WO2018123953A1 - タンパク質の回収方法 - Google Patents

タンパク質の回収方法 Download PDF

Info

Publication number
WO2018123953A1
WO2018123953A1 PCT/JP2017/046394 JP2017046394W WO2018123953A1 WO 2018123953 A1 WO2018123953 A1 WO 2018123953A1 JP 2017046394 W JP2017046394 W JP 2017046394W WO 2018123953 A1 WO2018123953 A1 WO 2018123953A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
target protein
amino acid
acid sequence
solution
Prior art date
Application number
PCT/JP2017/046394
Other languages
English (en)
French (fr)
Inventor
和秀 関山
明彦 尾関
岡田 亮二
浩一 小鷹
Original Assignee
Spiber株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Spiber株式会社 filed Critical Spiber株式会社
Priority to US16/473,836 priority Critical patent/US20190352330A1/en
Priority to JP2018559448A priority patent/JP7495707B2/ja
Priority to EP17889372.3A priority patent/EP3564254A4/en
Priority to CN201780080121.3A priority patent/CN110099917A/zh
Publication of WO2018123953A1 publication Critical patent/WO2018123953A1/ja
Priority to JP2022111330A priority patent/JP7436065B2/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/145Extraction; Separation; Purification by extraction or solubilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/43504Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
    • C07K14/43513Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from arachnidae
    • C07K14/43518Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from arachnidae from spiders
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/06Recovery or working-up of waste materials of polymers without chemical reactions
    • C08J11/08Recovery or working-up of waste materials of polymers without chemical reactions using selective solvents for polymer components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/18Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
    • C08J11/20Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with hydrocarbons or halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a protein recovery method.
  • Patent Document 1 discloses a chemical recycling method for polyethylene terephthalate waste.
  • a structural protein that is excellent in terms of strength and the like is a material useful as an alternative to petroleum-derived materials.
  • recycling from waste is mainly related to petroleum-derived materials, and a method for recovering the target protein from waste containing protein such as structural protein has not been known.
  • an object of the present invention is to provide a method capable of recovering a target protein from a mixture containing the target protein and a material different from the target protein.
  • the present invention relates to a method for recovering a target protein from a mixture containing the target protein and a material different from the target protein, wherein the solution includes the mixture and a polar solvent.
  • a method for recovering a protein comprising a dissolution step of dissolving one of the target protein or the material by applying pressure while heating, and a separation step of separating the obtained solution.
  • the target protein or the material is dissolved by applying pressure to the dissolution solution containing the mixture and the polar solvent while heating, for example, by solid-liquid separation,
  • the target protein can be recovered from the mixture.
  • the dissolution step is preferably a step of dissolving the target protein. As a result, the target protein can be recovered with higher purity.
  • the target protein may be one or more proteins selected from the group consisting of silk fibroin, spider silk fibroin and hornet silk fibroin.
  • the polar solvent preferably contains one or more solvents selected from the group consisting of water, alcohol, dimethyl sulfoxide, dimethylformamide and hexafluoroacetone. This makes it easier to recover the target protein from the mixture.
  • the material may include one or more materials selected from the group consisting of polyester, nylon, cotton, and wool.
  • the target protein can be recovered from a mixture containing the target protein and a material different from the target protein.
  • Example 4 is a graph showing the analysis result of GPC in Example 1.
  • 10 is a graph showing the results of GPC analysis in Example 5.
  • the method according to the present embodiment is a method for recovering the target protein from a mixture containing the target protein and a material different from the target protein, and includes the mixture and a polar solvent.
  • a dissolution step of dissolving one of the target protein or the material by applying pressure to the dissolution solution while heating, and a separation step of separating the obtained dissolution solution are provided.
  • the solubility of the target protein or a material different from the target protein in one polar solvent can be improved. Is possible. Thereby, it becomes possible to collect
  • the dissolution step is preferably a step of dissolving the target protein.
  • the target protein By dissolving the target protein in the dissolution solution, the target protein can be recovered with higher purity.
  • the dissolution step is a step of dissolving the target protein, it is not always necessary that the entire amount of the target protein is dissolved, and only a part of the protein is dissolved.
  • the polar solvent contained in the dissolution solution contains, for example, one or more solvents selected from the group consisting of water, alcohol, dimethyl sulfoxide (DMSO), dimethylformamide (DMF), and hexafluoroacetone (HFA). Also good. From the viewpoint of recovering the target protein more efficiently, the polar solvent can be water alone or a mixed solvent of alcohol and water. From the viewpoint of reducing adverse effects on the environment, the polar solvent can be water. From the viewpoint of obtaining the target protein under milder conditions, the polar solvent may contain an alcohol. For example, the polar solvent may be a mixed solvent of water and alcohol, a mixed solvent of dimethyl sulfoxide and alcohol, or a mixed solvent of water, alcohol and dimethyl sulfoxide.
  • DMSO dimethyl sulfoxide
  • DMF dimethylformamide
  • HFA hexafluoroacetone
  • the ratio of alcohol to the total amount of polar solvent (or mixed solvent) may be 5 to 100% by mass, or 10 to 50% by mass.
  • polar solvent containing alcohol When a polar solvent containing alcohol is used, the target protein tends to be dissolved in the polar solvent at a lower pressure.
  • alcohol means a compound comprising an aliphatic group which may have a substituent and a hydroxyl group bonded to the aliphatic group.
  • the aliphatic group may be substituted with a halogen atom such as a fluorine atom, or may be unsubstituted.
  • a fluoroalcohol having an aliphatic group substituted with a fluorine atom is hexafluoroisopropanol (HFIP).
  • An alcohol having a low boiling point is particularly advantageous in that the conditions such as preparation of an alcohol solution and its concentration, formation of a molded article, etc. can be mild.
  • the boiling point of the alcohol may be, for example, 99 ° C. or lower and 50 ° C. or higher under 1 atmosphere.
  • the boiling point of the alcohol may be 60 ° C. or higher under 1 atmosphere.
  • an alcohol having one hydroxyl group tends to have a lower boiling point than an alcohol having two or more hydroxyl groups.
  • the carbon number of the alcohol is not particularly limited, but may be 1 to 10. In particular, from the viewpoint of recovering the target protein under mild conditions, the alcohol may have 2 to 8 or 2 to 5 carbon atoms.
  • the alcohol contained in the polar solvent is, for example, one or more carbons selected from the group consisting of methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, octanol, nonanol, decanol, and isomers of these alcohols.
  • It may be an alcohol having a number of 1 to 10, or may be one or more alcohols having 2 to 5 carbon atoms selected from the group consisting of ethanol, propanol, butanol, and isomers of these alcohols. It may be one or more alcohols selected from the group consisting of 1-propanol and 2-propanol.
  • the target protein may be a structural protein.
  • the structural protein means a protein that forms or maintains a structure, a form, or the like in a living body.
  • Structural proteins include hydrophobic proteins and polypeptides that tend to undergo self-aggregation in polar solvents. Since these structural proteins generally have low solubility in polar solvents, the method of this embodiment is particularly useful for recovering these structural proteins.
  • the target protein may be fibroin.
  • the fibroin may be, for example, one or more selected from the group consisting of silk fibroin, spider silk fibroin, and hornet silk fibroin.
  • the protein of interest may be silk fibroin, spider silk fibroin or a combination thereof.
  • the ratio of silk fibroin may be, for example, 40 parts by mass or less, 30 parts by mass or less, or 10 parts by mass or less with respect to 100 parts by mass of spider silk fibroin. .
  • Silk is a fiber obtained from cocoons made by silkworms, Bombyxmori larvae.
  • one silk thread is composed of two silk fibroins and glue quality (sericin) covering them from the outside.
  • Silk fibroin is composed of many fibrils.
  • Silk fibroin is covered with 4 layers of sericin.
  • silk filaments obtained by dissolving and removing outer sericin by refining are used for clothing.
  • General silk has a specific gravity of 1.33, an average fineness of 3.3 decitex, and a fiber length of about 1300 to 1500 m.
  • Silk fibroin can be obtained from natural or domestic silkworms, or used or discarded silk fabrics.
  • the silk fibroin may be sericin-removed silk fibroin, sericin-unremoved silk fibroin, or a combination thereof.
  • the sericin-removed silk fibroin is a powder obtained by freeze-drying silk fibroin purified by removing sericin covering the silk fibroin and other fats.
  • Sericin-unremoved silk fibroin is an unpurified fibroin from which sericin and the like have not been removed.
  • the spider silk fibroin may contain a spider silk polypeptide selected from the group consisting of a natural spider silk protein and a polypeptide derived from the natural spider silk protein.
  • spider silk proteins examples include large sphincter bookmark protein, weft protein, and small bottle-like gland protein. Since the large splint bookmarker has a repetitive region composed of a crystal region and an amorphous region, it is presumed to have both high stress and stretchability. A great feature of spider silk wefts is that they have no crystal regions but have repeating regions consisting of amorphous regions. On the other hand, the weft yarn is inferior in stress to the large spout tube bookmark yarn, but has high stretchability. This is considered to be because most of the weft is composed of amorphous regions.
  • the large sputum bookmark thread protein is produced in spider large bottle-like glands and has the characteristic of excellent toughness.
  • Examples of the large sphincter bookmark thread protein include large bottle-shaped gland spiders MaSp1 and MaSp2 derived from Nephilavavipes, and ADF3 and ADF4 derived from two spider spiders (Araneus diadematus).
  • ADF3 is one of the two main dragline proteins of the elder spider.
  • Polypeptides derived from natural spider silk proteins may be polypeptides derived from these bookmark silk proteins.
  • a polypeptide derived from ADF3 is relatively easy to synthesize and has excellent properties in terms of strength and toughness.
  • Weft protein is produced in the flagellate form of the spider.
  • examples of the weft protein include flagellum silk protein derived from American spider spider (Nephila clavipes).
  • the polypeptide derived from the natural spider silk protein may be a recombinant spider silk protein.
  • recombinant spider silk proteins include mutants, analogs or derivatives of natural spider silk proteins.
  • a preferred example of such a polypeptide is a recombinant spider silk protein (also referred to as “polypeptide derived from a large sputum bookmarker protein”).
  • a polypeptide derived from a large sputum dragline protein may contain 2 or more, 5 or more, or 10 or more amino acid sequence units (also referred to as motifs) represented by Formula 1: REP1-REP2 (1). Good.
  • the upper limit of the number of units of the amino acid sequence represented by Formula 1: REP1-REP2 (1) is not particularly limited, but may be, for example, 300 or less, or 200 or less.
  • a polypeptide derived from a large sputum dragline protein includes a unit of an amino acid sequence represented by Formula 1: REP1-REP2 (1), and a C-terminal sequence is represented by any one of SEQ ID NOs: 1 to 3.
  • polypeptide that is an amino acid sequence having 90% or more homology with the amino acid sequence shown in any one of SEQ ID NOs: 1 to 3.
  • the unit of the amino acid sequence represented by Formula 1: REP1-REP2 (1) may be the same or different.
  • the ratio of the number of alanine residues to the total number of amino acid residues in the REP1 motif is usually 83% or more, and may be 86% or more, 90% or more, or 95% or more.
  • REP1 may be polyalanine in which the ratio of the number of alanine residues is 100%. 2 or more, 3 or more, 4 or more, or 5 or more may be sufficient as the alanine (Ala) which is located in a row in REP1.
  • alanine arranged continuously may be 20 residues or less, 16 residues or less, 12 residues or less, or 10 residues or less.
  • the REP1 motif may contain other amino acid residues selected from serine (Ser), glycine (Gly), glutamine (Gln) and the like in addition to alanine (Ala).
  • REP2 is an amino acid sequence consisting of 10 to 200 amino acids, and is the total residue of glycine (Gly), serine (Ser), glutamine (Gln) and alanine (Ala) contained in the amino acid sequence
  • the number may be 40% or more, 60% or more, or 70% or more with respect to the total number of amino acid residues.
  • REP1 corresponds to a crystalline region that forms a crystalline ⁇ -sheet within the fiber
  • REP2 is an amorphous region that is more flexible within the fiber and largely lacks a regular structure.
  • [REP1-REP2] corresponds to a repetitive region (repetitive sequence) composed of a crystal region and an amorphous region, and is a characteristic sequence of a bookmark thread protein.
  • the amino acid sequence shown in SEQ ID NO: 1 is identical to the amino acid sequence consisting of the 50-residue amino acid at the C-terminal of the amino acid sequence of ADF3 (NCBI accession number: AAC47010, GI: 1263287).
  • the amino acid sequence shown in SEQ ID NO: 2 is identical to the amino acid sequence obtained by removing 20 residues from the C-terminus of the amino acid sequence shown in SEQ ID NO: 1.
  • the amino acid sequence shown in SEQ ID NO: 3 is identical to the amino acid sequence obtained by removing 29 residues from the C-terminus of the amino acid sequence shown in SEQ ID NO: 1.
  • the polypeptide comprising two or more units of the amino acid sequence represented by Formula 1: REP1-REP2 (1) can be, for example, a polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 5.
  • the polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 5 has an amino acid sequence (NCBI) of ADF3 to which an amino acid sequence (SEQ ID NO: 4) consisting of a start codon, His10 tag and HRV3C protease (Humanrinovirusv3C protease) recognition site is added at the N-terminus. Accession No .: AAC47010, GI: 1263287), and the translation was mutated so that it ends at the 543rd amino acid residue.
  • Formula 1 In a polypeptide comprising two or more amino acid sequence units represented by REP1-REP2 (1), one or more amino acids are substituted, deleted, inserted and / or added in the amino acid sequence represented by SEQ ID NO: 5 And a protein having a repetitive region consisting of a crystalline region and an amorphous region.
  • “one or more” means, for example, 1 to 40, 1 to 35, 1 to 30, 1 to 25, 1 to 20, 1 to 15, 1 to 10 And a range selected from one or several.
  • “1 or several” means 1 to 9, 1 to 8, 1 to 7, 1 to 6, 1 to 5, 1 to 4, 1 to 3, 1 to Two or one is meant.
  • the polypeptide containing two or more amino acid sequence units represented by Formula 1: REP1-REP2 (1) may be a recombinant protein derived from ADF4 having the amino acid sequence represented by SEQ ID NO: 6.
  • the amino acid sequence shown in SEQ ID NO: 6 consists of a partial amino acid sequence of ADF4 obtained from the NCBI database (NCBI accession numbers: AAC47011, GI: 1263289) at the N-terminus with a start codon, His10 tag and HRV3C protease (Humanrhinovirus).
  • 3C protease) amino acid sequence consisting of a recognition site (SEQ ID NO: 4) is added.
  • Formula 1 In a polypeptide comprising two or more amino acid sequence units represented by REP1-REP2 (1), one or more amino acids in the amino acid sequence represented by SEQ ID NO: 6 are substituted, deleted, inserted and / or added. And a polypeptide having a repetitive region consisting of a crystalline region and an amorphous region.
  • the polypeptide containing two or more amino acid sequence units represented by Formula 1: REP1-REP2 (1) may be a MaSp2-derived recombinant protein having the amino acid sequence represented by SEQ ID NO: 7.
  • the amino acid sequence shown in SEQ ID NO: 7 consists of a partial sequence of MaSp2 obtained from the NCBI database (NCBI accession number: AAT75313, GI: 50363147) at the N-terminus with a start codon, His10 tag and HRV3C protease (Humanrhinovirus 3C
  • An amino acid sequence (SEQ ID NO: 11) consisting of a protease recognition site is added.
  • Formula 1 In a polypeptide comprising two or more amino acid sequence units represented by REP1-REP2 (1), one or more amino acids in the amino acid sequence represented by SEQ ID NO: 7 are substituted, deleted, inserted and / or added. And a polypeptide having a repetitive region consisting of a crystalline region and an amorphous region.
  • the polypeptide derived from the weft protein may contain 10 or more, 20 or more, or 30 or more units of the amino acid sequence represented by Formula 2: REP3 (2).
  • the upper limit of the number of units of the amino acid sequence represented by Formula 2: REP3 (2) is not particularly limited, but may be, for example, 300 or less, or 200 or less.
  • REP3 means an amino acid sequence composed of Gly-Pro-Gly-Gly-X, and X is a group consisting of alanine (Ala), serine (Ser), tyrosine (Tyr) and valine (Val). It means one amino acid selected.
  • a polypeptide comprising 10 or more units of the amino acid sequence represented by REP3 (2) is, for example, a recombinant protein derived from flagellar silk protein having the amino acid sequence represented by SEQ ID NO: 8 it can.
  • the amino acid sequence shown in SEQ ID NO: 8 is an N corresponding to the repeat portion and motif of the partial sequence (NCBI accession number: AAF36090, GI: 7106224) of the American flagella silk protein obtained from the NCBI database.
  • PR1 sequence Amino acid sequence from the 1220th residue to the 1659th residue from the end (referred to as PR1 sequence), and a partial sequence of American yellow spider flagellar silk protein obtained from the NCBI database (NCBI accession number: AAC38847, GI: 2833649) ) From the C-terminal to the 816th to 907th residues from the C-terminal, and an amino acid sequence comprising a start codon, His10 tag and HRV3C protease recognition site at the N-terminal of the combined sequence (SEQ ID NO: 4) With It is an amino acid sequence.
  • Formula 2 In the polypeptide comprising 10 or more units of the amino acid sequence represented by REP3 (2), one or more amino acids are substituted, deleted, inserted and / or added in the amino acid sequence represented by SEQ ID NO: 8 It can be a polypeptide having a repeating region consisting of an amino acid sequence and consisting of an amorphous region.
  • the molecular weight of the protein or polypeptide may be 500 kDa or less, 300 kDa or less, 200 kDa or less, or 100 kDa or less, or 10 kDa or more, from the viewpoint of productivity when producing recombinant protein using microorganisms such as E. coli as hosts. May be.
  • Hornet silk fibroin is a protein produced by bee larvae and may contain a polypeptide selected from the group consisting of natural hornet silk protein and a polypeptide derived from natural hornet silk protein.
  • the polypeptide can be produced, for example, using a host transformed with an expression vector containing a gene encoding the polypeptide.
  • the method for producing a gene encoding a polypeptide is not particularly limited.
  • the gene in the case of a natural spider silk protein, the gene can be produced by a method of amplifying and cloning a gene encoding the protein from a spider-derived cell by polymerase chain reaction (PCR) or the like, or by chemical synthesis. .
  • the method for chemically synthesizing the gene is not particularly limited. For example, based on the amino acid sequence information of the natural spider silk protein obtained from the NCBI web database or the like, AKTAoligopilot plus 10/100 (GE Healthcare Japan, Inc.)
  • the gene can be chemically synthesized by a method of ligating the oligonucleotides synthesized automatically by PCR or the like.
  • a gene encoding a protein consisting of an amino acid sequence in which an amino acid sequence consisting of a start codon and a His10 tag is added to the N-terminus of the above amino acid sequence may be synthesized. Good.
  • a plasmid, phage, virus or the like capable of expressing a protein from a DNA sequence
  • the plasmid type expression vector is not particularly limited as long as it can express the target gene in the host cell and can amplify itself.
  • E. coli Rosetta (DE3) E. coli Rosetta
  • a pET22b (+) plasmid vector, a pCold plasmid vector, or the like can be used.
  • pET22b (+) plasmid vector can be used from the viewpoint of protein productivity.
  • the host for example, animal cells, plant cells, microorganisms and the like can be used.
  • a solution for dissolving the above-mentioned target protein such as silk fibroin and spider silk fibroin and other proteins may contain a solution for dissolution and a solution obtained therefrom.
  • examples of other proteins include collagen, soy protein, casein, keratin, and whey protein.
  • the proportion of other proteins may be, for example, 40 parts by mass or less, 30 parts by mass or less, or 10 parts by mass or less with respect to 100 parts by mass of the target protein.
  • the concentration of the target protein in the dissolving solution may be 15% by mass or more, 30% by mass or more, 40% by mass or more, or 50% by mass or more based on the mass of the polar solvent. From the viewpoint of the recovery efficiency of the target protein, the concentration of the target protein may be 70% by mass or less, 65% by mass or less, or 60% by mass or less based on the mass of the polar solvent.
  • the material different from the target protein may be an inorganic material or an organic material.
  • an inorganic material a metal, carbon fiber, glass, or these combination etc. are mentioned, for example.
  • organic materials include bio-polyesters such as polyester fibers, nylon, cotton, wool, rayon and the like, aramid, PTFE (polytetrafluoroethylene), polyurethane, PLA (polylactic acid), bionylon, bio Examples thereof include bioplastic fibers such as PET or combinations thereof.
  • the polyester include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and polytributylene terephthalate (PTT). Wool is an animal fiber whose main component is keratin, cotton is a vegetable fiber whose main component is cellulose, and nylon is a hydrophobic fiber that is a kind of polyamide.
  • the material different from the target protein may include one or more materials selected from the group consisting of polyester, nylon, cotton and wool.
  • the dissolving solution may further contain one or more inorganic salts.
  • an inorganic salt By adding an inorganic salt to the dissolving solution, the effect of improving the solubility by heating and pressurization can be made more remarkable.
  • the inorganic salt include inorganic salts composed of the following Lewis acid and Lewis base.
  • the Lewis base may be, for example, an oxoacid ion (nitrate ion, perchlorate ion, etc.), a metal oxoacid ion (permanganate ion, etc.), a halide ion, thiocyanate ion, cyanate ion, or the like.
  • the Lewis acid may be, for example, metal ions such as alkali metal ions and alkaline earth metal ions, polyatomic ions such as ammonium ions, complex ions, and the like.
  • inorganic salts include lithium salts such as lithium chloride, lithium bromide, lithium iodide, lithium nitrate, lithium perchlorate, and lithium thiocyanate, calcium chloride, calcium bromide, calcium iodide, calcium nitrate.
  • Calcium salts such as calcium perchlorate and calcium thiocyanate, iron salts such as iron chloride, iron bromide, iron iodide, iron nitrate, iron perchlorate and iron thiocyanate, and aluminum chloride, Aluminum salts such as aluminum bromide, aluminum iodide, aluminum nitrate, aluminum perchlorate, and aluminum thiocyanate, such as potassium chloride, potassium bromide, potassium iodide, potassium nitrate, potassium perchlorate, and potassium thiocyanate Potassium salt, sodium chloride, sodium bromide, yo Sodium salts such as sodium chloride, sodium nitrate, sodium perchlorate and sodium thiocyanate, zinc salts such as zinc chloride, zinc bromide, zinc iodide, zinc nitrate, zinc perchlorate and zinc thiocyanate, Magnesium salts such as magnesium chloride, magnesium bromide, magnesium iodide, magnesium nitrate, magnesium
  • the concentration of the inorganic salt is 1.0 mass% or more, 5.0 mass% or more, 9.0 mass% or more, 15.0 mass% or more, or 20.0 mass% or more based on the total amount of the target protein. Can be.
  • the concentration of the inorganic salt may be 30% by mass or less, 25% by mass or less, or 20% by mass or less based on the total amount of the target protein.
  • the solution for dissolution can contain various additives as required.
  • the additive include a plasticizer, a crystal nucleating agent, an antioxidant, an ultraviolet absorber, a colorant, a crosslinking agent, a polymerization inhibitor, a filler, and a synthetic resin.
  • the concentration of the additive may be 50% by mass or less based on the total amount of the target protein.
  • One of the target protein and the material can be dissolved by applying a predetermined pressure while heating the dissolution solution.
  • pressure by applying pressure to the dissolution solution, it is possible to dissolve one of the target protein or the material even at a relatively low temperature. Therefore, the target protein can be recovered while suppressing the alteration, gelation, and degradation of the target protein.
  • a concentration step using dialysis or the like is not necessarily required, and thus a protein solution can be obtained with high production efficiency.
  • the pressure applied to the lysis solution is such that the target protein can be recovered according to the type of the target protein and polar solvent, the desired concentration, etc. Adjusted. When the pressure applied to the dissolving solution is high, the solubility tends to increase.
  • the pressure applied to the dissolving solution is 0.05 MPa or more, 0.06 MPa or more, 0.07 MPa or more, 0.08 MPa or more, 0.1 MPa or more, 1.0 MPa or more, 5.0 MPa or more, or 10 MPa or more. Can do.
  • the pressure applied to the dissolving solution can be 300 MPa or less, 150 MPa or less, 50 MPa or less, or 30 MPa or less.
  • the method for applying pressure to the dissolving solution is not particularly limited.
  • the solvent is heated and the pressure is applied by the vapor pressure of the solvent, an inert gas such as nitrogen or argon, or air.
  • the method of applying a pressure etc. may be applied by adjusting the pressure in a pressure-resistant container by enclosing.
  • the pressure may be applied to the dissolving solution while heating the dissolving solution.
  • the heating is not limited to the time during which the pressure is applied.
  • the pressure may be applied to the dissolving solution after the dissolving solution is heated to a predetermined temperature.
  • the heating temperature may be 150 ° C. or lower, 140 ° C. or lower, 135 ° C. or lower, or 130 ° C. or lower.
  • the heating temperature is preferably 140 ° C. or lower from the viewpoint of further suppressing the degradation of the protein mediated by water.
  • the heating temperature may be 70 ° C. or higher, 90 ° C. or higher, or 100 ° C. or higher.
  • the heating temperature may be 70 ° C. or higher and 150 ° C. or lower, 90 ° C. or higher and 140 ° C. or lower, or 100 ° C. or higher and 130 ° C. or lower.
  • the heating temperature when the polar solvent is a mixed solvent of water and alcohol is 150 ° C. or lower, 140 ° C. or lower, 135 ° C. or lower, or 130 ° C. or lower from the viewpoint of further suppressing protein degradation. It may be 70 degreeC or more, 80 degreeC or more, or 90 degreeC or more from the point of solubility improvement.
  • the heating temperature when the polar solvent is a mixed solvent of water and alcohol may be 70 ° C. or higher and 150 ° C. or lower, 80 ° C. or higher and 140 ° C. or lower, or 90 ° C. or higher and 130 ° C. or lower.
  • the heating temperature may be a constant temperature or may vary.
  • the pressure may be applied to the dissolving solution while stirring the dissolving solution.
  • Stirring is not limited to applying pressure, and the dissolving solution may be stirred before and after applying pressure.
  • the stirring method is not particularly limited.
  • the dissolving solution can be stirred by an inclined blade, a turbine blade, or the like.
  • the solution obtained after pressurization may contain a gas for pressurization. Therefore, the protein recovery method according to an embodiment may further include removing gas from the solution.
  • the method for removing the gas is not particularly limited, and examples thereof include a method using a centrifuge. By applying the lysate to a centrifuge, it is possible to remove a layer containing a relatively large amount of gas.
  • the protein recovery method according to the present embodiment includes a separation step of separating the lysate obtained in the dissolution step.
  • the separation step may be performed by a conventional solid-liquid separation process, and may be, for example, separation of a dissolved solution and an insoluble material by filtration.
  • the concentration of the target protein dissolved in the solution is 1% by mass or more, 5% by mass or more, 10% by mass, based on the mass of the solution.
  • the mass may be 15% by mass or more, 15% by mass or more, 20% by mass or more, or 30% by mass or more, or 50% by mass or less, 45% by mass or less, or 40% by mass or less.
  • the protein recovery method according to the present embodiment is performed using a polar solvent such as water, alcohol, dimethyl sulfoxide (DMSO), dimethylformamide (DMF), hexafluoroacetone (HFA) and hexafluoro-2-propanol (HFIP). It may include a step of washing the lysate.
  • a polar solvent such as water, alcohol, dimethyl sulfoxide (DMSO), dimethylformamide (DMF), hexafluoroacetone (HFA) and hexafluoro-2-propanol (HFIP).
  • a polar solvent such as water, alcohol, dimethyl sulfoxide (DMSO), dimethylformamide (DMF), hexafluoroacetone (HFA) and hexafluoro-2-propanol (HFIP).
  • DMSO dimethyl sulfoxide
  • DMF dimethylformamide
  • HFA hexafluoroacetone
  • HFIP hex
  • the dissolution step is a step of dissolving the target protein
  • a normal method such as a method of removing a polar solvent from a solution or reprecipitation is applied.
  • the target protein can be recovered from the lysate.
  • the protein in an arbitrary form such as powder may be recovered from the solution containing the target protein, or may be directly used for the production of a molded body.
  • the solution containing the target protein can be used, for example, for producing a protein compact by various methods. For example, you may obtain the molded object containing protein by removing a polar solvent from the solution containing the target protein.
  • the solution containing spider silk fibroin can be used to produce a molded article having excellent physical properties utilizing the characteristics of spider silk fibroin.
  • the dissolution step is a step of dissolving the target protein, for example, using a solution as a dope solution
  • a molded body such as a gel, a film, or a fiber
  • the film can be produced by, for example, a method of forming a solution (dope solution) film and removing the polar solvent from the formed film.
  • the fiber can be produced, for example, by a method in which a solution is spun and a polar solvent is removed from the spun solution.
  • the recovered protein is the target protein is determined by, for example, gel permeation chromatography (GPC), infrared spectroscopy (IR), polyacrylamide gel electrophoresis (SDS-PAGE), It can be confirmed by mass spectrometry (MS) and nuclear magnetic resonance (NMR).
  • GPC gel permeation chromatography
  • IR infrared spectroscopy
  • SDS-PAGE polyacrylamide gel electrophoresis
  • MS mass spectrometry
  • NMR nuclear magnetic resonance
  • [Preparation of spider silk protein] (1) Synthesis of nucleic acid encoding modified fibroin and construction of expression vector Based on the base sequence and amino acid sequence of Nephilavavipes (GenBank accession numbers: P46804.1, GI: 1174415), a naturally occurring spider silk fibroin A modified fibroin having the amino acid sequence shown by numbers 9 and 10, respectively, was designed.
  • the amino acid sequence represented by SEQ ID NO: 9 starts from the above naturally-derived fibroin, and (A) the amino acid sequence in which the alanine residues in the n motif are continuous is 5 in the number of consecutive alanine residues.
  • (A) n motif ((A) 5) is deleted every two from the N-terminal side to the C-terminal side, and [(A) n motif-REP] is inserted before the C-terminal sequence.
  • One is inserted and all GGX in REP is replaced with GQX.
  • the amino acid sequence shown in SEQ ID NO: 10 is obtained by adding the amino acid sequence shown in SEQ ID NO: 11 (tag sequence and hinge sequence) to the N-terminus of the amino acid sequence shown in SEQ ID NO: 9.
  • a nucleic acid encoding a protein having the amino acid sequence represented by SEQ ID NO: 10 in which a His tag sequence and a hinge sequence (SEQ ID NO: 11) were added to the N-terminus of the amino acid sequence represented by SEQ ID NO: 9 was synthesized.
  • the nucleic acid was added with an NdeI site at the 5 'end and an EcoRI site downstream of the stop codon.
  • the nucleic acid was cloned into a cloning vector (pUC118). Thereafter, the nucleic acid was cleaved by restriction enzyme treatment with NdeI and EcoRI, and then recombined with the protein expression vector pET-22b (+) to obtain an expression vector.
  • the seed culture was added to a jar fermenter to which 500 ml of production medium (Table 2) was added so that the OD 600 was 0.05, and transformed E. coli was inoculated.
  • the culture solution temperature was maintained at 37 ° C., and the culture was performed at a constant pH of 6.9. Further, the dissolved oxygen concentration in the culture solution was maintained at 20% of the dissolved oxygen saturation concentration.
  • a feed solution (glucose 455 g / 1 L, Yeast Extract 120 g / 1 L) was added at a rate of 1 ml / min.
  • the culture solution temperature was maintained at 37 ° C., and the culture was performed at a constant pH of 6.9.
  • the dissolved oxygen concentration in the culture solution was maintained at 20% of the dissolved oxygen saturation concentration, and cultured for 20 hours.
  • 1M isopropyl- ⁇ -thiogalactopyranoside (IPTG) was added to the culture solution to a final concentration of 1 mM to induce expression of the target protein.
  • IPTG isopropyl- ⁇ -thiogalactopyranoside
  • the washed precipitate is suspended in 8 M guanidine buffer (8 M guanidine hydrochloride, 10 mM sodium dihydrogen phosphate, 20 mM NaCl, 1 mM Tris-HCl, pH 7.0) to a concentration of 100 mg / mL, and 30 ° C. at 30 ° C. Stir with a stirrer for minutes to dissolve. After dissolution, dialysis was performed with water using a dialysis tube (cellulose tube 36/32 manufactured by Sanko Junyaku Co., Ltd.). The white aggregated protein obtained after dialysis was recovered by centrifugation, the water was removed with a freeze dryer, and the lyophilized powder was recovered.
  • 8 M guanidine buffer 8 M guanidine hydrochloride, 10 mM sodium dihydrogen phosphate, 20 mM NaCl, 1 mM Tris-HCl, pH 7.0
  • the degree of purification of the target protein in the obtained freeze-dried powder was confirmed by image analysis of the results of polyacrylamide gel electrophoresis of the powder using Totallab (nonlinear dynamics.). As a result, the degree of protein purification was about 85%.
  • Example 1 The spider silk protein (artificial spider silk fiber, hereinafter also referred to as “SSP”) obtained above and a wool fiber that is a material different from the spider silk protein (hereinafter also referred to as “other material”) are crossed. A knitted (mixed and knitted) knit was cut into about 2 cm square to prepare about 1.79 g. The respective weights of spider silk protein and wool fiber were calculated to be 0.41 g and 1.38 g.
  • This container was set in a hot stirrer (Tokyo Rika Kikai Co., Ltd., RCH-20L), set at a heater temperature of 90 ° C., and stirred at 300 rpm. The contents reached approximately 90 ° C. in the first 10 minutes, and at the same time, the internal pressure reached 0.08 MPa in calculation due to the vapor pressure of the solvent. Stirring was continued for another 20 minutes from here. Thereafter, the container was removed from the hot stirrer and allowed to stand at room temperature until the temperature dropped to 70 ° C., which is lower than the boiling point of the solvent.
  • a hot stirrer Tokyo Rika Kikai Co., Ltd., RCH-20L
  • the contents of the container were separated into a solution and an insoluble substance using a filter. Further, the insoluble material was washed with water in a container, and separated into a dissolved solution and an insoluble material using a similar filter, and this operation was repeated three times.
  • Table 3 shows the results of the respective weights of spider silk protein and wool fibers in the knitted knit (before treatment) and the respective weights and yields after the treatment.
  • the GPC measurement result of the spider silk protein before and after processing is shown in FIG.
  • the GPC measurement results of the spider silk protein before and after the treatment were almost the same, it was judged that the spider silk protein was recovered almost as it was.
  • the presence of the substance is seen on the high molecular weight side (left side of the graph of FIG. 1), but it is considered that the spider silk protein aggregated with ethanol.
  • the measurement by GPC was performed using GPC (manufactured by Shimadzu Corporation, trade name: 2C-20AD), column LF-404 (manufactured by Showa Denko KK), Shodex detector (manufactured by Showa Denko KK, trade name: RI-504). Using.
  • Example 2 The same experiment as in Example 1 was performed by replacing the wool fiber in Example 1 with cotton fiber. The results are shown in Table 3.
  • SSP may be recovered by applying pressure while heating to the polar solvent containing a mixture of SSP and other materials. Indicated. Moreover, although the weight of the other material after a process is larger than the thing before a process, it is thought that it is a thing which a part of spider silk protein remained with attaching.
  • Example 3 The polar solvent in Example 1 was changed to water, and the set temperature of the hot stirrer was changed to 110 ° C., and the same experiment as in Example 1 was performed. The content reaches approximately 110 ° C. in about 10 minutes from the start of stirring, and at the same time, the internal pressure is calculated to be 0.15 MPa due to the vapor pressure of the solvent. Moreover, after removing a container from a hot stirrer after stirring, it left still at room temperature until the container fell to 90 degreeC which is below the boiling point of a solvent. Table 4 shows the results of the respective weights of spider silk protein and cotton fibers in the knitted knit (before treatment) and the respective weights and yields after the treatment.
  • Example 4 The same experiment as in Example 3 was performed by replacing the wool in Example 3 with cotton. The results are shown in Table 4.
  • a mixed solvent of water and Clinsolve (registered trademark) P-7 as a polar solvent
  • This container was set in a hot stirrer (Tokyo Rika Kikai Co., Ltd., RCH-20L), set at a heater temperature of 90 ° C., and stirred at 300 rpm. The contents reached approximately 90 ° C. in the first 10 minutes, and at the same time, the internal pressure reached 0.08 MPa in calculation due to the vapor pressure of the solvent. Stirring was continued for another 20 minutes from here. Thereafter, the container was removed from the hot stirrer and allowed to stand at room temperature until the temperature dropped to 70 ° C., which is lower than the boiling point of the solvent.
  • a hot stirrer Tokyo Rika Kikai Co., Ltd., RCH-20L
  • the contents of the container were separated into a solution and an insoluble substance using a filter. Further, the insoluble material was washed with water in a container, and separated into a dissolved solution and an insoluble material using a similar filter, and this operation was repeated three times.
  • Table 5 shows the results of the respective weights of the spider silk protein and nylon fabric (before treatment) and the respective weights and yields after the treatment.
  • Example 6 The same experiment as in Example 5 was performed by replacing the non-colored nylon fabric in Example 5 with a nylon fabric dyed red. The results are shown in Table 5.
  • Example 7 The same experiment as in Example 5 was performed by replacing the non-colored nylon fabric in Example 5 with a PET fabric dyed blue. The results are shown in Table 5.
  • Example 8 The same experiment as in Example 5 was performed by replacing the uncolored nylon fabric in Example 5 with an uncolored PET fabric. The results are shown in Table 5.
  • Example 9 The same experiment as in Example 5 was performed by replacing the solvent in Example 5 with water and further changing the set temperature of the hot stirrer to 110 ° C. The content reaches approximately 110 ° C. in about 10 minutes from the start of stirring, and at the same time, the internal pressure is calculated to be 0.15 MPa due to the vapor pressure of the solvent. Moreover, after removing a container from a hot stirrer after stirring, it left still at room temperature until the container fell to 90 degreeC which is below the boiling point of a solvent. Table 6 shows the results of the respective weights in the mixture of spider silk protein and nylon fabric, and the respective weights and yields after the above treatment.
  • Example 10 The same experiment as in Example 9 was performed by replacing the non-colored nylon fabric in Example 9 with a nylon fabric dyed red. The results are shown in Table 6.
  • Example 11 The same experiment as in Example 9 was performed by replacing the non-colored nylon fabric in Example 9 with a PET fabric dyed blue. The results are shown in Table 6.
  • Example 12 The same experiment as in Example 9 was performed by replacing the non-colored nylon fabric in Example 9 with a non-colored PET fabric. The results are shown in Table 6.
  • spider silk protein can be recovered even when water is used as the polar solvent and nylon or PET is used as the other material. Moreover, it was shown that spider silk protein is recovered even when other materials stained in red or blue are used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Polymers & Plastics (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Insects & Arthropods (AREA)
  • Analytical Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Toxicology (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本発明は、目的とするタンパク質と、前記目的とするタンパク質とは異なる材料と、を含む混合物から前記目的とするタンパク質を回収する方法であって、前記混合物と極性溶媒とを含む溶解用溶液に、加熱しながら圧力を印加することによって前記目的とするタンパク質又は前記材料の一方を溶解する溶解工程、及び得られた溶解液を分離する分離工程を備える、タンパク質の回収方法に関する。

Description

タンパク質の回収方法
 本発明は、タンパク質の回収方法に関する。
 廃棄物から材料をリサイクル(回収)する方法は環境保全の点から、非常に有用である。このような背景の下、廃棄物から、特定の材料をリサイクルする方法に関しては、様々な開発が進められている。
 例えば、特許文献1には、ポリエチレンテレフタレート廃棄物のケミカルリサイクル方法が開示されている。
特許第3715812号公報
 ここで、強度等の点で優れる構造タンパク質は、石油由来の材料の代替物質として有用な材料である。しかしながら、廃棄物からのリサイクルは、石油由来の材料に関するものが主流であり、構造タンパク質等のタンパク質を含む廃棄物から、目的とするタンパク質を回収することができる方法は知られていなかった。
 そこで、本発明は、目的とするタンパク質と目的とするタンパク質とは異なる材料とを含む混合物から目的とするタンパク質を回収することができる方法を提供することを目的とする。
 本発明は、目的とするタンパク質と、上記目的とするタンパク質とは異なる材料と、を含む混合物から上記目的とするタンパク質を回収する方法であって、上記混合物と極性溶媒とを含む溶解用溶液に、加熱しながら圧力を印加することによって上記目的とするタンパク質又は上記材料の一方を溶解する溶解工程、及び得られた溶解液を分離する分離工程を備える、タンパク質の回収方法を提供する。
 本発明によれば、上記混合物と極性溶媒とを含む溶解用溶液に、加熱しながら圧力を印加することによって上記目的とするタンパク質又は上記材料の一方が溶解するため、例えば、固液分離により、上記混合物から目的とするタンパク質を回収することができる。
 上記溶解工程は、上記目的とするタンパク質を溶解する工程であることが好ましい。これにより、より一層高純度に目的とするタンパク質の回収が可能となる。
 上記目的とするタンパク質は、絹フィブロイン、クモ糸フィブロイン及びホーネットシルクフィブロインからなる群より選択される1種以上のタンパク質であってもよい。
 上記極性溶媒は、水、アルコール、ジメチルスルホキシド、ジメチルホルムアミド及びヘキサフルオロアセトンからなる群より選択される1種以上の溶媒を含むことが好ましい。これにより、上記混合物からの目的とするタンパク質の回収がより一層容易になる。
 上記材料は、ポリエステル、ナイロン、コットン及びウールからなる群より選択される1種以上の材料を含むものであってもよい。
 本発明によれば、目的とするタンパク質と目的とするタンパク質とは異なる材料とを含む混合物から目的とするタンパク質を回収することができる。
実施例1におけるGPCの分析結果を示すグラフである。 実施例5におけるGPCの分析結果を示すグラフである。
 以下、本発明のいくつかの実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。
 本実施形態に係る方法は、目的とするタンパク質と、上記目的とするタンパク質とは異なる材料と、を含む混合物から上記目的とするタンパク質を回収する方法であって、上記混合物と極性溶媒とを含む溶解用溶液に、加熱しながら圧力を印加することによって上記目的とするタンパク質又は上記材料の一方を溶解する溶解工程、及び得られた溶解液を分離する分離工程を備える。
 上記混合物と極性溶媒とを含む溶解用溶液に、加熱しながら圧力を印加することによって目的とするタンパク質又は目的とするタンパク質とは異なる材料のうち一方の極性溶媒への溶解性を向上させることが可能である。これにより、上記混合物から、目的とするタンパク質を回収することが可能となる。
 上記溶解工程は、上記目的とするタンパク質を溶解する工程であることが好ましい。目的とするタンパク質を上記溶解用溶液に溶解させることで、より高純度に目的とするタンパク質を回収することが可能となる。
 上記溶解工程が、上記目的とするタンパク質を溶解する工程である場合、目的とするタンパク質の全量が溶解している必要は必ずしもなく、タンパク質の一部が溶解していればよい。
 溶解用溶液に含まれる極性溶媒は、例えば、水、アルコール、ジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF)及びヘキサフルオロアセトン(HFA)からなる群より選択される1種以上の溶媒を含んでいてもよい。より効率よく目的とするタンパク質を回収する観点からは、極性溶媒は水単独、又はアルコールと水との混合溶媒であることができる。環境に対する悪影響を低減する観点からは、極性溶媒は水であることができる。より温和な条件で目的とするタンパク質を得る観点からは、極性溶媒がアルコールを含んでいてもよい。例えば、極性溶媒が水とアルコールとの混合溶媒、ジメチルスルホキシドとアルコールとの混合溶媒、又は、水、アルコール及びジメチルスルホキシドの混合溶媒であってもよい。極性溶媒(又は混合溶媒)の全量に対するアルコールの割合は、5~100質量%、又は10~50質量%であってもよい。アルコールを含む極性溶媒を用いると、より低圧で目的とするタンパク質を極性溶媒に溶解させることができる傾向がある。
 本明細書において「アルコール」は、置換基を有していてもよい脂肪族基及び該脂肪族基に結合した水酸基からなる化合物を意味する。脂肪族基は、例えばフッ素原子等のハロゲン原子で置換されていてもよいし、無置換であってもよい。フッ素原子で置換された脂肪族基を有するフルオロアルコールの例としては、ヘキサフルオロイソプロパノール(HFIP)がある。
 低い沸点を有するアルコールは、アルコール溶液の調製及びその濃縮、成形体の形成等の条件を温和なものとできる点で、特に有利である。係る観点から、アルコールの沸点は、例えば1気圧下で99℃以下、50℃以上であってもよい。アルコールの沸点は、1気圧下で60℃以上であってもよい。また、一般に、1個の水酸基を有するアルコールは、2個以上の水酸基を有するアルコールよりも低い沸点を有する傾向がある。
 アルコールの炭素数(脂肪族基の炭素数)は、特に制限されないが、1~10であってもよい。特に温和な条件で目的とするタンパク質を回収し得る観点からは、アルコールの炭素数は2~8又は2~5であってもよい。極性溶媒に含まれるアルコールは、例えば、メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、ノナノール、デカノール、及びこれらのアルコールの異性体からなる群より選択される1種以上の炭素数1~10のアルコールであってもよく、エタノール、プロパノール、ブタノール、及びこれらのアルコールの異性体からなる群より選択される1種以上の炭素数2~5のアルコールであってもよく、エタノール、1-プロパノール及び2-プロパノールからなる群より選択される1種以上のアルコールであってもよい。
 目的とするタンパク質は、構造タンパク質であってもよい。構造タンパク質とは、生体内で構造、形態等を形成又は保持するタンパク質を意味する。構造タンパク質には、疎水性タンパク質及び極性溶媒中で自己凝集を起こしやすい傾向にあるポリペプチドが含まれる。これらの構造タンパク質は、一般に極性溶媒への溶解性が低いため、これらの構造タンパク質を回収するために、本実施形態の方法が特に有用である。
 目的とするタンパク質は、フィブロインであってもよい。フィブロインは、例えば、絹フィブロイン、クモ糸フィブロイン、及びホーネットシルクフィブロインからなる群より選択される1種以上であってもよい。目的とするタンパク質は、絹フィブロイン、クモ糸フィブロイン又はこれらの組み合わせであってもよい。絹フィブロインとクモ糸フィブロインとを併用する場合、絹フィブロインの割合は、例えば、クモ糸フィブロイン100質量部に対して、40質量部以下、30質量部以下、又は10質量部以下であってもよい。
 絹は、カイコガ(Bombyxmori)の幼虫である蚕の作る繭から得られる繊維である。一般に、1本の繭糸は、2本の絹フィブロインと、これらを外側から覆うニカワ質(セリシン)とから構成される。絹フィブロインは多数のフィブリルで構成される。絹フィブロインは4層のセリシンで覆われる。実用的には、精錬により外側のセリシンを溶解して取り除いて得られる絹フィラメントが、衣料用途に使用されている。一般的な絹は、1.33の比重、平均3.3decitexの繊度、及び1300~1500m程度の繊維長を有する。絹フィブロインは、天然若しくは家蚕の繭、又は中古若しくは廃棄のシルク生地を原料として得られる。
 絹フィブロインは、セリシン除去絹フィブロイン、セリシン未除去絹フィブロイン、又はこれらの組み合わせであってもよい。セリシン除去絹フィブロインは、絹フィブロインを覆うセリシン、及びその他の脂肪分などを除去して精製した絹フィブロインを、凍結乾燥して得られる粉末である。セリシン未除去絹フィブロインは、セリシンなどが除去されていない未精製のフィブロインである。
 クモ糸フィブロインは、天然クモ糸タンパク質、及び、天然クモ糸タンパク質に由来するポリペプチドからなる群より選ばれるクモ糸ポリペプチドを含有していてもよい。
 天然クモ糸タンパク質としては、例えば、大吐糸管しおり糸タンパク質、横糸タンパク質、及び小瓶状腺タンパク質が挙げられる。大吐糸管しおり糸は、結晶領域と無定形領域からなる繰り返し領域を持つため、高い応力と伸縮性を併せ持つと推測される。クモ糸の横糸は結晶領域を持たず、無定形領域からなる繰り返し領域を持つことが大きな特徴である。一方、横糸は、大吐糸管しおり糸に比べると応力は劣るが、高い伸縮性を持つ。これは横糸の大部分が無定形領域によって構成されているためだと考えられている。
 大吐糸管しおり糸タンパク質はクモの大瓶状腺で産生され、強靭性に優れるという特徴を有する。大吐糸管しおり糸タンパク質としては、例えば、アメリカジョロウグモ(Nephilaclavipes)に由来する大瓶状腺スピドロインMaSp1及びMaSp2、並びに二ワオニグモ(Araneus diadematus)に由来するADF3及びADF4が挙げられる。ADF3は、ニワオニグモの2つの主要なしおり糸タンパク質の一つである。天然クモ糸タンパク質に由来するポリペプチドは、これらのしおり糸タンパク質に由来するポリペプチドであってもよい。ADF3に由来するポリペプチドは、比較的合成し易く、また、強伸度及びタフネスの点で優れた特性を有する。
 横糸タンパク質は、クモの鞭毛状腺(flagelliformgland)で産生される。横糸タンパク質としては、例えばアメリカジョロウグモ(Nephila clavipes)に由来する鞭毛状絹タンパク質(flagelliformsilk protein)が挙げられる。
 天然クモ糸タンパク質に由来するポリペプチドは、組換えクモ糸タンパク質であってもよい。組換えクモ糸タンパク質としては、天然型クモ糸タンパク質の変異体、類似体又は誘導体等が挙げられる。このようなポリペプチドの好適な一例は、大吐糸管しおり糸タンパク質の組換えクモ糸タンパク質(「大吐糸管しおり糸タンパク質に由来するポリペプチド」ともいう)である。
 大吐糸管しおり糸タンパク質に由来するポリペプチドは、式1:REP1-REP2(1)で示されるアミノ酸配列の単位(モチーフともいう。)を2以上、5以上、又は10以上含んでいてもよい。式1:REP1-REP2(1)で示されるアミノ酸配列の単位の数の上限は特に限定されないが、例えば300以下、又は200以下であってもよい。あるいは、大吐糸管しおり糸タンパク質に由来するポリペプチドは、式1:REP1-REP2(1)で示されるアミノ酸配列の単位を含み、かつC末端配列が配列番号1~3のいずれかに示されるアミノ酸配列又は配列番号1~3のいずれかに示されるアミノ酸配列と90%以上の相同性を有するアミノ酸配列であるポリペプチドであってもよい。大吐糸管しおり糸タンパク質に由来するポリペプチドにおいて、式1:REP1-REP2(1)で示されるアミノ酸配列の単位は、同一であってもよく、異なっていてもよい。
 式1において、REP1モチーフ中の全アミノ酸残基数に対するアラニン残基数の割合は、通常83%以上であり、86%以上、90%以上又は95%以上であってもよい。REP1は、アラニン残基数の比率が100%であるポリアラニンであってもよい。REP1において連続して並んでいるアラニン(Ala)は、2残基以上、3残基以上、4残基以上、又は5残基以上であってもよい。REP1において、連続して並んでいるアラニンは、20残基以下、16残基以下、12残基以下、又は10残基以下であってもよい。REP1モチーフは、アラニン(Ala)の他、セリン(Ser)、グリシン(Gly)、及びグルタミン(Gln)等から選ばれる他のアミノ酸残基を含んでいてもよい。
 式1において、REP2は、10~200残基のアミノ酸からなるアミノ酸配列であり、アミノ酸配列中に含まれるグリシン(Gly)、セリン(Ser)、グルタミン(Gln)及びアラニン(Ala)の合計残基数がアミノ酸残基数全体に対して40%以上、60%以上、又は70%以上であってもよい。
 大吐糸管しおり糸において、REP1は、繊維内で結晶βシートを形成する結晶領域に該当し、REP2は、繊維内でより柔軟性があり大部分が規則正しい構造を欠いている無定型領域に該当する。[REP1-REP2]は、結晶領域と無定型領域とからなる繰り返し領域(反復配列)に該当し、しおり糸タンパク質の特徴的配列である。
 配列番号1に示されるアミノ酸配列は、ADF3のアミノ酸配列(NCBIアクセッション番号:AAC47010、GI:1263287)のC末端の50残基のアミノ酸からなるアミノ酸配列と同一である。配列番号2に示されるアミノ酸配列は、配列番号1に示されるアミノ酸配列のC末端から20残基取り除いたアミノ酸配列と同一である。配列番号3に示されるアミノ酸配列は、配列番号1に示されるアミノ酸配列のC末端から29残基取り除いたアミノ酸配列と同一である。
 式1:REP1-REP2(1)で示されるアミノ酸配列の単位を2以上含むポリペプチドは、例えば、配列番号5に示されるアミノ酸配列からなるポリペプチドであることができる。配列番号5に示されるアミノ酸配列からなるポリペプチドは、N末端に開始コドン、His10タグ及びHRV3Cプロテアーゼ(Humanrhinovirus 3Cプロテアーゼ)認識サイトからなるアミノ酸配列(配列番号4)を付加したADF3のアミノ酸配列(NCBIアクセッション番号:AAC47010、GI:1263287)において、翻訳が第543番目アミノ酸残基で終止するように変異させたものである。
 式1:REP1-REP2(1)で示されるアミノ酸配列の単位を2以上含むポリペプチドは、配列番号5に示されるアミノ酸配列において1又は複数個のアミノ酸が置換、欠失、挿入及び/又は付加されたアミノ酸配列からなり、結晶領域と無定型領域とからなる繰り返し領域を有するタンパク質であることができる。本明細書において、「1又は複数個」とは、例えば、1~40個、1~35個、1~30個、1~25個、1~20個、1~15個、1~10個、及び、1又は数個から選ばれる範囲を意味する。本明細書において、「1又は数個」は、1~9個、1~8個、1~7個、1~6個、1~5個、1~4個、1~3個、1~2個、又は1個を意味する。
 式1:REP1-REP2(1)で示されるアミノ酸配列の単位を2以上含むポリペプチドは、配列番号6に示されているアミノ酸配列を有するADF4由来の組換えタンパク質であってもよい。配列番号6に示されているアミノ酸配列は、NCBIデータベースから入手したADF4の部分的なアミノ酸配列(NCBIアクセッション番号:AAC47011、GI:1263289)のN末端に開始コドン、His10タグ及びHRV3Cプロテアーゼ(Humanrhinovirus 3Cプロテアーゼ)認識サイトからなるアミノ酸配列(配列番号4)を付加したものである。
 式1:REP1-REP2(1)で示されるアミノ酸配列の単位を2以上含むポリペプチドは、配列番号6に示されるアミノ酸配列において1又は複数個のアミノ酸が置換、欠失、挿入及び/又は付加されたアミノ酸配列からなり、結晶領域と無定型領域とからなる繰り返し領域を有するポリペプチドであることができる。
 式1:REP1-REP2(1)で示されるアミノ酸配列の単位を2以上含むポリペプチドは、配列番号7に示されているアミノ酸配列を有するMaSp2由来の組換えタンパク質であってもよい。配列番号7に示されているアミノ酸配列は、NCBIデータベースから入手したMaSp2の部分的な配列(NCBIアクセッション番号:AAT75313、GI:50363147)のN末端に開始コドン、His10タグ及びHRV3Cプロテアーゼ(Humanrhinovirus 3Cプロテアーゼ)認識サイトからなるアミノ酸配列(配列番号11)を付加したものである。
 式1:REP1-REP2(1)で示されるアミノ酸配列の単位を2以上含むポリペプチドは、配列番号7に示されるアミノ酸配列において1又は複数個のアミノ酸が置換、欠失、挿入及び/又は付加されたアミノ酸配列からなり、結晶領域と無定型領域とからなる繰り返し領域を有するポリペプチドであることができる。
 横糸タンパク質に由来するポリペプチドは、式2:REP3(2)で示されるアミノ酸配列の単位を10以上、20以上、又は30以上含んでいてもよい。式2:REP3(2)で示されるアミノ酸配列の単位の数の上限は特に限定されないが、例えば300以下、又は200以下であってもよい。
 式2において、REP3はGly-Pro-Gly-Gly-Xから構成されるアミノ酸配列を意味し、Xはアラニン(Ala)、セリン(Ser)、チロシン(Tyr)及びバリン(Val)からなる群から選ばれる一つのアミノ酸を意味する。
 式2:REP3(2)で示されるアミノ酸配列の単位を10以上含むポリペプチドは、例えば、配列番号8に示されているアミノ酸配列を有する鞭毛状絹タンパク質に由来の組換えタンパク質であることができる。配列番号8に示されているアミノ酸配列は、NCBIデータベースから入手したアメリカジョロウグモの鞭毛状絹タンパク質の部分的な配列(NCBIアクセッション番号:AAF36090、GI:7106224)のリピート部分及びモチーフに該当するN末端から1220残基目から1659残基目までのアミノ酸配列(PR1配列と記す。)と、NCBIデータベースから入手したアメリカジョロウグモの鞭毛状絹タンパク質の部分配列(NCBIアクセッション番号:AAC38847、GI:2833649)のC末端から816残基目から907残基目までのC末端アミノ酸配列を結合し、結合した配列のN末端に開始コドン、His10タグ及びHRV3Cプロテアーゼ認識サイトからなるアミノ酸配列(配列番号4)を付加したアミノ酸配列である。
 式2:REP3(2)で示されるアミノ酸配列の単位を10以上含むポリペプチドは、配列番号8に示されるアミノ酸配列において1又は複数個のアミノ酸が置換、欠失、挿入及び/又は付加されたアミノ酸配列からなり、無定形領域からなる繰り返し領域を有するポリペプチドであることができる。
 タンパク質又はポリペプチドの分子量は、大腸菌等の微生物を宿主とした組み換えタンパク質生産を行う場合の生産性の観点から、500kDa以下、300kDa以下、200kDa以下又は100kDa以下であってもよく、10kDa以上であってもよい。
 ホーネットシルクフィブロインは、蜂の幼虫が産生するタンパク質であり、天然ホーネットシルクタンパク質及び天然ホーネットシルクタンパク質に由来するポリペプチドからなる群より選ばれるポリペプチドを含有していてもよい。
 ポリペプチドは、例えば、ポリペプチドをコードする遺伝子を含有する発現ベクターで形質転換した宿主を用いて製造することができる。
 ポリペプチドをコードする遺伝子の製造方法は特に制限されない。例えば、天然型クモ糸タンパク質の場合、タンパク質をコードする遺伝子をクモ由来の細胞からポリメラーゼ連鎖反応(PCR)などで増幅しクローニングする方法、又は、化学的な合成によって、遺伝子を製造することができる。遺伝子の化学的な合成方法も特に制限されず、例えば、NCBIのウェブデータベースなどより入手した天然型クモ糸タンパク質のアミノ酸配列情報をもとに、AKTAoligopilot plus 10/100(GEヘルスケア・ジャパン株式会社)などで自動合成したオリゴヌクレオチドをPCRなどで連結する方法によって遺伝子を化学的に合成することができる。この際に、タンパク質の精製や確認を容易にするため、上記のアミノ酸配列のN末端に開始コドン及びHis10タグからなるアミノ酸配列を付加したアミノ酸配列からなるタンパク質、をコードする遺伝子を合成してもよい。
 発現ベクターとしては、DNA配列からタンパク質を発現し得るプラスミド、ファージ、ウイルスなどを用いることができる。プラスミド型発現ベクターとしては、宿主細胞内で目的の遺伝子が発現し、かつそれ自体が増幅することのできるものであればよく、特に限定されない。例えば、宿主として大腸菌Rosetta(DE3)を用いる場合は、pET22b(+)プラスミドベクター、pColdプラスミドベクターなどを用いることができる。中でも、タンパク質の生産性の観点から、pET22b(+)プラスミドベクターを用いることができる。宿主としては、例えば動物細胞、植物細胞、微生物などを用いることができる。
 絹糸フィブロイン及びクモ糸フィブロイン等の上述の目的とするタンパク質と、その他のタンパク質との組み合わせを、溶解用溶液及びこれから得られる溶解液が含んでいてもよい。その他のタンパク質としては、例えば、コラーゲン、大豆タンパク質、カゼイン、ケラチン及び乳清タンパク質が挙げられる。その他のタンパク質を目的とするタンパク質と併用することにより、目的とするタンパク質に由来する物性を適宜調整することができる。その他のタンパク質の割合は、例えば、目的とするタンパク質100質量部に対して、40質量部以下、30質量部以下、又は10質量部以下であってもよい。
 溶解用溶液における目的とするタンパク質の濃度は、極性溶媒の質量を基準として、15質量%以上、30質量%以上、40質量%以上又は50質量%以上であってもよい。目的とするタンパク質の回収効率の観点から、目的とするタンパク質の濃度は、極性溶媒の質量を基準として、70質量%以下、65質量%以下、又は60質量%以下であってもよい。
 目的とするタンパク質とは異なる材料は、無機材料であってもよく、有機材料であってもよい。無機材料としては、例えば、金属、炭素繊維、ガラス又はこれらの組み合わせ等が挙げられる。有機材料としては、例えば、ポリエステル、ナイロン、コットン、ウール、レーヨン等のセルロース系繊維、アラミド、PTFE(ポリテトラフルオロエチレン)、ポリウレタン、PLA(ポリ乳酸)を代表とするバイオポリエステルやバイオナイロン、バイオPETといったバイオプラスチック繊維又はこれらの組み合わせ等が挙げられる。ポリエステルとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリトリブチレンテレフタレート(PTT)等が挙げられる。また、ウールは主成分がケラチンである動物繊維であり、綿は主成分がセルロースである植物繊維であり、ナイロンは、ポリアミドの一種である疎水性繊維である。
 目的とするタンパク質とは異なる材料としては、ポリエステル、ナイロン、コットン及びウールからなる群より選択される1種以上の材料を含むものであってもよい。
 溶解用溶液は、1種又は2種以上の無機塩を更に含有してもよい。溶解用溶液に無機塩を加えることにより、加温及び加圧による溶解性向上の効果がより一層顕著なものとなり得る。無機塩は、例えば、以下に示すルイス酸とルイス塩基とからなる無機塩が挙げられる。ルイス塩基は、例えば、オキソ酸イオン(硝酸イオン、過塩素酸イオン等)、金属オキソ酸イオン(過マンガン酸イオン等)、ハロゲン化物イオン、チオシアン酸イオン、シアン酸イオンなどであってもよい。ルイス酸は、例えば、アルカリ金属イオン、アルカリ土類金属イオン等の金属イオン、アンモニウムイオン等の多原子イオン、錯イオンなどであってもよい。無機塩の具体例としては、塩化リチウム、臭化リチウム、ヨウ化リチウム、硝酸リチウム、過塩素酸リチウム、及びチオシアン酸リチウムのようなリチウム塩、塩化カルシウム、臭化カルシウム、ヨウ化カルシウム、硝酸カルシウム、過塩素酸カルシウム、及びチオシアン酸カルシウムのようなカルシウム塩、塩化鉄、臭化鉄、ヨウ化鉄、硝酸鉄、過塩素酸鉄、及びチオシアン酸鉄のような鉄塩、並びに、塩化アルミニウム、臭化アルミニウム、ヨウ化アルミニウム、硝酸アルミニウム、過塩素酸アルミニウム、及びチオシアン酸アルミニウムのようなアルミニウム塩、塩化カリウム、臭化カリウム、ヨウ化カリウム、硝酸カリウム、過塩素酸カリウム、及びチオシアン酸カリウムのようなカリウム塩、塩化ナトリウム、臭化ナトリウム、ヨウ化ナトリウム、硝酸ナトリウム、過塩素酸ナトリウム、及びチオシアン酸ナトリウムのようなナトリウム塩、塩化亜鉛、臭化亜鉛、ヨウ化亜鉛、硝酸亜鉛、過塩素酸亜鉛、及びチオシアン酸亜鉛のような亜鉛塩、塩化マグネシウム、臭化マグネシウム、ヨウ化マグネシウム、硝酸マグネシウム、過塩素酸マグネシウム、及びチオシアン酸マグネシウムのようなマグネシウム塩、塩化バリウム、臭化バリウム、ヨウ化バリウム、硝酸バリウム、過塩素酸バリウム、及びチオシアン酸バリウムのようなバリウム塩、塩化ストリンチウム、臭化ストリンチウム、ヨウ化ストリンチウム、硝酸ストリンチウム、過塩素酸ストリンチウム、及びチオシアン酸ストリンチウムのようなストリンチウム塩などが挙げられる。無機塩の濃度は、目的とするタンパク質の全量を基準として、1.0質量%以上、5.0質量%以上、9.0質量%以上、15.0質量%以上又は20.0質量%以上であることができる。無機塩の濃度はまた、目的とするタンパク質の全量を基準として、30質量%以下、25質量%以下又は20質量%以下であってもよい。
 溶解用溶液は、必要に応じて、各種の添加剤を含有することができる。添加剤としては、例えば、可塑剤、結晶核剤、酸化防止剤、紫外線吸収剤、着色剤、架橋剤、重合禁止剤、フィラー及び合成樹脂が挙げられる。添加剤の濃度は、目的とするタンパク質の全量を基準として、50質量%以下であってもよい。
 溶解用溶液に対して加熱しながら所定の圧力を印加することによって上記目的とするタンパク質又は上記材料の一方を溶解することができる。ここで、溶解用溶液に圧力を印加することにより、比較的低温であっても、上記目的とするタンパク質又は上記材料の一方を溶解させることが可能である。そのため、目的とするタンパク質の変質、ゲル化、分解の誘発をさせることを抑制しつつ、目的とするタンパク質を回収することができる。さらに、溶解工程で目的とするタンパク質が溶解する場合、透析等を用いた濃縮工程を必ずしも必要としないことから、生産効率良く、タンパク質溶液を得ることも可能である。
 溶解用溶液に印加される圧力は、溶解用溶液に印加される圧力は、目的とするタンパク質及び極性溶媒の種類、所望の濃度等に応じて、目的とするタンパク質を回収することができるように調整される。溶解用溶液に印加される圧力が高いと、より溶解性が高まる傾向にある。溶解用溶液に印加される圧力は0.05MPa以上、0.06MPa以上、0.07MPa以上、0.08MPa以上、0.1MPa以上、1.0MPa以上、5.0MPa以上、又は10MPa以上であることができる。溶解用溶液に印加される圧力は、300MPa以下、150MPa以下、50MPa以下、又は30MPa以下であることができる。
 溶解用溶液に圧力を印加する方法は、特に制限されないが、例えば、耐圧容器内において、溶媒を加熱し、溶媒の蒸気圧により圧力を印加する方法、窒素、アルゴン等の不活性ガス、又は空気を封入して耐圧容器内の圧力を調整することにより、圧力を印加する方法等を適用するものであってもよい。
 溶解用溶液を加熱しながら溶解用溶液に圧力を印加してもよい。加熱は、圧力を印加している間に限られず、例えば、溶解用溶液を所定の温度に加熱してから溶解用溶液に圧力を印加してもよい。タンパク質の分解をより抑制する観点から、加熱温度は、150℃以下、140℃以下、135℃以下、又は130℃以下であってもよい。極性溶媒が水の場合、水が介在するタンパク質の分解をより抑制する観点から、加熱温度が140℃以下であることが望ましい。より溶解性向上の観点から、加熱温度は、70℃以上、90℃以上、又は100℃以上であってもよい。これら上限及び下限を任意に組み合わせることができる。例えば、加熱温度が70℃以上150℃以下、90℃以上140℃以下、又は100℃以上130℃以下であってもよい。また、例えば、極性溶媒が水及びアルコールの混合溶媒である場合の加熱温度は、タンパク質の分解をより抑制する観点から、150℃以下、140℃以下、135℃以下、又は130℃以下であってもよく、溶解性向上の点から、70℃以上、80℃以上、又は90℃以上であってもよい。これら上限及び下限を任意に組み合わせることができる。例えば、極性溶媒が水及びアルコールの混合溶媒である場合の加熱温度は70℃以上150℃以下、80℃以上140℃以下、又は90℃以上130℃以下であってもよい。加熱温度は、一定の温度であってもよいし、変動してもよい。
 溶解用溶液を攪拌しながら溶解用溶液に圧力を印加してもよい。攪拌は、圧力を印加している間に限られず、圧力を印加する前後に溶解用溶液を攪拌してもよい。攪拌の方法は特に制限されるものではない。例えば、傾斜翼、タービン翼等により溶解用溶液を攪拌することができる。
 加圧後に得られた溶解液は、加圧用のガスを含んでいることがある。そのため、一実施形態に係るタンパク質の回収方法は、溶解液からガスを除去することを更に含んでいてもよい。ガスを除去する方法は特に制限されないが、例えば、遠心分離器による方法が挙げられる。溶解液を遠心分離器にかけることにより、ガスが比較的多量に含まれる層を除去することが可能である。
 本実施形態に係るタンパク質の回収方法は、溶解工程で得られた溶解液を分離する分離工程を備える。
 上記分離工程は、常法の固液分離処理によって行うものであってよく、例えば、濾過により溶解液と、不溶解物とを分離するものであってよい。
 溶解工程が、目的とするタンパク質を溶解する工程である場合、溶解液に溶解している目的とするタンパク質の濃度は、溶解液の質量を基準として、1質量%以上、5質量%以上、10質量%以上、15質量%以上、20質量%以上又は30質量%以上であってもよく、50質量%以下、45質量%以下、又は40質量%以下であってもよい。
 本実施形態に係るタンパク質の回収方法は、水、アルコール、ジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF)、ヘキサフルオロアセトン(HFA)及びヘキサフルオロ-2-プロパノール(HFIP)等の極性溶媒により、不溶解物を洗浄する工程を含むものであってもよい。アルコールとしては、上述のアルコールを用いることができる。
 本実施形態に係るタンパク質の回収方法において、溶解工程が、目的とするタンパク質を溶解する工程である場合、例えば、溶解液から極性溶媒を除去する方法、再沈殿等の通常の方法を適用することにより、溶解液から目的とするタンパク質を回収することができる。この場合、目的とするタンパク質を含む溶解液から、粉末状等の任意の形態のタンパク質を回収してもよいし、成形体の製造に直接用いてもよい。
 溶解工程が目的とするタンパク質を溶解する工程である場合、目的とするタンパク質を含む溶解液は、例えば、各種の方法でタンパク質の成形体を製造するために用いることができる。例えば、目的とするタンパク質を含む溶解液から極性溶媒を除去することによりタンパク質を含有する成形体を得るものであってもよい。特に、クモ糸フィブロインを含有する溶解液は、クモ糸フィブロインの特性を生かした優れた物性を有する成形体を製造するために用いることができる。
 溶解工程が、目的とするタンパク質を溶解する工程である場合、例えば溶解液をドープ溶液として用いて、ゲル、フィルム、ファイバー等の成形体を製造することができる。フィルムは、例えば、溶解液(ドープ溶液)の膜を形成し、形成された膜から極性溶媒を除去する方法により製造できる。ファイバーは、例えば、溶解液を紡糸し、紡糸された溶解液から極性溶媒を除去する方法により製造できる。
 タンパク質の回収方法において、回収されたタンパク質が目的とするタンパク質であるかどうかは、例えば、ゲル浸透クロマトグラフィー(GPC)、赤外分光法(IR)、ポリアクリルアミドゲル電気泳動(SDS‐PAGE)、質量分析法(MS)、核磁気共鳴(NMR)により確認することができる。
 以下、実施例を挙げて本発明を更に詳しく説明する。ただし、本発明はこれらの実施例に制限されるものではない。
〔クモ糸タンパク質の調製〕
(1)改変フィブロインをコードする核酸の合成、及び発現ベクターの構築
 天然由来のクモ糸フィブロインであるNephilaclavipes(GenBankアクセッション番号:P46804.1、GI:1174415)の塩基配列及びアミノ酸配列に基づき、配列番号9及び10でそれぞれ示されるアミノ酸配列を有する改変フィブロインを設計した。配列番号9で示されるアミノ酸配列は、上記天然由来のフィブロインから出発して、その(A)nモチーフ中のアラニン残基が連続するアミノ酸配列をアラニン残基が連続する数が5つになるよう欠失させ、N末端側からC末端側に向かって2つおきに(A)nモチーフ((A)5)を欠失させ、C末端配列の手前に[(A)nモチーフ-REP]を1つ挿入し、REP中の全てのGGXをGQXに置換したものである。配列番号10で示されるアミノ酸配列はこの配列番号9で示されるアミノ酸配列のN末端に配列番号11で示されるアミノ酸配列(タグ配列及びヒンジ配列)を付加したものである。
 配列番号9で示されるアミノ酸配列のN末端にHisタグ配列及びヒンジ配列(配列番号11)を付加した配列番号10で示されるアミノ酸配列を有するタンパク質をコードする核酸を合成した。当該核酸には、5’末端にNdeIサイト、終止コドン下流にEcoRIサイトを付加した。当該核酸をクローニングベクター(pUC118)にクローニングした。その後、同核酸をNdeI及びEcoRIで制限酵素処理して切り出した後、タンパク質発現ベクターpET-22b(+)に組換えて発現ベクターを得た。
(2)タンパク質の発現
 配列番号10で示されるアミノ酸配列を有するタンパク質をコードする核酸を含むpET22b(+)発現ベクターで、大腸菌BLR(DE3)を形質転換した。当該形質転換大腸菌を、アンピシリンを含む2mLのLB培地で15時間培養した。同培養液をアンピシリンを含む100mLのシード培養用培地(表1)にOD600が0.005となるように添加して、形質転換大腸菌を植菌した。培養液温度を30℃に保ち、OD600が5になるまでフラスコ培養を行い(約15時間)、シード培養液を得た。
Figure JPOXMLDOC01-appb-T000001
 当該シード培養液を500mlの生産培地(表2)を添加したジャーファーメンターにOD600が0.05となるように添加して形質転換大腸菌を植菌した。培養液温度を37℃に保ち、pH6.9で一定に制御して培養した。また培養液中の溶存酸素濃度を、溶存酸素飽和濃度の20%に維持するようにした。
Figure JPOXMLDOC01-appb-T000002
 生産培地中のグルコースが完全に消費された直後に、フィード液(グルコース455g/1L、YeastExtract 120g/1L)を1ml/分の速度で添加した。培養液温度を37℃に保ち、pH6.9で一定に制御して培養した。また培養液中の溶存酸素濃度を、溶存酸素飽和濃度の20%に維持するようにし、20時間培養を行った。その後、1Mのイソプロピル-β-チオガラクトピラノシド(IPTG)を培養液に対して終濃度1mMになるよう添加し、目的のタンパク質を発現誘導させた。IPTG添加後20時間経過した時点で、培養液を遠心分離し、菌体を回収した。IPTG添加前とIPTG添加後の培養液から調製した菌体を用いてSDS-PAGEを行い、IPTG添加に依存した目的とするタンパク質サイズのバンドの出現により、目的とするタンパク質の発現を確認した。
(3)タンパク質の精製
 IPTGを添加してから2時間後に回収した菌体を20mMTris-HCl buffer(pH7.4)で洗浄した。洗浄後の菌体を約1mMのPMSFを含む20mMTris-HCl緩衝液(pH7.4)に懸濁させ、高圧ホモジナイザー(GEANiro Soavi社)で細胞を破砕した。破砕した細胞を遠心分離し、沈殿物を得た。得られた沈殿物を、高純度になるまで20mMTris-HCl緩衝液(pH7.4)で洗浄した。洗浄後の沈殿物を100mg/mLの濃度になるように8Mグアニジン緩衝液(8Mグアニジン塩酸塩、10mMリン酸二水素ナトリウム、20mMNaCl、1mMTris-HCl、pH7.0)で懸濁し、60℃で30分間、スターラーで撹拌し、溶解させた。溶解後、透析チューブ(三光純薬株式会社製のセルロースチューブ36/32)を用いて水で透析を行った。透析後に得られた白色の凝集タンパク質を遠心分離により回収し、凍結乾燥機で水分を除き、凍結乾燥粉末を回収した。
 得られた凍結乾燥粉末における目的タンパク質の精製度は、粉末のポリアクリルアミドゲル電気泳動の結果をTotallab(nonlineardynamicsltd.)を用いて画像解析することにより確認した。その結果、タンパク質の精製度は約85%であった。
〔クモ糸タンパク質の回収〕
(実施例1)
 上記で得られたクモ糸タンパク質(人工クモ糸繊維、以下、「SSP」とも称する。)と、クモ糸タンパク質とは異なる材料(以下、「他材料」とも称する。)であるウール繊維とを交編した(混ぜて編んだ)ニットを約2cm四方にカットし約1.79g用意した。クモ糸タンパク質及びウール繊維のそれぞれの重量は計算上0.41g及び1.38gであった。上記ニットと、極性溶媒である水及びクリンソルブP-7(エタノール85.5±1.0%、イソプロパノール5.0%未満、ノルマルプロパノール9.6±0.5%、及び水分0.2%以下を含有する混合溶媒、「クリンソルブ」は日本アルコール販売株式会社の登録商標である。)の混合溶媒(水:クリンソルブP-7=7:3)6.78g(水 4.75g、クリンソルブP-7 2.03g)と、を撹拌子とともに容器に投入し、密閉した。
 この容器をホットスターラー(東京理化器械株式会社製、RCH-20L)にセットし、ヒーター温度90℃にセット、300rpmで撹拌した。最初の10分で内容物がほぼ90℃に達し、同時に溶媒の蒸気圧により内部圧力が計算上0.08MPaに達した。ここからさらに20分間撹拌を継続した。その後容器をホットスターラーから外し、溶媒の沸点以下である70℃に下がるまで室温下に静置した。
 容器の蓋を取り外して、撹拌子を取り出した上で、容器の内容物をフィルターを用いて溶解液と不溶解物とに分離した。さらに不溶解物を容器内で水洗し、同様のフィルターを用いて溶解液と不溶解物に分離し、この操作を3回繰り返した。
 フィルターを通った溶液は全て同じ容器に移し不溶解物とは別にした。得られた溶解液及び不溶解物は、それぞれ恒温器(エスペック株式会社製、PVH-212M)を用いて80℃で12時間乾燥させた。
 乾燥後、溶解液及び不溶解物から得られたそれぞれの固形物の重量を測定した。クモ糸タンパク質とウール繊維の、上記交編したニット(処理前)におけるそれぞれの重量と上記処理後におけるそれぞれの重量及び収率の結果を表3に示す。
 また、図1に処理前後のクモ糸タンパク質のGPC測定結果を示す。その結果、処理前後のクモ糸タンパク質のGPC測定結果はほぼ同じであるため、クモ糸タンパク質がほぼそのまま回収できていると判断した。なお、処理後のグラフでは高分子量側(図1のグラフの左側)に物質の存在が見られるが、クモ糸タンパク質がエタノールによって凝集したためと考えられる。
 なお、GPCによる測定は、GPC(島津製作所社製、商品名:2C-20AD)、カラムLF-404(昭和電工社製)、Shodex検出器(昭和電工社製、商品名:RI-504)を用いた。
(実施例2)
 実施例1におけるウール繊維を綿(コットン)繊維に替え、実施例1と同様の実験を行った。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に記載のとおり、極性溶媒として、水及びアルコールの混合溶媒を用いた場合、SSP及び他材料の混合物を含む極性溶媒に加熱しながら圧力を印加することにより、SSPが回収されることが示された。また、処理後の他材料の重量が加工前よりも大きくなっているが、クモ糸タンパク質の一部が付着したまま残ったものが原因と考えられる。
(実施例3)
 実施例1における極性溶媒を水に替え、さらにホットスターラーの設定温度を110℃に替えて実施例1と同様の実験を行った。なお、撹拌開始から約10分で内容物がほぼ110℃に達し、同時に溶媒の蒸気圧により内部圧力が計算上0.15MPaとなる。また、撹拌後に容器をホットスターラーから外した後は、容器が溶媒の沸点以下である90℃に下がるまで室温下に静置した。クモ糸タンパク質と綿繊維の、上記交編したニット(処理前)におけるそれぞれの重量と上記処理後におけるそれぞれの重量及び収率の結果を表4に示す。
(実施例4)
 実施例3におけるウールを綿に替え、実施例3と同様の実験を行った。その結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に記載のとおり、極性溶媒として、水を用いた場合であっても、SSPと、他材料(ウール又はコットン)と、を含む混合物から、SSPが回収されることが示された。
 以下、クモ糸タンパク質繊維と他繊維とを交編したニットではなく、簡易的にクモ糸タンパク質粉末と他繊維の織布とを用いた同様の実験について説明する。
(実施例5)
 平織された無着色のナイロン生地を約2cm四方にカットし約0.5g用意した。このナイロン生地と、クモ糸タンパク質粉末0.5gと、極性溶媒として水及びクリンソルブ(登録商標)P-7の混合溶媒(水:クリンソルブ=7:3)4.5g(水 3.15g、クリンソルブP-7 1.35g)と、を撹拌子とともに容器に投入し、密閉した。
 この容器をホットスターラー(東京理化器械株式会社製、RCH-20L)にセットし、ヒーター温度90℃にセット、300rpmで撹拌した。最初の10分で内容物がほぼ90℃に達し、同時に溶媒の蒸気圧により内部圧力が計算上0.08MPaに達した。ここからさらに20分間撹拌を継続した。その後容器をホットスターラーから外し、溶媒の沸点以下である70℃に下がるまで室温下に静置した。
 容器の蓋を取り外して、撹拌子を取り出した上で、容器の内容物をフィルターを用いて溶解液と不溶解物とに分離した。さらに不溶解物を容器内で水洗し、同様のフィルターを用いて溶解液と不溶解物に分離し、この操作を3回繰り返した。
 フィルターを通った溶解液は全て同じ容器に移し、不溶解物とは別にした。得られた溶解液及び不溶解物は、それぞれ恒温器(エスペック株式会社製、PVH-212M)を用いて80℃で12時間乾燥させた。
 乾燥後、溶解液及び不溶解物から得られたそれぞれの固形物の重量を測定した。クモ糸タンパク質とナイロン生地の混合物(処理前)におけるそれぞれの重量と上記処理後におけるそれぞれの重量及び収率の結果を表5に示す。
 また、図2に処理前後のクモ糸タンパク質のGPC測定結果を示す。その結果、処理前後のクモ糸タンパク質のGPC測定結果はほぼ同じであるため、クモ糸タンパク質がほぼそのまま回収できていると判断した。なお、GPC測定は、実施例1と同様の条件にて実施した。
(実施例6)
 実施例5における無着色のナイロン生地を赤色に染色されたナイロン生地に替え、実施例5と同様の実験を行った。その結果を表5に示す。
(実施例7)
 実施例5における無着色のナイロン生地を青色に染色されたPET生地に替え、実施例5と同様の実験を行った。その結果を表5に示す。
(実施例8)
 実施例5における無着色のナイロン生地を無着色のPET生地に替え、実施例5と同様の実験を行った。その結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5に記載のとおり、極性溶媒として水及びアルコールの混合溶媒を用いた場合、他材料がナイロン及びPETのいずれであっても、SSP及び他材料の混合物を含む極性溶媒に加熱しながら圧力を印加することにより、クモ糸タンパク質を回収することができることが示された。また、赤又は青に染色された他材料を用いた場合であっても、クモ糸タンパク質が回収されることが示された。
(実施例9)
 実施例5における溶媒を水に替え、さらにホットスターラーの設定温度を110℃に替えて実施例5と同様の実験を行った。なお、撹拌開始から約10分で内容物がほぼ110℃に達し、同時に溶媒の蒸気圧により内部圧力が計算上0.15MPaとなる。また、撹拌後に容器をホットスターラーから外した後は、容器が溶媒の沸点以下である90℃に下がるまで室温下に静置した。クモ糸タンパク質とナイロン生地の混合物におけるそれぞれの重量と上記処理後におけるそれぞれの重量及び収率の結果を表6に示す。
(実施例10)
 実施例9における無着色のナイロン生地を赤色に染色されたナイロン生地に替え、実施例9と同様の実験を行った。その結果を表6に示す。
(実施例11)
 実施例9における無着色のナイロン生地を青色に染色されたPET生地に替え、実施例9と同様の実験を行った。結果を表6に示す。
(実施例12)
 実施例9における無着色のナイロン生地を無着色のPET生地に替え、実施例9と同様の実験を行った。その結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 表6に記載のとおり、極性溶媒として水、他材料としてナイロン又はPETを用いた場合であっても、クモ糸タンパク質を回収することができることが示された。また、赤又は青に染色された他材料を用いた場合であっても、クモ糸タンパク質が回収されることが示された。

Claims (5)

  1.  目的とするタンパク質と、前記目的とするタンパク質とは異なる材料と、を含む混合物から前記目的とするタンパク質を回収する方法であって、
     前記混合物と極性溶媒とを含む溶解用溶液に、加熱しながら圧力を印加することによって前記目的とするタンパク質又は前記材料の一方を溶解する溶解工程、及び
     得られた溶解液を分離する分離工程を備える、
     タンパク質の回収方法。
  2.  前記溶解工程が、前記目的とするタンパク質を溶解する工程である、請求項1に記載のタンパク質の回収方法。
  3.  前記目的とするタンパク質が、絹フィブロイン、クモ糸フィブロイン、及びホーネットシルクフィブロインからなる群より選択される1種以上のタンパク質である、請求項1又は2に記載のタンパク質の回収方法。
  4.  前記極性溶媒が、水、アルコール、ジメチルスルホキシド、ジメチルホルムアミド及びヘキサフルオロアセトンからなる群より選択される1種以上の溶媒を含む、請求項1~3のいずれか一項に記載のタンパク質の回収方法。
  5.  前記材料が、ポリエステル、ナイロン、コットン及びウールからなる群より選択される1種以上の材料を含む、請求項1~4のいずれか一項に記載のタンパク質の回収方法。
PCT/JP2017/046394 2016-12-27 2017-12-25 タンパク質の回収方法 WO2018123953A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/473,836 US20190352330A1 (en) 2016-12-27 2017-12-25 Method for Recovering Protein
JP2018559448A JP7495707B2 (ja) 2016-12-27 2017-12-25 タンパク質の回収方法
EP17889372.3A EP3564254A4 (en) 2016-12-27 2017-12-25 PROTEIN RECOVERY PROCESS
CN201780080121.3A CN110099917A (zh) 2016-12-27 2017-12-25 蛋白质的回收方法
JP2022111330A JP7436065B2 (ja) 2016-12-27 2022-07-11 タンパク質の回収方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-254005 2016-12-27
JP2016254005 2016-12-27

Publications (1)

Publication Number Publication Date
WO2018123953A1 true WO2018123953A1 (ja) 2018-07-05

Family

ID=62707720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046394 WO2018123953A1 (ja) 2016-12-27 2017-12-25 タンパク質の回収方法

Country Status (5)

Country Link
US (1) US20190352330A1 (ja)
EP (1) EP3564254A4 (ja)
JP (2) JP7495707B2 (ja)
CN (1) CN110099917A (ja)
WO (1) WO2018123953A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110511428A (zh) * 2019-07-10 2019-11-29 广东省测试分析研究所(中国广州分析测试中心) 一种将废旧涤丝等含丝混纺织物分离回收的方法
CN114479172A (zh) * 2022-01-26 2022-05-13 太原理工大学 一种生态型毛混纺织物中毛发类组分快速溶解分离方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2020349480A1 (en) * 2019-09-16 2022-03-03 Bolt Threads, Inc. Methods for isolating spider silk proteins via high shear solubilization
CN115901898A (zh) 2021-08-25 2023-04-04 日本碍子株式会社 传感器元件及气体传感器

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000345472A (ja) * 1999-06-09 2000-12-12 Motoe Hashimoto 絹様繊維製品とその製造方法
JP2005281332A (ja) * 2004-03-26 2005-10-13 Nagasuna Boira Kogyo Kk 絹フィブロイン粉末の製造方法
JP3715812B2 (ja) 1998-12-10 2005-11-16 株式会社アイエス ポリエチレンテレフタレート廃棄物のケミカルリサイクル方法
JP2008506409A (ja) * 2004-07-22 2008-03-06 テヒニシェ ウニヴェルズィテート ミュンヘン 組換えスパイダーシルクタンパク質
WO2009119596A1 (ja) * 2008-03-26 2009-10-01 国立大学法人岐阜大学 タンパク質の分別方法、タンパク質の溶解方法、非動物性繊維の分別採取方法及び動物性繊維由来のタンパク質
JP2013512773A (ja) * 2009-12-08 2013-04-18 アーエムシルク ゲーエムベーハー シルクタンパク質コーティング
WO2013065651A1 (ja) * 2011-11-02 2013-05-10 スパイバー株式会社 タンパク質溶液及びこれを用いたタンパク質繊維の製造方法
JP2015532690A (ja) * 2012-09-06 2015-11-12 アーエムシルク ゲーエムベーハー 高靱性シルク繊維を作製する方法
WO2016163337A1 (ja) * 2015-04-09 2016-10-13 Spiber株式会社 極性溶媒溶液及びその製造方法
WO2017094722A1 (ja) * 2015-12-01 2017-06-08 Spiber株式会社 タンパク質溶液を製造する方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU502729B2 (en) * 1976-07-15 1979-08-09 Licencia Talalmanyokat Ertekesito Vallalat Isolation of protein from green vegetable matter
US4250197A (en) * 1976-10-25 1981-02-10 Vepex Fovallalkopasi Iroda Rt. Method for processing plant protein
JP4095704B2 (ja) * 1998-02-04 2008-06-04 出光興産株式会社 シルク含有樹脂組成物、シルク含有成形品及びシルク含有樹脂組成物の製造方法
CN101627025A (zh) * 2007-03-08 2010-01-13 大赛璐化学工业株式会社 酯或内酯的制备方法
JP6010894B2 (ja) * 2011-10-31 2016-10-19 セントラル硝子株式会社 洗浄乾燥剤およびそれを用いた基板の洗浄乾燥方法
JP2013241713A (ja) * 2012-05-22 2013-12-05 Shinshu Univ シルク複合ナノファイバー及びその製造方法
WO2014002605A1 (ja) * 2012-06-28 2014-01-03 スパイバー株式会社 原着タンパク質繊維及びその製造方法
CA2905090C (en) * 2013-03-15 2022-10-25 Trustees Of Tufts College Low molecular weight silk compositions and stabilizing silk compositions
JP6102708B2 (ja) * 2013-12-06 2017-03-29 豊田合成株式会社 糸状の抗菌性再生シルクの製造方法
CN107474102A (zh) * 2017-07-31 2017-12-15 华南理工大学 一种采用特制的萃取釜物料袋提取海藻蛋白的方法
CN108003219A (zh) * 2017-12-12 2018-05-08 安徽省寿县丰茂农产品开发有限公司 一种能够提高碎米蛋白提取率且对其进行糖基化改性的方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3715812B2 (ja) 1998-12-10 2005-11-16 株式会社アイエス ポリエチレンテレフタレート廃棄物のケミカルリサイクル方法
JP2000345472A (ja) * 1999-06-09 2000-12-12 Motoe Hashimoto 絹様繊維製品とその製造方法
JP2005281332A (ja) * 2004-03-26 2005-10-13 Nagasuna Boira Kogyo Kk 絹フィブロイン粉末の製造方法
JP2008506409A (ja) * 2004-07-22 2008-03-06 テヒニシェ ウニヴェルズィテート ミュンヘン 組換えスパイダーシルクタンパク質
WO2009119596A1 (ja) * 2008-03-26 2009-10-01 国立大学法人岐阜大学 タンパク質の分別方法、タンパク質の溶解方法、非動物性繊維の分別採取方法及び動物性繊維由来のタンパク質
JP2013512773A (ja) * 2009-12-08 2013-04-18 アーエムシルク ゲーエムベーハー シルクタンパク質コーティング
WO2013065651A1 (ja) * 2011-11-02 2013-05-10 スパイバー株式会社 タンパク質溶液及びこれを用いたタンパク質繊維の製造方法
JP2015532690A (ja) * 2012-09-06 2015-11-12 アーエムシルク ゲーエムベーハー 高靱性シルク繊維を作製する方法
WO2016163337A1 (ja) * 2015-04-09 2016-10-13 Spiber株式会社 極性溶媒溶液及びその製造方法
WO2017094722A1 (ja) * 2015-12-01 2017-06-08 Spiber株式会社 タンパク質溶液を製造する方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"GenBank", Database accession no. P46804.1
"NCBI", Database accession no. AAC38847

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110511428A (zh) * 2019-07-10 2019-11-29 广东省测试分析研究所(中国广州分析测试中心) 一种将废旧涤丝等含丝混纺织物分离回收的方法
CN114479172A (zh) * 2022-01-26 2022-05-13 太原理工大学 一种生态型毛混纺织物中毛发类组分快速溶解分离方法

Also Published As

Publication number Publication date
EP3564254A4 (en) 2020-10-21
US20190352330A1 (en) 2019-11-21
JP7436065B2 (ja) 2024-02-21
JPWO2018123953A1 (ja) 2019-10-31
JP2022125362A (ja) 2022-08-26
CN110099917A (zh) 2019-08-06
JP7495707B2 (ja) 2024-06-05
EP3564254A1 (en) 2019-11-06

Similar Documents

Publication Publication Date Title
JP7436065B2 (ja) タンパク質の回収方法
EP3385305A1 (en) Method for producing protein solution
EP2940032B1 (en) Extraction method for hydrophilic recombinant protein
JP6959482B2 (ja) 成形体及びその製造方法、並びに成形体のタフネスを向上させる方法
JP7088511B2 (ja) フィブロイン様タンパク質を含むコンポジット成形組成物及びその製造方法
JP5427322B2 (ja) ポリペプチドの溶液とこれを用いた人造ポリペプチド繊維の製造方法及びポリペプチドの精製方法
US11174572B2 (en) Composite molding composition including fibroin-like protein, and method for producing composite molding composition
EP2940033B1 (en) Partial purification method for hydrophilic recombinant protein
WO2011022771A1 (en) Processes for producing silk dope
JP6856828B2 (ja) 極性溶媒溶液及びその製造方法
WO2019151424A1 (ja) フィブロイン組成物、フィブロイン溶液、及びフィブロイン繊維の製造方法
WO2018164195A1 (ja) 精製されたタンパク質を製造する方法
WO2013120143A1 (en) Method of promoting the formation of cross-links between coiled coil silk proteins
JP7270978B2 (ja) ポリペプチド溶液、及びポリペプチド繊維の製造方法、並びに人造ポリペプチド
WO2018216779A1 (ja) ポリペプチド溶液及びこれを製造する方法、並びにポリペプチド成形体を製造する方法
WO2017131195A1 (ja) 成形体及びその製造方法、並びに成形体の結晶化度を向上させる方法
JPWO2018163758A1 (ja) モールド成形体及びモールド成形体の製造方法
WO2023013638A1 (ja) 合成皮革及びその製造方法
WO2019194231A1 (ja) タンパク質組成物及びその製造方法
WO2019189802A1 (ja) 組換え構造タンパク質の製造方法、組換え構造タンパク質、タンパク質成形体及びタンパク質成形体の製造方法
KR101610866B1 (ko) 개구리유래 반복서열을 포함하는 재조합 단백질, 이의 생산방법 및 이를 포함하는 섬유제조용 조성물
JP2021054819A (ja) 人工構造タンパク質繊維及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17889372

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018559448

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017889372

Country of ref document: EP

Effective date: 20190729