CN102532295B - 重组蜘蛛丝蛋白 - Google Patents

重组蜘蛛丝蛋白 Download PDF

Info

Publication number
CN102532295B
CN102532295B CN201110384407.5A CN201110384407A CN102532295B CN 102532295 B CN102532295 B CN 102532295B CN 201110384407 A CN201110384407 A CN 201110384407A CN 102532295 B CN102532295 B CN 102532295B
Authority
CN
China
Prior art keywords
protein
silk
spider silk
spider
silk proteins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201110384407.5A
Other languages
English (en)
Other versions
CN102532295A (zh
Inventor
T·沙伊贝尔
D·许梅里希
C·阿克朔特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AMSilk GmbH
Original Assignee
AMSilk GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=35713681&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN102532295(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by AMSilk GmbH filed Critical AMSilk GmbH
Publication of CN102532295A publication Critical patent/CN102532295A/zh
Application granted granted Critical
Publication of CN102532295B publication Critical patent/CN102532295B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/227Other specific proteins or polypeptides not covered by A61L27/222, A61L27/225 or A61L27/24
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/43504Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
    • C07K14/43513Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from arachnidae
    • C07K14/43518Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from arachnidae from spiders
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F4/00Monocomponent artificial filaments or the like of proteins; Manufacture thereof
    • D01F4/02Monocomponent artificial filaments or the like of proteins; Manufacture thereof from fibroin

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Insects & Arthropods (AREA)
  • Animal Behavior & Ethology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Dermatology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Toxicology (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Materials For Medical Uses (AREA)
  • Artificial Filaments (AREA)

Abstract

本发明涉及重组蜘蛛丝蛋白,编码这些重组蜘蛛丝蛋白的核酸,以及适合于表达那些核酸的宿主。另外,本发明涉及聚集蜘蛛丝蛋白的方法和将所述蛋白质用在生物技术和/或药物领域和其它工业领域,特别是在制备汽车部件,在飞行器构建,在加工纺织品和皮革,以及在制备和加工纸等中的应用。

Description

重组蜘蛛丝蛋白
本申请是国际申请号PCT/EP2005/007968,国际申请日2005年7月21日,进入中国国家阶段日期为2007年2月12日,中国申请号为200580027435.4,发明名称为“重组蜘蛛丝蛋白”的分案申请。
本发明涉及重组蜘蛛丝蛋白,核酸,编码这些重组蜘蛛丝蛋白的核酸,以及适合于表达那些核酸的宿主。此外,本发明涉及聚集蜘蛛丝蛋白的方法和这些蛋白质在生物技术和/或药物和其它工业领域中的应用,特别地在制备汽车部件(automotive parts),在飞行器构建中,在加工纺织品和皮革制品,以及在制备和加工纸,化妆品,食物,电子装置,药物递送等中的应用。
在本申请中,使用下列缩写:
NR-非重复性的;Apr,氨苄青霉素抗性基因;IPTG,异丙基-β-D-硫代半乳糖苷;GdmCl,氯化胍(guanidinium chloride);GdmSCN,异硫氰酸胍;SDS,十二烷基硫酸钠;PAGE,聚丙烯酰胺凝胶电泳;Tris,三(羟甲基)氨基甲烷;CD,圆二色性;rep-蛋白质,重复蛋白质;Da,道尔顿;cps,每秒计数;MRW,平均残基重量;n.d.,不确定。
蜘蛛丝是显示优越物理性质的蛋白聚合物(1)。在不同类型的蜘蛛丝中,拖丝是被最集中研究的。拖丝的丝被圆网蜘蛛(orb weaving spiders)用于构建它们的网的框架和半径并作为总是拖在后面的生命线。为这些目的,需要高的拉伸强度和弹性。这些性质的组合导致与大多数其它已知材料相比,更高的韧性(1;2)。拖丝的丝通常由两种主要的蛋白组成,其主要结构具有共同的重复结构(3;4)。
可以包含多到60个氨基酸的单重复单位的变化被重复数次来表示拖丝的丝序列的最大部分。这些重复单位表示有限组的独特的氨基酸基序。在所有的拖丝的丝重复单位中发现的一个基序是典型地6-9个丙氨酸残基的区组。在丝线中,数种聚丙氨酸基序形成晶态的β-折叠堆积,产生拉伸强度(5;6)。
富含甘氨酸的基序诸如GGX或GPGXX采用柔性的螺旋状结构,其连接晶态区域并给线提供弹性(7)。
此外,所有的被研究的拖丝的丝蛋白在它们的羧基端包含不显示明显的重复模式的区域(非重复的或NR-区域)。到目前为止,在最终的线中没有功能与这些区域相关。
丝的体内装配是引入注意的过程。蜘蛛的拖丝丝蛋白在所谓的主要的壶腹腺中以多到50%(w/v)(8)的浓度贮存。尽管已经提出在主要的壶腹腺中关于这些蛋白质的“动态松散螺旋结构”(8),更近的数据提示对于所述蛋白质的所谓A-区的随机卷曲构象,其代表所述腺体的最大部分(9;10)。高度浓缩的蛋白质溶液形成丝粘稠物(纺丝溶液(spinning solution)),其显示液态晶体的性质(11-13)。
线的装配在粘稠物通过纺织导管的通道中开始,伴随水、钠和氯化物的提取(14;15)。同时,易溶离子钾和磷酸盐的浓度增加,pH从6.9降到6.3(14-16)。装配最终由机械应力引发,其由线被推出蜘蛛的腹部而导致(17)。
出于一些目的,天然丝线不能直接使用,而必须溶解并且再装配成其它形态,诸如薄膜、泡沫、球体、纳米纤维、水凝胶等。
已经关于丝的丝心蛋白进行了涉及由丝蛋白制备的薄膜的大部分研究,所述丝的丝心蛋白是衍生自家蚕家蚕蛾(Bombyx mori)的丝的主要蛋白质成分。丝的丝心蛋白薄膜可以从水溶液或包含六氟异丙醇(HFIP)、甲酸和三氟乙酸的溶液中铸塑成。在溶液中,根据所用的溶剂,丝的丝心蛋白倾向于采取螺旋或随机卷曲构象。当铸塑成薄膜时,蛋白质维持可溶性状态的构象或采取更多的富含β-折叠的构象。在大多数情形中,用甲醇处理薄膜导致β-折叠含量和结晶度的进一步增加。除了丝的丝心蛋白之外,还将其它的丝蛋白用于铸塑成薄膜。Vollrath及同事研究从提取自蜘蛛Nephila senegalensis的主要壶腹腺的蛋白质制成的薄膜。当从水溶液中制备时,这样铸塑成的薄膜主要包含随机卷曲构象的蛋白质。它们的结构在添加氯化钾后改变成β-折叠。此外,使用HFIP作为溶剂,从蜘蛛Nephilaclavipes的拖丝的丝蛋白MaSpI来源的合成丝蛋白质制备薄膜。在溶液中,蛋白质采取α-螺旋结构,当被铸塑成薄膜时,其改变为富含更多的β-折叠的构象。
不幸的是,其氨基酸序列局限了从天然的丝的丝心蛋白产生功能性薄膜材料。由于包含硫醇、氨基或羧基基团的化学反应性氨基酸侧链的低丰度(<1.5%),丝的丝心蛋白的选择性化学修饰仅可能是非常有限的。此外,在天然宿主中改变丝蛋白并因此改变薄膜的性质的遗传修饰则很慢。
尽管蜘蛛丝蛋白的某些结构方面已经清楚,但是关于个体丝蛋白和它们的主要结构元件对于装配过程的贡献则知道的很少。关于花园蜘蛛十字园蛛(Aranus diadematus)的两种主要的拖丝丝蛋白,ADF-3和ADF-4的竞争性研究揭示,尽管它们的氨基酸序列非常相似(4),它们显示相当不同的溶解度和装配特性:尽管ADF-3甚至在高浓度仍是可溶的(18),ADF-4实际上是不可溶的,并且在特定条件下自装配为丝状结构(未公开的结果)。
科学和商业利益促进了蜘蛛丝的工业规模生产的研究。由于蜘蛛的同种相残,天然的蜘蛛丝生产是不切实际的,而人工生产在获得足够的蛋白质产量和出众的线-装配中遇到问题。细菌的表达产生低蛋白水平,这可能是由于细菌和蜘蛛的不同的密码子选择导致的。具有适应于表达宿主的密码子选择的合成基因导致更高的产量,但是其合成的蛋白质显示与天然蜘蛛丝不同的性质。部分拖丝的丝cDNAs在哺乳动物细胞系中的表达确实产生了丝蛋白(例如ADF-3),其可以以人工方式纺丝(spin)为“丝样”的线,尽管在品质上仍旧很差。
WO03060099涉及将生物丝蛋白纺丝为纤维的方法和装置。该发明特别用于从水溶液中纺丝重组的丝蛋白,并增加纤维的强度和制品的实用性从而使这些纤维的商业生产和应用是可实践的。其中,公开了在哺乳动物细胞,例如转基因的山羊乳腺细胞中表达蜘蛛丝蛋白。
在细菌宿主中的真正的蜘蛛丝基因的表达-如上提及-是无效的(24),因为一些基因部分包含不能有效在细菌中翻译的密码子。此外,由于丝的重复性性质,通过PCR进行基因操作和扩增是困难的。为了研究蜘蛛丝蛋白的性质,使用具有适应于相应的表达宿主的密码子选择的合成DNA组件进行克隆策略。获得编码类似于蜘蛛丝的重复区的蛋白质的合成基因(25-28)。然而,发现这些蛋白质的设计都不包含在所有的拖丝的丝中发现的羧基端NR-区。
因此,本发明的目的是提供具有提高的特性,如具体而言以高产量表达的提高的能力和提高的强度和柔性,即更好的质量的重组蜘蛛丝蛋白。此外,本发明的目的是提供可以方便地在已经了解的表达系统中表达的重组蜘蛛丝蛋白。本发明的另一个目的是提供用于聚集蜘蛛丝蛋白的改善的方法和由这些蛋白质形成线的方法。此外,本发明的目的是提供改善的纸、纺织品和皮革制品。另一个目的是提供新的蛋白质和基于蜘蛛丝蛋白的其它的材料诸如球体,纳米纤维,水凝胶,线,泡沫,薄膜以用在生物技术、药物、药学和食品应用,化妆品,电子装置中和用于其它的商业目的。
这些目的通过独立权利要求的主题而得以实现。优选的实施方案在从属权利要求中提出。
提供包含合成的重复蜘蛛丝蛋白序列和/或真正的NR-(非重复性)区域或由其组成的重组蜘蛛丝蛋白的现有蛋白质改造方法揭示与真正的丝蛋白非常相似的蛋白质可以以高产量产生。具体而言,本文提供的可以容易地按比例放大的细菌表达系统和简单便宜的纯化方法,提供了以经济有效的工业规模生产蜘蛛丝样蛋白的基础。
已经对蜘蛛丝蛋白主要就它们对于丝线的机械性质的贡献进行了研究。然而,关于丝装配的分子机制仍知道的很少。作为要表征该过程的第一个步骤,本发明人鉴定了决定蛋白质溶解性的花园蜘蛛(十字园蛛)的主要拖丝的丝蛋白ADF-3和ADF-4的一级结构元件。此外,研究了涉及介导天然线装配的条件对蛋白质聚集的影响。使用新开发的克隆策略产生了编码蜘蛛丝样蛋白的基因,其基于合成DNA组件和PCR扩增的真正基因序列的组合。比较二级结构,合成的蛋白质的溶解度和聚集性质揭示单一的一级结构元件对蛋白质性质具有不同的影响。代表拖丝的丝蛋白的最大部分的重复区域决定合成蛋白质的溶解度,其在衍生自ADF-3和ADF-4的构建体之间非常不同。促进丝体内装配的因素,诸如酸化和磷酸盐浓度的增加通常减少丝蛋白的体外溶解度。引人注目的是,这种效果在包含ADF-3或ADF-4的羧基端非重复性区域的被改造蛋白中出现,说明这些区域在起始蜘蛛丝蛋白的装配中具有重要作用。
按照第一个方面,本发明涉及重组的蜘蛛丝蛋白,其包含
a)一个或多个合成的重复性蜘蛛丝蛋白序列,和/或
b)一个或多个真正的非重复性蜘蛛丝蛋白序列。
具体地,本发明涉及以下内容:
1.一种重组蜘蛛丝蛋白,其包括:
a)一个或多个合成的重复性蜘蛛丝蛋白序列,和/或
b)一个或多个真正的非重复性蜘蛛丝蛋白序列。
2.如上述1的重组蜘蛛丝蛋白,其中所述序列衍生自主要壶腹腺的蜘蛛拖丝蛋白和/或鞭状腺的蛋白。
3.如上述1或2的重组蜘蛛丝蛋白,其中所述真正的非重复性序列衍生自天然存在的蜘蛛丝蛋白的氨基端非重复性区域(鞭形蛋白)和/或羧基端非重复性区域(鞭形和拖丝蛋白)。
4.如上述3的重组蜘蛛丝蛋白,其中所述真正的非重复序列被修饰从而使所述序列适应于在宿主中表达,并且其优选地是SEQ ID NO:14,15,32和34或其变体。
5.如上述1-4的一项或多项的重组蜘蛛丝蛋白,其中所述拖丝和/或鞭形蛋白选自圆网蜘蛛(园蛛科)的拖丝或鞭形蛋白。
6.如上述5的重组蜘蛛丝蛋白,其中所述拖丝蛋白衍生自十字园蛛并且所述鞭形蛋白衍生自Nephila clavipes。
7.如上述1-6中的一项或多项的重组蜘蛛丝蛋白,其中所述拖丝蛋白是野生型ADF-3,ADF-4,MaSp I或MaSp II,所述鞭形蛋白是FLAG。
8.如上述1-6的一项或多项的重组蜘蛛丝蛋白,其中所述拖丝蛋白是由SEQ ID NO:1编码的ADF-3和/或由SEQ IDNO:2编码的ADF-4或所述鞭形蛋白是SEQ ID NO:6(Flag-N)和/或SEQ ID NO:7(Flag-C),或其变体。
9.如上述1-8的一项或多项的重组蜘蛛丝蛋白,其中所述合成的重复序列包括一个或多个包含聚丙氨酸的共有序列。
10.如上述9的重组蜘蛛丝蛋白,其中包含聚丙氨酸的共有序列
衍生自ADF-3,并具有SEQ ID NO:3(组件A)的氨基酸序列或其变体。
11.如上述的一项或多项的重组蜘蛛丝蛋白,其中所述合成的重复序列衍生自ADF-3,并包含SEQ ID NO:4(组件Q)的氨基酸序列或其变体的一个或多个重复序列。
12.如上述9-11的一项或多项的重组蜘蛛丝蛋白,其中所述合成的重复序列包含一个或多个(AQ)和/或(QAQ)作为重复单位。
13.如上述12的重组蜘蛛丝蛋白,其中所述合成的重复序列是(AQ)12,(AQ)24,(QAQ)8或(QAQ)16
14.如上述1-13的一项或多项的重组蜘蛛丝蛋白,其中所述合成的重复序列衍生自ADF-4,并包含SEQ ID NO:5(组件C)的氨基酸序列或其变体的一个或多个重复序列。
15.如上述14的重组蜘蛛丝蛋白,其中所述合成的重复序列是C16或C32
16.如上述的一项或多项的重组蜘蛛丝蛋白,其中所述合成的重复序列衍生自鞭形蛋白并且是组件K(SEQ ID NO:35),组件sp(SEQ ID NO:37),组件X(SEQ ID NO:39),和组件Y(SEQ ID NO:41)。
17.如上述16的重组蜘蛛丝蛋白,其是Y8,Y16,X8,X16,K8,或K16
18.如上述的一项或多项的重组蜘蛛丝蛋白,其中所述完整的重组蜘蛛丝蛋白包括式(QAQ)8NR3,(QAQ)16NR3,(AQ)12NR3,(AQ)24NR3,C16NR4或C32NR4,(QAQ)8,(QAQ)16,(AQ)12,(AQ)24,C16或C32
19.一种核酸序列,其编码如上述1-18的一项或多项的重组蜘蛛丝蛋白。
20.一种载体,其包括如上述19的核酸序列,并且其优选地衍生自图6的克隆载体,或SEQ ID NO:55,或其变体的克隆载体。
21.一种表达载体,其包括如上述19的核酸序列和一个或多个调节序列。
22.如上述20或21的载体,其是质粒或病毒载体,优选地是杆状病毒系统或痘苗病毒载体系统。
23.一种宿主,其已经用如上述20-22中任一项的载体进行转化。
24.如上述23的宿主,其是原核细胞。
25.如上述24的宿主,其是大肠杆菌或枯草芽孢杆菌。
26.如上述25的宿主,其是真核细胞。
27.如上述26的宿主,其是哺乳动物细胞,植物细胞,酵母细胞或昆虫细胞。
28.如上述27的哺乳动物细胞,其是CHO,COS,HeLa,293T,HEH或BHK细胞。
29.如上述27的宿主,其是酵母细胞。
30.如上述29的宿主,其是酿酒酵母,粟酒裂殖酵母,巴斯德毕赤酵母,白色念珠菌,多形汉森酵母。
31.如上述27的宿主,其中所述昆虫细胞选自鳞翅目昆虫细胞,优选地选自Spodoptera frugiperda和粉夜蛾。
32.如上述31的宿主,其中所述昆虫细胞是Sf9,Sf21或高效细胞。
33.如上述27的宿主,其中所述植物细胞衍生自烟草、马铃薯、玉米,豌豆和西红柿。
34.一种蜘蛛丝蛋白聚集的方法,其包括下列步骤:
a)制备包含如上述1-17的一项或多项中所定义的非取向的蜘蛛丝蛋白的蛋白质溶液;
b)使在a)中制备的溶液暴露于聚集引发物;和
c)回收所述沉淀的蜘蛛丝蛋白。
35.如上述34的方法,其中在步骤a)中所用的蜘蛛丝蛋白通过用如上述20-22的载体或如上述19的核酸转化如上述23到33的一项或多项的适合的宿主,并在适合的条件下表达所述蜘蛛丝蛋白来产生。
36.如上述34或35的方法,其中所述聚集引发物选自优选地到约1的pH的酸化,磷酸钾和优选地旋转所述蛋白质溶液并应用切应力的机械应力。
37.如上述34-36的一项或多项的方法,其还包括将在步骤a)中提供的或在步骤c)中回收的所述蛋白质通过适合的方法纺丝为丝,纳米纤维和线或形成薄膜的步骤。
38.在如上述的一项或多项中定义的蛋白质/线在生物技术和/或药物领域中的应用。
39.在前述权利要求的一项或多项中定义的蛋白质/线用于制备伤口闭合或覆盖系统的应用。
40.如上述39用于制备缝线材料的应用。
41.如上述40的应用,其中所述缝线材料倾向于用在神经外科手术或眼科外科手术中。
42.在如上述的一项或多项中定义的蛋白质/线用于制备替代材料,优选地人工软骨或腱材料中的应用。
43.在如上述1-17的一项或多项中定义的蛋白质/线在制备汽车和飞行器部件中的应用。
44.伤口闭合或覆盖系统,缝线材料,替代材料,优选地人工软骨,腱材料,汽车部件或用在飞行器构建中的部件,其包括如上述1-17的一项或多项的线/蛋白质或其可以通过如上述33-36的一项或多项的方法获得。
45.一种纸产品,其包括如上述1-17的一项或多项的重组蜘蛛丝蛋白。
46.一种纺织品或皮革制品,其包括如上述1-17的一项或多项的重组蜘蛛丝蛋白。
47.如上述45的纺织品或皮革制品,其中所述重组蜘蛛丝蛋白以涂层的形式存在。
48.一种凝胶或泡沫,其包括如上述1-17的一项或多项的蛋白质或由其组成。
49.如上述48的凝胶,其包括基于(QAQ)8NR3,(QAQ)16NR3,(AQ)12NR3,(AQ)24NR3,C16NR4或C32NR4,(QAQ)8,(QAQ)16,(AQ)12,(AQ)24,C16或C32的蛋白质或由其组成。
50.用于植入物和斯滕特固定模的涂层,其包括如上述1-17的一项或多项的蛋白质或由其组成。
51.一种线或纤维,其包括如上述1-17的一项或多项的蛋白质/线和另外的纤维,所述纤维不是蜘蛛来源的并且优选地是植物来源的纤维或合成纤维。
52.一种薄膜,其包括如上述1-17的一项或多项的蛋白质或基于(QAQ)8NR3,(QAQ)16NR3,(AQ)12NR3,(AQ)24NR3,C16NR4或C32NR4,(QAQ)8,(QAQ)16,(AQ)12,(AQ)24,C16或C32的蛋白质,或由其组成。
53.如上述52的薄膜,其包括基于(AQ)24NR3或C16的蛋白质或由其组成。
54.如上述52或53的薄膜,其中所述薄膜表面用小有机分子和/或生物大分子,例如蛋白质、荧光素或β-半乳糖苷酶进行修饰。
要了解的是,用于本文时,术语“合成的重复性序列”指不能天然发现的,然而,其衍生自在蜘蛛丝蛋白中天然存在的重复单位的重组蛋白质序列。如上所示,那些重复序列包含一个或多个包含多到60个氨基酸的单一重复单位。天然存在的重复单位包含有限组的独特的氨基酸基序。那些重复单位特别将拉伸强度和弹性赋予可以在后来由蜘蛛丝蛋白形成的线。
下面将详细解释可能形成本发明的合成的重复序列的基础的不同类型的重复单位。
可以与合成的重复序列一起存在,或可以单独存在的本发明的重组蜘蛛丝蛋白的第二种组分包含一种或多种真正的非重复性蛋白质序列。这些非重复性序列在线的装配中具有重要的功能作用。
要注意的是,在本发明中,还意欲仅包含合成的重复性序列的重组的蜘蛛丝蛋白。尽管本发明的重组蛋白显示两种组分,即合成的重复序列以及真正的非重复序列,其具有更宽范围的应用性并且可以以更高的量产生(见下面的实施例章节),可以将仅具有合成的重复序列的重组蜘蛛丝蛋白用于一些特定的应用。
这些应用是汽车和飞行器部件,表面涂层,以及伤口闭合系统和伤口敷料等。或换言之,其中不需要蜘蛛丝蛋白的线结构的应用。
用于本文时,术语“真正的”意味着基本的核酸序列分离自它们的天然环境而在其序列本身中没有进行实质上的改变。允许的仅有的改变是其中将真正的非重复性核酸序列进行修饰从而使所述序列在不改变编码的氨基酸序列的情况下,在宿主中表达。优选的序列是NR3(SEQ ID NO:10;衍生自ADF-3)和NR4(SEQ ID NO:11;衍生自ADF-4)。在两个序列中,使用PCR诱变将很少在大肠杆菌(E.coli)中翻译的密码子AGA(Arg)突变为CGT(Arg)以进行更有效的翻译。
优选的鞭形蛋白的真正的非重复性序列是FlagN-NR (SEQ ID NOs:31和32)和FlagC-NR(SEQ ID NOs:33和34)的氨基酸序列和核酸序列。
按照优选的实施方案,本发明的重组蜘蛛丝蛋白通常衍生自蜘蛛主要壶腹腺的蜘蛛拖丝蛋白和/或鞭状腺的蛋白。
按照另一个优选的实施方案,真正的非重复性序列衍生自天然存在的蜘蛛丝蛋白的氨基端非重复性区域(鞭形蛋白)和/或羧基端非重复性区域(鞭形和拖丝蛋白)。下面将指出那些蛋白的优选实例。
通常优选选择衍生自圆网蜘蛛(园蛛科(Araneidae)和Araneoids)的拖丝或鞭形蛋白的拖丝和/或鞭形序列。
更优选地,所述拖丝蛋白和/或鞭形蛋白衍生自下列蜘蛛的一种或多种:希氏尾园蛛(Arachnura higginsi),Araneus circulissparsus,十字园蛛,Argiopepicta,条带园蛛(Banded Garden Spider)(三带蜘蛛(Argiope trifasciata)),Batik Golden Web Spider(Nephila antipodiana),Beccari′s Tent Spider(Cyrtophora beccarii),鸟粪蛛(Bird-dropping Spider)(Celaenia excavata),黑白棘蛛(Black-and-White Spiny Spider)(库氏棘腹蛛(Gasteracantha kuhlii)),黑黄园蛛(Black-and-yellow Garden Spider)(Argiope aurantia),流星锤蛛(Bolas Spider)(Ordgarius furcatus),流星锤蛛-巨蜘蛛(Bolas Spider-Magnificent Spider)(Ordgarius magnificus),棕色水手蛛(Brown SailorSpider)(嗜水新园蛛(Neoscona nautica)),棕腿蛛(Brown-LeggedSpider)(Neoscona rufofemorata);Capped Black-Headed Spider(帆楚蛛(Zygiella calyptrata)),普通园蛛(Common Garden Spider)(Parawixiadehaani),普通园蛛(Common Orb Weaver)(Neoscona oxancensis),蟹样棘园蛛(Crab-like Spiny Orb Weaver)(Gasteracantha cancriformis(elipsoides)),Curved Spiny Spider(Gasteracantha arcuata),皿云斑蛛(Cyrtophora moluccensis),Cyrtophora parnasia,Dolophones conifera,Dolophones turrigera,Doria′s Spiny Spider(Gasteracantha doriae),双点棘蛛(Double-Spotted Spiny Spider)(Gasteracantha mammosa),Double-TailedTent  Spider(方格云斑蛛(Cyrtophora  exanthematiea)),塞若尖腹蛛(Aculeperia ceropegia),Eriophora pustulosa,Flat Anepsion(Anepsiondepressium),Four-spined Jewel Spider(Gasteracantha quadrispinosa),花园圆网蛛(Garden Orb Web Spider)(Eriophora transmarina),Giant LichenOrbweaver(Araneus bicentenarius),金色网蛛(Golden Web Spider)(Nephilamaculata),Hasselt′s棘蛛(Hasselt′s Spiny Spider)(Gasteracantha hasseltii),Tegenaria atrica,Heurodes turrita,Island Cyclosa Spider(岛艾蛛(Cyclosainsulana)),Jewel or Spiny Spider(Astracantha minax),肾形园蛛(KidneyGarden Spider)(丽园蛛(Araneus mitificus)),Laglaise′s园蛛(Laglaise′sGarden Spider)(Eriovixia laglaisei),Long-Bellied Cyclosa Spider (Cyclosabifida),Malabar Spider(Nephilengys malabarensis),Multi-Coloured StAndrew′s Cross Spider(多色金蛛(Argiope versicolor)),观赏性树干蛛(Ornamental Tree-Trunk Spider)(裂腹蛛(Herennia ornatissima)),Oval St.Andrew′s Cross Spider(好胜金蛛(Argiope aemula)),Red Tent Spider(单色云斑蛛(Cyrtophora unicolor)),Russian Tent Spider(Cyrtophora hirta),SaintAndrew′s Cross Spider(凯氏金蛛(Argiope keyserlingi)),猩红阿秋蛛(猩红阿秋蛛(Acusilas coccineus)),银色金蛛(Argiope argentata),Spinybacked Orbweaver(Gasteracantha cancriformis),斑点园蛛(SpottedOrbweaver)(Neoscona domiciliorum),St.Andrews Cross(Argiopeaetheria),St.Andrew′s Cross Spider(Argiope Keyserlingi),Tree-StumpSpider(无鳞波蛛(Poltys illepidus)),Triangular Spider(Arkys clavatus),Triangular Spider(Arkys lancearius),Two-spined Spider(Poecilopachysaustralasia),络新妇蛛属(Nephila)物种,例如Nephila clavipes,Nephilasenegalensis,Nephila madagascariensis和更多(对于另外的蜘蛛物种,还见下)。最优选的是,衍生自十字园蛛的拖丝蛋白和衍生自Nephila clavipes的鞭形蛋白。
在本发明的背景下,应该清楚的是重组蜘蛛丝蛋白可以不仅包含来自一个物种的蛋白质序列,还可以包含衍生自不同蜘蛛物种的序列。作为实例,一个或多个合成的重复性蜘蛛丝蛋白序列可以衍生自一个物种,一个或多个真正的非重复性蜘蛛丝蛋白序列可以衍生自另一个物种。作为另一个实例,还可能是设计重组蜘蛛丝蛋白,其包含超过一种类型的重复序列,其中不同的类型衍生自不同的物种。
按照一个优选的实施方案,拖丝蛋白质是野生型ADF-3,ADF-4,MaSpI,MaSp II,鞭形蛋白是FLAG。术语ADF-3/-4用在由十字园蛛产生的MaSp蛋白质的背景下(十字园蛛丝心蛋白-3/-4)。两种蛋白质ADF-3和-4属于MaSp II类蛋白质(主要的壶腹状spidroin II)。
丝纤维具有类似于液态结晶聚合物的在弹性非晶形部分之间散布β-折叠的晶态区域。这两个部分由被不同基因编码的两种不同的蛋白质类,MaSp I(主要的壶腹状spidroin I)和MaSp II(主要的壶腹状spidroin II)代表。
在另一个实施方案中,提供的核酸序列是ADF-3(SEQ ID NO:1)和/或ADF-4(SEQ ID NO:2),或其变体。
要注意的是,本发明意欲两种不同种类的ADF-3和ADF-4编码序列和蛋白质:首先,已经公开的ADF-3和ADF-4序列(本文野生型序列)和第二,由SEQ ID NO:1(ADF-3)和2(ADF-4)编码的其变体。所述野生型序列已经公开并且在登记号U47855和U47856(SEQ ID NO:8和9)下获得。
可以在本发明中使用(即,单独的或组合以其它蛋白质)的另外的蜘蛛丝蛋白和它们的数据库登记号是:
spidroin 2[Araneus bicentenarius]gi|2911272
主要的壶腹状腺体拖丝丝蛋白质-1[大腹园蛛(Araneus ventricosus)]gi|27228957
主要的壶腹状腺体拖丝丝蛋白质-2[大腹园蛛]gi|27228959
壶腹状spidroin 1[Nephila madagascariensis]gi|13562006
主要的壶腹状spidroin 1[Nephila senegalensis]gi|13562010
主要的壶腹状spidroin 1[Latrodectus geometricus]gi|13561998
主要的壶腹状spidroin 1[三带金蛛]gi|13561984
主要的壶腹状spidroin 1[Argiope aurantia]gi|13561976
拖丝丝蛋白spidroin 2[棒络新妇蛛(Nephila clavata)]gi|16974791
主要的壶腹状spidroin 2[Nephila senegalensis]gi|13562012
主要的壶腹状spidroin 2[Nephila madagascariensis]gi|13562008
主要的壶腹状spidroin 2[Latrodectus geometricus]gi|13562002
按照另一个优选的实施方案,鞭形蛋白是SEQ ID NO:6(Flag-N)和/或SEQ ID NO:7(Flag-C)或其变体,其构成由本发明人衍生的新序列。
本文可以使用已知的并且公开的鞭形序列,具体如下:
鞭形丝蛋白部分cds[Nephila clavipes]gi|2833646
鞭形丝蛋白部分cds[Nephila clavipes]gi|2833648
在一个优选的实施方案中,重组的蜘蛛丝蛋白包含一个或多个合成的重复性序列,其包含一个或多个包含聚丙氨酸的共有序列。那些聚丙氨酸序列可以包含6-9个丙氨酸残基。见,例如SEQ ID NO:1,包含几个6个丙氨酸残基的聚丙氨酸基序。
优选地,包含聚丙氨酸的共有序列衍生自ADF-3,并且具有SEQ IDNO:3或其变体的氨基酸序列(组件A)。组件A包含具有6个丙氨酸残基的聚丙氨酸。衍生自ADF-4的包含另外的优选的聚丙氨酸的共有序列是组件C(SEQ ID NO:5),其包含8个丙氨酸残基。
按照另一个优选的实施方案,在本发明的重组蜘蛛丝蛋白中,合成的重复序列衍生自ADF-3并且包含SEQ ID NO:4(组件Q)或其变体的氨基酸序列的一个或多个重复序列。
更通常地,合成的重复序列还可以包含一般基序:GGX或GPGXX,即富含甘氨酸的区域。如上提及,这些区域将给蛋白质提供柔性并且因此给形成自包含所述基序的重组蜘蛛丝蛋白的线提供柔性。
要注意的是,本发明的合成性重复序列的具体组件还可以彼此组合,即组合A和Q的组件(重复单位),组合Q和C的组件等也包括在本发明中。尽管没有局限被引入蜘蛛丝蛋白的组件的数量,优选的是对每个重组蛋白使用许多合成的重复序列,所述数量优选地在5-50个组件,更优选地在10-40个和最优选地在15-35个组件范围内。
所述合成的重复性序列优选地包含一个或多个(AQ)和/或(QAQ)作为重复单位。甚至更优选的是,所述合成的重复性序列是(AQ)12,(AQ)24,(QAQ)8或(QAQ)16
只要合成的重复性序列衍生自ADF-4,其可以优选地包含如上提及的SEQ ID NO:5(组件C)或其变体的氨基酸序列的一个或多个重复序列,其中总的合成的重复性序列是C16或C32
本发明的完整重组蜘蛛丝蛋白的优选实施方案是(QAQ)8NR3,(QAQ)16NR3,(AQ)12NR3,(AQ)24NR3,C16NR4和C32NR4,即包含所述序列或由其组成的蛋白质。
要注意的是,上述合成的重复性序列的构型(使用A,Q和C系统)还应用于上述公开的所有其它的重复单位,例如,可以将所有的包含聚丙氨酸的序列作为A和/或C,并且可以将所有的富含甘氨酸的序列作为Q。
衍生自鞭形序列的用于合成的重复性序列的新组件是组件K(SEQ IDNO:35和36),sp(SEQ ID NO:37和38),X(SEQ ID NO:39和40),和Y(SEQ ID NO:41和42):
所述合成的重复性序列还优选地包含Y8,Y16,X8,X16,K8,K16或由其组成。
此外,还可能的是,将衍生自ADF-3和ADF-4的那些序列和Flag组合在一个重组序列中。
如上所释,本文公开的氨基酸序列并不局限于在SEQ ID Nos中提供的确切序列。本文指出的氨基酸序列还包含变体。因此,本发明的蛋白质的氨基酸序列还包含通过氨基酸插入、缺失和取代而不同于本文公开的序列的所有序列。
优选地,氨基酸“置换(substitution)”是一种氨基酸被具有类似结构和/或化学性质的另一种氨基酸取代,即保守性氨基酸取代的结果。氨基酸置换可以在涉及的残基的极性、电荷、溶解性、疏水性、亲水性和/或两亲性性质的类似性基础上进行。例如,非极性(疏水)氨基酸包括,丙氨酸,亮氨酸,异亮氨酸,缬氨酸,脯氨酸,苯丙氨酸,色氨酸和甲硫氨酸;极性中性氨基酸包括甘氨酸,丝氨酸,苏氨酸,半胱氨酸,酪氨酸,天冬酰胺和谷氨酰胺;带正电荷(碱性)氨基酸包括精氨酸,赖氨酸和组氨酸;带负电荷(酸性)氨基酸包括天冬氨酸和谷氨酸。
“插入”或“缺失”典型地在约1-5个氨基酸,优选地约1,2或3个氨基酸范围内。氨基酸添加典型地不超过100,优选地不超过80,更优选地不超过50,最优选地不超过20个氨基酸,其添加在本发明的蛋白质上和/或插入其中。注意到本发明仅意欲那些添加,其不会对本文公开的蛋白质需要的性质具有不利影响。
通过使用重组DNA技术系统进行蛋白质中的氨基酸的插入、缺失或置换并评估得到的重组变体的活性来实验性地确定容许的变化。这不需要本领域技术人员进行超出常规的实验。
按照第二个方面,本发明涉及编码如上公开的重组蜘蛛丝蛋白的核酸序列。编码优选的蛋白质的优选序列是SEQ ID NO:12(ADF-3),13(ADF-4),14(NR3),15(NR4),16(FLAG-NT),17(FLAG-CT),32(FlagN-NR),34(FlagC-NR)。
本发明还包括那些核酸的变体。将这些变体每个被限定为与SEQ IDNO:12-17,32和34的序列比较,具有一个或多个取代,插入和/或缺失,在所述变体在适度严格条件下与包含SEQ ID NO:12-17,32和34的序列的核酸杂交的条件下,或在所述变体包含由于遗传密码子的简并性所造成的核酸变化的条件下,其编码与SEQ ID NO:12-17,32和34的核酸序列相同或功能上等价的氨基酸。
术语“核酸序列”指这些核苷酸的杂聚物或这些核苷酸的序列。术语“核酸”和“多核苷酸”在本文交互地使用来指核苷酸的杂聚物。
杂交的严格性,用于本文时,指这样的条件,在所述条件下,所述多核苷酸双链体是稳定的。如本领域那些技术人员已知的,双链体的稳定性是钠离子浓度和温度的函数(见,例如Sambrook et al.,Molecular Cloning:ALaboratory Manual 2nd Ed.(Cold Spring Harbor Laboratory,(1989))。用于杂交的严格性水平可以容易地由本领域那些技术人员来改变。
用于本文时,短语“适度严格条件”指这样的条件,其容许DNA结合于互补核酸,所述互补核酸与所述DNA具有约60%的同一性,优选地约75%的同一性,更优选地约85%的同一性;其中与所述DNA大于约90%的同一性是尤其优选的。优选地,适度严格条件是这样的条件,其等价于在50%甲酰胺,5x Denhart′s溶液,5x SSPE,0.2%SDS中于42℃进行杂交,随后在0.2x SSPE,0.2%SDS,于65℃进行洗涤。
按照第三个方面,提供包含上述提及的核酸的载体。优选地,提供包含所述核酸的表达载体。该表达载体优选地包含一个或多个调节序列。术语“表达载体”通常指从DNA(RNA)序列表达多肽/蛋白质的质粒或噬菌体或病毒或载体。表达载体可以包含转录单位,其包含(1)遗传元件或在基因表达中具有调节作用的元件,例如启动子或增强子,(2)被转录成mRNA并翻译成蛋白质的结构或编码序列,和(3)适合的转录起始和终止序列的组合。倾向于用在酵母或真核生物表达系统中的结构单位优选地包括能够使宿主细胞胞外分泌翻译的蛋白质的前导序列。备选地,当在无前导或转运序列的情况下表达重组蛋白时,其可以包括氨基端甲硫氨酸残基。随后该残基可以或可以不从表达的重组蛋白上裂解来提供最终的产物。
按照优选的实施方案,所述载体是质粒或病毒载体,其优选地是杆状病毒载体系统或痘苗病毒载体系统。还可以在本发明中使用另外的病毒载体系统。根据不同的情况,可能需要对载体进行修饰。另外的病毒载体的实例是腺病毒和所有的负链RNA-病毒,例如狂犬病毒,麻疹病毒,RSV,等。
按照优选的实施方案,所述载体是如在图6中或在SEQ ID NO:55中所显示的克隆载体pAZL,或如上定义的其变体。该载体显示下列性质和优势:
1.高扩增(比其它克隆载体更高)
2.容许合成基因的受控的和连续的构建(已知没有其它的载体提供这种能力)。
本发明的第四个方面包含宿主,其已经用如上定义的载体进行了转化。
所述宿主可以是原核生物细胞。在这种情况下,优选大肠杆菌(E.coli)或枯草芽孢杆菌(Bacillus subtilis)。
此外,宿主可以是真核细胞,优选地哺乳动物细胞,植物细胞,酵母细胞或昆虫细胞。
所述哺乳动物细胞优选地是CHO,COS,HeLa,293T,HEH或BHK细胞。
还优选使用酵母细胞作为宿主细胞,其优选地是酿酒酵母(Saccharomyces cerevisiae),粟酒裂殖酵母(Schizosaccharomyces pombe),巴斯德毕赤酵母(Pichia pastoris),白色念珠菌(Candida albicans)或多形汉森酵母(Hansenula polymorpha)。
作为昆虫细胞,可以优选使用鳞翅目(Lepidoptera)昆虫细胞,更优选使用来自Spodoptera frugiperda和来自粉纹夜蛾(Trichoplusia ni)的细胞。最优选地,所述昆虫细胞是Sf9,Sf21或高效(high five)细胞。
昆虫细胞表达系统,例如相对于细菌系统的一个优势在于这样的事实,即产生的蛋白质被糖基化,由此作为微生物降解的靶标。这种性质例如在药物领域,只要丝蛋白质倾向于其中需要生物降解的体内应用,可能是重要的。该性质可以特别应用在缝线材料和伤口闭合和覆盖系统中。
当宿主是植物细胞时,植物细胞优选地来自烟草、马铃薯、玉米和西红柿。
按照第五个方面,提供聚集蜘蛛丝蛋白的方法,其包括下列步骤:
a)制备包含如上定义的非取向的(unoriented)蜘蛛丝蛋白的蛋白质溶液;
b)使在a)中制备的溶液暴露于聚集引发物;和
c)回收沉淀的蜘蛛丝蛋白。
优选地,通过用本文公开的载体或核酸转化如上定义的适合的宿主,并且在适合的条件下表达所述蜘蛛丝基因来产生用在步骤a)中的蜘蛛丝蛋白。
所述聚集引发物优选地选自优选地到约1的pH的酸化,磷酸钾和优选地旋转所述蛋白质溶液并应用切应力的机械应力。引发步骤证实是对于进行本发明的方法所必需的。
本发明人令人惊奇地显示,特别地,上述提及的引发因素增加了蜘蛛丝蛋白的聚集,这特别地从工业观点来看极为理想的。与此有关的参考见下面的“结果”章节,其中这些引发因子对本发明的重组蜘蛛丝蛋白的影响被解释如下:每种引发因素的影响可以在本发明的不同的重组蜘蛛丝蛋白之间变化,然而可以被视为一般概念的是,那些引发因素在体外显示对所有的包含本发明的成分,即重复和/或非重复的区域的重组蛋白的意料外的高度影响。此外,其可以衍生自本文提供的结果,即不仅单一的引发因素,而且那些因素的组合可以导致本发明的聚集蜘蛛丝蛋白的最佳方式。
然而,应该注意的是该方法不局限于本发明的蜘蛛丝蛋白质,其还可以用于无论是天然存在还是合成的所有的其它可获得的蜘蛛丝蛋白。
所述方法还优选地包含通过适合的方法将在步骤a)中制备或在c)中回收的所述蛋白纺丝为丝,纳米纤维和线的步骤。
为此目的,可以使用本身为本领域已知的纺丝方法。例如,蜘蛛丝蛋白的粘稠物溶液通过吐丝器挤压形成生物丝。得到的生物丝可以被牵引或伸长。只要分子的晶体和非晶形排列存在于生物丝中,牵引或伸长将施加足以使分子定向使它们更加平行于丝壁的切应力并增加生物丝的拉伸强度和韧性。
粘稠物溶液可以包含衍生自一种或多种蜘蛛物种的本发明的重组丝蛋白和/或真正的丝蛋白,或衍生自不同产丝种属的丝蛋白,例如衍生自蜘蛛和B.mori的丝蛋白的混合物。在大多数优选的实施方案中,所述的丝蛋白是来自N.clavipes或A.diadematus的拖丝的丝和/或鞭形的丝,尤其是蛋白MaSpI,MaSpII,ADF-3,和ADF-4和Flag。在备选实施方案中,粘稠物溶液包含丝蛋白和一种或多种合成聚合物或天然或合成生物丝蛋白的混合物。
优选地,粘稠物溶液是至少1%,5%,,10%,15%重量/体积(w/v)丝蛋白。更优选地,所述粘稠物溶液是多到20%,25%,30%,35%,40%,45%,或50%w/v的丝蛋白。在优选的实施方案中,粘稠物溶液包含基本纯的蜘蛛丝蛋白。在优选的实施方案中,粘稠物具有约6.9的pH。
所谓“粘稠物溶液”指包含丝蛋白的任何液体混合物,并且易于挤压来形成生物丝或薄膜铸塑。除了蛋白质单体之外,粘稠物溶液还可以包含更高级的团聚体,其包括,例如二聚体,三聚体和四聚体。通常,粘稠物溶液是pH 4.0-12.0的水溶液并具有少于40%的有机或离液序列高的试剂(w/v)。优选地,所述粘稠物溶液不包含任何有机溶剂或离液序列高的试剂,但是可以包括添加剂来增加溶液的防腐性、稳定性或可使用性。
至于“丝”,是指不确定长度的纤维,范围从纳米等级和极微的长度到一英里或更长的长度。丝(silk)是天然的丝,同时尼龙和聚酯作为合成丝的实例。
关于怎样纺织(spin)蜘蛛丝蛋白纤维的另外的信息可以见于WO03060099(Karatzas et al.),其公开于2003年7月24日,将其并入本文作为参考。
此外,本发明的蜘蛛丝蛋白可以作为薄膜等进行提供,即作为对于其不需要纺丝步骤的蜘蛛丝蛋白产物进行提供。
关于制备薄膜的方法的更详细的描述参考实施例章节。
另外,本发明的方法可以优选地在步骤a)和/或c)中包括纯化方法,所述方法包括使被表达的蜘蛛丝蛋白暴露于在60-90,优选地在70-80℃的热变性,随后添加600-1400mM,优选地800-1200mM的硫酸铵。
如已经在上面解释,本文定义的蛋白质/线可以用在生物技术和/或药物的领域中,优选地用于制备伤口闭合或覆盖系统,用在神经外科手术或眼科外科手术的缝线材料中。
此外,蛋白质/线可以优选地用于制备替代材料,优选地人造软骨或腱材料。
另外,本发明的线/纤维可以用于制备医学装置诸如医学粘附带,皮肤移植物,替代的韧带,和外科手术网眼;和用于制备广泛范围的工业和商业产品诸如衣服织物,防弹衣衬里,容器织物,包或钱包带,缆,绳,粘附性结合材料,非粘附性结合材料,皮带材料,汽车覆盖物和部件,飞行器构建材料,抗风化材料,柔性分割材料,运动设备;和事实上需要高拉伸强度和弹性特性的纤维或织物的几乎任何应用中。本发明还意欲以其它形式存在的稳定的纤维产品,诸如干的喷雾涂层,珠子样颗粒的适应性和应用,或在与其它的组合物的混合物中的应用。
要清楚地注意到本发明的蜘蛛丝蛋白的最优选的应用是制备和加工衣服织物(纺织品)和皮革,汽车覆盖物和部件,飞行器构建材料以及制备和加工纸。
本发明的重组蜘蛛丝蛋白可以添加到纤维素和角蛋白和胶原蛋白产物,并且因此,本发明还涉及包含纤维素和/或角蛋白和/或胶原蛋白和蜘蛛丝蛋白的纸或皮肤护理和头发护理产品。其中结合了本发明的蛋白的纸和皮肤护理和头发护理产品显示改善的特性,具体而言提高的拉伸强度或抗撕裂强度。
此外,还可以将本发明的重组蜘蛛丝蛋白用作纺织品和皮革制品的涂层,由此赋予被涂布的产品以稳定性和耐久性。丝蛋白特别显示对于涂布皮革制品的应用性,并且因此,鞣革及其对环境的负作用可以避免或至少减少。
除非另外指出,本文所用的所有的技术和科学术语与本发明所属领域的普通技术人员公知的具有相同的含义。将所有的出版物,专利申请,专利,和本文提及的其它的参考文献全部内容并入本文作为参考。如有冲突,本说明书,包括定义将进行控制。此外,所述材料,方法和实施例仅是举例说明性的,而不倾向于限制。
现在,本发明还通过实施例和阳图进行举例说明,所述附图显示如下:
图1构建合成的蜘蛛丝基因的克隆策略。(A)克隆盒包含组件多聚化所需要的限制酶切位点(BsgI和BseRI)和切除组合的基因所需要的限制酶切位点(NcoI,BamHI,HindIII)。在基因构建过程中,间隔区域被组件和组件多聚体所替代。(B)通过连接两个适合的质粒片段来实现两个组件的定点连接。重新构建载体的氨苄青霉素抗性基因(Apr)。(C)将连接两个组件所需要的核苷酸限定在每个组件的第一个密码子中。(D)组件多聚体象单一组件一样连接,导致了合成基因的受控制的装配。(E)被设计的丝组件的氨基酸序列衍生自拖丝的丝蛋白ADF-3和ADF-4。
图2蜘蛛丝蛋白的分析。(A)在用抗-T7-标记抗体进行蛋白质印迹后检测重组丝蛋白的T7-标记。(B)将蛋白质进行SDS-PAGE,随后进行银染。由于(AQ)12和(QAQ)8的弱染色,图像的对比度通过电子仪器被增加。(C)分别用280nm(直线)或295nm(虚线)的激发波长显示纯化的C16NR4的荧光发射光谱。
图3蜘蛛丝蛋白的二级结构和温度转变。(A)在20℃记录rep-蛋白质(直线),repNR-蛋白质(虚线)和NR-蛋白质(长虚线)的CD-光谱。(B)当将合成的丝蛋白加热到90℃(直线),随后冷却到20℃(虚线)时,在220nm测量可溶性蜘蛛丝蛋白的平均残基重量(MRW)的椭圆度。
图4合成的蜘蛛丝蛋白的聚集。在缓冲液中,在存在300mM NaCl或300mM KCl的情况下,在pH 1的情况下,或在存在300mM磷酸钾的情况下,温育1小时后,确定蛋白质的聚集。衍生自ADF-3的蛋白质的棒条:浅灰色;衍生自ADF-4的蛋白质的棒条:深灰色。
图5构建合成的鞭形蜘蛛丝基因的克隆策略(见,图1)。将单一组件连接于同型-多聚体(a)以及异型-多聚体(b)。(c)显示衍生自Nephilaclavipes的鞭形丝蛋白(Flag)的被设计的鞭形丝组件的氨基酸序列。
图6显示载体pAZL的限制性酶切图谱。
图7:蜘蛛丝蛋白的装配形式。(A)通过扫描电镜(SEM)观察的由C16形成的球体。(B)通过原子力显微镜观察的由C16NR4形成的纳米纤维(高度信息)。(C,D)通过SEM研究由(AQ)24NR3形成的微纤维(C)。对于切割纤维并随后观察截面,使用聚焦的Ca+离子束(D)。(E)产生自(AQ)24NR3溶液的泡沫。(F)产生自C16NR4溶液的泡沫。(G)由C16NR4纳米纤维形成的交联的凝胶。
图8:合成丝蛋白(AQ)24NR3和C16的CD-光谱,所述合成丝蛋白(AQ)24NR3和C16溶解在6M硫氰酸胍,随后针对5mM磷酸钾pH 8.0进行透析(直线)或溶解在HFIP中(虚线)。
图9:从在HFIP中的2%w/v C16溶液中铸塑的C16薄膜。
图10:制备自(AQ)24NR3和C16的蛋白质薄膜的CD-光谱。薄膜直接在单色(plain)石英玻璃上,从在HFIP中的蛋白质溶液中进行铸塑,并通过CD-光谱学进行分析(虚线)。随后用1M的磷酸钾来处理薄膜并再次进行分析。由于在确定薄膜的厚度上的误差,不能确定□θMRW
图11:从HFIP溶液中铸塑并用磷酸钾处理的C16薄膜的修饰。(A)当使用EDC来活化(+)C16的羧基基团时,仅发生荧光素(黄色)的有效偶联。与此相对,在没有EDC激活的情况下(-),仅有少量荧光素结合于薄膜。(B)使用X-Gal作为底物,检测偶联的β-半乳糖苷酶的活性。蓝色沉淀物的发生指示仅在用EDC活化的薄膜上具有酶活性(+),而未活化的薄膜仅显示残余的酶活性(-)。
图12:C16纳米纤维的AFM图像。
图13:C16纳米纤维制备的水凝胶。
图14:交联的和非交联的水凝胶在10mg/ml浓度上的应力/张力表现。
图15:对于在20mg/ml浓度的交联的和非交联的纤维网络的取决于恢复模量(G′)和损失模量(G″)的频率。
图16:对于交联的和非交联的水凝胶,取决于在0.5Hz频率上的恢复模量的浓度。两种网络具有与浓度的平方[c]2成比例的恢复模量。
实施例
实验方法
材料.如果没有另外指出,化学品获自Merck KGaA(Darmstadt,德国)。如前所述(19)进行DNA的操作和修饰。限制性酶获自New England Biolabs(Beverly,MA,USA),连接酶获自Promega Biosciences Inc.(San Luis Obispo,CA,USA)。使用来自Qiagen(Hilden,德国)的试剂盒来进行DNA纯化。合成的寡核苷酸获自MWG Biotech AG(Ebersberg,德国)。所有的克隆步骤在来自Novagen(Madison,WI,USA)的大肠杆菌菌株DH10B中进行。
克隆载体pAZL的构建。通过使两个合成的寡核苷酸CC1(GATCGAGGAGGATCCATGGGACGAATTCACGGCTAATGAAAGCTTACTGCAC)(SEQ ID NO:18)和CC2(AGCTGTGCAGTAAGCTTTCATTAGCCGTGAATTCGTCCCATGGATCCTCCTC)(SEQ ID NO:19)退火来产生具有黏性末端的克隆盒,所述黏性末端互补于由BgIII和HindIII产生的那些。通过将50pmol/μl(每种)寡核苷酸溶液的温度以0.1℃/s的微量从95℃减少到20℃来完成退火。错配的双链在70℃变性,随后减少到20℃。在重复20℃-70℃-20℃循环10次后,以65℃的变性温度进行另外的循环。将得到的克隆盒与用BgIII和HindIII消化的pFastbacl载体(Invitrogen,Carlsbad,California,USA)进行连接。在此克隆步骤后,两个限制性酶识别序列被破坏。将得到的新的克隆载体称为pAZL。
将丝组件和NR-区域克隆到pAZL载体中。在考虑细菌密码子选择的情况下,将衍生自拖丝的丝蛋白ADF-3和ADF-4的三个氨基酸组件(图1E)回译为DNA序列。如上所述,来合成相应的互补DNA寡核苷酸Al(TCCGTACGGCCCAGGTGCTAGCGCCGCAGCGGCA GCGGCTGGTGGCTACGGTCCGGGCTCTGGCCAGCAGGG)(SEQ ID NO:20)和A2(CTGCTGGCCAGAGCCCGGACCGTAGCCACCAGCCGCTGCCGCTGCGGCGCTAGCACCTGGGCCGTACGGACC)(SEQ ID NO:21),Q1(TCCGGGCCAGCAGGGCCCGGGTCAACAGGGTCCTGGCCAGCAAGGTCCGGGCCAGCAGGG)(SEQ ID NO:22)和Q2(CTGCTGGCCCGGACCTTGCTGGCCAGGACCCTGTTGACCCGGGCCCTGCTGGCCCGGACC)(SEQ ID NO:23),C1(TTCTAGCGCGGCTGCAGCCGCGGCAGCTGCGTCCGGCCCGGGTGGCTACGGTCCGGAAAACCAGGGTCCATCTGGCCCGGGTGGCTACGGTCCTGGCGGTCCGGG)(SEQ ID NO:24)和C2(CGGACCGCCAGGACCGTAGCCACCCGGGCCAGATGGACCCTGGTTTTCCGGACCGTAGCCACCCGGGCCGGACGCAGCTGCCGCGGCTGCAGCCGCGCTAGAACC)(SEQ ID NO:25)并对其进行退火,将其与用BsgI和BseRI消化的pAZL载体连接。使用下列引物通过PCR扩增蜘蛛丝基因adf-3(gi|1263286)和adf-4(gi|1263288)(获自Prof.Gosline,Vancouver,Canada)的NR-区域:
NR3f
(GAAAAACCATGGGTGCGGCTTCTGCAGCTGTATCTG)(SEQ IDNO:26),
NR3r
(GAAAAGAAGCTTTCATTAGCCAGCAAGGGCTTGAGCTACAGATTG)(SEQ ID NO:27),
NR4f
(GAAAAACCATGGGAGCATATGGCCCATCTCCTTC)(SEQ ID NO:28)和
NR4r
(GAAAAGAAGCTTTCATTAGCCTGAAAGAGCTTGGCTAATCATTTG)(SEQ ID NO:29)。
对于Flag序列,可以使用下列引物和盒:
PCR-引物:
FLAG-N-chr-有义:(SEQ ID NO:43)
5’-GAAAAACCATGGGCGAAAGCAGCGGAGGCGAT-3’
FLAG-N-chr-反:(SEQ ID NO:44)
5’-GAAAAGAAGCTTTCATTAGCCTGGGCTGTATGGTCC-3’
FLAG-C-chr-反义:(SEQ ID NO:45)
5’-GAAAAACCATGGGTGCTTATTATCCTAGCTCGC-3’
FLAG-C-chr-反:(SEQ ID NO:46)
5’-GAAAAGAAGCTTTCATTAGCCATAAGCGAACATTCTTCCTAC-3’
产生盒的重复序列的寡核苷酸:
组件Y-(GPGGX)-ds:(SEQ ID NO:47)
5’-TCCGGGCGGTGCGGGCCCAGGTGGCTATGGTCCGGGCGGTTCTGGGCCGGGTGGCTACGGTCCTGGCGGTTCCGGCCCGGGTGGCTACGG  -3’
组件Y-(GPGGX)-cs:(SEQ ID NO:48)
5’-GTAGCCACCCGGGCCGGAACCGCCAGGACCGTAGCCACCCGGCCCAGAACCGCCCGGACCATAGCCACCTGGGCCCGCACCGCCCGGACC-3’
组件sp-(间隔区)-ds:(SEQ ID NO:49)
5’-TGGCACCACCATCATTGAAGATCTGGACATCACTATTGATGGTGCGGACGGCCCGATCACGATCTCTGAAGAGCTGACCATCGG-3’
组件sp-(间隔区)-cs:(SEQ ID NO:50)
5’-GATGGTCAGCTCTTCAGAGATCGTGATCGGGCCGTCCGCACCATCAATAGTGATGTCCAGATCTTCAATGATGGTGGTGCCACC-3’
组件K-(GPGGAGGPY)-ds:(SEQ ID NO:51)
5’-TCCGGGCGGTGCTGGCGGTCCGTACGGCCCTGGTGGCGCAGGTGGGCCATATGGTCCGGGCGGTGCGGGCGGTCCGTACGG-3’
组件K-(GPGGAGGPY)-cs:(SEQ ID NO:52)
5’-GTACGGACCGCCCGCACCGCCCGGACCATATGGCCCACCTGCGCCACCAGGGCCGTACGGACCGCCAGCACCGCCCGGACC-3’
组件X-(GGX)-ds:(SEQIDNO:53)
5’-TGGCGCTGGTGGCGCCGGTGGCGCAGGTGGCTCTGGCGGTGCGGGCGGTTCCGG-3’
组件X-(GGX)-cs:(SEQ ID NO:54)
5’-GGAACCGCCCGCACCGCCAGAGCCACCTGCGCCACCGGCGCCACCAGCGCCACC-3’
在用NcoI和HindIII消化后,连接PCR产物和pAZL载体。克隆合成的组件和PCR产物导致取代克隆的盒间隔区,保持其元件的排列。对于更有效的翻译,使用PCR诱变(19)将NR3和NR4中的极少在大肠杆菌中翻译的密码子AGA(精氨酸)突变为CGT(精氨酸)。
合成的蜘蛛丝基因的构建。连接两个基因片段,例如单组件,组件多聚体或NR-区域代表克隆策略的基本步骤。为此目的,将包含指定得到5′-端基因片段的pAZL载体用BsaI和BsgI消化,同时分别用BseRI和BsaI消化包含3′-端基因片段的载体(图1B)。适合的质粒片段的连接产生了两个基因片段的连接并导致促进鉴定正确的构建体的pAZL载体的氨苄青霉素抗性基因(Apr)的重构。
对于基因构建,首先将单一组件连接从而产生重复单位(图1D+图5)。这些被逐渐多聚化并任选地连接以NR-区域。最终,用BamHI和HindIII将合成的基因构建体以及NR-区从pAZL载体上切除下来,并连接以以同样方式消化的细菌表达载体pET21a(Novagen),提供T7-标记(MASMTGGQQMGR)(SEQ ID NO:30)编码序列(20)。通过DNA测序来证实所有的构建体的忠实性。
基因表达。所有的丝基因在大肠杆菌菌株BLR[DE3](Novagen)中进行表达。将细胞于37℃在LB培养基中培养到OD600=0.5。在用1mM IPTG (异丙基-β-D-硫代半乳糖苷)诱导前,分别对于(AQ)12,(AQ)12NR3,(QAQ)8,和(QAQ)8NR3,将细胞变化到30℃,对于C16,C16NR4,NR3和NR4,将细胞变化到25℃。备选地,使用复合培养基(21)和补料分批技术(22),将细胞在发酵罐中培养到OD600=40-50。此外,在用1mM IPTG诱导前,分别将细胞变化到25℃或30℃。在诱导3-4小时后,收集表达(AQ)12(AQ)12NR3,(QAQ)8,(QAQ)8NR3,C16和C16NR4的细胞,而在诱导后16小时收集表达NR3和NR4的细胞。
蛋白质纯化。将细胞用包含20mM N-(2-羟乙基)哌嗪-N′-(2-乙磺酸)(HEPES)pH 7.5,100mM NaCl,0.2mg/ml溶菌酶(Sigma-Aldrich,St.Louis,MO,USA)的5ml/g的缓冲液重悬,并在4℃温育30分钟。使用HD/UW2200/KE76超声发生器(Bandelin,Berlin,德国)通过声波振荡裂解细胞,并通过用0.1mg/ml脱氧核糖核酸酶I(Roche,Mannheim,德国)和3mM的MgCl2在4℃温育细胞裂解物60分钟来消化基因组DNA。于50,000×g和4℃沉淀不可溶的细胞片段30分钟。通过在80℃热变性20分钟,来将包含(AQ)12,(AQ)12NR3,(QAQ)8,(QAQ)8NR3,C16和C16NR4的裂解物的可溶性大肠杆菌蛋白质沉淀下来,而将包含NR3和NR4的裂解物加热到70℃达相同的时间长度。通过在50,000×g的30分钟的沉淀来去除沉淀的蛋白质。将在热变性过程中仍旧可溶的丝蛋白用20%硫酸铵(800mM)((AQ)12,(AQ)12NR3,(QAQ)8,(QAQ)8NR3,C16和C16NR4)或30%硫酸铵(1200mM)(NR3和NR4),于室温进行沉淀,并在10,000×g离心10分钟进行收集。用包含与用于沉淀时相同的浓度的硫酸铵的溶液来漂洗(AQ)12,(AQ)12NR3,(QAQ)8,(QAQ)8NR3,NR3和NR4的沉淀物并将其溶解在6M的氯化胍(GdmCl)中。与此相反,用8M尿素来洗涤C16和C16NR4,并将其溶解在6M硫氰酸胍(GdmSCN)中。针对10mM NH4HCO3来透析所有的蛋白质。通过在50,000×g沉淀30分钟来去除在透析过程中形成的沉淀物并将余下的可溶性丝蛋白冻干。在分析前,将冻干的蛋白质溶解在6M GdmSCN中,随后进行针对适合的缓冲液的透析。通过在125,000×g沉淀30分钟去除团聚体。使用计算的消光系数(表1)(23),在1cm通径长的比色杯中于276nm通过光度法确定蛋白质的浓度。通过十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE;对于>20kDa的蛋白质,10%Tris-甘氨酸凝胶,对于<20kDa的蛋白质,10-20%Tris-麦黄酮(Tricine)凝胶(Invitrogen)),随后在聚偏氟乙烯(PVDF)膜(Millipore,Billerica,MA,USA)上进行印迹法并使用小鼠抗-T7单克隆抗体(Novagen,1∶10,000)作为一抗,使用抗-小鼠IgG过氧化物酶缀合物(Sigma-Aldrich,1∶5,000)作为二抗来证实鉴定的蛋白质。使用来自Amersham Biosciences(Piscataway,NJ,USA)的ECLplus蛋白质印迹检测试剂盒观察过氧化物酶的活性。荧光.在FluoroMax分光荧光计(Jobin YvonInc,Edison,NJ,USA)上记录荧光光谱。在室温,使用在10mM Tris(羟甲基)氨基甲烷(Tris)/HCl(pH 8.0)中的100μg/ml蛋白质浓度来记录光谱。整合时间是1s,步长(step size)是0.5nm,带宽分别是5nm(激发)和5nm(发射)。
二级结构分析.使用装备了温度控制装置(Jasco International Co.Ltd.,Tokyo,日本)的Jasco 715分光偏振仪来获得Far-UV园二色性(CD)光谱。于20℃,在0.1cm通径长的石英比色杯中,以在5mM Tris/HCl(pH 8.0)中的150μg/ml蛋白质浓度记录所有的光谱。扫描速度是20nm/min,步长是0.2nm,整合时间设定为1s,带宽是1nm。将四次扫描平均,并用缓冲液校正。在220nm,以1℃/分的加热/冷却变化来分析热转化。
溶解度测定
为了确定可溶性蛋白质的最大浓度,使用10,000Da分子量的截留值的聚醚砜膜(Vivascience AG,Hannover,德国)通过超滤作用来浓缩在10mM Tris/HCl pH 8.0中的1mg/ml(=0.1%(w/v))溶液。以不同的间隔,从溶液中取出样品直到蛋白质开始沉淀。在10mM Tris pH 8.0中稀释样品来通过光度法来确定蛋白质浓度。
聚集测定.将所有的样品在10mM Tris/HCl pH 8.0中调节到1mg/ml。为了测试离子对丝蛋白聚集的影响,将盐添加到300mM的最终浓度。通过将HCl添加到100mM的最终浓度(pH=1)来研究酸化的作用。将所有的样品在室温温育1小时。将蛋白质沉淀物通过在125,000×g沉降25分钟,从所有的样品中去除,通过光度法确定剩余的可溶性蛋白的量。由于可溶性和聚集的蛋白质的总量必须等于开始的可溶性蛋白的量,可以通过将可溶性蛋白的量从开始使用的蛋白质的量中扣除来计算聚集的蛋白质的百分比。
结果
设计丝样蛋白的克隆策略.真正的蜘蛛丝基因在细菌宿主中的表达是不充分的(24),因为一些基因部分包含在细菌中不能有效翻译的密码子。此外,由于丝的重复性质,通过PCR进行基因操作和扩增的是困难的。为了研究蜘蛛丝蛋白的性质,使用具有适应于相应的表达宿主的密码子选择的合成的DNA组件来应用克隆策略。获得编码与蜘蛛丝的重复区域相似的蛋白质的合成基因(25-28)。重要的是,这些蛋白质设计中没有一个包括在所有的拖丝的丝中发现的羧基端的NR-区。
发明人开发了容许不同的合成DNA组件以及真正的基因片段的受控制的组合的连续的克隆策略(29)。设计包含克隆盒和限制性酶识别位点BseRI和BsgI的克隆载体pAZL(图1A),所述克隆盒具有间隔区,其充当合成基因的占位符。因为这些酶的识别和裂解位点是8(BseRI)或12(BsgI)核苷酸间隔(apart),翻译起始和终止密码子以及切除组装的基因所需要的另外的限制酶切位点可以在位置上邻近于间隔区。
在第一个克隆步骤中,pAZL的间隔区被合成的DNA组件所取代(见下面的组件设计)。随后,可以以定点的方式连接两个组件(见材料和方法以及图1B)。将通过用BsgI和BseRI裂解产生的互补的3′-单链延伸GG(有义)和CC(反义)用于连接两个组件(图1C)。因此,将连接两个组件所需要的DNA序列限制到甘氨酸密码子(GGX)。甘氨酸天然在蜘蛛丝蛋白中是丰富的(~30%),因此,可以在不需要搜索限制性核酸内切酶识别位点的情况下设计组件,其在翻译后,匹配真正的氨基酸序列。因为在克隆和多聚化后,克隆盒元件的排列保持不变,可以构建多种组件的组合(图1D)。
合成的蜘蛛丝的设计、合成和纯化.发明人选择来自园蛛十字园蛛的拖丝的丝蛋白ADF-3和ADF-4(3)作为合成构建体的模板。部分确定的ADF-3的一级结构主要由重复单位组成,其都包含包括聚丙氨酸基序的共有序列。通过改变基序GPGQQ的数量来确定个体重复单位的长度。为了模拟ADF-3的重复序列,我们设计了两个组件。一个组件,被称为A,来自包含聚丙氨酸的共有序列(图1E)。第二个组件被称为Q,包含GPGQQ基序的四个重复序列。为了研究不同长度的重复单位,将一个或两个Q组件组合以一个A组件以获得(AQ)或(QAQ)。将这些重复单位多聚化以产生用于编码重复蛋白质(rep-蛋白质)(AQ)12和(QAQ)8的合成基因。
ADF-4的重复部分通常由仅显示轻微变化的单一保守的重复单位组成。发明人将这些变化组合并设计一个被称为C的共有组件(图1E),发明人将所述共有组件多聚化以获得rep-蛋白C16。选择在所有的合成基因中的组件重复序列的数量来编码具有类似分子量(~50kDa)的蛋白质。
ADF-3和ADF-4在它们的羧基端都显示同源的NR-区,其分别包含124和109个氨基酸。通过PCR来扩增编码这些区域的基因序列,并通过定点诱变(见材料和方法)将对于细菌的表达存在问题的密码子改变为更适合的密码子。因此,所有的所用合成基因可以组合以适合的真正的NR-区,产生编码repNR-蛋白质(AQ)12NR3,(QAQ)8NR3和C16NR4的基因。另外,NR3和NR4可以单独表达。
细菌合成后,丝蛋白通过加热步骤随后进行硫酸铵沉淀来进行纯化。通过使用针对连接于所有的丝蛋白的氨基端末端的T7肽标记序列的抗体,通过免疫印迹法证实蛋白质的鉴定(图2A)。尽管所有的rep-蛋白质和所有的repNR-蛋白质具有类似的分子量(表1),当进行SDS-PAGE时,它们显示不同的迁移速度。这种效果可能是因为十二烷基硫酸盐由于不同的氨基酸组成,与蛋白质异常结合,使蛋白质净电荷变化而导致的。除了全长蛋白质,免疫印迹法显示在制备repNR-蛋白质中具有低分子量的痕量蛋白质的存在。抗T7-标记抗体与这些蛋白质的结合将它们鉴定为缺乏它们的羧基端末端部分的丝蛋白质。通过SDS-PAGE和银染分析每种纯化的蛋白质,在所有的蛋白质制备物中没有检测到另外的蛋白质(图2B)。另外通过测量荧光发射来确定蛋白质纯度。280nm波长的入射光导致酪氨酸和色氨酸的激发和荧光发射,而295nm的光专门激发后者。因为所设计的蜘蛛丝蛋白中没有一种包含色氨酸,在用295nm激发后荧光发射指示污染了大肠杆菌的蛋白质,其平均包含1.5%的色氨酸(30)。所有的丝蛋白制备物的荧光测量揭示与酪氨酸的光谱类似的发射光谱,其在丝蛋白中大量存在。与此相反,检测不到色氨酸荧光,显示蛋白质制备物的高纯度(在图2B中显示对于C16NR4的数据)。
在锥形瓶中进行的合成丝蛋白的细菌生产,对于所有的构建体产生了类似的蛋白质产量。个体制备物的产量在每升培养基10到30mg纯化的蛋白质的范围内。应用细胞发酵以研究高质量蛋白质合成的可能性。因此,(QAQ)8NR3和C16NR4的产量可以分别增加到140和360mg/l。
RepNR-蛋白质由较差结构的重复区域和高度结构的非重复结构域组成。通过CD光谱学研究二级结构。Rep-蛋白质揭示对于内部无结构蛋白质的典型的光谱。与此相对,NR-蛋白质揭示指示高二级结构含量的光谱。这些区域似乎独立代表折叠的蛋白质结构域。repNR-蛋白质的光谱大致相应于按照它们在repNR-蛋白质中的分配加载的rep-和NR-光谱的组合。尽管在相互连接后,不能排除在rep-区域或NR-结构域中的微小结构变化,可能的是,repNR-蛋白质由大部分显示随机卷曲结构的区域和羧基端折叠蛋白质结构域组成。令人惊奇的是,repNR-蛋白质的光谱类似于获自直接提取自蜘蛛(Nephila clavipes)的主要壶腹状丝粘稠物的光谱(9)。
在热和化学变性后的丝蛋白质再折叠.在加热后,通过CD-光谱学研究结构变化,没有观察到在20℃和90℃之间的对于rep-蛋白质的协同温度变化(31;32)(图3)。因为repNR-蛋白质至少是部分结构化的,应该在升高的温度上可检测到结构化区域的热伸展。因此,观察到协同的温度转变。温度转变的中点分别是67℃((QAQ)8NR3),66℃((AQ)12NR3)和72℃(C16NR4),(图3B和表1)。此外,所有的温度转变可以彻底逆转。加热后的结构变化的可逆性解释了在蛋白质纯化过程中应用加热步骤后的可溶性丝蛋白的高度恢复。因为Tris的良好光谱性质和不会促进丝蛋白质聚集的能力,将Tris用于缓冲通过CD光谱学研究的所有溶液。由于Tris缓冲溶液的强烈的温度依赖性,预期样品的pH在从20℃加热到90℃后,从pH 8变化到pH 6(19)。然而,在pH 8的磷酸缓冲液中的丝蛋白的温度转变,显示温度与pK-值不相关,揭示尽管它们可能由于蛋白质聚集(见下)不可完全逆转,但具有相同的中点温度(数据未显示)。这指示丝蛋白的温度转变没有被温度诱导的在Tris-缓冲溶液中的pH的变化所影响。
通过在针对6M GuaHCl透析,和通过针对Tris缓冲液透析复性后测量在Tris缓冲液中的repNR-蛋白质的园二色性来研究化学变性和复性对二级结构的影响。开始和再折叠的蛋白质的相同的光谱指示化学变性是可逆的(数据未显示)。
通过它们的重复序列来确定丝蛋白的溶解度.为了获得在粘稠物中的高蛋白质浓度,丝蛋白必须是高度可溶的。我们测试了其中rep-和repNR-蛋白质仍旧可溶的最大浓度,来确定决定溶解度的一级结构元件。可以通过超滤到超过30%w/v来浓缩包含组件A和Q的所有蛋白质,而在不管是否存在NR-结构域的情况下不形成可见的团聚体。与此相对,可以分别仅将包含组件C的蛋白质浓缩到8%w/v(C16)和9%w/v(C16NR4)(表1)。两种蛋白质在进一步浓缩后形成凝胶样固体(数据未显示)。因此,丝蛋白的溶解度仅通过它们的重复序列来确定并且不被NR-结构域所影响。不依赖它们的一级结构,钾不促进合成的丝蛋白的聚集.PH,离子,诸如钾和磷酸盐以及机械应力涉及天然丝装配。在本文,我们意欲研究这些因子怎样促进合成丝蛋白的装配。因为我们不能起始真正的装配过程,其需要如在液体结晶粘稠物中发现的涉及的蛋白质的预先定向(33),我们进行以不显示取向顺序的蛋白质溶液开始的聚集测定。当在缓冲液中温育时,测试的rep-,repNR-和NR-蛋白质没有一种显示明显的聚集(<5%),显示所有的蛋白质在测试条件下本质上是可溶的(图4)。为了研究添加离子是否通过离子强度的增加导致聚集,用氯化钠来温育蛋白质。然而,没有观察到任何聚集。与钠相反,已经报道了钾特异性地促进丝的聚集(34)。但是,氯化钾还显示对合成的丝蛋白的溶解度没有任何影响(图4)。
根据它们的一级结构,酸化和磷酸盐的添加促进了rep-蛋白质的聚集在蜘蛛丝装配的过程中的酸化的精确功能尚未被确定。但是,似乎可能的是,带负电荷的基团(例如,磷酰基团)被质子化,由此减少蜘蛛丝蛋白的净电荷和排斥。因为合成的丝蛋白不包含显示在纺丝过程中观察到的pH-变化范围内的pKA-值的化学基团,发明人的目的是通过将所有的末端和侧链羧基基团进行质子化来模拟这种效果。仅显示末端羧基基团的(QAQ)8和(AQ)12,在pH 1显示无聚集(<5%)和弱的聚集(18%)。有趣的是,对C16′的16个谷氨酸残基的质子化也仅导致了弱的聚集(8%)(图4)。已经描述了在纺丝过程中将磷酸盐添加到粘稠物中没有导致(QAQ)8的聚集和C16的弱的沉淀(12%)。与此相反,在用磷酸钾处理后,(AQ)12显示聚集的倾向增加(47%)。使用磷酸钠获得类似的结果,提示所述效果特异性地由磷酸盐离子所导致(数据未显示)。
NR-结构域增强对促进聚集的因子的反应
为了研究NR-结构域的影响,测试了在低pH和在用磷酸盐处理后的repNR-蛋白质和NR-蛋白质的聚集。(QAQ)8NR3和(AQ)12NR3,以及NR3的酸化导致了弱的聚集(10%,15%和13%),其在由相应的rep-蛋白质所展示的范围内。有趣的是,尽管NR4-结构域在pH 1没有沉淀(0%),C16NR4在pH 1显示了强烈的聚集(70%)。因此,在酸化后没有明显聚集的重复的C16和NR4-结构域的组合,导致蛋白质对于这种聚集促进因子高度敏感。对于添加磷酸盐获得的了类似的结果。尽管NR3和NR4在存在磷酸盐的情况下,都未显示聚集(1%和0%),将NR-结构域添加到重复区域中导致了与rep-蛋白质相比,repNR-蛋白质的增加的聚集((QAQ)8NR3:57%,(AQ)12NR3:81%,C16NR4:80%)。
使用使DNA组件连续和受控装配的克隆策略,构建了编码蜘蛛丝样蛋白质的合成基因。蛋白质的设计产生了重复单位和天然存在的NR-区域的不同组合,以系统性测试这些单一一级结构元件的性质。由CD-光谱学进行的结构分析揭示了重复区域在它们的可溶状态时大部分是无结构的,显示了与其它内部伸展蛋白质共有的性质(31;32)。关于主要壶腹状成分的最大的部分已经提出了相同的构象状态(10),其中重复性蛋白质序列占优势。与此相反,发现NR-区域独立地代表折叠蛋白质结构域,其在热变性以及用离液序列高的试剂处理后采取它们的构象。因为它们与重复区域比较相对较小的大小,在repNR-蛋白质中对总的结构性质的影响很小。
在显示数百kDa的重复区域的天然蜘蛛丝中,可以预期NR-区域的结构贡献甚至更小,解释了关于它们在研究主要壶腹状成分中存在的证据缺失。因为repNR-蛋白质的热和化学变性的可逆性以及在该研究中显示的CD数据和获自天然丝粘稠物的CD数据的类似性,可以设想甚至在纯化和样品制备的过程中用热和离液序列高的试剂处理后,所有的在水溶液中的被研究的蜘蛛丝成分以与在粘稠物中的天然丝蛋白相当的构象状态存在。
按照Uversky等,可以基于它们的净电荷和平均亲水性来预期蛋白质的内部伸展。将蛋白质的净电荷用于计算“边界”亲水性。如果蛋白质的平均亲水性低于“边界”值,预期蛋白质是内部伸展的(35;36)。按照存在的结果,预期重复序列(QAQ)8和(AQ)12是内部伸展的(表1)。蛋白质的内部伸展意味着氨基酸残基与周围溶剂的相互作用,比与相同的或其它多肽链的氨基酸的相互作用更为有利。因此,(QAQ)8和(AQ)12甚至在高浓度也是可溶的。与此相反,C16显示稍高于边界值的亲水性。尽管仍然揭示了内部伸展的蛋白质的性质,多肽链之间的相互作用在高浓度变得更为有利,导致了蛋白质的聚集并导致了与(QAQ)8和(AQ)12比较更低的溶解度(表1)。
因为重复序列组成蜘蛛丝蛋白的最大部分,它们可能决定许多蛋白质的性质。因此,repNR-蛋白质的溶解度并未与rep-蛋白质的溶解度明显不同。(QAQ)8和(AQ)12的溶解度和计算的亲水性与真正的ADF-3的值良好相关(表1)。尽管C16并不具有ADF-4的高度固有不溶性,C16和ADF-4都显示了更低的溶解度。这种差异可以通过ADF-4与C16比较的更高亲水性和更低的净电荷来解释。
与重复区域相反,NR-结构域仅占蜘蛛丝蛋白的小部分。两种NR-结构域显示富含α-螺旋的结构。由于在ADF-3和ADF-4的NR-结构域之间的高度相似性(81%相似性和67%同一性),可以设想两者可能履行相关的功能。当在用已知体内诱导丝蛋白的装配的因子处理后,研究丝蛋白的聚集时,获得了关于NR-结构域的功能的进一步的信息。预期由丝蛋白的羧基基团的质子化减少负电荷主要影响包含C组件的蛋白质。因此,不包含天冬氨酸或谷氨酸,由组件A和Q组成的蛋白质显示弱聚集。C16甚至在其16个负电荷中和后仍旧保持大部分的可溶性。引人注目的是,不显示对其酸化的任何反应的NR4-结构域,和弱聚集的C16的组合导致了蛋白质对质子化的高度敏感。因此,对于有效聚集,需要重复区域的电荷减少和NR-结构域的存在。当将磷酸盐加入蛋白质溶液中时,获得了类似的结果。已知,磷酸盐象其它的易溶离子一样增加水的表面张力,促进疏水相互作用(37)。对于蜘蛛丝蛋白而言,可能的是,添加磷酸盐促进了在疏水的聚丙氨酸基序之间的相互作用,导致蛋白质的聚集。因此,(AQ)12的聚集比(QAQ)8的聚集要高,所述(QAQ)8包含的聚丙氨酸基序少于(AQ)12包含的聚丙氨酸基序的三分之一。C16显示最长和最高数目的聚丙氨酸基序,然而在磷酸盐处理后没有显示最强的聚集。关于这种意外的结果的可能的解释是带负电荷的谷氨酸侧链和磷酸盐离子的排斥导致了它们从周围的溶剂中排出,并弱化它们的易溶效果。甚至即使两种NR-结构域并未对磷酸盐的添加作出反应,它们向rep-蛋白质的加入强烈增加了磷酸盐的敏感性。尽管给出的数据对于得到最终结论是不充分的,似乎NR-结构域可能作为对聚集促进因子的敏感性的非特异性增强物发挥功能。对于有效聚集,它们的存在与重复区域对这些因子的反应的能力一样重要。
这种提高的机制可能包括在丝蛋白的寡聚状态中的变化。已发现NR-结构域形成二硫键连接的二聚体(38)。另外的寡聚化可能导致起始聚集所需要的多肽序列的增加的局部浓度,其由促进分子内相互作用形成的溶剂条件辅助。
将合成的重复序列与真正的NR-区域组合起来的目前的蛋白质改造方法,显示可以以高产量产生与真正的丝蛋白十分相似的蛋白质。可以易于按比例放大的细菌表达系统以及简单廉价的纯化方法提供了以经济有效的工业规模生产蜘蛛丝样蛋白的基础。基于目前的研究,可以进一步研究蜘蛛丝装配的分子机制,其将提供从重组蛋白中人工纺丝丝线和获得生物技术和医学应用的新材料所需要的知识。
蜘蛛丝衍生的蛋白质的装配
进行下列实验来证实衍生自蜘蛛丝序列ADF-3(SEQ ID NO:1)或ADF-4(SEQ ID NO:2)的蛋白质可被装配成形态上独特的形式。如在Biochemistry 2004 Vol.43 pp.13604-11362中所述,在水溶液中构建、产生和制备蛋白质(AQ)24NR3和C16NR4。如果没有另外提及,蛋白质溶液包含10mM Tris-(羟甲基)-氨基甲烷(Tris)pH 8.0。
1.球体
通过将0.8M的硫酸铵加入0.2%(w/v)的C16溶液来产生显示直径范围在0.5到2μm之间(图7a)的蛋白质球体。
2.纳米纤维
通过将1%(w/v)C16NR4溶液在室温温育2周来形成显示直径在0.7和4nm之间(图7b)的纳米纤维。
3.微纤维
为了形成微纤维,将5-10μl的25%(w/v)的基于(AQ)24NR3溶液缓慢注射到0.5M的磷酸钾pH 8.0中,形成稳定的蛋白质溶液液滴。在温育1分钟后,使用镊子将蛋白质液滴从溶液中去除。在空气中再温育1分钟后,使用第二组镊子可以将蛋白质纤维从蛋白质液滴中以约2cm/s的速率进行抽提。所述纤维显示具有4μm的直径的圆形截面(图7c,d)。
4.泡沫
将蛋白质泡沫(图7e,f)产生自包含2.5mM的过二硫酸铵(APS),100μM的tris(2,2′-二吡啶基)二氯钌(II)(Rubpy)和10%(w/v)的(AQ)24NR3或2%(w/v)的C16NR4的溶液。所述蛋白质溶液用空气发泡。为了稳定得到的泡沫结构,将蛋白质通过暴露于来自钨灯的可见光达1分钟来进行交联(Protocol:PNAS 1999 Vol.96 pp.6020-6024)。随后在95℃对泡沫进行干燥。
5.凝胶
在1%(w/v)浓度的C16NR4纳米纤维显示凝胶样的外观,其可容易地通过搅拌或剪切而被破坏。为了改善凝胶的机械性质,容许APS和Rubpy通过扩散进入凝胶来产生10mM APS和100μM Rubpy的终浓度。在光诱导交联后(见,节4),可以获得在尺寸上稳定的凝胶(图7g)。
6.薄膜
6.1蜘蛛丝蛋白的可溶性状态
为了铸塑薄膜,发明人使用两种合成的丝蛋白,(AQ)24NR3和C16,其衍生自来自园蛛十字园蛛的拖丝的丝蛋白ADF-3和ADF-4(还见上面的进一步解释)。他们基于以前的观察,即ADF-3和ADF-4及其衍生物显示显著不同的关于溶解度和装配的表现,选择了这两种不同的蛋白质。可以通过将冻干的蛋白质溶解在6M硫氰酸胍中并随后通过针对低盐缓冲液诸如5mM磷酸钾pH 8.0进行透析来去除所述盐以制备两种蛋白质的水溶液。还可以将冻干的蛋白质直接溶解在HFIP中。测量蛋白质溶液的园二色性(CD)揭示两种溶剂对二级结构的不同影响。在水溶液中,两种蛋白质显示在低于200nm的波长上具有单一最小值的CD-光谱,其指示主要的随机卷曲蛋白质(图8)。与此相反,在HFIP中的两种蛋白质的光谱显示在201-202nm的一个最小值和另一个最小值((AQ)24NR3)或在220nm的肩值(shoulder)(C16),其显示增加的α-螺旋含量(图8)。
6.2薄膜形成
在聚苯乙烯表面(或在用于CD测量的石英玻璃上)从包含2%w/v蛋白质的HFIP溶液中铸塑薄膜。在蒸发溶剂后,(AQ)24NR3和C16都形成可以易于从所述表面剥离的透明薄膜(图9和未显示的数据)。假定溶剂完全蒸发并且蛋白质薄膜的密度与报道的蜘蛛拖丝的丝的1.3g/cm3的值相同,计算薄膜的厚度在0.5到1.5μm的范围内。制备自任一蛋白质的铸态(as cast)(新鲜制备)的薄膜在与水接触后溶解。因为不可溶于水是对于蛋白质薄膜的大部分应用而言的先决条件,发明人寻找处理方法来使薄膜不可溶。已知磷酸钾诱导所用的丝蛋白的化学稳定结构的聚集和形成。因此,用1M磷酸钾处理(温育)铸态的薄膜导致薄膜转化为不可溶于水的状态。
6.3二级结构
为了研究蛋白质薄膜的结构性质,通过CD光谱学来研究它们的二级结构。铸态的薄膜显示在208nm和220nm具有两个最小值的光谱,指示高α-螺旋含量(图10)。在用1M的磷酸钾处理后,薄膜显示在218nm具有单一最小值的光谱,其对于富含β-折叠的结构是典型的。因此,从水溶性向水不溶性的转变伴随蛋白质二级结构从α-螺旋向β-折叠的转化。
6.4化学稳定性
为了测试化学稳定性,使薄膜与8M尿素,6M盐酸胍和6M硫氰酸胍接触(表2)。两种蛋白质的铸态的薄膜和(AQ)24NR3的处理的薄膜在这些变性剂中是可溶的。与此相反,可以将C16的处理的薄膜仅溶解在硫氰酸胍中。C16薄膜的这种显著的化学稳定性与重组产生的和装配的ADF-4的化学稳定性以及天然拖丝的丝的化学稳定性相同。以前的研究使装配的结构的装配性质和稳定性与丝蛋白的氨基酸序列直接相关。因此,可以推断,蜘蛛丝薄膜的性质可以通过操作相应的丝基因改变丝蛋白的一级结构来直接进行改变。
6.5薄膜修饰
蛋白质薄膜的许多应用需要在薄膜表面上的特异性官能度的存在。为了证实我们的蜘蛛丝蛋白薄膜可以用小有机分子以及生物大分子如蛋白质进行修饰,将生色团荧光素和酶β-半乳糖苷酶以化学方法偶联于处理的C16薄膜。通过使用1-乙基-3-(3-二甲基氨基丙基)碳二亚胺(EDC)来活化表面接触的C16的羧基基团实现偶联(对于反应的细节,见下面指出的补充材料)。接着,将薄膜与乙二胺一起温育,导致酰胺的形成。随后,将乙二胺的余下的游离氨基基团与异硫氰酸荧光素偶联,导致荧光素通过形成稳定的硫脲衍生物而有效共价结合(图11A)。类似地,β-半乳糖苷酶与EDC-激活的C16薄膜一起温育导致在C16的羧基基团和β-半乳糖苷酶的伯胺(例如,来自赖氨酸残基)之间的酰胺键的形成,其可以在酶的表面进行。在重复洗涤这些修饰的薄膜后,可以使用5-溴-4-氯-3-吲哚基-β-D-吡喃半乳糖苷(X-Gal)作为底物来检测β-半乳糖苷酶的活性(图11B)。
6.6结论
在本文,可以证实蛋白质薄膜可以从合成的蜘蛛丝蛋白获得。可以用磷酸钾处理开始可以溶于水的薄膜,从而得到对于许多应用而言非常需要的水不溶性。制备自两种不同的合成蜘蛛丝蛋白的薄膜的化学稳定性的比较提示薄膜的性质基于蛋白质的一级结构。因此,产生形成显示特异性质的薄膜的丝蛋白是可能的。因为可以将不同的功能分子共价连接于薄膜的表面,在未来可以实现大量技术或医学应用。
6.7补充的材料和结果
蛋白质溶液的制备
如前所述进行蛋白质的产生和纯化。为了获得(AQ)24NR3和C16的水溶液,将冻干的蛋白质以10mg/ml的浓度溶解在6M硫氰酸胍中并随后针对5mM磷酸钾8.0进行透析。通过在15,000×g沉淀10分钟来去除团聚体。使用对于(AQ)24NR3的73950M-1cm-1的计算消光系数和对于C16的46400M-1cm-1的计算消光系数,在276nm,在1cm通径长的比色杯中以光度法测定蛋白质浓度。备选地,将冻干的丝蛋白直接溶解在六氟异丙醇(HFIP)中。
二级结构分析
使用Jasco 715分光偏振仪(Jasco International Co.Ltd.,Tokyo,Japan)获得Far-UV园二色性(CD)光谱。在20℃,在0.1cm通径长的石英比色杯中,在5mM的磷酸钾(pH 8.0)或HFIP中的200μg/ml的蛋白质浓度,获取可溶性蛋白的光谱。对于测量薄膜而言,将100μl的2mg/ml的在HFIP中的蛋白质溶液分散在4cm2的单色石英玻璃上并在CD-测量之前风干。扫描速度是20nm/min,步长是0.2nm,整合时间设定为1s,并且带宽是1nm。将四次扫描平均起来。
薄膜修饰
1.荧光素与C16薄膜表面的偶联
通过将每孔15μl的在HFIP中的20mg/ml C16分散在24-孔板的底部制备薄膜。在蒸发HFIP后,将薄膜与1M磷酸钾一起温育5分钟。用水漂洗后,通过与100mM 2-(N-吗啉代)乙磺酸(MES)pH 5.0,100mM 1-乙基-3-(3-二甲基氨基丙基)碳二亚胺(EDC)和20mM N-羟基硫代-琥珀酰亚胺(NHS)一起温育15分钟来活化羧基基团。随后,加入乙二胺以产生500mM的最终浓度。温育2小时后,用水彻底漂洗薄膜。最终,将薄膜与在100mM碳酸钠pH 9.0中的1mg/ml的异硫氰酸荧光素一起温育1小时,随后用水漂洗并进行风干。
2.β-半乳糖苷酶与C16薄膜表面的偶联
如上所述制备薄膜并进行活化。用EDC/NHS温育15分钟后,用水漂洗薄膜并随后与包含100μg/ml的β-半乳糖苷酶,4mM KH2PO4 16mMNa2HPO4,115mM NaCl(PBS)的溶液一起温育2小时。用PBS彻底漂洗后,在薄膜表面上测试酶活性。
β-半乳糖苷酶测定
将β-半乳糖苷酶偶联的薄膜在室温,与包含100mM磷酸钠pH 7.0,10mM氯化钾,1mM硫酸镁,50mM巯基乙醇和2mg/ml的5-溴-4-氯-3-吲哚基-β-D-吡喃半乳糖苷(X-Gal)的溶液一起温育16小时。
7.另外的水凝胶
ADF-4的重复部分通常由仅显示微小变化的单一保守重复单位组成。发明人组合这些变化并且设计被称为C的一个共有组件(GSSAAAAAAAASGPGGYGPENQGPSGPGGYGPGGP)(SEQ ID NO:5),其被多聚化以获得rep-蛋白质C16,这将得到分子量为48kDa的蛋白质。
在大肠杆菌菌株BLR[DE3](Novagen)中表达C16丝基因。将细胞于37℃在LB培养基中培养到OD600=0.5。在用1mM IPTG(异丙基-β-D-硫代半乳糖苷)诱导前,将细胞改变到25℃。诱导3-4小时后,收集细胞。
如在Huemmerich et al(40)中所述纯化C16蛋白。用8M尿素洗涤C16的沉淀,并将其溶解在6M的异硫氰酸胍(GdmSCN)中,之后针对10mMNH4HCO3进行透析。通过在50,000×g沉淀30分钟来去除在透析过程中形成的沉淀物,并将余下的可溶性丝蛋白冻干。在分析前,将冻干的蛋白质溶解在6M GdmSCN中,随后针对10mM Tris/HCl进行透析。通过在125,000×g沉淀30分钟来去除团聚体。使用计算消光系数,在276nm,在1cm通径长的比色杯中,以光度法测定蛋白质浓度(40)。
在添加10%w/v的甲醇后,在5和30mg/ml之间的浓度将C16自装配为纳米纤维(图12)。引人注意的是,在所用的浓度,纳米纤维导致表示水凝胶的纤维网络的形成。C16水凝胶可以容易地通过搅拌或剪切被破坏。为了提高凝胶的机械性质,使用过二硫酸铵(APS)和Tris(2,2′-二吡啶基)二氯钌(II)(Rubpy)通过扩散进入凝胶以产生10mM APS和100μM Rubpy的最终浓度。为了获得在大小上稳定的凝胶,通过暴露于来自钨灯的可见光达1分钟来交联蛋白质(IV)(图13)。
使用具有25mm Plate-Plate几何形状的Physica MCR 301来进行交联和非交联水凝胶的动态流变测量。通过首先将约2mm的上板移动到样品表面上面来设定上板和样品碟之间的间隙。上板降低地非常缓慢(5μm/s),同时检测正交力并在0.1N的限度正交力终止。
在发现样品具有的足够间隙大小后,在0.5Hz和1%的变形上剪切样品直到正交力平衡于恒定值。在室温,通过将不变的应力应用于样品进行动态流变测量。在蛋白质浓度的范围在5到30mg/ml的样品上进行流变测量。
干燥的水凝胶的AFM图像显示纳米纤维的直径是约3nm,并且似乎是半柔韧的,其中相关长度与它们的长度在相同的数量级上(图12)。许多纳米纤维还似乎具有分枝结构。从AFM图像,不能确定分枝样结构是在每个聚合物纤维中的物理分枝还是纳米纤维集束的结果。
类似于大多数浓缩的聚合物网络,重组C16蜘蛛丝蛋白的水凝胶显示了粘弹性性状。当将应力应用到粘弹性C16丝网络时,张力随时间缓慢变化并且与应用的应力成比例。图14显示在10mg/ml的浓度,交联的和非交联的水凝胶的应力/张力表现。非交联的C16丝水凝胶具有38Pa的起始剪切模量。然而,当应力增加时,非交联的水凝胶显示相应于应力的更高的变性,并且在20%的张力后,反应成为相对线性的。当应力增加时,网络继续变形直到达到90%的张力,其中非交联的水凝胶破裂并且流动。不象非交联的纤维网络,交联的网络显示对于所有张力的线性粘弹性反应,具有820Pa的高得多的剪切模量,并且在30%的更低张力破裂。
在20mg/ml的聚合物浓度上的非交联纤维网络的动态粘弹性测量揭示储存模量(G’)和损失模量(G”)在高ω和低ω范围上都非常依赖于振动频率(ω)(图15)。网络显示低频的粘性表现和在具有0.49Hz的重叠的中度频率的弹性表现。观察到的水凝胶的表现类似于对于缠结的聚合物网络所预期的并且与对于液态结晶溶液或粘性流体所预期的不相似。
非交联的C16丝水凝胶还显示动态粘弹性表现,其与在化学交联的水凝胶中观察到的十分不同(图15)。与非交联的纤维网络的表现不同,除了在测试的最高频率,交联的纤维网络的储存模量几乎在所有的频率上是恒定的。与在非交联的网络中观察到的相比,交联的C16丝水凝胶还显示更高的储存和更低的损失模量。
如预期,对于所有测试的浓度,交联的水凝胶的储存模量高于非交联的网络的储存模量(图16)。但是,意外的是,交联的和非交联的网络的储存模量随浓度[c]增加,并具有[c]2相关性。在交联的线性半柔性生物高分子网络的情形中,其中相关长度大于网眼大小,预期聚合物网络的储存模量具有[c]的相关性,其接近于交联的C16丝水凝胶的[c]的相关性。在缠结但是非交联的线性半柔性生物高分子网络的情形中,预期储存模量具有低得多的[c]的浓度相关性。已经显示这样的相关性对于其它的生物高分子诸如F-肌动蛋白是有效的,但是并未描述非交联的丝水凝胶的相关性。
如果在AFM图像中观察到的分枝样结构是在聚合物网络中的真正的物理分枝,可以解释这种矛盾。预期分枝的半柔性聚合物网络的储存模量显示在对于所预期的交联的和非交联的聚合物网络之间的浓度相关性。
AFM图像和流变数据与从分枝的半柔性聚合物网络的模型所知的一致。然而,水凝胶的储存模量缩放表现不能在对于线性半柔性聚合物网络的最广泛接受(excepted)的模型的框架中进行解释。
表1
合成的丝构建体和真正的蜘蛛丝蛋白ADF-3和ADF-4的选择的性质
a包括T7-标记的工程化蛋白质的分子量.
b按照Gill & Hippel(23)计算消光系数.
c带电的氨基酸残基仅指丝基因序列;T7-标记包括另外的精氨酸.
d如前所述计算亲水性(39)。疏水性随亲水性值增加。
e将亲水性标准化为在0和1之间的范围。按照Uversky et al.(35;36)来计算“边界”亲水性。如果标准化的亲水性值低于“边界”值,预期蛋白质是内部伸展的。ADF-3和ADF-4的值仅指它们的重复序列。
f通过CD光谱学确定中点温度。
g从(18)和未公开的结果取ADF-3和ADF-4的值。
表2蛋白质薄膜在变性剂中的溶解度。将薄膜视为不可溶的(-),将其完全进入各种试剂并且在5分钟内重复摇动并未导致光学外观的变化。与此相反,通过在相同的条件下彻底分解薄膜来显示溶解度。
参考文献
1.Gosline,J.M.,Guerette,P.A.,Ortlepp,C.S.,and Savage,K.N.(1999)The mechanical design of spider silks:from fibFoin sequence to mechanicalfunction,J.Exp.Biol.202 Pt 23,3295-3303.
2.Vollrath,F.and Knight,D.P.(2001)Liquid crystalline spinning ofspider silk,Nature 410,541-548.
3.Guerette,P.A.,Ginzinger,D.G.,Weber,B.H.,and Gosline,J.M.(1996)Silk properties determined by gland-specific expression of a spiderfibroin gene family,Science 272,112-115.
4.Gatesy,J.,Hayashi,C.,Motriuk,D.,Woods,J.,and Lewis,R.(2001)Extreme diversity,conservation,and convergence of spider silk fibroinsequences,Science 291,2603-2605.
5.Simmons,A.H.,Ray,E.,and Jelinski,L.W.(1994)Solid-State 13CNMR of Nephila clavipes Dragline Silk Establishes Structure and Identity ofCrystalline Regions,Macromolecules 27,5235-5237.
6.Parkhe,A.D.,Seeley,S.K.,Gardner,K.,Thompson,L.,and Lewis,R.V.(1997)Structural studies of spider silk protein in the fiber,J.Mol.Recognit.10,1-6.
7.van Beek,J.D.,Hess,S.,Vollrath,F.,and Meier,B.H.(2002)Themolecular structure of spider dragline silk:folding and orientation of theprotein backbone,Proc.Natl.Acad.Sci.U.S.A 99,10266-10271.
8.Hijirida,D.H.,Do,K.G.,Michal,C.,Wong,S.,Zax,D.,and Jelinski,L.W.(1996)13C NMR of Nephila clavipes major ampullate silk gland,Biophys.J.71,3442-3447.
9.Kenney,J.M.,Knight,D.,Wise,M.J.,and Vollrath,F.(2002)Amyloidogenic nature of spider silk,Eur.J.Biochem.269,4159-4163.
10.Hronska,M.,van Beek,J.D.,Williamson,P.T.,Vollrath,F.,andMeier,B.H.(2004)NMR characterization of native liquid spider dragline silkfrom Nephila edulis,Biomacromolecules.5,834-839.
11.Kerkam,K.,Viney,C.,Kaplan,D.,and Lombardi,S.(1991)Liquidcrystallinity of natural silk secretions,Nature 349,596-598.
12.Knight,D.P.and Vollrath,F.(1999)Liquid crystals and flowelongation in a spider′s silk production line,Proc.R.Soc.Lond.519-523.
13.Willcox,J.,Gido,S.,Muller,W.,and Kaplan,D.(1996)Evidenceof a Cholesteric Liquid Crystalline Phase in Natural Silk Spinning Processes,Macromolecules 29,5106-5110.
14.Knight,D.P.and Vollrath,F.(2001)Changes in elementcomposition along the spinning duct in a Nephila spider,Naturwissenschaften88,179-182.
15.Vollrath,F.,Knight,D.,and Hu,X.W.(1998)Silk production in aspider involves acid bath treatment,Proc.R.Soc.Lond B Biol.Sci.265,817-820.
16.Tillinghast,E.K.,Chase,S.F.,and Townley,M.A.(1984)Waterextraction by the major ampullate duct during silk formation in the spider,Argiope aurantia Lucas,J.Insect Physiol.30,591-596.
17.Knight,D.P.,Knight,M.M.,and Vollrath,F.(2000)Betatransition and stress-induced phase separation in the spinning of spider draglinesilk,Int.J.Biol.Macromol.27,205-210.
18.Lazaris,A.,Arcidiacono,S.,Huang,Y.,Zhou,J.F.,Duguay,F.,Chretien,N.,Welsh,E.A.,Soares,J.W.,and Karatzas,C.N.(2002)Spidersilk fibers spun from soluble recombinant silk produced in mammalian cells,Science 295,472-476.
19.Sambrook,J.and Russell,D.(2001)Molecular Cloning.
20.Kroll,D.J.,Abdel-Malek Abdel-Hafiz,H.,Marcell,T.,Simpson,S.,Chen,C.Y.,Gutierrez-Hartmann,A.,Lustbader,J.W.,and Hoeffler,J.P.(1993)A multifunctional prokaryotic protein expression system:overproduction,affinity purification,and selective detection,DNA Cell Biol.12,441-453.
21.Reiling,H.E.,Laurila,H.,and Fiechter,A.(1985)Mass-Culture ofEscherichia-Coli -Medium Development for Low and High-DensityCultivation of Escherichia Coli-B/R in Minimal and Complex Media,Journalof Biotechnology 2,191-206.
22.Yee,L.and Blanch,H.W.(1992)Recombinant protein expressionin high cell density fed-batch cultures of Escherichia coli,Biotechnology(N.Y.)10,1550-1556.
23.Gill,S.C.and von HiPPel,P.H.(1989)Calculation of ProteinExtinction Coefficients from Amino-Acid Sequence Data,AnalyticalBiochemistry 182,319-326.
24.Arcidiacono,S.,Mello,C.,Kaplan,D.,Cheley,S.,and Bayley,H.(1998)Purification and characterization of recombinant spider silk expressedin Escherichia coli,Appl.Microbiol.Biotechnol.49,31-38.
25.Prince,J.T.,McGrath,K.P.,DiGirolamo,C.M.,and Kaplan,D.L.(1995)Construction,cloning,and expression of synthetic genes encodingspider dragline silk,Biochemistry 34,10879-10885.
26.Fahnestock,S.R.and Irwin,S.L.(1997)Synthetic spider draglinesilk proteins and their production in Escherichia coli,Appl.Microbiol.Biotechnol.47,23-32.
27.Lewis,R.V.,Hinman,M.,Kothakota,S.,and Fournier,M.J.(1996)Expression and purification of a spider silk protein:a new strategy forproducing repetitive proteins,Protein Expr.Purif.7,400-406.
28.Schelle r,J.,Guhrs,K.H.,Grosse,F.,and Conrad,U.(2001)Production of蜘蛛丝蛋白in tobacco and potato,Nat.Biotechnol.19,573-577.
29.Padgett,K.A.and Sorge,J.A.(1996)Creating seamless junctionsindependent of restriction sites in PCR cloning,Gene 168,31-35.
30.Blattner,F.R.,Plunkett,G.,III,Bloch,C.A.,Perna,N.T.,Burland,V.,Riley,M.,Collado-Vides,J.,Glasner,J.D.,Rode,C.K.,Mayhew,G.F.,Gregor,J.,Davis,N.W.,Kirkpatrick,H.A.,Goeden,M.A.,Rose,D.J.,Mau,B.,and Shao,Y.(1997)The complete genome sequence of Escherichia coliK-12,Science 277,1453-1474.
31.Kim,T.D.,Ryu,H.J.,Cho,H.I.,Yang,C.H.,and Kim,J.(2000)Thermal behavior of proteins:heat-resistant proteins and their heat-inducedsecondary structural changes,Biochemistry 39,14839-14846.
32.Uversky,V.N.,Lee,H.J.,Li,J.,Fink,A.L.,and Lee,S.J.(2001)Stabilization of partially folded conformation during alpha-synucleinoligomerization in both purified and cytosolic preparations,J.Biol.Chem.276.43495-43498.
33.Knight,D.P.and Vollrath,F.(2002)Biological liquid crystalelastomers,Philos.Trans.R.Soc.Lond B Biol.Sci.357,155-163.
34.Chen,X.,Knight,D.P.,and Vollrath,F.(2002)Rheologicalcharacterization of nephila spidroin solution,Biomacromolecules.3,644-648.
35.Uversky,V.N.,Gillespie,J.R.,and Fink,A.L.(2000)Why are″natively unfolded″proteins unstructured under physiologic conditions?,Proteins 41,415-427.
36.Uversky,V.N.(2002)Natively unfolded proteins:a point wherebiology waits for physics,Protein Sci.11,739-756.
37.Arakawa,T.and Timasheff,S.N.(1985)Theory of proteinsolubility,Methods Enzymol.114,49-77.
38.Sponner,A.,Unger,E.,Grosse,F.,and Weisshart,K.(2004)Conserved C-termini of Spidroins are secreted by the major ampullate glandsand retained in the silk thread,Biomacromolecules.5,840-845.
39.Kyte,J.and Doolittle,R.F.(1982)A simple method for displayingthe hydropathic character of a protein,J.Mol.Biol.157,105-132.
40.Huemmerich,D.,Helsen,C.W.,Oschmann,J.,Rudolph,R.andScheibel,T.(2004)Primary structure elements of dragline silks and theircontribution to protein solubility and assembly,Biochemistry 43,13604-13612.

Claims (38)

1.重组蜘蛛丝蛋白,其包括(AQ)12,(AQ)12NR3,(AQ)24NR3,(QAQ)8或(QAQ)8NR3,其中A代表氨基酸序列SEQ ID NO:3,Q代表氨基酸序列SEQ ID NO:4,和NR3代表氨基酸序列SEQ ID NO:10。
2.核酸序列,其编码权利要求1的重组蜘蛛丝蛋白。
3.载体,其包括权利要求2的核酸序列。
4.权利要求3的载体,其通过将权利要求2的核酸序列克隆至如SEQID NO:55所示的克隆载体而获得。
5.权利要求3的载体,其还包括一个或多个调节序列,其中所述载体是表达载体。
6.权利要求3-5中任一项的载体,其是质粒载体或病毒载体。
7.权利要求6的载体,其中所述病毒载体是杆状病毒系统或痘苗病毒载体系统。
8.非人宿主,其已经用权利要求3-7中任一项的载体进行转化。
9.权利要求8的宿主,其是原核细胞。
10.权利要求9的宿主,其是大肠杆菌(E.coli)或枯草芽孢杆菌(Bacillussubtilis)。
11.权利要求8的宿主,其是真核细胞。
12.权利要求11的宿主,其是哺乳动物细胞,植物细胞,酵母细胞或昆虫细胞。
13.权利要求12的宿主,其中所述哺乳动物细胞是CHO,COS,HeLa,293T,HEH或BHK细胞。
14.权利要求12的宿主,其中所述酵母细胞是酿酒酵母(Saccharomyces cerevisiae),粟酒裂殖酵母(Schizosaccharomyces pombe),巴斯德毕赤酵母(Pichia pastoris),白色念珠菌(Candida albicans)或多形汉森酵母(Hansenula polymorpha)细胞。
15.权利要求12的宿主,其中所述昆虫细胞选自鳞翅目(Lepidoptera)昆虫细胞。
16.权利要求15的宿主,其中所述鳞翅目昆虫细胞来自Spodopterafrugiperda或来自粉纹夜蛾(Trichoplusia ni)。
17.权利要求16的宿主,其中Spodoptera frugiperda昆虫细胞是Sf9,Sf21或high five细胞。
18.权利要求12的宿主,其中所述植物细胞来自烟草、马铃薯、玉米,豌豆或西红柿。
19.蜘蛛丝蛋白聚集的方法,其包括下列步骤:
a)制备包含权利要求1的重组蜘蛛丝蛋白的蛋白质溶液;
b)使在a)中制备的溶液进行聚集引发步骤;和
c)回收沉淀的重组蜘蛛丝蛋白。
20.权利要求19的方法,其中在步骤a)中所用的重组蜘蛛丝蛋白通过用权利要求3-7中任一项的载体或权利要求2的核酸序列转化权利要求8到18中任一项的适合的宿主,并在适合的条件下表达所述重组蜘蛛丝蛋白来产生。
21.权利要求19或20的方法,其中所述聚集引发步骤通过酸化,添加磷酸钾或应用机械应力进行。
22.权利要求19或20的方法,其还包括将在步骤a)中提供的或在步骤c)中回收的重组蜘蛛丝蛋白通过适合的方法纺织为丝和线或形成薄膜的步骤。
23.权利要求1中定义的重组蜘蛛丝蛋白或权利要求22中定义的线用于制备伤口闭合或覆盖系统,缝线材料或人工软骨或腱材料的应用。
24.权利要求23的应用,其中所述缝线材料倾向于用在神经外科手术或眼科外科手术中。
25.伤口闭合或覆盖系统,缝线材料,人工软骨或腱材料,其包括权利要求1中定义的重组蜘蛛丝蛋白或其可以通过权利要求19-21中任一项的方法获得或其包括权利要求22中定义的线。
26.纸产品,其包括权利要求1的重组蜘蛛丝蛋白。
27.纺织品或皮革制品,其包括权利要求1的重组蜘蛛丝蛋白。
28.权利要求27的纺织品或皮革制品,其中所述重组蜘蛛丝蛋白以涂层的形式存在。
29.凝胶或泡沫,其包括权利要求1的重组蜘蛛丝蛋白或由其组成。
30.用于植入物的涂层,其包括权利要求1的重组蜘蛛丝蛋白或由其组成。
31.权利要求30的用于植入物的涂层,其中所述植入物是斯滕特固定模。
32.球体、线或纤维,其包括权利要求1中定义的重组蜘蛛丝蛋白或权利要求22中定义的线和另外的不是蜘蛛来源的纤维。
33.权利要求32的球体、线或纤维,其中所述不是蜘蛛来源的纤维是植物来源的纤维或合成纤维。
34.权利要求32或33的球体、线或纤维,其中所述球体是珠子。
35.薄膜,其包括权利要求1的重组蜘蛛丝蛋白或由其组成。
36.权利要求35的薄膜,其中所述薄膜表面用有机小分子和/或生物大分子进行修饰。
37.权利要求36的薄膜,其中所述小有机分子和/或生物大分子是蛋白质或荧光素。
38.权利要求37的薄膜,其中所述蛋白质是β-半乳糖苷酶。
CN201110384407.5A 2004-07-22 2005-07-21 重组蜘蛛丝蛋白 Active CN102532295B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US59019604P 2004-07-22 2004-07-22
US60/590,196 2004-07-22

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN200580027435.4A Division CN101018806B (zh) 2004-07-22 2005-07-21 重组蜘蛛丝蛋白

Publications (2)

Publication Number Publication Date
CN102532295A CN102532295A (zh) 2012-07-04
CN102532295B true CN102532295B (zh) 2014-10-15

Family

ID=35713681

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201110384407.5A Active CN102532295B (zh) 2004-07-22 2005-07-21 重组蜘蛛丝蛋白
CN200580027435.4A Active CN101018806B (zh) 2004-07-22 2005-07-21 重组蜘蛛丝蛋白

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN200580027435.4A Active CN101018806B (zh) 2004-07-22 2005-07-21 重组蜘蛛丝蛋白

Country Status (13)

Country Link
US (3) US7754851B2 (zh)
EP (2) EP2520584A1 (zh)
JP (1) JP5128943B2 (zh)
KR (1) KR20070059065A (zh)
CN (2) CN102532295B (zh)
AU (1) AU2005263622B2 (zh)
CA (1) CA2573780C (zh)
DE (1) DE202005021713U1 (zh)
DK (1) DK1773875T3 (zh)
ES (1) ES2525095T3 (zh)
PL (1) PL1773875T3 (zh)
RU (1) RU2415938C2 (zh)
WO (1) WO2006008163A2 (zh)

Families Citing this family (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7444197B2 (en) 2004-05-06 2008-10-28 Smp Logic Systems Llc Methods, systems, and software program for validation and monitoring of pharmaceutical manufacturing processes
US7799273B2 (en) 2004-05-06 2010-09-21 Smp Logic Systems Llc Manufacturing execution system for validation, quality and risk assessment and monitoring of pharmaceutical manufacturing processes
EP1609801A1 (en) * 2004-06-25 2005-12-28 Technische Universität München Proteins of natural origin and materials made therefrom
AU2006333611B2 (en) 2005-12-30 2012-04-26 Spiber Technologies Ab Spider silk proteins and methods for producing spider silk proteins
US20100278882A1 (en) * 2006-01-20 2010-11-04 Burghard Liebmann Use of protein microbeads in cosmetics
EP2101975A2 (en) * 2006-11-03 2009-09-23 Trustees of Tufts College Biopolymer sensor and method of manufacturing the same
WO2008127403A2 (en) 2006-11-03 2008-10-23 Trustees Of Tufts College Biopolymer optofluidic device and method of manufacturing the same
EP2086749B1 (en) 2006-11-03 2013-05-08 Trustees Of Tufts College Nanopatterned biopolymer optical device and method of manufacturing the same
WO2008071226A1 (en) 2006-12-11 2008-06-19 Medizinische Hochschule Hannover Implant of cross-linked spider silk threads
DE102007002222A1 (de) 2007-01-10 2008-07-17 Gustav Pirazzi & Comp. Kg Verwendung von künstlich hergestellter Spinnenseide
BRPI0701826B1 (pt) * 2007-03-16 2021-02-17 Embrapa - Empresa Brasileira De Pesquisa Agropecuária proteínas da teia de aranha nephilengys cruentata, avicularia juruensis e parawixia bistriata isoladas da biodiversidade brasileira
ES2530190T3 (es) * 2007-06-20 2015-02-27 Basf Se Proteínas repetitivas sintéticas, su producción y su uso
EP2684562A1 (de) * 2008-08-08 2014-01-15 Basf Se Wirkstoffhaltige Fasernflächengebilde auf Basis von Biopolymeren, ihre Anwendungen und Verfahren zu ihrer Herstellung
US8114631B2 (en) * 2008-09-17 2012-02-14 The University Of Wyoming Nucleic acids encoding spider glue proteins and methods of use thereof
DE102008048817B3 (de) * 2008-09-23 2010-05-20 Ifg - Institute For Scientific Instruments Gmbh Strahlenfenster für eine Röntgenstrahlenvorrichtung
GB2464348A (en) 2008-10-17 2010-04-21 Spintec Engineering Gmbh Applying a liquid protein onto a permeable surface, and silk mono-filament having specific properties
WO2010123450A1 (en) * 2009-04-22 2010-10-28 Spiber Technologies Ab Method of producing polymers of spider silk proteins
ES2763168T3 (es) 2009-06-03 2020-05-27 Basf Se Producción recombinante de péptidos
US9233067B2 (en) 2009-11-30 2016-01-12 Amsilk Gmbh Silk particles for controlled and sustained delivery of compounds
WO2011069643A2 (en) * 2009-12-08 2011-06-16 Amsilk Gmbh Silk protein coatings
KR101317420B1 (ko) * 2010-03-11 2013-10-10 한국과학기술원 고분자량의 재조합 실크 또는 실크 유사 단백질 및 이를 이용하여 제조된 마이크로 또는 나노 크기의 거미줄 또는 거미줄 유사 섬유
WO2011113446A1 (en) 2010-03-17 2011-09-22 Amsilk Gmbh Method for production of polypeptide containing fibres
ES2799431T3 (es) * 2010-03-31 2020-12-17 Amsilk Gmbh Separación de proteínas objetivo insolubles
US8461301B2 (en) * 2010-05-24 2013-06-11 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Synthetic dragline spider silk-like proteins
JP5691052B2 (ja) * 2010-09-10 2015-04-01 岡本株式会社 組換え生物及び組換え生物により作られるタンパク質
JP5771833B2 (ja) * 2010-09-10 2015-09-02 岡本株式会社 核酸、核酸によりコードされるタンパク質、核酸が導入された組換え生物、及び組換え生物により作られるタンパク質
KR102063002B1 (ko) * 2010-09-28 2020-01-07 유니버시티 오브 노트르 담 듀락 키메라 거미 실크 및 이의 용도
CA2815267C (en) * 2010-10-27 2019-06-25 Spiber Technologies Ab Spider silk fusion protein structures for binding to an organic target
RU2451023C1 (ru) 2010-11-25 2012-05-20 Владимир Григорьевич Богуш Способ получения рекомбинантного белка паутины, слитый белок, рекомбинантная днк, вектор экспрессии, клетка-хозяин и штаммы-продуценты
US20140378661A1 (en) * 2011-04-20 2014-12-25 Trustees Of Tufts College Molded regenerated silk geometries using temperature control and mechanical processing
US20130014266A1 (en) 2011-07-07 2013-01-10 Mitel Networks Corporation Collaboration privacy
JP5584932B2 (ja) * 2011-11-02 2014-09-10 スパイバー株式会社 タンパク質繊維の製造方法
KR101494711B1 (ko) * 2011-11-04 2015-02-26 동아대학교 산학협력단 산왕거미 유래 메이저 엠풀레이트 스피드로인 단백질의 반복적인 c-말단 영역의 폴리펩티드 서열 및 이를 코딩하는 염기서열
DE202013003445U1 (de) 2012-04-11 2013-04-26 Amsilk Gmbh Staubbeutel
WO2014027042A2 (en) 2012-08-17 2014-02-20 Amsilk Gmbh Use of self-assembling polypeptides as tissue adhesives
EP2892916B1 (en) * 2012-09-06 2021-08-25 AMSilk GmbH Methods for producing high toughness silk fibres
CA2888740A1 (en) 2012-10-17 2014-04-24 Nanyang Technological University Compounds and methods for the production of suckerin and uses thereof
US10329332B2 (en) 2012-12-26 2019-06-25 Spiber Inc. Spider silk protein film, and method for producing same
EP2990414B1 (en) 2013-04-25 2020-12-16 Spiber Inc. Polypeptide particle and method for producing same
US10065997B2 (en) 2013-04-25 2018-09-04 Spiber Inc. Polypeptide porous body and method for producing same
EP2990062B1 (en) * 2013-04-25 2021-11-10 Spiber Inc. Polypeptide hydrogel and method for producing same
WO2015042164A2 (en) 2013-09-17 2015-03-26 Refactored Materials, Inc. Methods and compositions for synthesizing improved silk fibers
US10532548B2 (en) 2013-10-21 2020-01-14 The North Face Apparel Corp. Functional biomaterial coatings for textiles and other substrates
WO2015095407A2 (en) * 2013-12-17 2015-06-25 Lewis Randolph V Recombinant spider silk protein film and method of synthesizing
WO2015159440A1 (ja) * 2014-04-14 2015-10-22 スパイバー株式会社 スポーツ用品
JPWO2015178466A1 (ja) 2014-05-21 2017-04-20 味の素株式会社 フィブロイン様タンパク質の製造法
WO2015178465A1 (ja) * 2014-05-21 2015-11-26 味の素株式会社 フィブロイン様タンパク質の製造法
US20170189334A1 (en) 2014-06-05 2017-07-06 Kansas State University Research Foundation Peptide hydrogel properties and its applications
US9714273B2 (en) 2014-10-08 2017-07-25 Utah State University Expression systems and associated methods
CA2969563A1 (en) 2014-12-02 2016-06-09 Silk Therapeutics, Inc. Silk performance apparel and products and methods of preparing the same
DE102014225582A1 (de) 2014-12-11 2015-10-01 Henkel Ag & Co. Kgaa Stylinggel mit Spinnen-Seidenprotein und Polyacrylsäure
EP3307765B1 (en) 2015-06-11 2024-04-10 Bolt Threads, Inc. Recombinant protein fiber yarns with improved properties
CN108135975A (zh) 2015-07-14 2018-06-08 丝绸医疗公司 丝性能服装和产品及其制备方法
BR112018002839A2 (pt) 2015-08-10 2018-11-06 Seevix Mat Sciences Ltd composições e métodos para fabricar seda sintética de fio de teia de aranha
JP2018159137A (ja) * 2015-08-20 2018-10-11 国立研究開発法人理化学研究所 クモ糸様構造を有するポリペプチド繊維の製造方法
AU2016338586B2 (en) 2015-10-12 2021-01-28 Amsilk Gmbh Use of a biopolymer for reducing the formation of a biofilm
WO2017090665A1 (ja) * 2015-11-25 2017-06-01 味の素株式会社 フィブロイン様タンパク質の製造法
JP7176736B2 (ja) 2016-02-11 2022-11-22 シービックス マテリアル サイエンシーズ リミテッド 合成のクモドラグラインシルクを含む複合材料
JP2017170082A (ja) * 2016-03-25 2017-09-28 優一郎 新崎 ブラシ毛素材及びブラシ
WO2017192227A1 (en) * 2016-05-04 2017-11-09 Trustees Of Tufts College Silk nanofibrils and uses thereof
EP3458116B1 (en) * 2016-05-16 2024-03-13 Spiber Technologies AB Spider silk coating of solid surfaces
EP3246051A1 (en) * 2016-05-16 2017-11-22 Spiber Technologies AB Spider silk coating of solid surfaces
WO2017214618A1 (en) 2016-06-10 2017-12-14 Bolt Threads, Inc. Recombinant protein fiber yarns with improved properties
US11104708B2 (en) 2016-06-22 2021-08-31 Amsilk Gmbh Articles comprising a silk polypeptide for antigen delivery
US10899792B2 (en) * 2016-08-10 2021-01-26 Spiber Inc. Production method for insoluble recombinant protein aggregate
EP3282042A1 (en) * 2016-08-11 2018-02-14 European Central Bank Functionalized silk fibroin security marker
EP3512871A4 (en) 2016-09-14 2020-07-29 Bolt Threads, Inc. LONG UNIFORM RECOMBINANT PROTEIN FIBERS
JPWO2018066558A1 (ja) * 2016-10-03 2019-09-05 Spiber株式会社 組換えタンパク質の精製方法
EP3538859A1 (en) 2016-11-11 2019-09-18 Amsilk GmbH Use of a shrinkable biopolymer fiber as sensor
DE102016223863A1 (de) * 2016-11-30 2018-05-30 Minebea Mitsumi Inc. Wälzlagerkäfig für ein Dentaltechniklager und Verfahren zum Herstellen eines solchen Wälzlagerkäfigs
WO2018123953A1 (ja) * 2016-12-27 2018-07-05 Spiber株式会社 タンパク質の回収方法
JP2020097524A (ja) * 2017-03-07 2020-06-25 Spiber株式会社 精製されたタンパク質を製造する方法
CN110719732B (zh) 2017-03-30 2022-11-18 犹他州立大学 表达蜘蛛丝的转基因蚕
CN111094326A (zh) * 2017-06-13 2020-05-01 阿尔托大学基金会 用于产生丝融合蛋白的浓缩粘合相的方法
DE102017115522B4 (de) 2017-07-11 2019-11-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung von Block-Polymeren mittels Verknüpfung von Blöcken durch eine Transpeptidase und Block-Polymere erhalten durch Transpeptidase-Verknüpfung
CN109553673B (zh) * 2017-09-25 2023-04-25 中国科学院上海微系统与信息技术研究所 一种生物蛋白积木及其制备方法
WO2019063590A1 (en) * 2017-09-26 2019-04-04 Spiber Technologies Ab STRUCTURING SURFACEABLE MACROMOLECULES
US11390988B2 (en) 2017-09-27 2022-07-19 Evolved By Nature, Inc. Silk coated fabrics and products and methods of preparing the same
JP2021035330A (ja) * 2017-09-29 2021-03-04 Spiber株式会社 発現カセット
CN118121684A (zh) 2017-11-10 2024-06-04 奇华顿股份有限公司 丝醇制剂
CN107805283B (zh) * 2017-11-10 2021-01-15 井冈山大学 一种拟蛛丝蛋白及其生物合成方法
CN109865161B (zh) * 2017-12-04 2022-06-07 江西丝科生物科技有限公司 一种蜘蛛丝蛋白骨钉及其制备方法
GB201804141D0 (en) 2018-03-15 2018-05-02 Univ Of Hull Suture thread
EP3808882A4 (en) * 2018-04-03 2022-05-04 Hasetora Spinning Co. Ltd. BLENDED YARN, KNITTED KNIT AND METHOD OF PRODUCTION THEREOF
EP3556914A1 (de) 2018-04-20 2019-10-23 Lenzing Aktiengesellschaft Regenerierte cellulosische formkörper und verfahren zur herstellung regenerierter cellulosischer formkörper
CN108543111A (zh) * 2018-04-25 2018-09-18 常州市阿曼特医药科技有限公司 一种人造血管用超薄织物膜的制备方法
CN110627889B (zh) * 2018-06-22 2022-05-27 江苏京森生物医药新材料科技有限公司 重组蜘蛛丝蛋白及其制备方法和产业化应用
US20210169087A1 (en) * 2018-08-17 2021-06-10 Amsilk Gmbh Use of a structural polypeptide for plant coating
KR20210096175A (ko) * 2018-11-28 2021-08-04 볼트 쓰레즈, 인크. 거미 실크 단백질의 알칼리 정제
CN111378711A (zh) * 2018-12-28 2020-07-07 江苏京森生物医药新材料科技有限公司 重组蛛丝蛋白的产业化生产方法
EP3910096A4 (en) * 2019-01-09 2023-05-24 Spiber Inc. MODIFIED FIBROIN
RU2704187C1 (ru) * 2019-04-19 2019-10-24 Общество с ограниченной ответственностью "Фибрасофт" Способ получения раствора фиброина для формования волокон при помощи электроспиннинга
US20220220165A1 (en) * 2019-05-23 2022-07-14 Kowa Company, Ltd. Mass production system of recombinant bagworm silk protein
JPWO2020262489A1 (zh) * 2019-06-28 2020-12-30
CN114401980A (zh) * 2019-07-04 2022-04-26 赛威克斯材料科学公司 原核表达系统及其使用方法
GB201915839D0 (en) 2019-10-31 2019-12-18 Givaudan Sa Hair care composition
WO2022084285A1 (de) 2020-10-20 2022-04-28 Strauch Georg Beschichtetes haar und dessen verwendung
CN113089324A (zh) * 2021-04-15 2021-07-09 南开大学 一种基于双网络水凝胶的人造蜘蛛丝的制备方法
CN117715926A (zh) * 2021-06-10 2024-03-15 阿姆西尔克有限公司 包含尿素的丝多肽制剂
WO2022269557A1 (en) * 2021-06-24 2022-12-29 Reliance Industries Limited Recombinant algae and production of spider silk protein from the recombinant algae
WO2023104752A1 (en) 2021-12-07 2023-06-15 Amsilk Gmbh Use of a structural polypeptide for treating or finishing textiles
WO2023152202A1 (en) 2022-02-10 2023-08-17 Amsilk Gmbh Gradient printing reservoir and printing method
WO2023167628A1 (en) * 2022-03-04 2023-09-07 Anna Rising Recombinant spider silk proteins
CN115944773A (zh) * 2023-01-03 2023-04-11 中国人民解放军军事科学院军事医学研究院 一种基于蛛丝蛋白的仿生高强度黏附材料及应用
DE102023105437B3 (de) 2023-03-06 2024-06-13 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Fahrzeugkomponente mit wenigstens einer Fahrzeuginnenraumkomponente
CN116425848B (zh) * 2023-04-11 2024-05-24 北京新诚中科技术有限公司 重组嵌合蛛丝蛋白、生物蛋白纤维及其制备方法和应用
CN116425849B (zh) * 2023-04-11 2024-02-06 北京新诚中科技术有限公司 一种重组蛛丝蛋白、重组蛛丝蛋白混合纤维及其制备方法和应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003202949A1 (en) 2002-01-11 2003-07-30 Ali Alwattari Methods and apparatus for spinning spider silk protein
US20070260039A1 (en) * 2002-01-11 2007-11-08 Karatzas Costas N Methods of Producing Silk Polypeptides and Products Thereof

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
Anthoula Lazaris et al..Spider silk fibers spun from soluble recombinant silk produced in mammalian cells.《Science》.2002,第295卷(第5554期),472-476.
Cheryl Y Hayashi et al..Evidence from flagelliform silk cDNA for the structural basis of elasticity and modular nature of spider silks.《Journal of Molecular Biology》.1998,第275卷(第5期),773-784.
Evidence from flagelliform silk cDNA for the structural basis of elasticity and modular nature of spider silks;Cheryl Y Hayashi et al.;《Journal of Molecular Biology》;19980206;第275卷(第5期);773-784 *
Jürgen Scheller et al..Production of spider silk proteins in tobacco and potato.《Nature Biotechnology》.2001,第19卷573-577.
Production of spider silk proteins in tobacco and potato;Jürgen Scheller et al.;《Nature Biotechnology》;20011231;第19卷;573-577 *
Purification and characterization of recombinant spider silk expressed in Escherichia coli;S. Arcidiacono et al.;《Applied Microbiology and Biotechnology》;19980131;第49卷(第1期);31-38 *
S. Arcidiacono et al..Purification and characterization of recombinant spider silk expressed in Escherichia coli.《Applied Microbiology and Biotechnology》.1998,第49卷(第1期),31-38.
Spider silk fibers spun from soluble recombinant silk produced in mammalian cells;Anthoula Lazaris et al.;《Science》;20020118;第295卷(第5554期);472-476 *

Also Published As

Publication number Publication date
EP2520584A1 (en) 2012-11-07
US20100298877A1 (en) 2010-11-25
RU2415938C2 (ru) 2011-04-10
AU2005263622B2 (en) 2012-04-26
CA2573780A1 (en) 2007-01-12
CN101018806B (zh) 2014-05-07
EP1773875A2 (en) 2007-04-18
CA2573780C (en) 2013-11-19
DE202005021713U1 (de) 2009-06-25
US7754851B2 (en) 2010-07-13
CN102532295A (zh) 2012-07-04
ES2525095T3 (es) 2014-12-17
JP5128943B2 (ja) 2013-01-23
JP2008506409A (ja) 2008-03-06
US20110230911A1 (en) 2011-09-22
US7951908B2 (en) 2011-05-31
DK1773875T3 (en) 2014-12-15
KR20070059065A (ko) 2007-06-11
AU2005263622A1 (en) 2006-01-26
PL1773875T3 (pl) 2015-03-31
WO2006008163A2 (en) 2006-01-26
CN101018806A (zh) 2007-08-15
US8034897B1 (en) 2011-10-11
US20070214520A1 (en) 2007-09-13
RU2007102846A (ru) 2008-08-27
EP1773875B1 (en) 2014-09-10
WO2006008163A3 (en) 2006-06-08

Similar Documents

Publication Publication Date Title
CN102532295B (zh) 重组蜘蛛丝蛋白
RU2421463C2 (ru) Способ модификации белка шелка пауков, модифицированный белок шелка пауков, кодирующая его последовательность нуклеиновой кислоты, вектор и клетка-хозяин для его экспрессии
JP4990763B2 (ja) クモのドラグラインタンパク質、それを含む糸および材料、それをコードするベクター、ならびにクモのドラグラインタンパク質およびそれを含む糸の使用方法
Winkler et al. Molecular biology of spider silk
CA2995156C (en) Compositions and methods for fabricating synthetic dragline spider silk
US8461301B2 (en) Synthetic dragline spider silk-like proteins
US8030024B2 (en) Synthesis of spider dragline and/or flagelliform proteins
Peng et al. Polyelectrolyte fiber assembly of plant-derived spider silk-like proteins
Crawford et al. Molecular and structural properties of spider silk
SCHELLER 11 Production of Spider Silk Proteins in Transgenic Tobacco and Potato JÜRGEN SCHELLER and UDO CONRAD
Grip Artificial spider silk
Scheller et al. Production ofSpider Silk Proteins in Transgenic Tobacco and Potato

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant