CN102604335A - 树脂颗粒和制备该树脂颗粒的方法 - Google Patents

树脂颗粒和制备该树脂颗粒的方法 Download PDF

Info

Publication number
CN102604335A
CN102604335A CN2011103181382A CN201110318138A CN102604335A CN 102604335 A CN102604335 A CN 102604335A CN 2011103181382 A CN2011103181382 A CN 2011103181382A CN 201110318138 A CN201110318138 A CN 201110318138A CN 102604335 A CN102604335 A CN 102604335A
Authority
CN
China
Prior art keywords
resin
mole
dioxide granule
silica dioxide
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011103181382A
Other languages
English (en)
Other versions
CN102604335B (zh
Inventor
吉川英昭
钱谷优香
奥野广良
野崎骏介
川岛信一郎
竹内荣
角仓康夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011008842A external-priority patent/JP5724401B2/ja
Priority claimed from JP2011010052A external-priority patent/JP5741005B2/ja
Priority claimed from JP2011050410A external-priority patent/JP5884276B2/ja
Priority claimed from JP2011055609A external-priority patent/JP2012189960A/ja
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Publication of CN102604335A publication Critical patent/CN102604335A/zh
Application granted granted Critical
Publication of CN102604335B publication Critical patent/CN102604335B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/128Polymer particles coated by inorganic and non-macromolecular organic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0825Developers with toner particles characterised by their structure; characterised by non-homogenuous distribution of components
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/097Plasticisers; Charge controlling agents
    • G03G9/09708Inorganic compounds
    • G03G9/09716Inorganic compounds treated with organic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/097Plasticisers; Charge controlling agents
    • G03G9/09708Inorganic compounds
    • G03G9/09725Silicon-oxides; Silicates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Silicon Compounds (AREA)

Abstract

本发明提供一种树脂颗粒,其包含树脂母粒和从外部添加到所述树脂母粒的表面之上的二氧化硅颗粒,其中,所述二氧化硅颗粒的初级颗粒的体积平均粒径为100nm至500nm,粒度分布指数为1.40至1.80,平均圆度为0.5至0.85,并且所述初级颗粒具有由以下表达式(1)表示的与平均圆度和体积平均粒径(nm)相关的回归线:平均圆度=α×(体积平均粒径)/1000+β (1)其中α为-2.5至-0.9,并且β为0.8至1.2。与二氧化硅颗粒未附着至树脂母粒的表面的情况相比,所述树脂颗粒能够保持流动性。

Description

树脂颗粒和制备该树脂颗粒的方法
技术领域
本发明涉及树脂颗粒和制备该树脂颗粒的方法。
背景技术
树脂颗粒被用于调色剂、粉末涂料、凝塑成形材料(slush moldingmaterials)的粘结剂等。此处,(例如)为了增强树脂的强度或者粉末的流动性,或者为了抑制堵塞,可能存在这样的情况:进行设计使二氧化硅颗粒附着至树脂颗粒,由此使该树脂颗粒功能化。可以认为这样的功能往往取决于二氧化硅颗粒作为树脂颗粒的外部添加剂时的形状或者附着状态,并且已经提出了具有各种形状或者附着方式的二氧化硅颗粒。
例如,为了提高流平性,并且使涂膜薄化,专利文献JP-A-8-283617提出了一种粉末涂料,其包含粘结剂树脂和固化剂,并且具有这样的构造,在该构造中,基于100重量份的粉末颗粒,使每单位面积的平衡吸附水含量不大于2×10-5g/m2的疏水性二氧化硅细粉末以0.01重量份至5重量份的量附着在所述粉末颗粒的表面上,所述粉末颗粒的体积平均粒径为5μm至20μm。
专利文献JP-A-9-143401提出,为了防止二氧化硅细粉末从涂膜上脱离,通过加热(烘焙)使二氧化硅表面上的大量(等于或大于1.5/nm2)硅烷醇基团与作为固化剂的聚异氰酸酯反应并结合,从而使二氧化硅细粉末牢固地附着至粉末颗粒的表面。
专利文献JP-A-4-25575公开了,为了抑制粉末之间粘连,通过以下方法构建热塑性树脂粉末组合物:将粒径不大于20μm的无机抗粘连剂(B)添加悬浮聚合物(A)中,该悬浮聚合物衍生自(1)以异氰酸酯基团封端的氨基甲酸酯预聚物;(2)聚氨酯树脂类分散剂,其衍生自包含具有活性氢的聚丁二烯衍生物的原料;和(3)低分子量聚胺。
专利文献JP-A-6-41419公开了,通过将特定量的二氧化硅气溶胶添加到粉末化的聚氨酯树脂并与之共混,从而提高流动性和抗粘连性。
此外,关于用于凝塑成形应用的树脂粉末,为了减小树脂粉末的熔融特性的缺陷和来自模具的成型品的防粘性缺陷,专利文献JP-A-2000-28319提出了一种包含二氧化硅细粉末(A)的组合物,该二氧化硅细粉末(A)主要由热塑性树脂粉末(B)组成,并且其体积平均粒径不大于10μm、孔体积不大于1.5mL/g。
发明内容
本发明的目的在于提供一种树脂颗粒,与二氧化硅颗粒未附着至树脂母粒的表面的情况相比,该树脂颗粒能够保持流动性,其中所述二氧化硅颗粒的初级颗粒的体积平均粒径为100nm至500nm,粒度分布指数为1.40至1.80,平均圆度为0.5至0.85,并且具有由表达表达式(1)表示的与圆度和体积平均粒径(nm)相关的回归线。
(1)一种树脂颗粒,其包含:树脂母粒,和从外部加到所述树脂母粒的表面之上的二氧化硅颗粒,其中,所述二氧化硅颗粒的初级颗粒的体积平均粒径为100nm至500nm,粒度分布指数为1.40至1.80,平均圆度为0.5至0.85,并且满足由以下表达表达式(1)表示的与平均圆度和体积平均粒径(nm)相关的回归线:
平均圆度=α×(体积平均粒径)/1000+β(1)
其中α为-2.5至-0.9,并且β为0.8至1.2。
(2)根据(1)所述的树脂颗粒,其中所述二氧化硅颗粒的初级颗粒的体积平均粒径为100nm至350nm。
(3)根据(1)所述的树脂颗粒,其中所述二氧化硅颗粒的初级颗粒的体积平均粒径为100nm至250nm。
(4)根据(1)所述的树脂颗粒,其中所述二氧化硅颗粒的初级颗粒的粒度分布指数为1.45至1.75。
(5)根据(1)所述的树脂颗粒,其中所述二氧化硅颗粒的初级颗粒的平均圆度为0.6至0.8。
(6)根据(1)所述的树脂颗粒,其中α为-2.0至-1.0,并且β为0.9至1.1。
(7)根据(1)所述的树脂颗粒,其中,相对于所述树脂母粒的表面积,从外部添加到所述树脂颗粒的表面之上的二氧化硅颗粒的覆盖率为5%至80%,所述覆盖率由下式(i)所得:
(√3×B×C×D)/(2×π×F×E×0.001×A))×100(i)
其中A的单位为“g”,表示所述树脂母粒的添加量;B的单位为g/cm3,表示所述树脂母粒的比重;C的单位为“μm”,表示所述树脂母粒的体积平均粒径;D的单位为“g”,表示所述二氧化硅颗粒的添加量,E的单位为“g/cm3”,表示所述二氧化硅颗粒的比重,并且F的单位为“nm”,表示所述二氧化硅颗粒的体积平均粒径。
(8)一种制备树脂颗粒的方法,该方法包括:
制备碱性催化剂溶液,该溶液包含在含醇溶剂中浓度为0.6摩尔/L至0.85摩尔/L的碱性催化剂;
供应四烷氧基硅烷,并且还供应碱性催化剂,从而获得二氧化硅颗粒,其中相对于所述碱性催化剂溶液中的醇,所述四烷氧基硅烷的供应量为0.006摩尔/(摩尔·分钟)至0.009摩尔/(摩尔·分钟),并且其中对应于每分钟所供应的所述四烷氧基硅烷的每摩尔总供应量,所述碱性催化剂的量为0.1摩尔至0.4摩尔;以及
将所获得的二氧化硅颗粒附着到所述树脂母粒的表面之上。
(9)根据(8)所述的制备树脂颗粒的方法,其中所述碱性催化剂选自由氨、尿素、一元胺和季铵盐组成的组。
(10)根据(8)所述的制备树脂颗粒的方法,其中所述碱性催化剂的含量为0.63摩尔/L至0.78摩尔/L。
(11)根据(8)所述的制备树脂颗粒的方法,其中所述四烷氧基硅烷选自由四甲氧基硅烷、四乙氧基硅烷、四丙氧基硅烷和四丁氧基硅烷组成的组。
(12)根据(8)所述的制备树脂颗粒的方法,其中相对于所述碱性催化剂溶液中的醇,所述四烷氧基硅烷的供应量为0.0065摩尔/(摩尔·分钟)至0.0085摩尔/(摩尔·分钟)。
(13)根据(8)所述的制备树脂颗粒的方法,其中相对于所述碱性催化剂溶液中的醇,所述四烷氧基硅烷的供应量为0.0070摩尔/(摩尔·分钟)至0.0080摩尔/(摩尔·分钟)。
(14)根据(8)所述的制备树脂颗粒的方法,其中在供应所述四烷氧基硅烷时,所述碱性催化剂溶液中的温度为5℃至50℃。
(15)根据(8)所述的制备树脂颗粒的方法,其还包括:利用疏水处理剂对所述二氧化硅颗粒的表面进行疏水处理。
根据上述(1)所述的本发明,提供了一种树脂颗粒,与二氧化硅颗粒未附着至树脂母粒的表面的情况相比,该树脂颗粒能够保持流动性,其中所述二氧化硅颗粒的初级颗粒的体积平均粒径为100nm至500nm,粒度分布指数为1.40至1.80,平均圆度为0.5至0.85,并且所述二氧化硅颗粒的初级颗粒具有由表达式(1)表示的与圆度和体积平均粒径(nm)相关的回归线。
根据上述(2)所述的发明,提供了一种树脂颗粒,与二氧化硅颗粒的初级颗粒的体积平均粒径不为100nm至350nm的情况相比,所述树脂颗粒能够保持流动性。
根据上述(3)所述的发明,提供了一种树脂颗粒,与所述二氧化硅颗粒的初级颗粒的体积平均粒径不为100nm至250nm的情况相比,所述树脂颗粒能够保持流动性。
根据上述(4)所述的发明,提供了一种树脂颗粒,与所述二氧化硅颗粒的初级颗粒的粒度分布指数不为1.45至1.75的情况相比,所述树脂颗粒能够保持流动性。
根据上述(5)所述的发明,提供了一种树脂颗粒,与所述二氧化硅颗粒的初级颗粒的平均圆度不为0.6至0.8的情况相比,所述树脂颗粒能够保持流动性。
根据上述(6)所述的发明,提供了一种树脂颗粒,与α不为-2.0至-1.0,并且β不为0.9至1.1的情况相比,所述树脂颗粒能够保持流动性。
根据上述(7)所述的发明,提供了一种树脂颗粒,与相对于树脂母粒的表面积,从外部添加到所述树脂颗粒的表面之上的二氧化硅颗粒的覆盖率(由式(i)所得)不为5%至80%的情况相比,所述树脂颗粒能够保持流动性。
根据上述(8)所述的发明,提供了一种制备树脂颗粒的方法,与在由上述的步骤获得的二氧化硅颗粒未附着至树脂母粒的表面的情况相比,由所述方法获得的树脂颗粒能够保持流动性。
根据上述(9)所述的发明,提供了一种制备树脂颗粒的方法,与所述碱性催化剂未选自由氨、尿素、一元胺和季铵盐组成的组的情况相比,由所述方法获得的树脂颗粒能够保持流动性。
根据上述(10)所述的发明,提供了一种制备树脂颗粒的方法,与所述碱性催化剂的含量不为0.63摩尔/L至0.78摩尔/L的情况相比,由所述方法获得的树脂颗粒能够保持流动性。
根据上述(11)所述的发明,提供了一种制备树脂颗粒的方法,与所述四烷氧基硅烷未选自由四甲氧基硅烷、四乙氧基硅烷、四丙氧基硅烷和四丁氧基硅烷组成的组的情况相比,由所述方法获得的树脂颗粒能够保持流动性。
根据上述(12)所述的发明,提供了一种制备树脂颗粒的方法,与相对于所述碱性催化剂溶液中的醇所述四烷氧基硅烷的供应量不为0.0065摩尔/(摩尔·分钟)至0.0085摩尔/(摩尔·分钟)的情况相比,由所述方法获得的树脂颗粒能够保持流动性。
根据上述(13)所述的发明,提供了一种制备树脂颗粒的方法,与相对于所述碱性催化剂溶液中的醇所述四烷氧基硅烷的供应量不为0.0070摩尔/(摩尔·分钟)至0.0080摩尔/(摩尔·分钟)的情况相比,由所述方法获得的树脂颗粒能够保持流动性。
根据上述(14)所述的发明,提供了一种制备树脂颗粒的方法,与在供应所述四烷氧基硅烷时,所述碱性催化剂溶液中的温度不为5℃至50℃的情况相比,由所述方法获得的树脂颗粒能够保持流动性。
根据上述(15)所述的发明,提供了一种制备树脂颗粒的方法,与制备树脂颗粒的方法不包括利用疏水处理剂对所述二氧化硅颗粒的表面进行疏水处理的情况相比,由所述方法获得的树脂颗粒能够保持流动性。
具体实施方式
<树脂颗粒>
第一示例性实施方案的树脂颗粒包括树脂母粒和从外部添加到该树脂母粒的表面之上的二氧化硅颗粒,该二氧化硅颗粒是这样的二氧化硅颗粒:其初级颗粒的体积平均粒径为100nm至500nm,粒度分布指数为1.40至1.80,平均圆度为0.5至0.85,并且所述初级颗粒具有由表达表达式(1)表示的与平均圆度和体积平均粒径(nm)相关的回归线:
圆度=α×(体积平均粒径)/1000+β    (1)
在表达式(1)中,α为-2.5至-0.9(-2.5≤α≤-0.9),并且β为0.8至1.2(0.8≤β≤1.2)。。
具有上述的构造的、从外部添加到树脂母粒的表面之上的二氧化硅颗粒还被称为“特定二氧化硅颗粒”。此外,当简称为“初级颗粒”时,其是指特定二氧化硅颗粒的初级颗粒。
“圆度”是指特定二氧化硅颗粒的球状程度,并且当圆度为1时,其表示颗粒为真正的球体。特定二氧化硅颗粒为具有这样的形状的颗粒,其初级颗粒的平均圆度不大于0.85,并且与真正的球体相比,存在大量的凹凸不平。圆度不大于0.85的形状在下文中有时称为“异形”(heterogeneous shape),而圆度超过0.85的形状在下文中有时称为“球形”。即,特定二氧化硅颗粒的形状为异形。
当第一示例性实施方案的树脂颗粒被制备成特定二氧化硅颗粒附着至树脂母粒的表面之上的颗粒时,则树脂颗粒保持了流动性。顺便提及,本文所谓的“树脂母粒”是指这样的树脂颗粒,在该树脂颗粒中,没有从外部添加特定二氧化硅颗粒。
虽然第一示例性实施方案的树脂颗粒保持流动性的原因尚未明确,但可以认为这由以下原因产生。
从外部添加到树脂母粒的表面之上的特定二氧化硅颗粒是具有以下特征的二氧化硅颗粒:具有已经描述过的体积平均粒径的异形初级颗粒的粒度分布具有宽分布宽度,并且其圆度随体积平均粒径的增加而降低(见表达式(1))。
即,特定二氧化硅颗粒是具有宽分布宽度的二氧化硅颗粒,包括具有相对小粒径且相对大圆度的初级颗粒到相对大粒径且相对小圆度的初级颗粒。
此处,二氧化硅颗粒通常具有这样的倾向:其流动性随粒径的增加而变好,而随粒径的降低而劣化。在另一方面,二氧化硅颗粒具有这样的倾向:其流动性随圆度的增加而变好,而随圆度的降低而劣化。
由于特定二氧化硅颗粒具有上述的宽分布宽度,因此可以认为,在保持全体颗粒为异形的同时,流动性就得到了保证。当特定二氧化硅颗粒从外部添加到树脂母粒的表面上时,可以认为,即使在从外部施加机械负荷时,特定二氧化硅颗粒对树脂颗粒的负荷由于流动性而得到了分散。
此外,在第一示例性实施方案的二氧化硅颗粒中,由于圆度随粒径的增加而降低,因此可以认为,即使在从外部施加机械负荷时,树脂颗粒的流动性也得到了保证,这是因为,与粒径大且圆度高的二氧化硅颗粒相比,通过滚动或者脱离而产生的向树脂颗粒表面的凹部的移动难以发生。
鉴于以上,可以认为即使在对第一示例性实施方案的树脂颗粒施加负荷时,特定二氧化硅颗粒也难以嵌入树脂母粒,并在保持为异形的同时从外部添加到树脂母粒的表面上,并且特定二氧化硅颗粒难以通过滚动或者脱离向树脂颗粒表面的凹部移动,因此保持了流动性。
下面对第一示例性实施方案的树脂颗粒进行详细说明。
首先,对从外部加到树脂母粒的表面上的二氧化硅颗粒(特定二氧化硅颗粒)进行说明。
[二氧化硅颗粒(特定的二氧化硅颗粒)]
在从外部加到树脂母粒的表面上的二氧化硅颗粒(特定二氧化硅颗粒)中,其初级颗粒的体积平均粒径为100nm至500nm,粒度分布指数为1.40至1.80,平均圆度为0.5至0.85,并且所述初级颗粒具有由下列表达式(1)表示的与平均圆度和体积平均粒径(nm)相关的回归线:
平均圆度=α×(体积平均粒径)/1000+β    (1)
在表达式(1)中,α为-2.5至-0.9(-2.5≤α≤-0.9),并且β为0.8至1.2(0.8≤β≤1.2)。
-体积平均粒径-
在特定二氧化硅颗粒中,初级颗粒的体积平均粒径为100nm至500nm。
当初级颗粒的体积平均粒径小于100nm时,颗粒的形状易于变为球状,因此难以获得平均圆度为0.5至0.85的形状。此外,在将二氧化硅颗粒涂敷在树脂颗粒上的情况中,二氧化硅颗粒难以分散在树脂母粒的表面上。当初级颗粒的体积平均粒径超过500nm时,在对二氧化硅颗粒施加机械负荷时,二氧化硅颗粒易于破碎。此外,在将二氧化硅颗粒从外部添加到树脂母粒的表面之上的情况中,难以增强树脂颗粒的强度,并且难以提高树脂颗粒的流动性。
理想的是,初级颗粒的体积平均粒径为100nm至350nm,更理想的是100nm至250nm。
特定二氧化硅颗粒的初级颗粒的体积平均粒径是指圆当量直径(circle-corresponding diameter)的累计频率中的50%直径(D50v),所述圆当量直径的累积频率是通过以下方法获得的:在将特定二氧化硅颗粒分散到体积平均粒径为100μm的树脂母粒(例如,重均分子量Mw为50,000的聚酯树脂)中之后,利用SEM(扫描电子显微镜)装置观察100个初级颗粒,然后对初级颗粒进行图像分析。
-粒度分布指数-
在特定二氧化硅颗粒中,初级颗粒的粒度分布指数为1.40至1.80。
当初级颗粒的粒度分布指数小于1.40时,由于初级颗粒是相对单分散的,因此导致流动性或者抑制嵌入树脂颗粒这样的特性不能均匀分布,从而难以满足这两个特性。初级颗粒的粒度分布指数超过1.80是不利的,因为这样会产生粗颗粒,或者由于体积平均粒径变得分散而导致分散到树脂颗粒中的性能劣化。
理想的是,初级颗粒的粒度分布指数为1.4至1.75。
本文所提及的特定二氧化硅颗粒的初级颗粒的粒度分布指数是指,通过用圆当量直径的累计频率中的84%直径除以16%直径而获得的值的平方根,所述圆当量直径的累积频率是通过以下方法获得的:在将特定二氧化硅颗粒分散到体积平均粒径为100μm的树脂母粒(例如,重均分子量Mw为50,000的聚酯树脂)中之后,利用SEM(扫描电子显微镜)装置观察100个初级颗粒,然后对初级颗粒进行图像分析。
-平均圆度-
在特定二氧化硅颗粒中,初级颗粒的平均圆度为0.5至0.85。
当初级颗粒的平均圆度超过0.85时,由于初级颗粒接近球状,因此在将二氧化硅颗粒从外部添加到树脂母粒表面的情况中,对树脂颗粒的混合性或者附着性变差,使得所得颗粒对机械负荷的承受力变弱,并且丧失了流动性。由于此原因,(例如)在将二氧化硅颗粒与树脂母粒混合,并且搅拌所得混合物的情况中,在储存一段时间之后,二氧化硅颗粒可能会不均匀地附着在树脂母粒的表面上,或者从树脂颗粒中脱附。当初级颗粒的平均圆度小于0.5时,所得颗粒为长径比大的形状,并且在对二氧化硅颗粒施加机械负荷时,会引起应力集中,导致所得颗粒易于破损。顺便提及,在通过溶胶-凝胶法制备二氧化硅颗粒时,难以制备其初级颗粒的平均圆度小于0.5的二氧化硅颗粒。
理想的是,初级颗粒的平均圆度为0.6至0.8。
顺便提及,按照“100/SF2”获得初级颗粒的平均圆度,其是在将特定二氧化硅颗粒分散到体积平均粒径为100μm的树脂母粒(例如,重均分子量Mw为50000的聚酯树脂)中之后,利用SEM观察初级颗粒,然后对所获得的初级颗粒进行图像分析,根据下列表达式(2)计算的:
平均圆度(100/SF2)=4π×(A/I2)    (2)
在式(2)中,I代表初级颗粒的周长,A代表初级颗粒的投影面积。
所获得的初级颗粒的平均圆度为,通过上述图像分析而获得的100个初级颗粒的圆度的累计频率中的50%圆度。
-表达式(1)[初级颗粒的平均圆度与体积平均粒径之间的关系]-
在特定二氧化硅颗粒中,初级颗粒具有已经描述过的体积平均粒径、平均圆度和粒度分布指数,并且所述初级颗粒具有由表达式(1)表示的与平均圆度和体积平均粒径相关的回归线。
平均圆度=α×(体积平均粒径)/1000+β    (1)
在表达式(1)中,α为-2.5至-0.9(-2.5≤α≤-0.9),并且β为0.8至1.2(0.8≤β≤1.2)。
在表达式(1)中,平均圆度和体积平均粒径分别为通过以下方法而测量的值:在将特定二氧化硅颗粒分散到体积平均粒径为100μm的树脂母粒中之后,分别利用SEM观察初级颗粒,并且进行图像分析,并且根据上述表达式(2)计算平均圆度。
当初级颗粒的平均圆度相对于体积平均粒径大于根据表达式(1)计算的范围时,虽然流动性良好,但初级颗粒易于嵌入树脂颗粒。当初级颗粒的平均圆度相对于体积平均粒径小于根据表达式(1)计算的范围时,虽然初级颗粒难以嵌入树脂颗粒,但流动性受损。
对于特定二氧化硅颗粒的100个初级颗粒,在坐标轴上绘出体积平均粒径相对于平均圆度的关系,表达式(1)中的α和β分别为这时的回归线的斜率(α)和切线(β)。当α小于-2.5时,相对于体积平均粒径,平均圆度变得过低,因此承受机械负荷的颗粒形状稳定性降低;而当α大于-0.9时,相对于体积平均粒径,平均圆度变得过大,因此初级颗粒易于嵌入树脂母粒。此外,当β小于0.8时,相对于体积平均粒径,平均圆度变得过低,因此承受机械负荷的颗粒形状稳定性降低;当β大于1.2时,相对于体积平均粒径,平均圆度变得过大,因此初级颗粒易于嵌入树脂母粒。
理想的是,α为-2至-1(-2≤α≤-1),并且β为0.9至1.1(0.9≤β≤1.1)。
(成分和表面处理)
特定二氧化硅颗粒可以是主要由二氧化硅(即SiO2)组成的颗粒,并且可以是结晶或非结晶的。此外,特定二氧化硅颗粒可以是利用作为原料的硅化合物(例如水玻璃和烷氧基硅烷)而制备的颗粒,或者可以是通过粉碎石英而获得的颗粒。
此外,从特定二氧化硅颗粒的分散性的角度来说,优选的是,对特定二氧化硅颗粒的表面进行疏水处理。例如,通过将烷基基团结合到特定二氧化硅颗粒的表面来使特定二氧化硅颗粒疏水化。由于此原因,(例如)可以使具有烷基基团的已知有机硅化合物作用于特定二氧化硅颗粒。在下文中对疏水处理的方法进行详细说明。
[树脂母粒]
虽然对附着特定二氧化硅颗粒的树脂母粒的成分和形状没有特别限定,但优选的是,其体积平均粒径为2μm至20μm。
当树脂母粒的体积平均粒径大于或等于2μm时,能够抑制流动性的降低。此外,当树脂母粒的体积平均粒径不大于20μm时,在第一示例性实施方案的树脂颗粒用于粉末涂料、凝塑成形或记录材料这样的用途的情况中,难以降低通过混入第一示例性实施方案的树脂颗粒而形成的涂膜或者图像的均一性。
树脂母粒的体积平均粒径更优选为3μm至15μm。
此处,利用Coulter Multisizer Type II(由Beckman Coulter公司制造),并且利用ISOTON-II(由Beckman Coulter公司生产)作为电解溶液测量树脂母粒的体积平均粒径。
在测量过程中,将量为0.5mg至50mg的测量样品添加2mL 5质量%的(例如)烷基苯磺酸钠(作为分散剂、表面活性剂)的水性溶液中。将所得混合物以100mL至150mL的量添加电解溶液。
利用超声分散器对其中悬浮有样品的电解溶液进行分散处理1分钟,并且利用Coulter Multisizer Type II、采用孔径为100-μm的孔测量粒径为2μm至50μm的颗粒的粒度分布。顺便提及,对50,000个颗粒进行了抽样。
对基于所测量的粒度分布而划分的粒度范围(通道),从小直径的一侧绘出体积和数量各自的累积分布。将累积为16%时的粒径分别定义为累积体积粒径D16v,和累积数量平均粒径D16p;将累积为50%时的粒径分别定义为累积体积粒径D50v,和累积数量平均粒径D50p;将累积为84%时的粒径分别定义为累积体积粒径D84v,和累积数量平均粒径D84p
此处,将体积平均粒径确定为累积体积平均粒径D50v
树脂母粒可以包含树脂。在下文中,树脂母粒所包含的树脂还称为“母体树脂”。
作为母体树脂,可以使用由各种天然或者合成的聚合物组成的热塑性树脂。
其例子包括聚烯烃树脂,例如聚乙烯和聚丙烯;聚苯乙烯树脂,例如聚苯乙烯和丙烯腈/丁二烯/苯乙烯共聚物(ABS树脂);丙烯酸树脂,例如聚甲基丙烯酸甲酯和聚丁基丙烯酸甲酯;橡胶状(共)聚合物,例如聚丁二烯和聚异戊二烯;聚酯树脂,例如聚对苯二甲酸乙二醇酯和聚对苯二甲酸丁二醇酯;乙烯型树脂,例如氯乙烯树脂、乙烯基芳香树脂和聚乙烯树脂;环氧树脂;共轭二烯树脂;聚酰胺树脂;聚缩醛树脂;聚碳酸酯树脂;热塑性聚氨酯树脂;和氟碳树脂。单独使用或者以混合物的形式使用这些树脂。
通常,单独使用或者以混合物的形式使用重均分子量均为5,000至100,000的环氧树脂、苯乙烯-丙烯酸树脂、聚酰胺树脂、聚酯树脂、聚乙烯树脂、聚烯烃树脂、聚氨酯树脂、或者聚丁二烯树脂。
在第一示例性实施方案的树脂颗粒应用于粉末涂料的用途时,聚酯树脂、环氧树脂或者丙烯酸树脂适合作为母体树脂。
在第一示例性实施方案的树脂颗粒应用于凝塑成形的用途时,热塑性聚氨酯树脂、氯乙烯树脂、聚烯烃树脂、丙烯酸酯型树脂粉末、乙烯基芳香树脂、或者共轭二烯树脂适合作为母体树脂。
在第一示例性实施方案的树脂颗粒应用于记录材料(例如调色剂)的用途时,聚酯树脂或者丙烯酸树脂适合作为母体树脂。
根据需要的用途,可以将诸如除了特定二氧化硅颗粒之外的无机颗粒、紫外线吸收材料和抗氧化剂等添加剂进一步掺入(从内部添加)树脂母粒中。
对所计算的特定二氧化硅颗粒相对于树脂母粒的表面积的覆盖率(也称为“计算覆盖率”)而言,从外部添加到树脂母粒的表面上的特定二氧化硅颗粒的附着量优选为5%至80%。
当树脂母粒的添加量定义为A(g),树脂母粒的比重定义为B(g/cm3),树脂母粒的体积平均粒径定义为C(μm),特定二氧化硅颗粒的添加量定义为D(g),特定二氧化硅颗粒的比重定义为E(g/cm3),特定二氧化硅颗粒的体积平均粒径定义为F(μm)时,则按照[(√3×B×C×D)/(2×π×F×E×0.001×A))×100]计算所述计算覆盖率(%)。
当计算覆盖率大于或等于5%时,可能会抑制第一示例性实施方案的树脂颗粒流动性的降低,而当计算覆盖率不大于80%时,可能会避免多种不利,例如由于特定二氧化硅颗粒的脱离而导致的污染。
对计算覆盖率而言,特定二氧化硅颗粒的附着量更优选为在30%至70%的范围内。
(应用)
第一示例性实施方案的树脂颗粒易于保持异形来承受机械负荷(例如搅拌)。第一示例性实施方案的树脂颗粒使难以嵌入树脂母粒的异形特定二氧化硅颗粒从外部添加到树脂母粒的表面。该特定二氧化硅颗粒难以从母粒的表面脱离。由于此原因,树脂颗粒获得了优异的流动性,并且保持了该流动性,因此,第一示例性实施方案的树脂颗粒可以应用于多种用途,例如粉末涂料和以调色剂为代表的记录材料。此外,第一示例性实施方案的树脂颗粒可以应用于所谓的凝塑成形(也称为“粉末凝塑成形”)用途,该用途是通过将树脂颗粒浇铸到加热的模具中从而进行熔融成形。
<树脂颗粒的制备方法>
第一示例性实施方案的树脂颗粒的制备方法可以通过以下步骤来实现:将具有已经描述过的物理性质的特定二氧化硅颗粒从外部添加到树脂母粒的表面。
此外,对特定二氧化硅颗粒的制备方法没有特别限定,只要所得的二氧化硅颗粒具有已经描述过的物理性质即可,即,其初级颗粒的体积平均粒径为100nm至500nm,粒度分布指数为1.40至1.80,平均圆度为0.5至0.85,并且具有由表达式(1)表示的与平均圆度和体积平均粒径(nm)相关的回归线。
例如,可以通过干法来获得二氧化硅颗粒,在该方法中,将体积平均粒径超过500nm的二氧化硅颗粒粉碎并分级,或者通过所谓的湿法来制备特定二氧化硅颗粒,在该方法中,利用以烷氧基硅烷为代表的硅化合物作为原料,通过溶胶-凝胶法形成颗粒。关于湿法,除溶胶-凝胶法以外,还包括用水玻璃作为原料来获得二氧化硅溶胶的方法。
在第一示例性实施方案的树脂颗粒中,特定二氧化硅颗粒附着到树脂母粒的表面,其中所述二氧化硅颗粒的初级颗粒的体积平均粒径为100nm至500nm,粒度分布指数为1.40至1.80,平均圆度为0.5至0.85,并且具有由表达式(1)表示的与平均圆度和体积平均粒径(nm)相关的回归线。因此,为了制备其上附着有具有上述各种物理性质的特定二氧化硅颗粒的树脂颗粒,理想的是,采用具有以下步骤的根据第二示例性实施方案的树脂颗粒的制备方法。
第二示例性实施方案的树脂颗粒的制备方法包括:制备碱性催化剂溶液的步骤,所述溶液包含在含醇溶剂中浓度为0.6摩尔/L至0.85摩尔/L的碱性催化剂(也称为“碱性催化剂溶液制备步骤”);供应四烷氧基硅烷并且还供应碱性催化剂,从而获得二氧化硅颗粒(特定二氧化硅颗粒)的步骤(也称为“二氧化硅颗粒形成步骤”),其中相对于所述碱性催化剂溶液中的醇,所述四烷氧基硅烷的供应量为0.006摩尔/(摩尔·分钟)至0.009摩尔/(摩尔·分钟),并且,对应于每分钟所供应的四烷氧基硅烷的每摩尔总供应量,所述碱性催化剂的量为0.1摩尔至0.4摩尔;以及使所获得的二氧化硅颗粒(特定二氧化硅颗粒)附着至树脂母粒的表面之上的步骤(也称为“二氧化硅颗粒附着步骤”)。
即,第二实例性实施方案的二氧化硅颗粒的制备方法是这样的方法:在醇(其中含有上述浓度的碱性催化剂))的存在下,使作为原料的四烷氧基硅烷发生反应,同时以上述的关系分别供应四烷氧基硅烷和碱性催化剂,从而形成特定二氧化硅颗粒,并且将形成的特定二氧化硅颗粒附着到树脂颗粒的树脂母粒的表面之上。
在第二示例性实施方案的树脂颗粒的制备方法中,获得了异形的特定二氧化硅颗粒,其中产生了很少的粗凝集物。虽然其原因尚未阐明,但可以认为这是由以下原因产生的。
首先,当制备在含醇溶剂中含有碱性催化剂的碱性催化剂溶液,并且分别在该溶液中供应四烷氧基硅烷和碱性催化剂时,供应至碱性催化剂溶液的四烷氧基硅烷发生反应,从而形成核颗粒。这时,当碱性催化剂溶液中的碱性催化剂浓度落入上述范围内时,可以认为形成了异形核颗粒,同时抑制了粗凝集物(例如二次凝集物)的形成。可以认为这由以下事实产生:除催化作用以外,碱性催化剂与要形成的核颗粒的表面还产生配位作用,由此有助于核颗粒的形成及其分散稳定性,并且当其量落入上述范围之内时,碱性催化剂不会均匀地覆盖核颗粒的表面(即,碱性催化剂不均匀地附着至核颗粒的表面),因此,在保持了核颗粒的分散稳定性的同时,核颗粒的表面张力和化学亲和性产生部分偏差,从而形成了异形核颗粒。
之后,当继续各自供应四烷氧基硅烷和碱性催化剂时,由于四烷氧基硅烷的反应,所形成的核颗粒进行生长,由此获得了二氧化硅颗粒。此处,可以认为通过各自供应四烷氧基硅烷和碱性催化剂,同时将它们的供应量保持为上述关系,异形核颗粒在异形得到保持的条件下进行颗粒生长,同时抑制了粗凝集物(例如二次凝集物)的形成,结果,形成了异形的二氧化硅颗粒。这是因为,通过使四烷氧基硅烷和碱性催化剂的供应量满足上述关系,核颗粒表面上的张力和化学亲和性的部分偏差得到了保持,同时保持了核颗粒分散性,使得在核颗粒进行生长的同时保持了异形。
此处,可以认为四烷氧基硅烷的供应量与二氧化硅颗粒的粒度分布或者平均圆度有关。可以认为,通过将四烷氧基硅烷的供应量调控在0.006摩尔/(摩尔·分钟)至0.009摩尔/(摩尔·分钟)的范围之内,在颗粒生长阶段四烷氧基硅烷与核颗粒之间的接触概率增加、并且没有偏差地将四烷氧基硅烷供应至核颗粒之前,四烷氧基硅烷与核颗粒之间可能发生反应。即,可以认为四烷氧基硅烷与核颗粒之间的反应发生了偏差。由于此原因,可以认为促进了将四烷氧基硅烷供应至核颗粒的偏差,由此使颗粒生长分散。由于此原因,可以推测,二氧化硅颗粒的体积平均粒径和形状分布得到了扩大。
因此,可以认为,通过使四烷氧基硅烷的供应量落入上述范围之内,易于形成这样的异形初级颗粒,其具有由表达式(1)表示的回归线,并且粒度分布指数为1.40至1.80,平均圆度为0.5至0.85。
顺便提及,可以认为二氧化硅颗粒的体积平均粒径取决于四烷氧基硅烷的总供应量。
根据上述内容,在第二示例性实施方案的树脂颗粒的制备方法中,可以认为获得了异形二氧化硅颗粒(特定二氧化硅颗粒),其粗凝集物的形成少,并且其初级颗粒具有由表达式(1)表示的回归线,粒度分布指数为1.40至1.80,平均圆度为0.5至0.85。
通过将由上述方法获得的特定二氧化硅颗粒从外部添加到树脂母粒的表面之上,可以制备保持了流动性的树脂颗粒。
此外,在第二示例性实施方案的树脂颗粒的制备方法中的碱性催化剂溶液制备步骤和二氧化硅颗粒形成步骤(这两个步骤通常也称为“特定二氧化硅颗粒制备步骤”)中,可以认为形成了异形核颗粒,并且核颗粒在生长的同时保持了异形,由此形成了二氧化硅颗粒。因此,可以认为获得了具有抵抗机械负荷的高形状稳定性的异形二氧化硅颗粒。
此外,在特定二氧化硅颗粒制备步骤中,可以认为使颗粒在所形成的异形核颗粒保持其异形的状态下生长,由此获得二氧化硅颗粒。因此,可以认为获得了牢固地抵抗机械负荷,并且难以破损的二氧化硅颗粒。
此外,在特定二氧化硅颗粒制备步骤中,由于颗粒的形成是通过向碱性催化剂溶液中分别供应四烷氧基硅烷和碱性催化剂,并且使四烷氧基硅烷发生反应而进行的,因此与利用常规的溶胶-凝胶法制备异形二氧化硅颗粒的情况相比,所使用的碱性催化剂的总量少,其结果是,实现了省略除去碱性催化剂的步骤。这在将二氧化硅颗粒应用于要求高纯度产品的情况中是尤其有利的。
-碱性催化剂溶液制备步骤-
首先对碱性催化剂溶液制备步骤进行说明。
在碱性催化剂溶液的制备步骤中,制备了含醇溶剂,之后向其中添加碱性催化剂以制备碱性催化剂溶液。
含醇溶剂可以是仅由醇组成的溶剂,或者如果需要,可以是醇与其他溶剂的混合溶剂,所述其他溶剂例如为水;酮(例如丙酮、甲基乙基酮、甲基异丁基酮等);溶纤剂(例如甲基溶纤剂、乙基溶纤剂、丁基溶纤剂、溶纤剂乙酸酯等);和醚(例如二
Figure BSA00000595887200171
烷、四氢呋喃等)。在混合溶剂的情况中,相对于其他溶剂,醇的量最好为大于或等于80质量%(理想的是大于或等于90质量%)。
顺便提及,醇的例子包括低级醇,例如甲醇和乙醇。
同时,碱性催化剂是用于促进四烷氧基硅烷的反应(例如水解反应或缩合反应)的催化剂,并且其例子包括碱性催化剂,例如氨、尿素、一元胺和季铵盐。其中,特别理想的是氨。
碱性催化剂的浓度(含量)为0.6摩尔/L至0.85摩尔/L,理想的是0.63摩尔/L至0.78摩尔/L,更理想的是0.66摩尔/L至0.75摩尔/L。
当碱性催化剂的浓度小于0.6摩尔/L时,所形成的核颗粒在核颗粒的生长过程中的分散性变得不稳定,因此存在形成粗凝集物(例如二次凝集物)或者发生胶凝,由此使粒度分布劣化的问题。
在另一方面,当碱性催化剂的浓度大于0.85摩尔/L时,所形成的核颗粒过于稳定,形成了真正球状的核颗粒,并且未能获得平均圆度不大于0.85的异形核,结果,未能获得异形的特定二氧化硅颗粒。
顺便提及,碱性催化剂的浓度是相对于醇催化剂溶液(碱性催化剂+含醇溶剂)的浓度。
-二氧化硅颗粒形成步骤-
接下来对二氧化硅颗粒的形成步骤进行说明。
二氧化硅颗粒的形成步骤是这样的步骤:向碱性催化剂溶液中各自供应四烷氧基硅烷和碱性催化剂,以使四烷氧基硅烷在碱性催化剂溶液中反应(例如水解反应或缩合反应),由此形成二氧化硅颗粒。
在二氧化硅颗粒形成步骤中,在供应四烷氧基硅烷的一开始,核颗粒通过四烷氧基硅烷的反应而形成(核颗粒形成阶段),之后,通过核颗粒的生长,二氧化硅颗粒形成(核颗粒生长阶段)。
供应至碱性催化剂溶液中的四烷氧基硅烷的例子包括,四甲氧基硅烷、四乙氧基硅烷、四丙氧基硅烷和四丁氧基硅烷。然而,从反应速率可控性、所获得的二氧化硅颗粒的形状、体积平均粒径、粒度分布等角度来说,四甲氧基硅烷或者四乙氧基硅烷是合适的。
相对于碱性催化剂溶液中的醇,四烷氧基硅烷的供应量为0.006摩尔/(摩尔·分钟)至0.009摩尔/(摩尔·分钟)。
这意味着,相对于用于制备碱性催化剂溶液步骤中的1摩尔醇,以每分钟0.006摩尔至0.009摩尔的供应量供应四烷氧基硅烷。
通过使四烷氧基硅烷的供应量落入上述范围,容易形成高比例(例如,大于或等于95数量%)的异形二氧化硅颗粒,其中,该二氧化硅颗粒的初级颗粒具有由表达式(1)表示的回归线,并且粒度分布指数为1.40至1.80,平均圆度为0.5至0.85。
顺便提及,虽然二氧化硅颗粒的体积平均粒径也根据四烷氧基硅烷的种类或者反应条件而改变,但是通过将用于颗粒形成反应的四烷氧基硅烷的总供应量调整至(例如)大于或等于1.08摩尔/升二氧化硅颗粒分散液,获得了体积平均粒径为大于或等于100nm的初级颗粒,而通过将用于颗粒形成反应的四烷氧基硅烷的总供应量调整至(例如)不大于5.49摩尔(或更多)/升二氧化硅颗粒分散液,获得了体积平均粒径不大于500nm的初级颗粒。
当四烷氧基硅烷的供应量小于0.006摩尔/(摩尔·分钟)时,可以认为在核颗粒与四烷氧基硅烷反应之前,没有偏差地供应了四烷氧基硅烷,因此形成了具有近似形状的二氧化硅颗粒,而没有引起体积平均粒径和形状的偏差,由此形成了分布狭窄的颗粒。
当四烷氧基硅烷的供应量大于0.009摩尔/(摩尔·分钟)时,可以认为,相对于在核颗粒形成阶段四烷氧基硅烷彼此之间的反应,或者相对于在颗粒生长阶段四烷氧基硅烷与核颗粒之间的反应,四烷氧基硅烷的供应量过大,因此反应体系易于胶凝,因此有损核颗粒的形成和颗粒的生长。
理想的是,四烷氧基硅烷的供应量为0.0065摩尔/(摩尔·分钟)至0.0085摩尔/(摩尔·分钟),更理想的是0.007摩尔/(摩尔·分钟)至0.008摩尔/(摩尔·分钟)。
同时,供应至碱性催化剂溶液的碱性催化剂的例子包括上文列举的那些催化剂。虽然所供应的碱性催化剂可以与之前包含在碱性催化剂溶液中的碱性催化剂相同或者不同,但最好使用相同种类的碱性催化剂。
对应于每分钟所供应的四烷氧基硅烷的每摩尔总供应量,碱性催化剂的供应量为0.1摩尔至0.4摩尔,理想的是0.14摩尔至0.35摩尔,更理想的是0.18摩尔至0.30摩尔。
当碱性催化剂的供应量小于0.1摩尔时,在核颗粒的生长过程中所形成的核颗粒的分散性变得不稳定,因此存在形成粗凝集物(例如二次凝集物)或者发生胶凝,由此使粒度分布劣化的问题。
在另一方面,当碱性催化剂的供应量大于0.4摩尔时,所形成的核颗粒的稳定性过强,甚至当在核颗粒形成阶段形成了异形核颗粒时,核颗粒在核颗粒的生长阶段也生长为球形,因此未获得异形二氧化硅颗粒。
此处,在二氧化硅颗粒形成步骤中,将四烷氧基硅烷和碱性催化剂各自供应至碱性催化剂溶液中。供应方法可以为连续供应的方式,或者为间歇供应的方式。
此外,在二氧化硅颗粒形成步骤中,碱性催化剂溶液的温度(供应时的温度)可以在(例如)5℃至50℃的范围内,并且理想的是在15℃至40℃的范围内。
通过上述步骤获得了特定二氧化硅颗粒。虽然在这种状态下所获得的特定二氧化硅颗粒的状态是分散液,但可以使用二氧化硅颗粒分散液本身,或者可以在去除溶剂之后,将其取出并作为二氧化硅颗粒的粉末使用。
在使用二氧化硅颗粒分散液形式的特定二氧化硅颗粒的情况中,如果需要,可以通过用水或醇稀释,或者通过浓缩来调节二氧化硅颗粒的固体浓度。此外,可以通过利用水溶性有机溶剂(例如其它醇、酯和酮)进行溶剂置换来使用二氧化硅颗粒分散液。
同时,在使用二氧化硅颗粒粉末形式的特定二氧化硅颗粒的情况中,必要的是从二氧化硅颗粒分散液中去除溶剂。去除溶剂的方法包括已知的方法,例如(1)进行干燥的方法,该方法在利用过滤、离心、蒸馏等手段去除溶剂之后,利用真空干燥机、盘式干燥机等进行干燥;以及(2)利用流化层干燥机、喷雾干燥机等直接干燥浆液的方法。虽然对干燥温度不特别限定,但有利的是不高于200℃。当干燥温度高于200℃时,由于残留在二氧化硅颗粒表面上的硅烷醇基团的缩合,容易发生初级颗粒彼此之间的结合,或者产生粗颗粒。
如果需要,最好将干燥的二氧化硅颗粒粉碎并过筛,由此去除粗颗粒或凝集物。虽然对粉碎方法不特别限定,但利用(例如)干燥型粉碎机进行粉碎,所述粉碎机例如为气流粉碎机、振动磨、球磨机和销棒粉碎机(pin mill)。利用(例如)已知的装置进行过筛,例如振动筛和风力筛分机。
通过特定二氧化硅颗粒制备步骤而获得的特定二氧化硅颗粒可以在用疏水处理剂对特定二氧化硅颗粒的表面进行疏水化处理之后使用。
疏水处理剂的例子包括具有烷基(例如甲基、乙基、丙基、丁基等)的已知有机硅化合物。其具体的例子包括硅氮烷化合物(例如,六甲基二硅氮烷、四甲基二硅氮烷等)和硅烷化合物(例如甲基三甲氧基硅烷、二甲基二甲氧基硅烷、三甲基氯硅烷、三甲基甲氧基硅烷等)。这些疏水处理剂可以单独使用,也可以使用它们中多种的组合。
在这些疏水处理剂中,具有三甲基结构的有机硅化合物(例如三甲基甲氧基硅烷和六甲基二硅氮烷)是合适的,。
虽然对疏水处理剂的使用量不特别限定,但为了获得疏水化效果,相对于特定二氧化硅颗粒,其使用量为(例如)1质量%至100质量%,并且理想的是5质量%至80质量%。
获得疏水性二氧化硅颗粒分散液(已经用疏水化处理剂进行了疏水化处理)的方法的例子包括这样的方法:将所需量的疏水化处理剂添加至其中分散有特定二氧化硅颗粒的二氧化硅颗粒分散液中,并且使所得混合物在30℃至80℃的温度范围内反应,同时进行搅拌,由此对特定二氧化硅颗粒进行疏水化处理,从而获得疏水性的二氧化硅颗粒分散液。当反应温度为低于30℃的温度时,疏水化反应难以进行,而当反应温度为超过80℃的温度时,可能容易发生这样的情况:由于疏水化处理剂的自缩合而发生分散液的胶凝,或者二氧化硅颗粒彼此之间发生凝集。
同时,获得粉末化的疏水性二氧化硅颗粒的方法的例子包括:这样的方法,其中,通过上述的方法获得疏水性二氧化硅颗粒分散液,之后利用上述的方法进行干燥,由此获得疏水性二氧化硅颗粒的粉末;这样的方法,其中,干燥二氧化硅颗粒分散液以获得亲水性二氧化硅颗粒的粉末,之后通过添加疏水化处理剂来对所述粉末进行疏水化处理,由此获得疏水性二氧化硅颗粒的粉末;以及这样的方法,其中,在获得疏水性二氧化硅颗粒分散液之后,将该疏水性二氧化硅颗粒分散液干燥,从而获得疏水性二氧化硅颗粒的粉末,之后通过添加疏水化处理剂来进一步对所述粉末进行疏水化处理,由此获得疏水性二氧化硅颗粒的粉末。
此处,对粉末化的特定二氧化硅颗粒进行疏水化处理的方法的例子包括这样的方法,其中,在处理罐(例如Henschel混合器和流化床)中搅拌粉末化的亲水性二氧化硅颗粒,向其中添加疏水化处理剂,加热处理罐的内部以使疏水化处理剂气化,由此使其与粉末化的特定二氧化硅颗粒表面上的硅烷醇基团反应。虽然对处理温度不特别限定,但其可以为(例如)80℃至300℃,并且理想的是120℃至200℃。
-二氧化硅颗粒附着步骤-
在二氧化硅颗粒附着步骤中,将在二氧化硅颗粒形成步骤中获得的二氧化硅颗粒(特定二氧化硅颗粒)从外部添加到树脂母粒的表面之上。
将二氧化硅颗粒从外部添加到树脂母粒的表面之上的方法的例子包括这样的方法,其中,将特定二氧化硅颗粒和树脂颗粒以及可任选的允许附着的成分添加至V-型混合器、Henschel混合器、Loedige混合器等中并且进行搅拌。可以以分阶段的方式将特定二氧化硅颗粒从外部添加到树脂母粒的表面之上。
如前面所述,在第一示例性实施方案的树脂颗粒中,优选的是,特定二氧化硅颗粒以5%至80%的计算覆盖率附着至树脂母粒的表面之上。
为了将特定二氧化硅颗粒的附着量调整至上述范围之内,最好的是,相对于树脂母粒的总质量,以0.1质量%至10质量%的量将特定二氧化硅颗粒添加至V-型混合器、Henschel混合器、Loedige混合器等中。
(树脂母粒的制备)
可以利用(例如)以下方法制备树脂母粒,这些方法为:将母体树脂加热融化并且捏合,之后进行粉碎和分级(捏合和粉碎法);使溶解于水溶性有机溶剂中的具有母体树脂的油相悬浮并分散于含有分散剂的水相中,之后去除溶剂(溶解和悬浮法);或者使母体树脂凝集以形成颗粒,该母体树脂是由母体树脂单体通过乳液聚合等方法而获得的(乳化聚合和凝集法)。
在将上述的各组分(例如有机颗粒)掺入树脂母粒的情况中,最好事先混合母体树脂和上述的各组分。在乳液聚合和凝集法的情况中,最好将母体树脂单体和上述的各组分混合,并对所得混合物进行乳液聚合。
例子
参照以下例子对本发明进行更加具体的说明。然而,不应将各个例子解释为限制本发明。此外,除非另有说明,所有的份和百分比都基于质量。
[实施例1]
(制备二氧化硅颗粒)
-碱性催化剂溶液制备步骤[碱性催化剂溶液(1)的制备]-
向装备有搅拌叶片、滴嘴和温度计并且体积为2L的玻璃制反应容器中装入300g甲醇和50g 10%的氨水,并且搅拌混合,从而获得碱性催化剂溶液(1)。这时,氨催化剂的量(即,碱性催化剂溶液(1)中NH3的量)(NH3[摩尔]/(NH3+甲醇+水)[L])为0.68摩尔/L。
-二氧化硅颗粒形成步骤[二氧化硅颗粒悬浮液(1)的制备]-
随后,将碱性催化剂溶液(1)的温度调节至25℃,并且利用氮气对该碱性催化剂溶液(1)进行置换。之后,在以120rpm的速度搅拌碱性催化剂溶液(1)的同时以下述供应量开始滴加450g四甲氧基硅烷(TMOS)和270g的氨水(催化剂(NH3)浓度为4.44质量%),所述滴加在50分钟内进行,由此获得二氧化硅颗粒的悬浮液(二氧化硅颗粒悬浮液(1))。
此处,将四甲氧基硅烷(TMOS)的供应量设定为9g/分钟,即,相对于碱性催化剂溶液(1)中甲醇的总摩尔数为0.0063摩尔/(摩尔·分钟)。此外,相对于每分钟所供应的四烷氧基硅烷的总供应量(0.0592摩尔/分钟),将4.44%的氨水的供应量设定为5.4g/分钟。这相当于每分钟所供应的四烷氧基硅烷的每摩尔总供应量0.24摩尔/分钟。
之后,通过加热蒸馏的方式蒸馏除去所得二氧化硅颗粒悬浮液(1)的250g溶剂,并且添加250g纯水。之后,利用冷冻干燥机干燥所得物,由此获得异形的亲水性二氧化硅颗粒(1)。
-二氧化硅颗粒的疏水化处理-
此外,将20g三甲基硅烷添加至100g亲水性二氧化硅颗粒(1)中,并且使所得混合物在150℃下反应2小时,由此获得异形的疏水性二氧化硅颗粒(1),其中,二氧化硅的表面进行了疏水化处理。
<二氧化硅颗粒的物理性质>
将所得疏水性二氧化硅颗粒(1)添加至体积平均粒径为100μm的树脂颗粒中,并且对疏水性二氧化硅颗粒(1)的100个初级颗粒进行SEM拍照。随后,对SEM照片进行图像分析。结果,疏水性二氧化硅颗粒(1)的初级颗粒为异形颗粒,其体积平均粒径(D50v)为180nm,粒度分布指数为1.52,并且平均圆度[100/SF2]为0.58,并且进行SEM拍照的疏水性二氧化硅颗粒(1)的100个初级颗粒中有99个颗粒满足表达式(1)。
分别对进行SEM拍照的疏水性二氧化硅颗粒(1)的100个初级颗粒进行绘点,将平均圆度作为纵坐标,将体积平均粒径作为横坐标,由此获得回归线,发现其中的α为-2.1,β为1.1。
-二氧化硅颗粒附着步骤-
(母体树脂的制备)
在装有搅拌器、温度计、冷凝器和氮气导入管的反应容器中,装入以下组分。
对苯二甲酸二甲酯:23摩尔%
间苯二甲酸:10摩尔%
十二烯基丁二酸酐:15摩尔%
偏苯三酸酐:3摩尔%
双酚A环氧乙烷2-摩尔加合物:5摩尔%
双酚A环氧丙烷2-摩尔加合物:45摩尔%
随后,在利用干燥的氮气对反应容器的内部进行置换后,以0.06摩尔%的比例添加二丁基锡氧化物作为催化剂,并且在搅拌和氮气流下使各组分在190℃下反应7小时。
此外,将反应容器内的温度升高至约250℃,在搅拌的条件下反应5.0小时,之后将反应容器的内部抽真空至10.0mg。在搅拌和减压下,进一步反应0.5小时,由此获得分子内具有极性基团的非结晶聚酯树脂(母体树脂(1))。
(树脂母粒的制备)
将100质量份的所得非结晶聚酯树脂(母体树脂(1))熔融,并且利用Banbury混合型捏合机进行捏合。通过使用压辊将捏合的材料成形为厚度为1cm的板状,利用Fitz磨型粉碎机粗粉碎至大约几毫米的程度,利用IDS型粉碎机进行更精细的粉碎,并且利用弯头型分级机(elbow type classifier)进一步分级,从而获得体积平均粒径为7μm的非结晶树脂母粒(1)。
(二氧化硅颗粒的附着)
将疏水性二氧化硅颗粒(1)添加至20g的体积平均粒径为7μm的所得树脂母体(1)中,并且在0.4L样品磨中,在15,000rpm下混合30秒,由此获得具有从外部添加至其上的疏水性二氧化硅颗粒(1)的树脂颗粒(1),所述疏水性二氧化硅颗粒(1)的添加量(50%)如表1中“颗粒附着步骤”的“二氧化硅颗粒”的“覆盖率(%)”一栏所示。
这时,将树脂母粒(1)和疏水性二氧化硅颗粒(1)添加至样品磨中,树脂母粒(1)和疏水性二氧化硅颗粒(1)的比例为20/1.33(基于质量)。
<树脂颗粒的评价>
对所得树脂颗粒(1)的各种特征进行评价。结果是,具有从外部添加至其上的疏水性二氧化硅颗粒(1)的树脂颗粒(1)的流动性优异,并且即使在承受机械负荷(例如搅拌)以后,其也保持了流动性,而没有导致疏水性二氧化硅颗粒(1)嵌入树脂母粒的表面。
顺便提及,以下详细说明树脂颗粒(1)的各种特征的评价方法。
(二氧化硅颗粒的水分散性评价)
关于树脂颗粒(1),利用SEM观察树脂颗粒(1)的表面。此外,通过图像分析来测量疏水性二氧化硅颗粒(1)的附着面积,之后由此计算疏水性二氧化硅颗粒(1)的覆盖率,从而根据以下评价标准做出评价。
-评价标准(分散性)-
A:二氧化硅颗粒从外部添加到树脂母粒表面上的覆盖率大于或等于45%,没有不均匀分布,并且基本没有发现凝集物。
B:虽然略微发现了二氧化硅颗粒的凝集物,但二氧化硅颗粒从外部添加到树脂母粒表面上的覆盖率大于或等于40%且小于45%,没有不均匀分布。
C:各处可见二氧化硅颗粒的凝集物,并且树脂母粒表面上的二氧化硅颗粒的覆盖率小于40%,因此分散性差。
(施加机械负荷之后,对二氧化硅颗粒的嵌入性的评价)
对树脂颗粒施加机械负荷之后,评价了二氧化硅颗粒的嵌入性(保持抗嵌入的特性)。具体来说,按照以下方法进行评价。
将5g树脂颗粒(1)和200g 100-μm的铁粉装入玻璃瓶中,并且利用转筒振荡器混合60分钟。之后,利用SEM观察树脂颗粒(1)的表面,并且通过图像分析进一步观察疏水性二氧化硅颗粒(1)的嵌入状态,由此根据以下标准做出评价。
-评价标准(嵌入性)-
A:未嵌入的二氧化硅颗粒的存留比例为大于或等于30数量%。
B:未嵌入的二氧化硅颗粒的存留比例为大于或等于5数量%且小于30数量%。
C:未嵌入的二氧化硅颗粒的残留量为小于5%。
(施加机械负荷之后的脱离性评价)
对树脂颗粒施加机械负荷之后,评价了二氧化硅颗粒的脱离性(保持抗脱离的特性)。具体来说,按照以下方法进行评价。
将5g树脂颗粒(1)和200g 100-μm的铁粉装入玻璃瓶中,并且利用转筒振荡器混合60分钟。之后,利用荧光X-射线分析转移至铁粉中的疏水性二氧化硅颗粒的量,之后根据以下标准做出评价。
-评价标准(分离性)-
A:二氧化硅从树脂颗粒转移至铁粉中的转移量小于5质量%。
B:二氧化硅从树脂颗粒转移至铁粉中的转移量大于或等于5质量%且小于10质量%。
C:二氧化硅从树脂颗粒转移至铁粉中的转移量大于或等于10质量%。
(施加机械负荷之后,对树脂颗粒的流动性的评价)
对树脂颗粒施加机械负荷之后,评价了二氧化硅颗粒的流动性(流动性的保持特性)。具体来说,按照以下方法进行评价。
将5g树脂颗粒(1)和200g 100-μm的铁粉装入玻璃瓶中,并且利用转筒振荡器混合60分钟,并且之后利用孔径为75μm的筛子去除铁粉。之后,将2g已经过筛的树脂颗粒(1)置于45μm的筛子上,并且以1mm的振幅振动90秒。观察树脂颗粒(1)的下落情况,由此根据以下标准做出评价。
凝集度(%)=45μm筛网上的质量(g)÷2×100
-评价标准(流动性)-
A:凝集度小于20%。
B:凝集度大于或等于20%且小于50%。
C:凝集度大于或等于50%。
疏水性二氧化硅颗粒(1)和树脂颗粒(1)的制备条件、物理性质和评价结果如表1和表2所示。
[实施例2至6和对比例1至7]
(二氧化硅颗粒的制备)
以相同的方式制备碱性催化剂溶液(2)至(6)和碱性催化剂溶液(101)至(107),不同之处在于,在制备碱性催化剂溶液(1)时,将“50g”10%氨水更改为表1中“添加成分”的“10%氨水”的“质量(g)”一栏中所示的量。
在制备之后,上述碱性催化剂溶液(2)至(6)和碱性催化剂溶液(101)至(107)中各自的催化剂量(即NH3的量)示于在表1中“添加成分”的“10%氨水”的“NH3的量[摩尔/L]”一栏中。
随后,尝试以相同的方法制备二氧化硅颗粒悬浮液(2)至(6)和二氧化硅颗粒悬浮液(101)至(107),不同之处在于,在制备二氧化硅颗粒悬浮液(1)时,用碱性催化剂溶液(2)至(6)或者碱性催化剂溶液(101)至(107)代替碱性催化剂溶液(1),并且将添加至碱性催化剂溶液中的四甲氧基硅烷的量和供应量,添加至碱性催化剂溶液中的氨水的催化剂浓度、量和供应量更改为表1所示的量。
具体来说,关于添加碱性催化剂溶液中的四甲氧基硅烷的量和供应量,将“450g”四甲氧基硅烷的量更改为表1中“总加入量”的“TMOS”的“质量(g)”一栏中所示的量,并且将“9g/分钟”的四甲氧基硅烷的供应量更改为表1中“供应量[g/分钟]”的“TMOS”一栏中所示的量。
关于添加碱性催化剂溶液中的氨水的催化剂浓度、量和供应量,将氨水的催化剂量“4.44%”更改为表1中“总加入量”的“氨水”的“NH3的浓度[%]”一栏中所示的量,并且将“5.4g/分钟”的氨水的供应量更改为表1中“供应量[g/分钟]”的“氨水量”一栏中所示的量。
此处,表1中“相对量”的“NH3的量[摩尔/分钟](相对于TMOS)”一栏中示出下列的量:各自供应至碱性催化剂溶液(2)至(6)和碱性催化剂溶液(101)至(107)中的氨催化剂的供应量,其是对应于每分钟所供应的四烷氧基硅烷的每摩尔总供应量的量。
同样,表1中“相对量”的“TMOS的量[摩尔/摩尔·分钟](相对于甲醇)”一栏中示出下列的量:各自供应至碱性催化剂溶液(2)至(6)和碱性催化剂溶液(101)至(107)中的四烷氧基硅烷(TMOS)的供应量,其是相对于碱性催化剂溶液(2)至(6)和碱性催化剂溶液(101)至(107)中的每摩尔甲醇的量。
关于所得的二氧化硅颗粒悬浮液(2)至(6)和二氧化硅颗粒悬浮液(101)至(104)和(107),利用与二氧化硅颗粒悬浮液(1)中相同的方式去除溶剂,并且干燥残留物,由此获得亲水性二氧化硅颗粒(2)至(6)和亲水性二氧化硅颗粒(101)至(107)。
顺便提及,关于对比例5的二氧化硅颗粒悬浮液(105)和对比例6的二氧化硅颗粒悬浮液(106),液体形式在二氧化硅颗粒形成步骤中变得胶化,因此未获得亲水性二氧化硅颗粒。
此外,利用与实施例1中相同的方式对亲水性二氧化硅颗粒(2)至(5)和亲水性二氧化硅颗粒(101)至(104)和(107)进行疏水化处理,由此获得疏水性二氧化硅颗粒(2)至(5)和疏水性二氧化硅颗粒(101)至(104)和(107)。
与疏水性二氧化硅颗粒(1)中的方式相同,通过SEM拍照来分别观察所得的疏水性二氧化硅颗粒(2)至(5)和疏水性二氧化硅颗粒(101)至(104)和(107),以及亲水性二氧化硅颗粒(6),并且进行图像分析。表2的“初级颗粒的特征”一栏中示出通过图像分析而获得的各初级颗粒的体积平均粒径(D50v)、粒度分布指数和平均圆度[100/SF2]。
此外,表2中“初级颗粒的特征”的“亲水性或疏水性以及形状”一栏中示出所得二氧化硅颗粒的疏水性和亲水性,以及形状差别。疏水性异形示出二氧化硅颗粒是异形的疏水性二氧化硅颗粒;亲水性异形示出二氧化硅颗粒是异形的亲水性二氧化硅颗粒;以及疏水性球形示出二氧化硅颗粒是球形的疏水性二氧化硅颗粒。
在所得的各疏水性二氧化硅颗粒(2)至(5)和疏水性二氧化硅颗粒(101)至(104)和(107)以及亲水性二氧化硅颗粒(6)中,进行SEM照相的各二氧化硅颗粒的100个初级颗粒中满足表达式(1)的颗粒比例示于表2中“初级颗粒的特征”的“表达式(1)”的“比例”一栏中。顺便提及,“比例”栏中的数值的单位为“数量%”。
对于进行SEM拍照的各二氧化硅颗粒的100个初级颗粒,将平均圆度作为纵坐标,将体积平均粒径作为横坐标,并且进行绘点,由此获得的回归线的α和β分别示于表2中“回归线”的“α”栏和“β”栏中。
(树脂颗粒的制备)
利用与实施例1中制备树脂颗粒(1)相同的方式制备实施例2至6的树脂颗粒(2)至(6)和对比例1至4和7的树脂颗粒(101)至(104)和(107),不同之处在于,分别用疏水性二氧化硅颗粒(2)至(5)、亲水性二氧化硅颗粒(6)以及疏水性二氧化硅颗粒(101)至(104)和(107)代替疏水性二氧化硅颗粒(1)。
利用与树脂颗粒(1)中相同的方式评价所得的实施例2至6的树脂颗粒(2)至(6)和树脂颗粒(101)至(104)和(107)。表2示出评价结果。
[实施例7和8]
利用与制备树脂母粒(1)相同的方式,制备体积平均粒径分别为2μm和20μm的树脂颗粒主体(2)和(3),不同之处在于,改变了弯头型分级机的分割点。
利用与实施例1中相同的方式制备树脂颗粒(7)和(8),不同之处在于,在制备树脂颗粒(1)时,分别用树脂颗粒主体(2)和(3)代替树脂母粒(1)。
利用与树脂颗粒(1)中相同的方式分别评价所得的树脂颗粒(7)和(8)。表2示出评价结果。
[实施例9]
利用三辊碾磨机捏合100g充分脱水的聚氧四亚甲基乙二醇(OH值:55,酸值:1)和12g 1,4-丁二醇,由此获得液体捏合材料。随后,在90℃下加热液体捏合材料,并且在60℃下加热4,4′-二苯基甲烷二异氰酸酯。分别利用各自的齿轮泵将这两者连续送入混合器中,液体捏合材料和异氰酸酯化合物的供应速率分别为100g/分钟和20g/分钟,并且进行快速搅拌。之后,将所得混合物引入双螺杆挤出机中,并且在螺杆转速为350rpm、200℃的条件下进行聚合捏合反应,由此制备聚氨酯树脂(母体树脂(2))。
利用相同的方式获得体积平均粒径为7μm的树脂母粒(4),不同之处在于,在制备母体树脂(1)时,用所得的母体树脂(2)代替母体树脂(1)(非结晶聚酯树脂)。
利用与实施例1中相同的方式制备树脂颗粒(9),不同之处在于,在制备树脂颗粒(1)时,用树脂母粒(4)代替树脂母粒(1)。
利用与树脂颗粒(1)中相同的方式评价所得的树脂颗粒(9)。表2示出评价结果。
[实施例10]
将3.8L环己烷、20cc四氢呋喃和14摩尔苯乙烯单体装入反应容器中,并且进一步装入0.07摩尔的正丁基锂。之后,使混合物在50℃的反应温度下反应5分钟,由此制备预聚合物溶液。向该溶液中添加6摩尔苯乙烯单体,并且进一步添加0.02摩尔的正丁基锂。使混合物在80℃下反应10分钟,之后将甲醇添加至该反应溶液中以终止反应。随后,在减压条件下蒸馏掉溶剂,并且干燥残留物以制备聚苯乙烯树脂(母体树脂(3))。
利用相同的方式获得体积平均粒径为7μm的树脂母粒(5),不同之处在于,在制备母体树脂(1)时,用母体树脂(3)代替母体树脂(1)(非结晶聚酯树脂)。
利用与实施例1中相同的方式制备树脂颗粒(10),不同之处在于,在制备树脂颗粒(1)时,用树脂母粒(5)代替树脂母粒(1)。
利用与树脂颗粒(1)中相同的方式评价所得的树脂颗粒(10)。表2示出评价结果。
[实施例11和12]
利用与实施例1中相同的方式制备树脂颗粒(11)和(12),不同之处在于,在制备树脂颗粒(1)时,改变疏水性二氧化硅颗粒(1)相对于树脂母粒(1)的添加量,由此用表1中“颗粒附着步骤”的“二氧化硅颗粒”的“覆盖率[%]”一栏中所示的量代替上述添加量。
利用与树脂颗粒(1)中相同的方式评价所得的树脂颗粒(11)和(12)。表2示出评价结果。
Figure BSA00000595887200321
Figure BSA00000595887200331
Figure BSA00000595887200341
Figure BSA00000595887200351
由表1可知,与树脂颗粒(1)相似,在所有树脂颗粒(2)至(12)中,从外部添加到其表面上的二氧化硅颗粒的形状为异形;显示了优异的强度;并且即使在对树脂颗粒施加机械负荷的情况中也保持了流动性。此外,所有树脂颗粒(1)至(12)在二氧化硅颗粒的分散性、嵌入性和脱离性方面也均是优异的。
在对比例5和6中,分散液在二氧化硅颗粒形成步骤中发生凝胶化,因此未获得二氧化硅颗粒。由于此原因,将符号“-”标注于表2中的“二氧化硅颗粒的初级颗粒的特征”一栏和“树脂颗粒的评价”一栏中。
虽然参照特定示例性实施方案示出并且描述了本发明,但是本领域技术人员应理解,在不背离由所附权利要求限定的本发明精神和范围的情况下,可以对本发明进行各种变化和修改。

Claims (15)

1.一种树脂颗粒,其包含:
树脂母粒;和
从外部添加到所述树脂母粒的表面之上的二氧化硅颗粒,
其中,所述二氧化硅颗粒的初级颗粒的体积平均粒径为100nm至500nm,粒度分布指数为1.40至1.80,平均圆度为0.5至0.85,并且所述二氧化硅颗粒的初级颗粒满足由以下表达式(1)表示的与平均圆度和体积平均粒径(nm)相关的回归线:
平均圆度=α×(体积平均粒径)/1000+β(1)
其中α为-2.5至-0.9,并且β为0.8至1.2。
2.根据权利要求1所述的树脂颗粒,
其中所述二氧化硅颗粒的所述初级颗粒的体积平均粒径为100nm至350nm。
3.根据权利要求1所述的树脂颗粒,
其中所述二氧化硅颗粒的所述初级颗粒的体积平均粒径为100nm至250nm。
4.根据权利要求1所述的树脂颗粒,
其中所述二氧化硅颗粒的所述初级颗粒的粒度分布指数为1.45至1.75。
5.根据权利要求1所述的树脂颗粒,
其中所述二氧化硅颗粒的所述初级颗粒的平均圆度为0.6至0.8。
6.根据权利要求1所述的树脂颗粒,
其中α为-2.0至-1.0,并且β为0.9至1.1。
7.根据权利要求1所述的树脂颗粒,
其中,相对于所述树脂母粒的表面积,从外部添加到所述树脂颗粒的表面之上的所述二氧化硅颗粒的覆盖率为5%至80%,所述覆盖率由下式(i)所得:
(√3×B×C×D)/(2×π×F×E×0.001×A))×100(i)
其中A的单位为“g”,表示所述树脂母粒的添加量,
B的单位为g/cm3,表示所述树脂母粒的比重,
C的单位为“μm”,表示所述树脂母粒的体积平均粒径,
D的单位为“g”,表示所述二氧化硅颗粒的添加量,
E的单位为“g/cm3”,表示所述二氧化硅颗粒的比重,以及
F的单位为“nm”,表示所述二氧化硅颗粒的体积平均粒径。
8.一种制备树脂颗粒的方法,该方法包括:
制备碱性催化剂溶液,该溶液包含在含醇溶剂中浓度为0.6摩尔/L至0.85摩尔/L的碱性催化剂;
供应四烷氧基硅烷,并且还供应碱性催化剂,从而获得二氧化硅颗粒,其中相对于所述碱性催化剂溶液中的醇,所述四烷氧基硅烷的供应量为0.006摩尔/(摩尔·分钟)至0.009摩尔/(摩尔·分钟),并且其中对应于每分钟所供应的所述四烷氧基硅烷的每摩尔总供应量,所述碱性催化剂的量为0.1摩尔至0.4摩尔;以及
将所获得的二氧化硅颗粒从外部添加到所述树脂母粒的表面之上。
9.根据权利要求8所述的制备树脂颗粒的方法,
其中所述碱性催化剂选自由氨、尿素、一元胺和季铵盐组成的组。
10.根据权利要求8所述的制备树脂颗粒的方法,
其中所述碱性催化剂的含量为0.63摩尔/L至0.78摩尔/L。
11.根据权利要求8所述的制备树脂颗粒的方法,
其中所述四烷氧基硅烷选自由四甲氧基硅烷、四乙氧基硅烷、四丙氧基硅烷和四丁氧基硅烷组成的组。
12.根据权利要求8所述的制备树脂颗粒的方法,
其中相对于所述碱性催化剂溶液中的醇,所述四烷氧基硅烷的供应量为0.0065摩尔/(摩尔·分钟)至0.0085摩尔/(摩尔·分钟)。
13.根据权利要求8所述的制备树脂颗粒的方法,
其中相对于所述碱性催化剂溶液中的醇,所述四烷氧基硅烷的供应量为0.0070摩尔/(摩尔·分钟)至0.0080摩尔/(摩尔·分钟)。
14.根据权利要求8所述的制备树脂颗粒的方法,
其中在供应所述四烷氧基硅烷时,所述碱性催化剂溶液中的温度为5℃至50℃。
15.根据权利要求8所述的制备树脂颗粒的方法,其还包括:
利用疏水处理剂对所述二氧化硅颗粒的表面进行疏水处理。
CN201110318138.2A 2011-01-19 2011-10-18 树脂颗粒和制备该树脂颗粒的方法 Active CN102604335B (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2011008842A JP5724401B2 (ja) 2011-01-19 2011-01-19 樹脂粒子及びその製造方法
JP2011-010052 2011-01-20
JP2011010052A JP5741005B2 (ja) 2011-01-20 2011-01-20 樹脂粒子及びその製造方法
JP2011-050410 2011-03-08
JP2011050410A JP5884276B2 (ja) 2011-03-08 2011-03-08 静電荷像現像用トナー、トナーカートリッジ、静電荷像現像剤、プロセスカートリッジ及び画像形成装置
JP2011055609A JP2012189960A (ja) 2011-03-14 2011-03-14 静電荷像現像用トナー、静電荷像現像剤、トナーカートリッジ、プロセスカートリッジ、画像形成装置、及び、画像形成方法
JP2011-055609 2011-03-14
JP2011-008842 2011-04-18

Publications (2)

Publication Number Publication Date
CN102604335A true CN102604335A (zh) 2012-07-25
CN102604335B CN102604335B (zh) 2016-04-20

Family

ID=44992554

Family Applications (3)

Application Number Title Priority Date Filing Date
CN201110318138.2A Active CN102604335B (zh) 2011-01-19 2011-10-18 树脂颗粒和制备该树脂颗粒的方法
CN201110318023.3A Active CN102608882B (zh) 2011-01-19 2011-10-18 调色剂、显影剂、调色剂盒、处理盒、成像装置及成像方法
CN201110318103.9A Active CN102608884B (zh) 2011-01-19 2011-10-18 静电图像显影用调色剂、调色剂盒、显影剂、处理盒及成像装置

Family Applications After (2)

Application Number Title Priority Date Filing Date
CN201110318023.3A Active CN102608882B (zh) 2011-01-19 2011-10-18 调色剂、显影剂、调色剂盒、处理盒、成像装置及成像方法
CN201110318103.9A Active CN102608884B (zh) 2011-01-19 2011-10-18 静电图像显影用调色剂、调色剂盒、显影剂、处理盒及成像装置

Country Status (2)

Country Link
EP (2) EP2479208A1 (zh)
CN (3) CN102604335B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107057117A (zh) * 2016-02-10 2017-08-18 富士施乐株式会社 树脂颗粒组合物
CN107406662A (zh) * 2015-06-29 2017-11-28 东丽株式会社 聚酯树脂粉粒体混合物
CN107614608A (zh) * 2016-01-13 2018-01-19 株式会社Lg化学 用于半导体封装的热固性树脂组合物及使用其的预浸料
CN108504094A (zh) * 2017-02-24 2018-09-07 富士施乐株式会社 聚酰亚胺前体溶液和聚酰亚胺膜
CN111356733A (zh) * 2017-10-16 2020-06-30 Eos有限公司电镀光纤系统 在增材制造工艺中使用的组合物
CN114085347A (zh) * 2021-11-19 2022-02-25 苏州尚达新能源技术有限公司 一种水上光伏系统用浮体材料及其制备方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014092656A (ja) * 2012-11-02 2014-05-19 Fuji Xerox Co Ltd 現像剤及び画像形成装置
JP6011306B2 (ja) * 2012-12-17 2016-10-19 富士ゼロックス株式会社 静電荷像現像用トナー、静電荷像現像剤、トナーカートリッジ、現像装置、画像形成装置、および画像形成方法
JP2014182172A (ja) * 2013-03-18 2014-09-29 Fuji Xerox Co Ltd 画像形成装置
JP5989201B2 (ja) * 2015-01-23 2016-09-07 株式会社トクヤマ シリコーンオイル処理シリカ粒子、及び電子写真用トナー
JP6582776B2 (ja) 2015-09-14 2019-10-02 富士ゼロックス株式会社 シリカ粒子、及びシリカ粒子の製造方法
JP6648547B2 (ja) 2016-02-10 2020-02-14 富士ゼロックス株式会社 静電荷像現像剤、現像剤カートリッジ、プロセスカートリッジ、画像形成装置、及び、画像形成方法
JP6610317B2 (ja) * 2016-02-10 2019-11-27 富士ゼロックス株式会社 静電荷像現像用トナー、静電荷像現像剤、トナーカートリッジ、プロセスカートリッジ、画像形成装置、及び、画像形成方法
JP6645235B2 (ja) * 2016-02-10 2020-02-14 富士ゼロックス株式会社 静電荷像現像用トナー、静電荷像現像用現像剤、トナーカートリッジ、プロセスカートリッジ、画像形成装置、及び、画像形成方法
JP6642077B2 (ja) 2016-02-10 2020-02-05 富士ゼロックス株式会社 静電荷像現像用トナー、静電荷像現像剤、トナーカートリッジ、プロセスカートリッジ、画像形成装置、及び、画像形成方法
JP7098890B2 (ja) * 2017-07-28 2022-07-12 富士フイルムビジネスイノベーション株式会社 静電荷像現像用トナー、静電荷像現像剤、トナーカートリッジ、プロセスカートリッジ、画像形成装置及び画像形成方法
JP2021146678A (ja) * 2020-03-23 2021-09-27 株式会社リコー 樹脂粉末、立体造形用樹脂粉末、立体造形物の製造方法、及び立体造形物の製造装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4902598A (en) * 1988-07-01 1990-02-20 Xerox Corporation Process for the preparation of silica containing charge enhancing additives
JPH11286611A (ja) * 1998-04-03 1999-10-19 Nippon Shokubai Co Ltd 吸水性樹脂組成物およびその製造方法
CN101807019A (zh) * 2009-02-12 2010-08-18 富士施乐株式会社 静电图像显影用调色剂、静电图像显影剂、成像方法和装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04255755A (ja) 1991-02-08 1992-09-10 Sanyo Chem Ind Ltd 熱可塑性ウレタン樹脂粉末組成物
JP3214078B2 (ja) 1992-07-24 2001-10-02 大日本インキ化学工業株式会社 粉末状ポリウレタン樹脂組成物
CN1136672A (zh) * 1995-04-03 1996-11-27 佳能株式会社 调色剂供给方法,调色剂调节容器,处理卡盒和静电复印图象形成设备
JP2909881B2 (ja) 1995-04-17 1999-06-23 株式会社巴川製紙所 粉体塗料
JP3583532B2 (ja) 1995-11-22 2004-11-04 株式会社巴川製紙所 粉体塗料
JP2000028319A (ja) 1998-07-09 2000-01-28 Hitachi Denshi Ltd 顕微鏡用自動調光装置
JP4076681B2 (ja) * 1999-08-24 2008-04-16 富士ゼロックス株式会社 静電潜像現像用トナーの製造方法
JP4390994B2 (ja) * 2000-09-27 2009-12-24 富士ゼロックス株式会社 静電荷像現像用トナー、それを用いた画像形成方法及び画像形成装置
EP1383010B1 (en) * 2002-07-15 2011-03-16 Ricoh Company, Ltd. External additive for toner for electrophotography, toner for electrophotography, double-component developer for electrophotography, image forming process using the toner, and image-forming apparatus using the toner
US7846632B2 (en) * 2003-09-03 2010-12-07 Zeon Corporation Toner
JP2006028319A (ja) 2004-07-15 2006-02-02 Sanyo Chem Ind Ltd スラッシュ成形用樹脂粉末組成物及び成形品
JP4535807B2 (ja) * 2004-08-25 2010-09-01 株式会社リコー 画像形成装置
JP4451256B2 (ja) * 2004-09-13 2010-04-14 株式会社リコー 画像形成装置
US20070009823A1 (en) * 2005-07-08 2007-01-11 Xerox Corporationd Toner and developer compositions
JP4513690B2 (ja) * 2005-08-22 2010-07-28 コニカミノルタビジネステクノロジーズ株式会社 静電荷像現像用トナー及び画像形成方法
JP4844237B2 (ja) * 2006-05-25 2011-12-28 富士ゼロックス株式会社 トナー収容器及びトナー充填方法
JP5477193B2 (ja) * 2010-06-24 2014-04-23 富士ゼロックス株式会社 シリカ粒子及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4902598A (en) * 1988-07-01 1990-02-20 Xerox Corporation Process for the preparation of silica containing charge enhancing additives
JPH11286611A (ja) * 1998-04-03 1999-10-19 Nippon Shokubai Co Ltd 吸水性樹脂組成物およびその製造方法
CN101807019A (zh) * 2009-02-12 2010-08-18 富士施乐株式会社 静电图像显影用调色剂、静电图像显影剂、成像方法和装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107406662A (zh) * 2015-06-29 2017-11-28 东丽株式会社 聚酯树脂粉粒体混合物
CN107406662B (zh) * 2015-06-29 2021-03-30 东丽株式会社 聚酯树脂粉粒体混合物
CN107614608A (zh) * 2016-01-13 2018-01-19 株式会社Lg化学 用于半导体封装的热固性树脂组合物及使用其的预浸料
CN107614608B (zh) * 2016-01-13 2020-08-28 株式会社Lg化学 用于半导体封装的热固性树脂组合物及使用其的预浸料
CN107057117A (zh) * 2016-02-10 2017-08-18 富士施乐株式会社 树脂颗粒组合物
CN107057117B (zh) * 2016-02-10 2019-09-17 富士施乐株式会社 树脂颗粒组合物
CN108504094A (zh) * 2017-02-24 2018-09-07 富士施乐株式会社 聚酰亚胺前体溶液和聚酰亚胺膜
CN108504094B (zh) * 2017-02-24 2022-06-21 富士胶片商业创新有限公司 聚酰亚胺前体溶液和聚酰亚胺膜
CN111356733A (zh) * 2017-10-16 2020-06-30 Eos有限公司电镀光纤系统 在增材制造工艺中使用的组合物
US11674013B2 (en) 2017-10-16 2023-06-13 Eos Gmbh Electro Optical Systems Composition for use in additive manufacturing processes
CN114085347A (zh) * 2021-11-19 2022-02-25 苏州尚达新能源技术有限公司 一种水上光伏系统用浮体材料及其制备方法

Also Published As

Publication number Publication date
CN102608884A (zh) 2012-07-25
CN102604335B (zh) 2016-04-20
CN102608884B (zh) 2017-05-10
CN102604408A (zh) 2012-07-25
EP2479207A1 (en) 2012-07-25
EP2479208A1 (en) 2012-07-25
CN102608882A (zh) 2012-07-25
CN102608882B (zh) 2016-05-04

Similar Documents

Publication Publication Date Title
CN102604335A (zh) 树脂颗粒和制备该树脂颗粒的方法
KR101556222B1 (ko) 수지 입자 및 그 제조 방법
KR101556221B1 (ko) 수지 입자 및 그 제조 방법
CN102862991B (zh) 二氧化硅颗粒、二氧化硅颗粒的制造方法和树脂颗粒
CN102295292B (zh) 二氧化硅颗粒及其制造方法
CN103626188B (zh) 二氧化硅颗粒及其制备方法
US9187502B2 (en) Silica particles and method for producing the same
CN103226297B (zh) 色调剂、显影剂、色调剂盒、处理盒、图像形成设备和图像形成方法
JP5834856B2 (ja) 樹脂粒子及びその製造方法
CN103130232A (zh) 二氧化硅复合颗粒及其制备方法
CN103965658A (zh) 二氧化硅复合颗粒及其制备方法
JP2018043908A (ja) シリカ粒子およびシリカ粒子の製造方法
JP6036448B2 (ja) 樹脂粒子及びその製造方法
CN102604408B (zh) 树脂颗粒和制备该树脂颗粒的方法
WO1999018148A1 (en) Composition of powder-coated tacky material and method of making same
CA3202101A1 (en) Controlled release potassium chloride fertilizer

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: Tokyo

Patentee after: Fuji film business innovation Co.,Ltd.

Address before: Tokyo

Patentee before: Fuji Xerox Co.,Ltd.

CP01 Change in the name or title of a patent holder