing magnetic gear assembly using ferrite magnets or the like |
GB2525582B (en) * | 2014-02-26 | 2018-06-27 | Yasa Ltd | Asymmetric machines |
US10433612B2 (en) | 2014-03-10 | 2019-10-08 | Icon Health & Fitness, Inc. | Pressure sensor to quantify work |
US10797573B2 (en) * | 2014-04-16 | 2020-10-06 | Power It Perfect, Inc. | Axial motor/generator having multiple inline stators and rotors with stacked/layered permanent magnets, coils, and a controller |
US10298104B2 (en) * | 2014-04-16 | 2019-05-21 | Power It Perfect, Inc. | Electrical motor and electrical generator device |
US10177620B2 (en) | 2014-05-05 | 2019-01-08 | Boulder Wind Power, Inc. | Methods and apparatus for segmenting a machine |
US10426989B2 (en) | 2014-06-09 | 2019-10-01 | Icon Health & Fitness, Inc. | Cable system incorporated into a treadmill |
WO2015195965A1 (en) | 2014-06-20 | 2015-12-23 | Icon Health & Fitness, Inc. | Post workout massage device |
CA3186823A1 (en) | 2014-07-23 | 2016-01-28 | Clearwater Holdings, Ltd | Flux machine |
NL2013403B1 (nl) * | 2014-09-02 | 2016-09-26 | Elsio Cicilia Beremundo | Synchrone rotatiemotor of generator voorzien van verscheidene rotors en/of stators. |
JP2016077064A (ja) * | 2014-10-03 | 2016-05-12 | 株式会社デンソー | 回転電機 |
CN107078601A (zh) * | 2014-11-07 | 2017-08-18 | 纳斯佩谢丝全球机械公司 | 产生电力的自供电的替代能量机器 |
EP3062436A1 (en) * | 2015-02-24 | 2016-08-31 | Siemens Aktiengesellschaft | Method of responding to a winding fault |
US10391361B2 (en) | 2015-02-27 | 2019-08-27 | Icon Health & Fitness, Inc. | Simulating real-world terrain on an exercise device |
US10940360B2 (en) | 2015-08-26 | 2021-03-09 | Icon Health & Fitness, Inc. | Strength exercise mechanisms |
TWI644702B (zh) | 2015-08-26 | 2018-12-21 | 美商愛康運動與健康公司 | 力量運動機械裝置 |
FR3042660B1 (fr) * | 2015-10-16 | 2018-04-06 | Airbus Helicopters | Actionneur electromecanique pour commandes de vol electriques d'un aeronef |
NO341230B1 (en) * | 2015-11-06 | 2017-09-18 | Ateltech As | Scalable electric motor disc stack with multipole stator |
US10707712B2 (en) * | 2015-11-27 | 2020-07-07 | Mitsubishi Electric Corporation | Rotating electric machine |
US20180320482A1 (en) * | 2015-12-04 | 2018-11-08 | Halliburton Energy Services, Inc. | Magnetic Coupling for Downhole Applications |
US10574123B2 (en) * | 2015-12-17 | 2020-02-25 | Hamilton Sundstrand Corporation | Concentric dual rotor electric machine |
US10493349B2 (en) | 2016-03-18 | 2019-12-03 | Icon Health & Fitness, Inc. | Display on exercise device |
US10625137B2 (en) | 2016-03-18 | 2020-04-21 | Icon Health & Fitness, Inc. | Coordinated displays in an exercise device |
US10293211B2 (en) | 2016-03-18 | 2019-05-21 | Icon Health & Fitness, Inc. | Coordinated weight selection |
US10272317B2 (en) | 2016-03-18 | 2019-04-30 | Icon Health & Fitness, Inc. | Lighted pace feature in a treadmill |
US10441840B2 (en) | 2016-03-18 | 2019-10-15 | Icon Health & Fitness, Inc. | Collapsible strength exercise machine |
GB201605038D0 (en) * | 2016-03-24 | 2016-05-11 | Rolls Royce Plc | Axial flux permanent magnet machine |
CN107710567B (zh) * | 2016-05-04 | 2019-12-27 | 余仁伟 | 一种叠片式无铁芯发电机及其制作方法 |
US10252109B2 (en) | 2016-05-13 | 2019-04-09 | Icon Health & Fitness, Inc. | Weight platform treadmill |
US10547218B2 (en) * | 2016-07-20 | 2020-01-28 | Quantakinetic Technologies, Llc | Variable magnetic monopole field electro-magnet and inductor |
US10671705B2 (en) | 2016-09-28 | 2020-06-02 | Icon Health & Fitness, Inc. | Customizing recipe recommendations |
US10608509B2 (en) * | 2016-10-17 | 2020-03-31 | Roul Delroy MARTIN | Rotatable electric machines |
US10661114B2 (en) | 2016-11-01 | 2020-05-26 | Icon Health & Fitness, Inc. | Body weight lift mechanism on treadmill |
CN106787591B (zh) * | 2016-12-28 | 2019-02-12 | 浙江工业大学 | 一种摆动式振动能量收集装置 |
US10586639B2 (en) | 2017-01-04 | 2020-03-10 | Wisk Aero Llc | Array of three pole magnets |
US11289962B2 (en) * | 2017-01-04 | 2022-03-29 | Wisk Aero Llc | Method of rotor production including co-curing and magnetization in place |
US11177726B2 (en) | 2017-01-11 | 2021-11-16 | Infinitum Electric, Inc. | System and apparatus for axial field rotary energy device |
US10135310B2 (en) | 2017-01-11 | 2018-11-20 | Infinitum Electric Inc. | System and apparatus for modular axial field rotary energy device |
US10186922B2 (en) | 2017-01-11 | 2019-01-22 | Infinitum Electric Inc. | System and apparatus for axial field rotary energy device |
CN107070145A (zh) * | 2017-04-13 | 2017-08-18 | 王坤义 | 超导无轴多极悬浮磁发电机 |
KR101753689B1 (ko) | 2017-04-14 | 2017-07-05 | 박제우 | 독립형 마그네틱 발전기 |
CN106953465B (zh) * | 2017-04-28 | 2024-05-14 | 杭州金潮酒业有限公司 | 轮毂型磁阻开关发电机 |
US11081996B2 (en) | 2017-05-23 | 2021-08-03 | Dpm Technologies Inc. | Variable coil configuration system control, apparatus and method |
US11626770B2 (en) * | 2017-09-01 | 2023-04-11 | Joshua Robert Miner | Systems and methods for providing enhanced mechanical/electrical energy storage |
JP7052017B2 (ja) | 2017-09-08 | 2022-04-11 | クリアウォーター ホールディングス,リミテッド | 蓄電を改善するシステム及び方法 |
CN116436188A (zh) | 2017-10-29 | 2023-07-14 | 清水控股有限公司 | 模块化电磁机器及其使用和制造方法 |
FR3076674B1 (fr) * | 2018-01-09 | 2022-03-04 | Whylot Sas | Moteur ou generatrice electromagnetique a deux rotors et quatre stators et systeme de refroidissement integre |
WO2019190959A1 (en) | 2018-03-26 | 2019-10-03 | Infinitum Electric Inc. | System and apparatus for axial field rotary energy device |
CN108760295B (zh) * | 2018-06-22 | 2020-04-28 | 华晨鑫源重庆汽车有限公司 | 基于nvh性能的识别离合器匹配不佳导致变速器振动的方法 |
US11280171B2 (en) | 2018-08-27 | 2022-03-22 | Halliburton Energy Services, Inc. | Axial-field multi-armature alternator system for downhole drilling |
US11855573B2 (en) | 2018-10-07 | 2023-12-26 | Woods Hole Oceanographic Institution | Large dynamic range electric motor |
US10955000B2 (en) * | 2018-11-09 | 2021-03-23 | Bernabe Segura Candelaria | Bearingless hub assembly with electromagnetic drive system and associated methods |
EP3909114B1 (en) | 2019-01-10 | 2024-09-18 | Vestas Wind Systems A/S | A generator rotor assembly |
US10938274B2 (en) * | 2019-01-31 | 2021-03-02 | Robert David Sauchyn | Devices and methods for fluid mass power generation systems |
RU2711238C1 (ru) * | 2019-03-21 | 2020-01-15 | федеральное государственное бюджетное образовательное учреждение высшего образования "Ставропольский государственный аграрный университет" | Синхронный генератор с трехконтурной магнитной системой |
DE102019205121A1 (de) * | 2019-04-10 | 2020-10-15 | Mahle International Gmbh | Stator für einen dreiphasigen elektrischen Motor |
CA3137550C (en) | 2019-04-23 | 2024-05-21 | Dpm Technologies Inc. | Fault tolerant rotating electric machine |
GB2583974B (en) * | 2019-05-17 | 2023-12-06 | Time To Act Ltd | Improvements to the construction of axial flux rotary generators |
US11139097B2 (en) * | 2019-06-17 | 2021-10-05 | Sigma Powertrain, Inc. | Electromagnetic actuation assembly |
TWI721524B (zh) * | 2019-08-13 | 2021-03-11 | 徐夫子 | 共振型發電機 |
US11277062B2 (en) | 2019-08-19 | 2022-03-15 | Linear Labs, Inc. | System and method for an electric motor/generator with a multi-layer stator/rotor assembly |
KR20210027885A (ko) * | 2019-09-03 | 2021-03-11 | 엘지이노텍 주식회사 | 모터 |
RU2716011C1 (ru) * | 2019-09-06 | 2020-03-05 | Ильдар Фанильевич Зайнуллин | Магнитоэлектрический генератор |
US11309783B2 (en) * | 2019-09-26 | 2022-04-19 | Honeywell Federal Manufacturing & Technologies, Llc | Electromagnetic propulsion system |
US10731627B1 (en) * | 2019-10-07 | 2020-08-04 | Timm A Vanderelli | Low wind generator with internal rechargeable power |
US11283319B2 (en) | 2019-11-11 | 2022-03-22 | Infinitum Electric, Inc. | Axial field rotary energy device with PCB stator having interleaved PCBS |
US20210218304A1 (en) | 2020-01-14 | 2021-07-15 | Infinitum Electric, Inc. | Axial field rotary energy device having pcb stator and variable frequency drive |
KR102399038B1 (ko) * | 2020-03-30 | 2022-05-19 | 최우희 | 출력전압을 배가시킬 수 있는 비회전식 교류 발생기 |
KR102395916B1 (ko) * | 2020-03-30 | 2022-05-11 | 최우희 | 비회전식 교류 발생기 |
KR102395914B1 (ko) * | 2020-03-30 | 2022-05-10 | 최우희 | 유닛증가에 따라 출력효율의 증가가 가능한 비 회전식 교류 발생기 |
KR20230024866A (ko) | 2020-04-25 | 2023-02-21 | 121352 캐나다 인코포레이션 | 전기 모터 및 그 제어 방법 |
CN116802969A (zh) | 2020-04-30 | 2023-09-22 | 斯克雷纳全球有限公司 | 定子铁芯、定子和具有该定子铁芯的发电系统 |
MX2023008576A (es) * | 2021-01-21 | 2023-08-08 | Mattur Holdings Inc | Volante de inercia magnetico hueco y sistemas de generador relacionados. |
US11482908B1 (en) | 2021-04-12 | 2022-10-25 | Infinitum Electric, Inc. | System, method and apparatus for direct liquid-cooled axial flux electric machine with PCB stator |
TWI756120B (zh) * | 2021-04-27 | 2022-02-21 | 鴻銘節能股份有限公司 | 盤式發電機之改良結構 |
WO2022232904A1 (en) | 2021-05-04 | 2022-11-10 | Exro Technologies Inc. | Battery control systems and methods |
WO2022236424A1 (en) | 2021-05-13 | 2022-11-17 | Exro Technologies Inc. | Method and appartus to drive coils of a multiphase electric machine |
JP7051040B1 (ja) | 2021-06-05 | 2022-04-11 | 英信 竹綱 | 発電機 |
US20240120818A1 (en) * | 2022-09-28 | 2024-04-11 | Rainer B. Meinke | Systems and methods combining discrete flux-directed magnet assemblies that integrate magnetic gear boxes with single or dual rotor machines |
CN117175843B (zh) * | 2023-09-15 | 2024-06-07 | 新能量科技股份有限公司 | 一种离心飞轮发储一体化装置 |
Family Cites Families (496)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US908097A (en) * | 1905-02-13 | 1908-12-29 | Adolf Herz | Magneto alternating-current generator. |
US1980808A (en) * | 1933-09-28 | 1934-11-13 | Gen Electric | Alternating current generator |
US2091190A (en) * | 1935-11-16 | 1937-08-24 | Bendix Aviat Corp | Magneto generator |
US2189524A (en) | 1936-04-03 | 1940-02-06 | Gen Motors Corp | Magneto rotor construction |
US3083311A (en) * | 1956-11-08 | 1963-03-26 | Krasnow Shelley | Converters and circuits for high frequency fluorescent lighting |
US2407883A (en) * | 1944-02-21 | 1946-09-17 | Jackson Corwill | Permanent magnet field generator |
US2432117A (en) * | 1944-05-02 | 1947-12-09 | Bell Telephone Labor Inc | Alternating current generator |
US2488729A (en) * | 1946-10-18 | 1949-11-22 | Int Harvester Co | Magneto rotor |
US2516114A (en) * | 1946-12-30 | 1950-07-25 | Duncan Electric Mfg Co | Alternator |
US2504681A (en) * | 1948-04-27 | 1950-04-18 | Gen Electric | Electromagnetic device |
US2601517A (en) * | 1949-11-01 | 1952-06-24 | Dorothy C Hammes | Synchronous motor |
US2719931A (en) * | 1951-03-17 | 1955-10-04 | Kober William | Permanent magnet field generators |
US2680822A (en) * | 1951-06-25 | 1954-06-08 | Keefe & Merritt Company O | Rotor for dynamoelectric machines |
US3237034A (en) * | 1956-11-08 | 1966-02-22 | Krasnow Shelley | Multi-voltage high frequency generator |
DE1117721B (de) * | 1959-09-18 | 1961-11-23 | Ernst Voelk | Als Elektromotor ausgebildete magnetelektrische Maschine mit einem Permanentmagnet-Rotorsystem |
US3149256A (en) * | 1960-12-20 | 1964-09-15 | Kohlhagen Walter | Self-starting rotors for synchronous reaction motors |
US3169203A (en) * | 1961-03-28 | 1965-02-09 | Ibm | Square wave pulse generator |
US4142696A (en) * | 1962-02-27 | 1979-03-06 | Novatronics, Inc. | Guidance devices |
US3223865A (en) * | 1962-04-27 | 1965-12-14 | Gladstone Lewis | Turntable with magnetic hysteresis drive |
GB1037416A (en) * | 1962-05-09 | 1966-07-27 | Geoffrey Richard Polgreen | Improvements in and relating to homopolar dynamo-electric machines |
DE1488353A1 (de) * | 1965-07-15 | 1969-06-26 | Siemens Ag | Permanentmagneterregte elektrische Maschine |
US3482156A (en) * | 1966-07-19 | 1969-12-02 | Nachum Porath | Permanent magnet rotor type motor and control therefor |
US3549925A (en) * | 1969-02-05 | 1970-12-22 | Kelsey Hayes Co | Alternating current generator |
US3621370A (en) * | 1969-08-18 | 1971-11-16 | Gen Electric | Generator load control system |
DE2106057A1 (de) * | 1971-02-09 | 1972-09-14 | Bosch Gmbh Robert | Wechselstromgenerator |
IT947165B (it) | 1971-05-17 | 1973-05-21 | Grefco | Composizioni e processo per la eliminazione selettiva di prodot ti oleosi dall acqua |
US4004426A (en) * | 1971-06-14 | 1977-01-25 | Nikolaus Laing | Thermal prime mover |
US3809936A (en) * | 1972-05-18 | 1974-05-07 | E Klein | Brushless generator |
US3842817A (en) * | 1972-08-22 | 1974-10-22 | Mallory Electric Corp | Capacitive discharge ignition system |
US3801844A (en) * | 1972-12-01 | 1974-04-02 | Bowmar Instrument Corp | Rotor member for rotary magnetic position indicator |
JPS49104525U (zh) * | 1972-12-29 | 1974-09-07 | ||
US3973501A (en) * | 1973-01-11 | 1976-08-10 | The United States Of America As Represented By The Secretary Of The Navy | Fuze with dual safe positions and armed-safe indicator |
US4977529A (en) | 1973-02-23 | 1990-12-11 | Westinghouse Electric Corp. | Training simulator for a nuclear power plant |
US3942913A (en) * | 1974-01-10 | 1976-03-09 | Raymond Frank Bokelman | Rotating cylinder wheel and ball-piston wheel motor, generator, and pump assembly |
DE2426956A1 (de) | 1974-06-04 | 1976-01-02 | Bosch Gmbh Robert | Wechselstromgenerator |
US4020369A (en) * | 1974-07-12 | 1977-04-26 | Westinghouse Electric Corporation | Compact mechanically-powered electric generator for a camera or other apparatus |
US4013937A (en) * | 1974-07-22 | 1977-03-22 | Westinghouse Electric Corporation | Naturally commutated cycloconverter with controlled input displacement power factor |
FR2280959A1 (fr) * | 1974-07-30 | 1976-02-27 | Materiel Magnetique | Perfectionnement aux dispositifs de commande magnetique a aimants permanents |
US3992641A (en) * | 1974-11-22 | 1976-11-16 | Westinghouse Electric Corporation | Polyphase disc reluctance motor |
US3944855A (en) * | 1974-12-12 | 1976-03-16 | Van Allyn, Inc. | Method and apparatus for generating electricity by vehicle and pedestrian weight force |
US3965669A (en) * | 1975-02-18 | 1976-06-29 | Eaton Corporation | Engine running time indicator |
GB1535221A (en) * | 1975-02-25 | 1978-12-13 | Lucas Industries Ltd | Electric current generator arrangements |
US4001887A (en) * | 1975-06-06 | 1977-01-04 | Stephen A. Platt | Manual tape apparatus with generator for providing electrical power |
US3973137A (en) * | 1975-06-16 | 1976-08-03 | Dezso Donald Drobina | Multi-rotor electric motor |
US4050295A (en) * | 1975-09-12 | 1977-09-27 | Harvey Norman L | Digital measuring system for engine fuel performance |
US4051402A (en) * | 1975-10-31 | 1977-09-27 | Gruber John R | Shell rotor direct current generator |
US4039848A (en) * | 1975-11-10 | 1977-08-02 | Winderl William R | Wind operated generator |
US4081726A (en) * | 1976-01-05 | 1978-03-28 | Linear International Corporation | Electric motor |
US4286581A (en) * | 1976-03-10 | 1981-09-01 | Advanced Solar Power Company (Aspco) | Solar energy conversion system |
US4074159A (en) * | 1976-04-16 | 1978-02-14 | Robison Russell O | Dynamo-electric machine |
CA1038918A (en) | 1976-07-23 | 1978-09-19 | Dezso D. Drobina | Multi-rotor electric motor |
US4023751A (en) * | 1976-07-28 | 1977-05-17 | Richard Walter A | Flying ship |
US4385246A (en) | 1976-09-02 | 1983-05-24 | Paul E. Schur | Apparatus for producing electrical energy |
US4237391A (en) * | 1976-09-02 | 1980-12-02 | Paul E. Schur | Apparatus for producing electrical energy |
US4095922A (en) | 1976-10-20 | 1978-06-20 | Tecumseh Products Company | Electro-mechanical device |
US4100743A (en) * | 1976-12-20 | 1978-07-18 | The Northwestern Mutual Life Insurance Company | Gravity engine |
US4187441A (en) * | 1977-03-23 | 1980-02-05 | General Electric Company | High power density brushless dc motor |
US4107987A (en) * | 1977-06-27 | 1978-08-22 | Sperry Rand Corporation | Geothermal well pump performance sensing system and monitor therefor |
US4126933A (en) * | 1977-07-14 | 1978-11-28 | Carrier Corporation | Method for assembling a permanent magnet rotor |
US4196572A (en) * | 1977-09-13 | 1980-04-08 | James Mackie & Sons Limited | Textile winding apparatus |
US4211945A (en) * | 1977-10-20 | 1980-07-08 | Gen-Tech, Inc. | Multi-voltage and multi-frequency alternator/generator of modular construction |
US4168459A (en) * | 1977-10-25 | 1979-09-18 | Precise Power Corporation | Non-interruptible power supply systems |
US4155252A (en) * | 1978-01-11 | 1979-05-22 | Morrill Ralph A | Wind energy metering and recording systems |
US4179633A (en) * | 1978-02-21 | 1979-12-18 | Kelly Donald A | Magnetic wheel drive |
US4191893A (en) * | 1978-03-03 | 1980-03-04 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Natural turbulence electrical power generator |
US4181468A (en) * | 1978-03-09 | 1980-01-01 | Sperry Rand Corporation | Geothermal energy pump monitor and telemetric system |
US4215426A (en) * | 1978-05-01 | 1980-07-29 | Frederick Klatt | Telemetry and power transmission for enclosed fluid systems |
US4151051A (en) * | 1978-05-01 | 1979-04-24 | Evans Robert F | Electrodeposition mining of materials from natural water bodies |
DE2823261C2 (de) * | 1978-05-27 | 1985-05-23 | Robert Bosch Gmbh, 7000 Stuttgart | Elektrische Maschine |
JPS6035895B2 (ja) | 1978-06-07 | 1985-08-17 | 株式会社日立製作所 | 交流発電機の平行運転装置 |
US4316096A (en) | 1978-10-10 | 1982-02-16 | Syverson Charles D | Wind power generator and control therefore |
US4289970A (en) * | 1978-11-22 | 1981-09-15 | Deibert David D | Wind powered electrical generator |
US4261562A (en) * | 1978-12-22 | 1981-04-14 | Flavell Evan R | Electromagnetically regulated exerciser |
US4419617A (en) | 1979-01-23 | 1983-12-06 | Reitz Ronald P | Thermally electrogenerative storage cell and generator apparatus |
US4260901A (en) * | 1979-02-26 | 1981-04-07 | Woodbridge David D | Wave operated electrical generation system |
US4291235A (en) * | 1979-02-26 | 1981-09-22 | Bergey Jr Karl H | Windmill |
US4246490A (en) * | 1979-03-02 | 1981-01-20 | General Electric Company | Rotating nozzle generator |
US4276481A (en) * | 1979-03-12 | 1981-06-30 | Denson Parker | Fluid velocity actuated structure for a wind mill/water wheel |
US4355276A (en) | 1979-04-11 | 1982-10-19 | Medicor Muvek | Apparatus for supplying high power electric loads operated in a pulse-like manner, especially for X-ray equipment |
US4245601A (en) * | 1979-05-07 | 1981-01-20 | General Motors Corporation | Internal combustion engine speed ignition spark advance system |
US4297604A (en) | 1979-05-11 | 1981-10-27 | Gen-Tech, Inc. | Axial air gap alternators/generators of modular construction |
US4305031A (en) * | 1979-05-15 | 1981-12-08 | Lucas Industries Limited | Rotary electrical machine |
US4402524A (en) | 1979-06-07 | 1983-09-06 | Marker-Patentverwertungsgesellschaft Mbh | Battery-charging generator for electronic ski binding |
JPS5617887U (zh) | 1979-07-19 | 1981-02-17 | ||
US4322667A (en) | 1979-08-17 | 1982-03-30 | Shunjiro Ohba | DC Machine control circuit |
US4261312A (en) * | 1979-09-04 | 1981-04-14 | General Motors Corporation | Internal combustion engine electronic ignition system having an engine speed sensitive variable ignition spark retard feature |
US4254344A (en) * | 1979-10-22 | 1981-03-03 | General Electric Company | Turbine start-up switch |
US4247785A (en) * | 1979-11-23 | 1981-01-27 | Apgar James W | Freeway power generator |
US4433280A (en) | 1979-12-10 | 1984-02-21 | General Motors Corporation | Internal combustion engine ignition system |
US4317437A (en) | 1979-12-10 | 1982-03-02 | General Motors Corporation | Internal combustion engine ignition system |
US4433355A (en) | 1980-03-04 | 1984-02-21 | Yale Security Products Ltd. | Electronic locks for doors |
US4302683A (en) | 1980-03-07 | 1981-11-24 | Burton Von L | Reaction engine driven electrical generating system with power load variation control capability |
US4329138A (en) | 1980-06-12 | 1982-05-11 | Walter Kidde And Company, Inc. | Proving system for fuel burner blower |
US4339704A (en) * | 1980-07-07 | 1982-07-13 | General Electric Company | Series parallel transition for power supply |
US4340822A (en) | 1980-08-18 | 1982-07-20 | Gregg Hendrick J | Wind power generating system |
US4308479A (en) | 1980-08-28 | 1981-12-29 | General Electric Company | Magnet arrangement for axial flux focussing for two-pole permanent magnet A.C. machines |
JPS5798015A (en) | 1980-12-12 | 1982-06-18 | Ricoh Co Ltd | Constant voltage power supply device |
WO1982002619A1 (en) * | 1981-01-23 | 1982-08-05 | Avery Robert William | Electric motors |
US4373488A (en) | 1981-05-18 | 1983-02-15 | General Motors Corporation | Internal combustion engine electronic ignition system |
US4358693A (en) | 1981-06-15 | 1982-11-09 | Charles L. Palmer | Permanent magnet motor |
US4412170A (en) | 1981-07-02 | 1983-10-25 | Precise Power Corporation | Motor-generator system providing prolonged uninterrupted power supply to a load |
US4406950A (en) | 1981-07-06 | 1983-09-27 | Precise Power Corporation | Greatly prolonged period non-interruptible power supply system |
FR2510181A1 (fr) | 1981-07-21 | 1983-01-28 | Bertin & Cie | Convertisseur d'energie thermique en energie electrique a moteur stirling et generateur electrique integre |
US4642988A (en) | 1981-08-14 | 1987-02-17 | New Process Industries, Inc. | Solar powered free-piston Stirling engine |
FR2511558B1 (fr) | 1981-08-17 | 1987-04-30 | Aerospatiale | Equipement pour le stockage de l'energie sous forme cinetique et la restitution de celle-ci sous forme electrique, et procede de mise en oeuvre de cet equipement |
DE3135891A1 (de) | 1981-09-10 | 1983-03-24 | Robert Bosch Gmbh, 7000 Stuttgart | Gleichstrombordnetzanlage fuer fahrzeuge, insbesondere kraftfahrzeuge |
DE3139357C2 (de) | 1981-10-02 | 1984-02-02 | Zuv "Progress", Sofija | Verfahren für die Stromerzeugung bei einem zyklischen Verbrennungsprozeß |
US4456858A (en) | 1981-10-15 | 1984-06-26 | Loven James F | Permanent magnetic A.C.-D.C. motor |
US4473751A (en) | 1982-02-12 | 1984-09-25 | Hr Textron Inc. | Non-conventional reciprocating hydraulic-electric power source |
US4446377A (en) | 1982-05-03 | 1984-05-01 | General Electric Company | Low collapse speed lube oil pumping system for turbomachinery |
US4454865A (en) | 1982-06-07 | 1984-06-19 | Tammen Bobby J | Liquid metal solar power system |
US4532460A (en) | 1982-07-12 | 1985-07-30 | Eaton Corporation | Pre-start rotor positioner for an electric vehicle |
US4434617A (en) | 1982-07-27 | 1984-03-06 | Mechanical Technology Incorporated | Start-up and control method and apparatus for resonant free piston Stirling engine |
US4458489A (en) | 1982-07-27 | 1984-07-10 | Mechanical Technology Incorporated | Resonant free-piston Stirling engine having virtual rod displacer and linear electrodynamic machine control of displacer drive/damping |
US4536668A (en) | 1982-09-13 | 1985-08-20 | Boyer Robert E | Vehicle mountable electrical generating system |
US4578609A (en) | 1982-09-29 | 1986-03-25 | The Garrett Corporation | Permanent magnet dynamoelectric machine |
US5003517A (en) | 1982-11-29 | 1991-03-26 | American Fuel Cell And Coated Fabrics Company | Magnetohydrodynamic fluid apparatus and method |
US4879501A (en) | 1982-12-10 | 1989-11-07 | Commercial Shearing, Inc. | Constant speed hydrostatic drive system |
JPS59204461A (ja) * | 1983-05-09 | 1984-11-19 | Japan Servo Co Ltd | 永久磁石形ステツピングモ−タ |
JPS6039336A (ja) * | 1983-08-12 | 1985-03-01 | Nippon Denso Co Ltd | 扁平型回転電機の冷却構造 |
US4698562A (en) | 1983-10-04 | 1987-10-06 | Eaton Corporation | Motor electrical positioning system and the application thereof within vehicle traction drives |
US4539485A (en) | 1983-10-07 | 1985-09-03 | Neuenschwander Victor L | Wave activated generator |
US4654066A (en) | 1983-10-18 | 1987-03-31 | Vitro Tec Fideicomiso | Electronic system to control cooling of molds in glassware forming machines |
GB2150362B (en) | 1983-11-18 | 1986-11-19 | Dowty Fuel Syst Ltd | Alternating-current electrical generator |
US4513576A (en) | 1983-12-12 | 1985-04-30 | Centrifugal Piston Expander, Inc. | Gas pressure operated power source |
US4477745A (en) * | 1983-12-15 | 1984-10-16 | Lux Gregory F | Disc rotor permanent magnet generator |
US4630817A (en) | 1983-12-20 | 1986-12-23 | Gym Bee Enterprises, Inc. | Recreation apparatus |
US4668885A (en) | 1984-02-06 | 1987-05-26 | Scheller Wilhelm G | Flywheel energy storage device |
US4575671A (en) * | 1984-02-14 | 1986-03-11 | Teledyne Industries, Inc. | Methods and apparatus for synchronizing multiple motor driven generators |
JPS60210157A (ja) * | 1984-04-04 | 1985-10-22 | Hitachi Ltd | 内燃機関用点火信号発電機 |
US4581999A (en) | 1984-04-12 | 1986-04-15 | The United States Of America As Represented By The Secretary Of The Army | Supersonic high altitude flight simulator for air driven generators |
GB8414953D0 (en) | 1984-06-12 | 1984-07-18 | Maghemite Inc | Brushless permanent magnet dc motor |
GB2163607B (en) * | 1984-08-25 | 1987-11-04 | Matsushita Electric Works Ltd | D c brushless motor |
US4638224A (en) | 1984-08-29 | 1987-01-20 | Eaton Corporation | Mechanically shifted position senor for self-synchronous machines |
US4549121A (en) | 1984-08-29 | 1985-10-22 | Eaton Corporation | Motor minimum speed start-up circuit for electric motors |
US4598240A (en) | 1984-08-29 | 1986-07-01 | Eaton Corporation | Self synchronous motor sensor switching arrangement |
US4601354A (en) | 1984-08-31 | 1986-07-22 | Chevron Research Company | Means and method for facilitating measurements while coring |
US4641080A (en) * | 1984-10-18 | 1987-02-03 | Sundstrand Corporation | Permanent magnet generator with fault detection |
US4599551A (en) | 1984-11-16 | 1986-07-08 | The United States Of America As Represented By The United States Department Of Energy | Thermoacoustic magnetohydrodynamic electrical generator |
US4809510A (en) | 1985-01-24 | 1989-03-07 | Baker Cac, Inc. | Flowline power generator |
US4654537A (en) | 1985-01-24 | 1987-03-31 | Baker Cac | Flowline power generator |
US4687945A (en) | 1985-03-13 | 1987-08-18 | Loyd Lowery | Low power generator |
US4866321A (en) | 1985-03-26 | 1989-09-12 | William C. Lamb | Brushless electrical machine for use as motor or generator |
CH665922A5 (fr) * | 1985-05-10 | 1988-06-15 | Portescap | Moteur electrique synchrone a rotor en forme de disque. |
CH664652A5 (fr) | 1985-05-10 | 1988-03-15 | Portescap | Moteur electrique synchrone a rotor en forme de disque. |
US4642031A (en) | 1985-05-20 | 1987-02-10 | Tecumseh Products Company | Alternator-compressor construction |
JPS61280752A (ja) | 1985-06-05 | 1986-12-11 | Oopack Kk | 無刷子直流回転電機 |
US4737070A (en) | 1985-07-31 | 1988-04-12 | Yamaha Hatsudoki Kabushiki Kaisha | Water powered device |
DE3528519A1 (de) | 1985-08-08 | 1987-02-19 | Kloeckner Humboldt Deutz Ag | Gasturbinentriebwerk mit einer generatoreinrichtung |
DE3528765A1 (de) | 1985-08-10 | 1987-02-19 | Bosch Gmbh Robert | Schaltungsanordnung fuer einen buerstenlosen gleichstrommotor |
US4628219A (en) | 1985-09-13 | 1986-12-09 | Sundstrand Corporation | Rectifier assembly for mounting in a rotor |
US4664685A (en) | 1985-11-19 | 1987-05-12 | Helix Technology Corporation | Linear drive motor control in a cryogenic refrigerator |
US4658346A (en) | 1985-12-11 | 1987-04-14 | Kennecott Corporation | Apparatus for co-generation of electric power |
US4656379A (en) | 1985-12-18 | 1987-04-07 | The Garrett Corporation | Hybrid excited generator with flux control of consequent-pole rotor |
US4879045A (en) | 1986-01-13 | 1989-11-07 | Eggerichs Terry L | Method and apparatus for electromagnetically treating a fluid |
US4839039B2 (en) | 1986-02-28 | 1998-12-29 | Recurrent Solutions Ltd | Automatic flow-control device |
US4678954A (en) | 1986-03-05 | 1987-07-07 | Kabushiki Kaisha Toshiba | Rotor with permanent magnets having thermal expansion gaps |
US4674199A (en) | 1986-04-07 | 1987-06-23 | Nikola Lakic | Shoe with internal foot warmer |
US4835433A (en) | 1986-04-23 | 1989-05-30 | Nucell, Inc. | Apparatus for direct conversion of radioactive decay energy to electrical energy |
US4713569A (en) | 1986-06-20 | 1987-12-15 | 501 Aeroflex Laboratories, Incorporated | Low cogging motor |
NL8601869A (nl) | 1986-07-17 | 1988-02-16 | Philips Nv | Elektrische machine. |
US4819361A (en) | 1986-10-06 | 1989-04-11 | Robert Boharski | Fishing lure |
US4739203A (en) * | 1986-10-24 | 1988-04-19 | Shicoh Engineering Co. Ltd. | Single-phase brushless motor with cogging features |
US5120332A (en) | 1986-11-06 | 1992-06-09 | The Haser Company Limited | Gas resonance device |
US4785228A (en) | 1987-02-04 | 1988-11-15 | Goddard Sydney L | Electrical energy enhancement apparatus |
US4893040A (en) | 1987-05-08 | 1990-01-09 | Aisin Seiki Kabushiki Kaisha | Dynamo-electric machines |
CA1269693A (en) | 1987-05-13 | 1990-05-29 | Robert Ross Hamilton | Explosion-proof electrical generator system |
US4783038A (en) | 1987-07-07 | 1988-11-08 | Aeroflex International Incorporated | Isolator apparatus |
US4811091A (en) | 1987-09-02 | 1989-03-07 | Westinghouse Electric Corp. | Multi-directional mobile inspection system |
US4783028A (en) | 1987-10-05 | 1988-11-08 | Olson Phillip W | Devices for applying freight train air brakes on derailment |
US5130595A (en) | 1987-11-23 | 1992-07-14 | Chrysler Corporation | Multiple magnetic paths machine |
US4980595A (en) | 1987-11-23 | 1990-12-25 | Chrysler Corporation | Multiple magnetic paths machine |
US4831300A (en) | 1987-12-04 | 1989-05-16 | Lindgren Theodore D | Brushless alternator and synchronous motor with optional stationary field winding |
SE459833B (sv) | 1987-12-09 | 1989-08-07 | Astra Tech Ab | Roterande elektrisk maskin |
US4862021A (en) | 1987-12-10 | 1989-08-29 | Larocca Edward W | Explosively driven power supply |
US4845749A (en) | 1987-12-21 | 1989-07-04 | Bell Communications Research, Inc. | Secure teleconferencing system |
US4874346A (en) | 1988-01-06 | 1989-10-17 | How Wachspress | Free flying magnetic levitator |
US4885526A (en) | 1988-03-18 | 1989-12-05 | Electro Erg Limited | Compensation circuit for electrical generators |
US4851703A (en) | 1988-04-20 | 1989-07-25 | Means William A | Electro/hydraulic power pack |
GB2219671B (en) | 1988-04-26 | 1993-01-13 | Joseph Frank Kos | Computer controlled optimized hybrid engine |
US4864151A (en) | 1988-05-31 | 1989-09-05 | General Motors Corporation | Exhaust gas turbine powered electric generating system |
US4879484A (en) * | 1988-06-17 | 1989-11-07 | Sundstrand Corporation | Alternating current generator and method of angularly adjusting the relative positions of rotors thereof |
US4933609A (en) | 1988-06-23 | 1990-06-12 | Ampex Corporation | Dynamic control system for braking DC motors |
GB8817760D0 (en) | 1988-07-26 | 1988-09-01 | Rolls Royce Plc | Electrical power generator |
DE3826339C1 (zh) | 1988-08-03 | 1990-02-22 | J.M. Voith Gmbh, 7920 Heidenheim, De | |
US4906877A (en) | 1988-08-30 | 1990-03-06 | Ciaio Frank A | MHD generator and fluid pump |
US4904926A (en) | 1988-09-14 | 1990-02-27 | Mario Pasichinskyj | Magnetic motion electrical generator |
CA1310682C (en) | 1988-09-27 | 1992-11-24 | Kwc Ag | Water fitting, particularly for sanitary domestic installations |
CA1323906C (en) | 1988-09-27 | 1993-11-02 | Ferdinand F. Hochstrasser | Water fitting, particularly for sanitary domestic installations |
US4927329A (en) | 1988-10-21 | 1990-05-22 | General Electric Company | Aircraft engine unducted fan blade pitch control system |
US4884953A (en) | 1988-10-31 | 1989-12-05 | Ergenics, Inc. | Solar powered pump with electrical generator |
US4959605A (en) | 1988-11-22 | 1990-09-25 | Sundstrand Corporation | Hybrid permanent magnet and variable reluctance generator |
US4876991A (en) | 1988-12-08 | 1989-10-31 | Galitello Jr Kenneth A | Two stroke cycle engine |
SE462820B (sv) | 1989-01-16 | 1990-09-03 | Asea Brown Boveri | Magnetkrets |
US4950973A (en) | 1989-06-29 | 1990-08-21 | Westinghouse Electric Corp. | Permanent magnet generator system |
US4953052A (en) | 1989-07-19 | 1990-08-28 | Sundstrand Corporation | Pole slip protection circuit for paralleled generators |
US5030867A (en) | 1989-08-02 | 1991-07-09 | Technical Associate Co., Ltd. | Same polarity induction generator |
US5184040A (en) | 1989-09-04 | 1993-02-02 | Lim Jong H | Electric power generators having like numbers of magnets and coils |
US4985875A (en) | 1989-11-03 | 1991-01-15 | Enm Company | Engine operating time hour meter |
SE463061B (sv) | 1989-11-20 | 1990-10-01 | Svante Gustav Adolf Von Zweygb | Permanentmagnetiserad synkronmaskin utformad enligt transversalfloedesprincipen |
US5184458A (en) | 1989-11-21 | 1993-02-09 | Lampe Steven W | Power unit fuel pressurization system |
US5191256A (en) | 1989-12-15 | 1993-03-02 | American Motion Systems | Interior magnet rotary machine |
US5043911A (en) | 1989-12-22 | 1991-08-27 | Sundstrand Corporation | Multiplexing A/D converter for a generator control unit |
US5400596A (en) | 1990-01-29 | 1995-03-28 | Shlien; David J. | Automotive system |
US4994700A (en) | 1990-02-15 | 1991-02-19 | Sundstrand Corporation | Dynamoelectric machine oil-cooled stator winding |
EP0450288B1 (de) | 1990-02-16 | 1995-06-28 | Walter Dr. Mehnert | Elektrischer Linearmotor |
US5058833A (en) | 1990-03-06 | 1991-10-22 | Carmouche William J | Spaceship to harness radiations in interstellar flights |
US5053662A (en) | 1990-04-18 | 1991-10-01 | General Electric Company | Electromagnetic damping of a shaft |
JP2672178B2 (ja) | 1990-05-15 | 1997-11-05 | ファナック株式会社 | 同期電動機のロータ構造 |
US5003209A (en) | 1990-06-11 | 1991-03-26 | Sundstrand Corporation | Reduced length rotating rectifier assembly |
US5227702A (en) | 1991-09-19 | 1993-07-13 | Nahirney Peter M | Direct current motor utilizing back electromotive force |
US5336933A (en) | 1990-07-16 | 1994-08-09 | Bru-Mel Corporation | Fluid-augmented free-vortex power generating apparatus |
US5057731A (en) * | 1990-08-15 | 1991-10-15 | Xolox Corportion | Simplified spindle motor for disc drive |
US5072145A (en) | 1990-09-05 | 1991-12-10 | Sundstrand Corporation | Composite center module housing using specifically shaped segments to form fluid channels |
JPH0522920A (ja) | 1990-09-28 | 1993-01-29 | Aisin Seiki Co Ltd | リニアアクチユエータ |
US5057726A (en) * | 1990-10-10 | 1991-10-15 | Westinghouse Electric Corp. | Structureborne vibration-compensated motor arrangement having back-to-back twin AC motors |
US5174109A (en) | 1990-10-25 | 1992-12-29 | Sundstrand Corporation | Clutch to disconnect loads during turbine start-up |
US5371426A (en) | 1990-11-20 | 1994-12-06 | Seiko Epson Corporation | Rotor of brushless motor |
DE59104970D1 (de) | 1990-11-23 | 1995-04-20 | Voith Gmbh J M | Elektrische maschine. |
US5083039B1 (en) | 1991-02-01 | 1999-11-16 | Zond Energy Systems Inc | Variable speed wind turbine |
US5237815A (en) | 1991-02-19 | 1993-08-24 | Sundstrand Corporation | Control of a hydraulic start system |
US5281094A (en) | 1991-05-13 | 1994-01-25 | Alliedsignal Inc | Electromechanical apparatus for varying blade of variable-pitch fan blades |
EP0526774B1 (en) | 1991-07-31 | 1996-03-20 | Mitsubishi Jukogyo Kabushiki Kaisha | Electric motor having a spherical rotor and its application apparatus |
US5164826A (en) | 1991-08-19 | 1992-11-17 | Westinghouse Electric Corp. | Method and apparatus for visual inspection of the internal structure of apparatus through internal passages |
US5220232A (en) | 1991-09-03 | 1993-06-15 | Allied Signal Aerospace | Stacked magnet superconducting bearing |
US5155375A (en) | 1991-09-19 | 1992-10-13 | U.S. Windpower, Inc. | Speed control system for a variable speed wind turbine |
US5258697A (en) | 1991-10-23 | 1993-11-02 | Varelux Motor Corp. | Efficient permanent magnet electric motor |
JPH06229155A (ja) | 1992-01-13 | 1994-08-16 | C & M Technology Inc | セキュリティロック機構 |
US5237817A (en) | 1992-02-19 | 1993-08-24 | Sundstrand Corporation | Gas turbine engine having low cost speed reduction drive |
DE4205926A1 (de) * | 1992-02-26 | 1993-09-16 | Magnet Motor Gmbh | Elektrische pumpe |
GB2264812B (en) | 1992-03-04 | 1995-07-19 | Dowty Defence & Air Syst | Electrical power generators |
US5448123A (en) | 1992-05-05 | 1995-09-05 | Atlas Copco Tools Ab | Electric synchronous motor |
US5317498A (en) | 1992-07-09 | 1994-05-31 | Sundstrand Corporation | Electrical power generation system |
US5369324A (en) | 1992-07-17 | 1994-11-29 | Lyng Elektronikk A-S | Electric stepper motor |
US5267129A (en) | 1992-07-24 | 1993-11-30 | Pnu-Light Tool Works, Inc. | Pneumatic lighting apparatus |
US5496238A (en) | 1992-11-19 | 1996-03-05 | Taylor; Douglas B. | Physical conditioning apparatus |
ES2085824B1 (es) | 1993-02-04 | 1998-02-16 | Torre Barreiro Jose Luis De | Mejoras introducidas en acondicionadores magneticos para tratamiento de liquidos. |
US5283488A (en) | 1993-02-22 | 1994-02-01 | The United States Of America As Represented By The Secretary Of The Air Force | Rotor cooling structure |
US5650679A (en) | 1993-03-18 | 1997-07-22 | Boggs, Iii; Paul Dewey | Eddy current drive |
JPH06351206A (ja) | 1993-04-14 | 1994-12-22 | Meidensha Corp | ハイブリッド励磁形永久磁石同期回転機 |
DE69425740T2 (de) | 1993-04-27 | 2001-04-19 | Mingyen Law | Wechselstromgespeiste elektrische antriebsvorrichtung mit mehreren rotoren |
SE508318C2 (sv) | 1993-05-26 | 1998-09-21 | Atlas Copco Tools Ab | Stator för en elektrisk maskin |
US5489290A (en) | 1993-05-28 | 1996-02-06 | Snowden-Pencer, Inc. | Flush port for endoscopic surgical instruments |
US5753989A (en) | 1993-06-14 | 1998-05-19 | Ecoair Corp. | Hybrid alternator |
US5517822A (en) | 1993-06-15 | 1996-05-21 | Applied Energy Systems Of Oklahoma, Inc. | Mobile congeneration apparatus including inventive valve and boiler |
EP0762600B1 (en) | 1993-06-17 | 1998-08-19 | Nihon Riken Co., Ltd. | Power generating device |
US5637934A (en) | 1993-06-24 | 1997-06-10 | Fabris; Gracio | High expansion magnetohydrodynamic liquid metal generator of electricity |
US5614773A (en) | 1993-06-30 | 1997-03-25 | California Institute Of Technology | Generator section of a two-phase flow liquid metal magnetohydrodynamic (LMMHD) generator |
US5370112A (en) | 1993-07-01 | 1994-12-06 | Devilbiss Health Care, Inc. | Method and means for powering portable oxygen supply systems |
US5397922A (en) | 1993-07-02 | 1995-03-14 | Paul; Marius A. | Integrated thermo-electro engine |
US5481146A (en) | 1993-09-10 | 1996-01-02 | Park Square, Inc. | Passive null flux coil magnetic bearing system for translation or rotation |
JP2968918B2 (ja) | 1993-09-16 | 1999-11-02 | 弘平 湊 | 磁力回転装置 |
DE4336975A1 (de) | 1993-10-29 | 1995-05-04 | Erno Raumfahrttechnik Gmbh | Energieerzeugungseinrichtung |
US5409435A (en) | 1993-11-03 | 1995-04-25 | Daniels; John J. | Variable resistance exercise device |
US5346370A (en) | 1993-11-08 | 1994-09-13 | Graco Inc. | Portable pumping system with generator powered clutch assembly |
US5433175A (en) | 1993-11-30 | 1995-07-18 | Onan Corporation | Generator air flow and noise management system and method |
US5469045A (en) * | 1993-12-07 | 1995-11-21 | Dove; Donald C. | High speed power factor controller |
US6037696A (en) * | 1993-12-29 | 2000-03-14 | Samot Engineering (1992) Ltd. | Permanent magnet axial air gap electric machine |
US5512811A (en) | 1994-01-21 | 1996-04-30 | Sundstrand Corporation | Starter/generator system having multivoltage generation capability |
US5619423A (en) | 1994-01-21 | 1997-04-08 | Scrantz; Leonard | System, method and apparatus for the ultrasonic inspection of liquid filled tubulars and vessels |
US5504382A (en) | 1994-01-24 | 1996-04-02 | Douglass; Michael J. | Field controlled permanent magnet alternator |
US5406186A (en) | 1994-01-25 | 1995-04-11 | Sundstrand Corporation | One switch multi-phase modulator |
US5427194A (en) | 1994-02-04 | 1995-06-27 | Miller; Edward L. | Electrohydraulic vehicle with battery flywheel |
US5484120A (en) | 1994-03-11 | 1996-01-16 | Sundstrand Corporation | Support strut for ram air driven turbine |
US5637935A (en) | 1994-03-24 | 1997-06-10 | Martin Marietta Energy Systems, Inc. | Double-duct liquid metal magnetohydrodynamic engine |
US5473205A (en) | 1994-03-24 | 1995-12-05 | Martin Marietta Energy Systems, Inc. | Double-duct liquid metal magnetohydrodynamic engine |
US5530307A (en) | 1994-03-28 | 1996-06-25 | Emerson Electric Co. | Flux controlled permanent magnet dynamo-electric machine |
FR2718237B1 (fr) | 1994-03-30 | 1996-06-21 | Europ Propulsion | Dispositif de mesure optique de température cryogénique. |
US5489810A (en) | 1994-04-20 | 1996-02-06 | Sundstrand Corporation | Switched reluctance starter/generator |
US5523637A (en) | 1994-04-28 | 1996-06-04 | Ford Motor Company | Permanent magnet electrical machine with low reluctance torque |
US5838138A (en) | 1994-05-02 | 1998-11-17 | Henty; David L. | Electronic device which is powered by actuation of manual inputs |
US5850111A (en) | 1994-05-05 | 1998-12-15 | Lockheed Martin Energy Research Corp. | Free piston variable-stroke linear-alternator generator |
US5838085A (en) | 1994-06-08 | 1998-11-17 | Precise Power Corporation | Versatile AC dynamo-electric machine |
NZ288582A (en) | 1994-06-09 | 1998-10-28 | Pier Andrea Rigazzi | Linear electrical energy generator with variable compression internal combustion engine |
US5696419A (en) | 1994-06-13 | 1997-12-09 | Alternative Generation Devices, Inc. | High-efficiency electric power generator |
GB9412410D0 (en) | 1994-06-21 | 1994-08-10 | Lucas Ind Plc | Control circuit for electrical generator |
US5625241A (en) | 1994-07-28 | 1997-04-29 | Energy Research Corporation | Carousel electric generator |
GB2293522B (en) | 1994-09-02 | 1999-01-20 | Ultra Electronics Ltd | Rotary apparatus |
US6397946B1 (en) | 1994-10-14 | 2002-06-04 | Smart Drilling And Completion, Inc. | Closed-loop system to compete oil and gas wells closed-loop system to complete oil and gas wells c |
US5696413A (en) | 1994-10-24 | 1997-12-09 | Aqua Magnetics, Inc. | Reciprocating electric generator |
US5773910A (en) | 1994-11-10 | 1998-06-30 | Voith Turbo Gmbh & Co. | Transverse flux machine |
US5525842A (en) | 1994-12-02 | 1996-06-11 | Volt-Aire Corporation | Air tool with integrated generator and light ring assembly |
JP3396749B2 (ja) | 1994-12-29 | 2003-04-14 | ミネベア株式会社 | Fdd用モータの軸受装置 |
US5568005A (en) | 1995-01-24 | 1996-10-22 | Davidson; Dan A. | Acoustic-magnetic power generator |
US5659300A (en) | 1995-01-30 | 1997-08-19 | Innovatec Corporation | Meter for measuring volumetric consumption of a commodity |
US5839508A (en) | 1995-02-09 | 1998-11-24 | Baker Hughes Incorporated | Downhole apparatus for generating electrical power in a well |
US5833440A (en) | 1995-02-10 | 1998-11-10 | Berling; James T. | Linear motor arrangement for a reciprocating pump system |
EP0792004B1 (en) * | 1995-04-19 | 2002-04-03 | Shigeaki Hayasaka | Induction generator with single pair of opposing magnetic poles |
GB2300612B (en) | 1995-04-25 | 1998-09-30 | Crisplant As | Conveyor |
JP3052802B2 (ja) | 1995-05-19 | 2000-06-19 | トヨタ自動車株式会社 | 動力伝達装置及びその制御方法 |
US5710474A (en) | 1995-06-26 | 1998-01-20 | Cleveland Machine Controls | Brushless DC motor |
RU2074761C1 (ru) * | 1995-06-29 | 1997-03-10 | Научно-производственное предприятие "Эксин" | Приводное устройство для передвижных средств |
DE59603933D1 (de) | 1995-08-24 | 2000-01-20 | Sulzer Electronics Ag Winterth | Elektromotor |
US5945766A (en) * | 1996-01-18 | 1999-08-31 | Amotron Co., Ltd. | Coreless-type BLDC motor and method of producing stator assembly having axial vibration attenuation arrangement |
US5760507A (en) | 1996-02-06 | 1998-06-02 | Ford Global Technologies, Inc. | Electrical generating system for a motor vehicle |
JP2001502263A (ja) | 1996-03-04 | 2001-02-20 | ザ ウィタカー コーポレーション | 鉄道車両用車載発電機システム |
DE19610754C1 (de) | 1996-03-19 | 1997-03-27 | Voith Turbo Kg | Rotor für eine elektrische Maschine, insbesondere Transversalflußmaschine |
FR2746558B1 (fr) | 1996-03-22 | 1998-04-24 | Gec Alsthom Moteurs Sa | Rotor magnetoelectrique a griffes, procede de fabrication d'un tel rotor |
US6137195A (en) | 1996-03-28 | 2000-10-24 | Anorad Corporation | Rotary-linear actuator |
US5689165A (en) | 1996-04-09 | 1997-11-18 | Sundstrand Corporation | Estimator initialization circuit and method for a sensorless switched reluctance machine system |
US5867004A (en) | 1996-04-09 | 1999-02-02 | Sundstrand Corporation | Relative angel estimation apparatus for a sensorless switched reluctance machine system |
US5785137A (en) | 1996-05-03 | 1998-07-28 | Nevcor, Inc. | Hybrid electric vehicle catalyst control |
US5744896A (en) | 1996-05-21 | 1998-04-28 | Visual Computing Systems Corp. | Interlocking segmented coil array |
US5689175A (en) | 1996-05-31 | 1997-11-18 | Sundstrand Corporation | Voltage regulator for an electrical power system |
US5806959A (en) | 1996-06-25 | 1998-09-15 | Adams; Marvin | Illuminated skate roller |
JP3000943B2 (ja) * | 1996-07-02 | 2000-01-17 | トヨタ自動車株式会社 | 動力出力装置およびその制御方法 |
US6043579A (en) | 1996-07-03 | 2000-03-28 | Hill; Wolfgang | Permanently excited transverse flux machine |
US6211633B1 (en) | 1996-07-10 | 2001-04-03 | Hamilton Sundstrand Corporation | Synchronous sampling circuit for a sensorless switching reluctance machine system |
US5844385A (en) | 1996-07-10 | 1998-12-01 | Sundstrand Corporation | Absolute angle estimation apparatus for a sensorless switched reluctance machine system |
JPH1032967A (ja) | 1996-07-15 | 1998-02-03 | Tsujikawa Keiko | トルク発生装置 |
US5973436A (en) | 1996-08-08 | 1999-10-26 | Rolls-Royce Power Engineering Plc | Electrical machine |
US5709103A (en) | 1996-08-15 | 1998-01-20 | Mcdonnell Douglas Coporation | Electrically powered differential air-cycle air conditioning machine |
US5912522A (en) | 1996-08-22 | 1999-06-15 | Rivera; Nicholas N. | Permanent magnet direct current (PMDC) machine with integral reconfigurable winding control |
US5990590A (en) | 1996-09-10 | 1999-11-23 | Precise Power Corporation | Versatile AC dynamo-electric machine |
US5784267A (en) | 1996-10-17 | 1998-07-21 | Onan Corporation | Quasi-sine wave and stepped square wave AC to AC converter |
US6177735B1 (en) | 1996-10-30 | 2001-01-23 | Jamie C. Chapman | Integrated rotor-generator |
US5874797A (en) | 1996-12-10 | 1999-02-23 | Active Power, Inc. | Permanent magnet generator providing alternating current which has a selected frequency |
US5982074A (en) | 1996-12-11 | 1999-11-09 | Advanced Technologies Int., Ltd. | Axial field motor/generator |
US5731649A (en) * | 1996-12-27 | 1998-03-24 | Caama+E,Otl N+Ee O; Ramon A. | Electric motor or generator |
US5982070A (en) * | 1996-12-27 | 1999-11-09 | Light Engineering Corporation | Electric motor or generator having amorphous core pieces being individually accomodated in a dielectric housing |
US6166473A (en) | 1997-01-24 | 2000-12-26 | Hayasaka; Shigeaki | Dynamo-electric machine and generator and motor wherein the machine is used |
KR100444696B1 (ko) | 1997-03-25 | 2004-11-06 | 삼성전자주식회사 | 하드디스크드라이브엑튜에이터의코일결합방법및장치 |
DE19715019A1 (de) | 1997-04-11 | 1998-10-22 | Voith Turbo Kg | Rotor für eine elektrische Maschine, insbesondere eine Transversalflußmaschine |
US5799484A (en) | 1997-04-15 | 1998-09-01 | Allied Signal Inc | Dual turbogenerator auxiliary power system |
US6062016A (en) | 1997-04-21 | 2000-05-16 | Capstone Turbine Corporation | Gas turbine engine fixed speed light-off method |
US5850732A (en) | 1997-05-13 | 1998-12-22 | Capstone Turbine Corporation | Low emissions combustion system for a gas turbine engine |
US5966926A (en) | 1997-05-28 | 1999-10-19 | Capstone Turbine Corporation | Liquid fuel injector purge system |
DE69841192D1 (de) | 1997-07-07 | 2009-11-12 | Canon Kk | Motor |
AU757301B2 (en) | 1997-07-23 | 2003-02-13 | Deon John Du Plessis | An electrical power generation unit |
US6195869B1 (en) | 1997-08-05 | 2001-03-06 | Turbo Genset Company | Method of applying a retention ring to a disc rotor assembly |
US6014015A (en) | 1997-08-08 | 2000-01-11 | Alpha Technologies, Inc. | Electrical generator employing rotary engine |
US5942829A (en) | 1997-08-13 | 1999-08-24 | Alliedsignal Inc. | Hybrid electrical machine including homopolar rotor and stator therefor |
US5968680A (en) | 1997-09-10 | 1999-10-19 | Alliedsignal, Inc. | Hybrid electrical power system |
US5952756A (en) * | 1997-09-15 | 1999-09-14 | Lockheed Martin Energy Research Corporation | Permanent magnet energy conversion machine with magnet mounting arrangement |
US6127758A (en) | 1997-09-17 | 2000-10-03 | Alliedsignal Inc. | Ram air turbine system |
IT1297493B1 (it) | 1997-10-03 | 1999-12-17 | Silca Spa | Unita' di cilindro e chiave a funzionamento meccatronico per serratura |
US5923111A (en) | 1997-11-10 | 1999-07-13 | Goulds Pumps, Incoporated | Modular permanent-magnet electric motor |
US6109222A (en) | 1997-11-24 | 2000-08-29 | Georgia Tech Research Corporation | Miniature reciprocating combustion-driven machinery |
US6679977B2 (en) | 1997-12-17 | 2004-01-20 | Unakis Trading Ag | Method of producing flat panels |
US6093293A (en) | 1997-12-17 | 2000-07-25 | Balzers Hochvakuum Ag | Magnetron sputtering source |
US6294842B1 (en) | 1997-12-19 | 2001-09-25 | Alliedsignal Inc. | Fog cycle for microturbine power generating system |
US6170251B1 (en) | 1997-12-19 | 2001-01-09 | Mark J. Skowronski | Single shaft microturbine power generating system including turbocompressor and auxiliary recuperator |
US6125625A (en) | 1997-12-20 | 2000-10-03 | Alliedsignal, Inc. | Low NOx conditioner system for a microturbine power generating system |
AU1936099A (en) | 1997-12-20 | 1999-07-12 | Allied-Signal Inc. | Peak compressor bleed pressure storage for extended fuel nozzle purging of a microturbine power generating system |
JP2001527180A (ja) | 1997-12-20 | 2001-12-25 | アライド・シグナル・インコーポレーテツド | マイクロタービンの出力発生システムにおけるタービンの一定した内部温度の制御 |
TW390936B (en) | 1997-12-20 | 2000-05-21 | Allied Signal Inc | Microturbine power generating system |
US6735953B1 (en) | 1997-12-22 | 2004-05-18 | Allied Signal Inc. | Turbomachine-driven environmental control system |
US5997252A (en) | 1997-12-24 | 1999-12-07 | Miller; Duane G. | Wind driven electrical power generating apparatus |
FR2772791B1 (fr) | 1997-12-24 | 2000-01-28 | Staubli Sa Ets | Actionneur rotatif electrique pour la formation de la foule sur un metier a tisser, mecanique d'armure et metier a tisser |
US5886450A (en) | 1998-01-13 | 1999-03-23 | Kuehnle; Manfred R. | Toroidal electrical motor/generator |
US6191561B1 (en) | 1998-01-16 | 2001-02-20 | Dresser Industries, Inc. | Variable output rotary power generator |
US6097104A (en) | 1999-01-19 | 2000-08-01 | Russell; Thomas H. | Hybrid energy recovery system |
US6037672A (en) | 1998-02-09 | 2000-03-14 | Lockheed Martin Corporation | Generator having impedance matching prime mover output capability for operation with maximized efficiency |
US6020711A (en) | 1998-03-05 | 2000-02-01 | The United States Of America As Represented By The Secretary Of The Air Force | Multiple winding channel, magnetic coupling-alterable reluctance electrical machines and their fault tolerant control |
US6470933B1 (en) | 1998-03-09 | 2002-10-29 | Pirelli Pneumatici S.P.A. | Tire containing at least part of an electrical current generator intended for the supply of sensors and/or other electrical devices present within the tire, and method for manufacture the said tire |
US5955790A (en) | 1998-03-13 | 1999-09-21 | North; Vaughn W. | Apparatus for converting tide/wave motion to electricity |
DE19813155C1 (de) | 1998-03-19 | 1999-10-28 | Abb Daimler Benz Transp | Mehrsträngige Transversalflußmaschine |
JP3517586B2 (ja) | 1998-04-10 | 2004-04-12 | キヤノン株式会社 | モータ |
JP3548425B2 (ja) | 1998-04-17 | 2004-07-28 | キヤノン株式会社 | モータ |
US6348683B1 (en) | 1998-05-04 | 2002-02-19 | Massachusetts Institute Of Technology | Quasi-optical transceiver having an antenna with time varying voltage |
US6300689B1 (en) | 1998-05-04 | 2001-10-09 | Ocean Power Technologies, Inc | Electric power generating system |
CN1098556C (zh) | 1998-05-16 | 2003-01-08 | 韩国能量技术有限公司 | 用于旋转装置的磁路 |
CA2292684A1 (en) | 1999-12-17 | 2001-06-17 | Wayne Ernest Conrad | Self-contained light and generator |
SE522715C2 (sv) | 1998-06-02 | 2004-03-02 | Ericsson Telefon Ab L M | Portabel kommunikationsanordning med elektromekaniskt omvandlingsorgan samt ett batteripaket för densamma |
US6276124B1 (en) | 1998-06-04 | 2001-08-21 | Alliedsignal Inc. | Bi-metallic tie-bolt for microturbine power generating system |
US6242840B1 (en) | 1998-06-15 | 2001-06-05 | Alliedsignal Inc. | Electrical machine including toothless flux collector made from ferromagnetic wire |
US6032459A (en) | 1998-06-15 | 2000-03-07 | Alliedsignal, Inc. | Turbine exhaust cooling in a microturbine power generating system |
US6199519B1 (en) | 1998-06-25 | 2001-03-13 | Sandia Corporation | Free-piston engine |
US6066898A (en) | 1998-08-14 | 2000-05-23 | Alliedsignal Inc. | Microturbine power generating system including variable-speed gas compressor |
GB2342396B (en) | 1998-08-15 | 2002-04-24 | Lucas Ind Plc | Pumps |
US6055163A (en) | 1998-08-26 | 2000-04-25 | Northrop Grumman Corporation | Communications processor remote host and multiple unit control devices and methods for micropower generation systems |
US6047104A (en) | 1998-09-22 | 2000-04-04 | Cheng Technology & Services, Inc. | Electrical generators and motors in which at steady-state the rotor and its electromagnetic field rotate at selectively different angular speeds |
US6274960B1 (en) | 1998-09-29 | 2001-08-14 | Kabushiki Kaisha Toshiba | Reluctance type rotating machine with permanent magnets |
EP0996212A1 (en) | 1998-10-21 | 2000-04-26 | Technische Universiteit Eindhoven | Method for fabricating a permanent magnet rotor, and rotor obtained by said method |
US6064122A (en) | 1998-11-05 | 2000-05-16 | Alliedsignal Power Systems Inc. | Microturbine power of generating system including a battery source for supplying startup power |
US6100809A (en) | 1998-11-24 | 2000-08-08 | Alliedsignal Inc. | Bearing wear detection system |
US6158953A (en) | 1998-12-04 | 2000-12-12 | Lamont; John S | Wind turbine with variable position blades |
US6218760B1 (en) * | 1998-12-22 | 2001-04-17 | Matsushita Electric Industrial Co., Ltd. | Brushless motor |
US6175210B1 (en) | 1998-12-23 | 2001-01-16 | Alliedsignal Power Systems Inc. | Prime mover for operating an electric motor |
US6363706B1 (en) | 1998-12-24 | 2002-04-02 | Alliedsignal | Apparatus and method to increase turbine power |
US6246138B1 (en) | 1998-12-24 | 2001-06-12 | Honeywell International Inc. | Microturbine cooling system |
US6057622A (en) | 1999-01-21 | 2000-05-02 | Lockhead Martin Energy Research Corporation | Direct control of air gap flux in permanent magnet machines |
EP1153469B1 (de) * | 1999-02-12 | 2003-05-02 | Helmut Schiller | Elektrische maschine |
US5998902A (en) | 1999-02-15 | 1999-12-07 | Brunswick Corporation | Magnet ring assembly for an electrical generator |
US6066906A (en) | 1999-02-17 | 2000-05-23 | American Superconductor Corporation | Rotating machine having superconducting windings |
US6104097A (en) | 1999-03-04 | 2000-08-15 | Lehoczky; Kalman N. | Underwater hydro-turbine for hydrogen production |
US6093986A (en) | 1999-03-08 | 2000-07-25 | Emerson Electric Co. | Method and apparatus for powering shaft-mounted sensors on motors and generators |
US6541887B2 (en) * | 1999-03-12 | 2003-04-01 | Hideo Kawamura | Permanent-magnet motor-generator with voltage stabilizer |
US6445105B1 (en) * | 1999-04-06 | 2002-09-03 | General Electric Company | Axial flux machine and method of fabrication |
GB9910393D0 (en) | 1999-05-05 | 1999-07-07 | Lucas Ind Plc | Electrical generator,an aero-engine including such a generator and an aircraft including such a generator |
US6087750A (en) | 1999-05-18 | 2000-07-11 | Pacific Scientific Electro Kinetics Division | Permanent magnet generator |
US6512305B1 (en) | 1999-05-26 | 2003-01-28 | Active Power, Inc. | Method and apparatus having a turbine working in different modes for providing an uninterruptible supply of electric power to a critical load |
US6255743B1 (en) | 1999-05-26 | 2001-07-03 | Active Power, Inc. | Method and apparatus for providing an uninterruptible supply of electric power to a critical load |
US6361268B1 (en) | 1999-06-21 | 2002-03-26 | Sri International | Frictionless transport apparatus and method |
GB9914402D0 (en) | 1999-06-22 | 1999-08-18 | Univ Warwick | Electrial machines |
GB9916778D0 (en) | 1999-07-16 | 1999-09-15 | Kelly H P G | Safeguarding wave to electrical power generating apparatus |
US6189621B1 (en) | 1999-08-16 | 2001-02-20 | Smart Drilling And Completion, Inc. | Smart shuttles to complete oil and gas wells |
US6199381B1 (en) | 1999-09-02 | 2001-03-13 | Sunpower, Inc. | DC centering of free piston machine |
US6194802B1 (en) * | 1999-09-08 | 2001-02-27 | Dantam K. Rao | Axial gap motor with radially movable magnets to increase speed capablity |
US6407465B1 (en) | 1999-09-14 | 2002-06-18 | Ge Harris Railway Electronics Llc | Methods and system for generating electrical power from a pressurized fluid source |
US6373162B1 (en) * | 1999-11-11 | 2002-04-16 | Ford Global Technologies, Inc. | Permanent magnet electric machine with flux control |
US6309268B1 (en) | 1999-11-15 | 2001-10-30 | Westerbeke Corporation | Marine outboard electrical generator and assembly method |
JP2001161098A (ja) | 1999-11-30 | 2001-06-12 | Tokyo Gas Co Ltd | 逆潮流が認められる瞬時受電電力制御システム |
US6405522B1 (en) | 1999-12-01 | 2002-06-18 | Capstone Turbine Corporation | System and method for modular control of a multi-fuel low emissions turbogenerator |
US6274945B1 (en) | 1999-12-13 | 2001-08-14 | Capstone Turbine Corporation | Combustion control method and system |
US6275012B1 (en) | 1999-12-16 | 2001-08-14 | C.E. Niehoff & Co. | Alternator with regulation of multiple voltage outputs |
US6269639B1 (en) | 1999-12-17 | 2001-08-07 | Fantom Technologies Inc. | Heat engine |
US6279318B1 (en) | 1999-12-17 | 2001-08-28 | Fantom Technologies Inc. | Heat exchanger for a heat engine |
US6336326B1 (en) | 1999-12-17 | 2002-01-08 | Fantom Technologies Inc. | Apparatus for cooling a heat engine |
US6286310B1 (en) | 1999-12-17 | 2001-09-11 | Fantom Technologies Inc. | Heat engine |
US6269640B1 (en) | 1999-12-17 | 2001-08-07 | Fantom Technologies Inc. | Heat engine |
US6311490B1 (en) | 1999-12-17 | 2001-11-06 | Fantom Technologies Inc. | Apparatus for heat transfer within a heat engine |
US6345666B1 (en) | 1999-12-17 | 2002-02-12 | Fantom Technologies, Inc. | Sublouvred fins and a heat engine and a heat exchanger having same |
US6332319B1 (en) | 1999-12-17 | 2001-12-25 | Fantom Technologies Inc. | Exterior cooling for a heat engine |
US6531799B1 (en) | 1999-12-20 | 2003-03-11 | Ford Global Technologies, Inc. | Hybrid electric machine with two rotors, permanent magnet poles and controllable field current |
US6339271B1 (en) | 1999-12-21 | 2002-01-15 | Bombardier Motor Corporation Of America | Molded flywheel magnet cage |
JP3719136B2 (ja) * | 2000-01-17 | 2005-11-24 | 日産自動車株式会社 | 回転電機および駆動システム |
GB0001121D0 (en) | 2000-01-19 | 2000-03-08 | Rolls Royce Plc | Rotor disc |
US6293101B1 (en) | 2000-02-11 | 2001-09-25 | Fantom Technologies Inc. | Heat exchanger in the burner cup of a heat engine |
US6226990B1 (en) | 2000-02-11 | 2001-05-08 | Fantom Technologies Inc. | Heat engine |
US6279319B1 (en) | 2000-02-11 | 2001-08-28 | Fantom Technologies Inc. | Heat engine |
GB0004018D0 (en) | 2000-02-22 | 2000-04-12 | Lucas Industries Ltd | Control circuit for electrical generator |
US6453658B1 (en) | 2000-02-24 | 2002-09-24 | Capstone Turbine Corporation | Multi-stage multi-plane combustion system for a gas turbine engine |
US6492756B1 (en) * | 2000-04-05 | 2002-12-10 | Wavecrest Laboratories, Llc | Rotary electric motor having magnetically isolated stator and rotor groups |
US6566764B2 (en) | 2000-05-23 | 2003-05-20 | Vestas Wind Systems A/S, R&D | Variable speed wind turbine having a matrix converter |
US6647716B2 (en) | 2000-06-08 | 2003-11-18 | Secil Boyd | Ocean wave power generator (a “modular power-producing network”) |
US6291901B1 (en) | 2000-06-13 | 2001-09-18 | ćEFO NEVRES | Electrical power generating tire system |
GB0016182D0 (en) | 2000-06-30 | 2000-08-23 | Lucas Industries Ltd | Controller for a continuously variable transmission |
US6463730B1 (en) | 2000-07-12 | 2002-10-15 | Honeywell Power Systems Inc. | Valve control logic for gas turbine recuperator |
US6504281B1 (en) | 2000-07-12 | 2003-01-07 | Electric Boat Corporation | Synchronous machine fault tolerant arrangement |
DE10040273A1 (de) | 2000-08-14 | 2002-02-28 | Aloys Wobben | Windenergieanlage |
US6538358B1 (en) | 2000-08-28 | 2003-03-25 | Delphi Technologies, Inc. | Hybrid electrical machine with axially extending magnets |
US6362718B1 (en) | 2000-09-06 | 2002-03-26 | Stephen L. Patrick | Motionless electromagnetic generator |
US6297977B1 (en) | 2000-09-12 | 2001-10-02 | Honeywell Power Systems Inc. | Parallel operation of multiple generators |
JP4269544B2 (ja) * | 2000-09-14 | 2009-05-27 | 株式会社デンソー | 複数ロータ型同期機 |
JP2002112593A (ja) * | 2000-09-27 | 2002-04-12 | Hideo Kawamura | 複数系統の電力発電特性を持つ発電装置 |
US6455974B1 (en) | 2000-09-28 | 2002-09-24 | General Electric Company | Combined Delta-Wye armature winding for synchronous generators and method |
US6675583B2 (en) | 2000-10-04 | 2004-01-13 | Capstone Turbine Corporation | Combustion method |
EP1328515B1 (en) | 2000-10-16 | 2008-08-06 | F. Hoffmann-La Roche AG | Indoline derivatives and their use as 5-ht2 receptor ligands |
US6634176B2 (en) | 2000-11-02 | 2003-10-21 | Capstone Turbine Corporation | Turbine with exhaust vortex disrupter and annular recuperator |
WO2002037649A1 (en) | 2000-11-02 | 2002-05-10 | Dinyu Qin | Rotor shield for magnetic rotary machine |
US6518680B2 (en) | 2000-11-17 | 2003-02-11 | Mcdavid, Jr. William K. | Fluid-powered energy conversion device |
US6672413B2 (en) | 2000-11-28 | 2004-01-06 | Siemens Westinghouse Power Corporation | Remote controlled inspection vehicle utilizing magnetic adhesion to traverse nonhorizontal, nonflat, ferromagnetic surfaces |
US6655341B2 (en) | 2000-12-19 | 2003-12-02 | Westerbeke Corporation | Oil sump for vertically shafted engines |
WO2002057623A1 (en) | 2001-01-16 | 2002-07-25 | Ocean Power Technologies, Inc. | Improved wave energy converter (wec) |
US6622487B2 (en) | 2001-01-16 | 2003-09-23 | Rolls-Royce Plc | Fluid flow control valve |
CN1308410A (zh) * | 2001-01-18 | 2001-08-15 | 颜昌栋 | 盘式磁动力机 |
DE10104669C5 (de) | 2001-02-02 | 2005-12-15 | Klement, Klaus-Dieter | Antriebskopf für NC-gesteuerte Stellbewegungen einer Werkzeugspindel oder eines Werkstücktisches um mindestens eine Drehachse |
US6606864B2 (en) | 2001-02-13 | 2003-08-19 | Robin Mackay | Advanced multi pressure mode gas turbine |
US6526757B2 (en) | 2001-02-13 | 2003-03-04 | Robin Mackay | Multi pressure mode gas turbine |
JP3879412B2 (ja) | 2001-02-28 | 2007-02-14 | 株式会社日立製作所 | 発電システム |
US6732531B2 (en) | 2001-03-16 | 2004-05-11 | Capstone Turbine Corporation | Combustion system for a gas turbine engine with variable airflow pressure actuated premix injector |
US6503056B2 (en) | 2001-04-24 | 2003-01-07 | Honeywell International Inc. | Heating device and method for deployable ram air turbine |
WO2002089291A2 (de) * | 2001-04-30 | 2002-11-07 | Schwericke-Radobersky, Ute | Elektrische synchronmaschine mit toroidaler wicklung |
US20020167236A1 (en) | 2001-05-09 | 2002-11-14 | Harmonic Drive, Inc. | Linear magnetic harmonic motion converter |
US6631080B2 (en) | 2001-06-06 | 2003-10-07 | Hybrid Power Generation Systems Llc | Systems and methods for boosting DC link voltage in turbine generators |
US6380648B1 (en) | 2001-06-11 | 2002-04-30 | Chun-Pu Hsu | Wheel drum structure of inner stator portion with inbuilt switches |
WO2003014551A1 (en) | 2001-07-27 | 2003-02-20 | Elliott Energy Systems, Inc. | Method for ignition and start up of a turbogenerator |
JP4680442B2 (ja) | 2001-08-10 | 2011-05-11 | ヤマハ発動機株式会社 | モータの回転子 |
US7002259B2 (en) | 2001-08-22 | 2006-02-21 | Clipper Windpower Technology, Inc. | Method of controlling electrical rotating machines connected to a common shaft |
US6545373B1 (en) | 2001-08-24 | 2003-04-08 | Smiths Aerospace, Inc. | System and method for providing ballast loading for a turbo-generator |
DE10147073A1 (de) * | 2001-09-25 | 2003-04-30 | Minebea Co Ltd | Elektromotor, insbesondere elektronisch kommutierter Gleichstrommotor |
US6617746B1 (en) * | 2001-10-01 | 2003-09-09 | Wavecrest Laboratories, Llc | Rotary electric motor having axially aligned stator poles and/or rotor poles |
US6777851B2 (en) * | 2001-10-01 | 2004-08-17 | Wavecrest Laboratories, Llc | Generator having axially aligned stator poles and/or rotor poles |
US6717324B2 (en) * | 2001-10-15 | 2004-04-06 | Ming Yan Chen | Magnet motor device |
US6724115B2 (en) | 2001-10-24 | 2004-04-20 | Denso Corporation | High electrical and mechanical response structure of motor-generator |
US6710491B2 (en) | 2001-10-30 | 2004-03-23 | Tonic Fitness Technology, Inc. | Roller device with dynamic function |
US6727632B2 (en) * | 2001-11-27 | 2004-04-27 | Denso Corporation | Flat rotary electric machine |
KR100443737B1 (ko) | 2001-12-03 | 2004-08-09 | 삼성전기주식회사 | 스태핑 모터 |
US6702404B2 (en) | 2001-12-20 | 2004-03-09 | Visteon Global Technologies, Inc. | Hybrid electromagnetic/friction actuation system |
US6737829B2 (en) | 2002-01-18 | 2004-05-18 | Janaki Technologies, Inc. | Portable electronic device charger and a method for using the same |
US6710502B2 (en) | 2002-02-07 | 2004-03-23 | Wavecrest Laboratories, Llc | Rotary electric motor having at least three axially aligned stator poles and/or rotor poles |
US6759775B2 (en) | 2002-02-13 | 2004-07-06 | Abacat, Inc. | Permanent magnet actuating mechanism |
US6565243B1 (en) | 2002-03-25 | 2003-05-20 | James Cheung | Lighted wheel |
JP2003284726A (ja) * | 2002-03-28 | 2003-10-07 | Olympus Optical Co Ltd | 術具保持具 |
EP1363019A3 (de) | 2002-05-18 | 2010-08-25 | Siemens Aktiengesellschaft | Mehrstufiger Windgenerator mit Wellen und Kupplungsystem |
JP3680213B2 (ja) * | 2002-05-30 | 2005-08-10 | デンソートリム株式会社 | 三相磁石式発電機 |
EP1516416A1 (en) * | 2002-06-04 | 2005-03-23 | Wavecrest Laboratories, LLC | Rotary electric motor having a plurality of shifted stator poles and/or rotor poles |
US6666027B1 (en) | 2002-07-15 | 2003-12-23 | General Electric Company | Turbine power generation systems and methods using off-gas fuels |
US6703719B1 (en) | 2002-08-28 | 2004-03-09 | General Electric Company | Systems and methods for managing a battery source associated with a microturbine power generating system |
JP2004140937A (ja) * | 2002-10-18 | 2004-05-13 | Fujitsu General Ltd | アキシャルギャップ型電動機 |
US6756719B1 (en) | 2002-11-07 | 2004-06-29 | Ming-Hua Fu | Electrical generator with separated coil and set of magnets |
WO2004073157A2 (en) * | 2003-02-06 | 2004-08-26 | Wavecrest Laboratories Llc | Adaptive control architecture for electric machines |
FR2852162B1 (fr) * | 2003-03-06 | 2005-09-23 | Leroy Somer Moteurs | Machine electrique tournante comportant un stator et deux rotors |
US6894455B2 (en) * | 2003-04-30 | 2005-05-17 | Remy Inc. | Performance improvement of integrated starter alternator by changing stator winding connection |
US6897595B1 (en) | 2004-03-29 | 2005-05-24 | Kevin J. Chiarenza | Axial flux motor with active flux shaping |
US20040251761A1 (en) * | 2003-06-12 | 2004-12-16 | Hirzel Andrew D. | Radial airgap, transverse flux motor |
US7400077B2 (en) * | 2004-03-23 | 2008-07-15 | Electric Motor Development, Inc. | Electric motor having multiple armatures |
US7081696B2 (en) * | 2004-08-12 | 2006-07-25 | Exro Technologies Inc. | Polyphasic multi-coil generator |
ES2901709T3 (es) | 2005-09-27 | 2022-03-23 | Siemens Gamesa Renewable Energy Innovation & Technology SL | Sistema convertidor y método de funcionamiento del mismo |
US7446435B2 (en) | 2005-11-30 | 2008-11-04 | General Electric Company | Power converter system and method |
WO2007092621A2 (en) | 2006-02-09 | 2007-08-16 | Windera Power Systems, Inc. | Turbine with constant voltage and frequency output |
JP2009540776A (ja) * | 2006-06-08 | 2009-11-19 | エクスロ テクノロジーズ インコーポレイテッド | 多相複数コイル発電機 |
WO2008007782A1 (en) | 2006-07-13 | 2008-01-17 | Zeon Corporation | Method for producing circularly polarized light isolation sheet, and apparatus for coating film formation |
US7348764B2 (en) | 2006-07-13 | 2008-03-25 | Ocean Power Technologies, Inc. | Coil switching of an electric generator |
KR100870738B1 (ko) | 2007-01-25 | 2008-11-26 | 태창엔이티 주식회사 | 에이에프피엠 코어리스형 멀티 발전기 및 모터 |
-
2007
- 2007-06-08 JP JP2009513527A patent/JP2009540776A/ja active Pending
- 2007-06-08 CN CN200780029454XA patent/CN101501963B/zh not_active Expired - Fee Related
- 2007-06-08 EA EA201200033A patent/EA201200033A1/ru unknown
- 2007-06-08 KR KR1020097000348A patent/KR101484980B1/ko active IP Right Grant
- 2007-06-08 CN CN2012101139953A patent/CN102647058A/zh active Pending
- 2007-06-08 US US11/760,704 patent/US20080088200A1/en not_active Abandoned
- 2007-06-08 EA EA200802419A patent/EA016263B1/ru not_active IP Right Cessation
- 2007-06-08 CA CA002654462A patent/CA2654462A1/en not_active Abandoned
- 2007-06-08 BR BRPI0713121-6A patent/BRPI0713121A2/pt not_active IP Right Cessation
- 2007-06-08 AU AU2007257187A patent/AU2007257187A1/en not_active Abandoned
- 2007-06-08 EP EP07719956.0A patent/EP2033299A4/en not_active Withdrawn
- 2007-06-08 WO PCT/CA2007/001040 patent/WO2007140624A1/en active Application Filing
-
2009
- 2009-10-20 US US12/582,655 patent/US8106563B2/en active Active
-
2011
- 2011-12-23 US US13/336,727 patent/US20120153757A1/en not_active Abandoned
-
2013
- 2013-05-21 US US13/899,420 patent/US20130249502A1/en not_active Abandoned
-
2014
- 2014-02-20 US US14/185,525 patent/US9584056B2/en active Active
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11296638B2 (en) | 2014-08-01 | 2022-04-05 | Falcon Power, LLC | Variable torque motor/generator/transmission |
US11362611B2 (en) | 2014-08-01 | 2022-06-14 | Falcon Power, LLC | Variable torque motor/generator/transmission |
US11695364B2 (en) | 2014-08-01 | 2023-07-04 | Falcon Power, LLC | Variable torque motor/generator/transmission |
US11888421B2 (en) | 2014-08-01 | 2024-01-30 | Falcon Power, LLC | Variable torque motor/generator/transmission |
CN109314482A (zh) * | 2016-04-13 | 2019-02-05 | 福尔肯电力有限责任公司 | 可变转矩马达/发电机/传动装置 |
CN109314482B (zh) * | 2016-04-13 | 2022-08-09 | 福尔肯电力有限责任公司 | 可变转矩马达/发电机/传动装置 |
CN110945764A (zh) * | 2017-06-21 | 2020-03-31 | 英泰利泰克私人有限公司 | 改进的磁性离合器组件 |
CN114556753A (zh) * | 2019-08-09 | 2022-05-27 | 维也纳科技大学 | 耦合的电机系统 |
Also Published As
Publication number | Publication date |
---|---|
JP2009540776A (ja) | 2009-11-19 |
KR20090033866A (ko) | 2009-04-06 |
KR101484980B1 (ko) | 2015-01-28 |
US20120153757A1 (en) | 2012-06-21 |
BRPI0713121A2 (pt) | 2012-04-17 |
EA200802419A1 (ru) | 2009-06-30 |
US9584056B2 (en) | 2017-02-28 |
US20100090553A1 (en) | 2010-04-15 |
US20080088200A1 (en) | 2008-04-17 |
CA2654462A1 (en) | 2007-12-13 |
EA016263B1 (ru) | 2012-03-30 |
CN101501963B (zh) | 2012-06-13 |
AU2007257187A1 (en) | 2007-12-13 |
US20140167708A1 (en) | 2014-06-19 |
WO2007140624A1 (en) | 2007-12-13 |
US20130249502A1 (en) | 2013-09-26 |
US8106563B2 (en) | 2012-01-31 |
EP2033299A1 (en) | 2009-03-11 |
EP2033299A4 (en) | 2017-02-22 |
EA201200033A1 (ru) | 2012-05-30 |
CN101501963A (zh) | 2009-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101501963B (zh) | 多相多线圈发电机 | |
US7960887B2 (en) | Permanent-magnet switched-flux machine | |
US10476362B2 (en) | Multi-tunnel electric motor/generator segment | |
EP1461854B1 (en) | Electrical machine | |
EP2630721B1 (en) | An improved magnetic motor | |
US20140091661A1 (en) | Polyphasic multi-coil electric device | |
CN101847918A (zh) | 用于智能致动器的优化电动机器 | |
CN101981785A (zh) | 旋转电机 | |
CN101847922A (zh) | 用于智能致动器的优化电动机器 | |
EP2528207A1 (en) | Brushless electric machine | |
WO2019125347A1 (en) | Contra-rotating synchronous electro-mechanical converter | |
US10164509B2 (en) | Separately excited electric machine with at least one primary magnetic circuit and at least two secondary magnetic circuits | |
AU2013222022A1 (en) | Poly-phasic multi-coil generator | |
KR102339219B1 (ko) | 신형 4고정자 4회전자 조합 에너지 절약 전기기계 | |
JP2010226911A (ja) | 高効率発電及び動力装置。 | |
WO2016123638A1 (en) | Efficient electric generator | |
KR20230004688A (ko) | 스테이터 코어, 스테이터, 및 그를 구비한 파워 생성 시스템 | |
CN114938085A (zh) | 一种e型铁芯混合励磁低速发电机 | |
Trzynadlowski et al. | Permanent-magnet switched-flux machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20120822 |